
The Concurrent Programming AbstractionSISCO LS - II Facoltà Ingegneria - Cesena 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module 1.2]
THE CONCURRENT

PROGRAMMING ABSTRACTION

v1.0

The Concurrent Programming AbstractionSISCO LS - II Facoltà Ingegneria - Cesena

FROM PROGRAMS TO MODELS (AND BACK)

• Importance of models and abstraction for computer science and
engineering in particular
– rigorous description / representation of program (system) structure and

behaviour at a proper level of abstraction
• including relevant information, abstracting from non-relevant aspects

– diagrammatical representations for program design
– formal models for program analysis and verification

• Defining proper models for concurrent programs
– defining models for the structure and behaviour of concurrent programs

abstracting from the low-level details of their actual implementation and
realization

• design
– enabling the possibility to reason about their dynamic behaviour of

concurrent programs
• verification

2

The Concurrent Programming AbstractionSISCO LS - II Facoltà Ingegneria - Cesena

CONCURRENT PROGRAMMING MODEL
& ABSTRACTION
• Each process is modelled as a sequence of atomic actions, each

action corresponding to the atomic execution of an statement
• The execution of a concurrent program proceeds by executing a

sequence of actions obtained by arbitrarily interleaving the actions
(atomic statements) from the processes
– atomic statements => executed to completion without the possibility of

interleaving
– during the computation the control pointer or instruction of a process

indicates the next statement that can be executed by that process
• a computation or scenario is an execution sequence that can occur

as a result of the interleaving

3

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

FIRST TRIVIAL EXAMPLE

• Each labeled line represents an atomic statement
• Each process has private memory

– local variables, such as k1 and k2
• Processes shares some memory

– global variables, such as n

4

p q
 integer k1 := 1

p1: n := k1

 integer k2 := 2

q1: n := k2

integer n := 0

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

STATE DIAGRAMS
• Given the model, the execution of a concurrent program can be

formally represented by states and transitions between states
– the state is defined by a tuple consisting of

• one element of each process that is a label (statement) from that process
• one element for each global or local variable that is a value whose type is the

same as the type of a variable
– there is a transition between two states s1 and s2 if executing a

statement in state s1 changes the state to s2.
• the statement executed must be one of those pointed to by a control pointer

in s1

• The state diagram is a graph containing all the reachable states of
the programs
– scenarios are represented by directed pathes through the state diagram

from the initial state
– cycles represent the possibility of infinite computation in a finite graph
– tabular representation

5

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

STATE DIAGRAM FOR THE FIRST EXAMPLE
• State tuple: <p,q,n,k1,k2>

6

<p1,q1,0,1,2>

<end,q1,1,1,2> <p1,end,2,1,2>

<end,end,2,1,2> <end,end,1,1,2>

q1

p1 q1

p1

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

“THE IMPORTANCE OF BEING ATOMIC”
• Atomic increment (1)

• Non-atomic increment (2)

• In the second case, a scenario exists in which the final value of n is 1

7

p q

p1: n := n + 1 q1: n := n + 1

integer n := 0

p q
 integer tmp;
p1: tmp := n
p2: n := tmp + 1

integer tmp;
q1: tmp := n
q2: n := tmp + 1

integer n := 0

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

[NOTE] ASSIGNMENTS & INCREMENTS
AT THE MACHINE-CODE LEVEL
• Stack machines

• Register machines

8

p q
p1: push n
p2: push #1
p3: add

p4: pop n

q1: push n
q2: push #1
q3: add

q4: pop n

integer n := 0

p q
p1: load R1, n
p2: add R1,#n
p3: store n, R1

q1: load R1, n
q2: add R1,#n
q3: store n, R1

integer n := 0

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

[NOTE] NON-ATOMIC VARIABLES (1/2)
• The notion of “atomic” can be referred not only to actions, but also to

data structures:
– a data object is defined atomic if it can be in a finite number of states

equals to the number of values that it can assume
• operations change (atomically) that state

– typically primitive data type in concurrent languages are atomic
• not always: e.g. double in Java

• Abstract data types composed by multiple simpler data objects are
typically non atomic
– es: class in OO languages, structs in C

• In that case for the ADT (or more generally data object) it is possible
to identify two basic types of states: internal and external
– the internal state is meaningful for who defines the data object (class)
– the external state is meaningful for who uses the data object

• The correspondence among internal and external states is partial
– there exist internal states which have no a correspondent external state
– internal states which have a correspondent external state are defined

consistent
9

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

[NOTE] NON-ATOMIC VARIABLES (2/2)
• Then, the execution of an operation on a (not-atomic) ADT can go

through states that are not consistent
– E.g. a simple list

• This is not a problem in the case of sequential programming
– thanks to information hiding

• Conversely, it is a problem in the case of concurrent programming
– it can happen that a process would work on an object while the object is

in an inconsistent state, since an process is concurrently operating on it
> it is necessary to introduce proper mechanisms that would guarantee

that processes work on data objects that are always in states that are
consistent

10

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

STATE DIAGRAM OF CYCLIC PROCESSES

• p and q processes cycling on a condition

• Exercises
– state diagram ?
– construct a scenario in which the loop in p executes exaclty one
– construct a scenario in which the loop in p executes exactly three times
– construct a scenario in which both loops execute infinitely often

11

p q

p1: while (n < 1)
p2: n := n + 1

q1: while n >= 0
q2: n := n - 1

integer n := 1

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

AN EXAMPLE WITH N PROCESSES
• N processes with the same program, indexed by index i in [0..N-1]

• What the algorithm do?

