
Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module 1.1]
BASIC CONCEPTS

v1.0

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

CONCURRENCY AND CONCURRENT
SYSTEMS

• Concurrency as a main concept of many domains and systems
– operating systems, multi-threaded and multi-process programs, distributed

systems, control systems, real-time systems,...
– “complex” software systems

• General definitions
– “In computer science, concurrency is a property of systems in which several

computational processes are executing at the same time, and potentially
interacting with each other.” [ROS-97]

– “Concurrency is concerned with the fundamental aspects of systems of
multiple, simultaneously active computing agents, that interact with one
another” [CLE-96]

• Common aspects
– systems with multiple activities or processes whose execution overlaps in

time
– activities can have some kind of dependencies, therefore can interact

2

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

CONCURRENT PROGRAMMING
• Concurrent programming

– building programs in which multiple computational activities overlap in
time and typically interact in some way

• Concurrent program
– finite set of sequential programs that can be executed in parallel, i.e.

overlapped in time
• a sequential program specifies sequential execution of a list of statements
• the execution of a sequential program is called process
• a concurrent program specifies two or more sequential programs that may be

executed concurrently as parallel processes
– the execution of a concurrent program is called concurrent computation

or elaboration

3

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

CONCURRENT PROGRAMMING VS.
PARALLEL PROGRAMMING
• Parallel programming

– the execution of programs overlaps in time by running on separate
physical processors

• Concurrent programming
– the execution of programs overlaps in time without necessarily running

on separate physical processors, by sharing for instance the same
processor

• potential or abstract parallelism

• Distributed programming
– when processors are distributed over a network
– no shared memory

4

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

WHY CONCURRENCY AND CONCURRENT
PROGRAMMING (1/2)
• Performance improvement

– increased application throughput
• by exploiting parallel hardware

– increased application responsiveness
• by optimizing the interplay among CPU and I/