12

p[i]
 integer myNum, count

p1: myNum := vect1[i]

p2: count := <number of elements of vect1 less than myNum>
p3: vect2[count] := myNum

integer array[0..N-1] vect1 := {initialized with some values }
integer array[0..N-1] vect2

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

STATE DIAGRAM OF
NON INTERACTING PROCESSES
• P,Q processes composed by {p1,p2,p3,...} and {q1,q2,q3,...} fully

independent statements

13

<p1,q1>

<p2,q1> <p1,q2>

<p2,q2><p3,q1> <p1,q3>

<p3,q2> <p2,q3> <p1,q4><p4,q1>

p1 q1

p2 q1 p1 q2

p3 q1 p2 q2 p1 q3

...

The Concurrent Programming AbstractionSISCO LS - II Facoltà Ingegneria - Cesena

IS THIS MODEL A GOOD MODEL ?
THAT IS: IS THE CONCURRENT PROGRAMMING
ABSTRACTION JUSTIFIABLE ?

• Actually in the reality computer system has not a global state
– matter of physics

• That's the the role of abstraction: we create a model of the system in
which a kind of global entity executes the concurrent program by
arbitrarily interleaving statements
– to ease analysis

• Is it a valid model for real concurrent computing systems? Reality
check
– multitasking systems
– multicore systems
– multiprocessor computers
– distributed systems

14

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

ARBITRARILY INTERLEAVING:
ABSTRACTING FROM TIME
• Arbitrary interleaving means that we ingore time in our analysis of

concurrent programs
– focussing only to

• partial orders related to action sequences a1,a2,...
• atomicity of the individual action aj => chosing what is atomic is fundamental

– robustness w.r.t. both hardware (processor) and software changes
• indepedent from changes in timings / performance

• This makes concurrent programs amenable to formal analysis, which
is necessary to ensure correctness of concurrent programs.
– proving correctness besides the actual execution time, which is typically

strictly dependent on processors speed and system's enviroronment
timings

15

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

CORRECTNESS OF PROGRAMS
• Checking correctness for sequential programs

– unit testing based on specified input and expecting some specified
output

• diagnose, fix, rerun cycle
– re-running a program with the same input will always give the same

result
• Concurrent programming new (challenging) perspective

– the same input can give different outputs (depending on the scenario...)
• some scenarios may give correct output while others do not

– you cannot debug a concurrent program in the normal way because
each time you run the program, you will likely get a different scenario

• Needs of different kind of approaches
– formal analysis, model checking
– based on abstract models

16

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

CORRECTNESS OF CONCURRENT
PROGRAMS
• The correctness of (possibly non-terminating) concurrent programs is

defined in terms of properties of computations
– condition (assertion) that must be verified in every possible scenarios

• Two type of correctness properties
– safety property
– liveness property

17

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

SAFETY PROPERTIES
• The property must be always true, i.e. for a safety property P to hold,

it must be true in every state of every computation
– expressed as invariants of a computationsì

• Typically used to specify that “bad things” should never happen
– mutual exclusion

• no more than one process is ever present in a critical region
– no deadlock

• no process is ever delayed awaiting an event that cannot occur
– ...

18

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

LIVENESS (OR PROGRESS) PROPERTY
• The property must eventually become true

– i.e. for a liveness property P to hold, it must be true that in every
computation there is some state in which P is true

• Typically used to specify that “good things” eventually happen
– no starvation

• a process finally gets the resource it needs (CPU time, lock)
– no dormancy

• a waiting process is finally awakened
– reliable communication

• a message sent by one process to another will be received
– ...

• Fairness
– a liveness property which holds that something good happens infinitely

often
• ex: a process activated infinitely often during an application execution, each

process getting a fair turn

19

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

WEAKLY FAIR SCENARIO
• def. weakly fair scenario

– a scenario is (weakly) fair if at any state in the scenario a statement that
is continually enabled eventually appears in the scenario

• Does this algorithm necessarily halt?
• The non-terminating scenario is not fair

– if we allow only for fair scenario, then eventually an execution of q1 must
be included in every scenario

20

p q
p1: while flag = false
p2: n := 1 - n

q1: flag := true

integer n := 0
boolean flag := false

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

SOME EXERCISES (1/2)

– Construct a scenario in which the final value is 2

– draw the state diagram
– construct scenarios that give the output sequences: 012, 002, 012
– must the value 2 appear in the output? How many times can 2 appear in

the output? How many times can 1 appear in the output?
21

p q
 integer temp

p1: do 10 times

p2: temp := n

p3: n := temp + 1

 integer temp

q1: do 10 times

q2: temp := n

q3: n := temp + 1

integer n := 0

p q

p1: while n < 2

p2: write(n)

q1: n := n + 1

q2: n := n + 1

integer n := 0

The Concurrent Programming AbstractionSISOP LA - II Facoltà Ingegneria - Cesena

SOME EXERCISES (2/2)
• Welfare crook problem

– let a, b, c be three ordered array of integer elements. It is known that
some element appears in each of the three array. Here it is an outline of
a sequential algorithm to find the smallest indices i, j, k, for which a[i] =
b[j] = c[k]

– write conditional expressions that make the algorithm correct
– develop a concurrent algorithm for this problem

22

 loop
p1: if condition-1
p2: i := i + 1
p3: else if condition-2
p4: j := j + 1
p5: else if condition-3
p6: k := k + 1
 else exit loop

integer array[0..N] a, b, c := < as required >

integer i := 0, j := 0, k := 0

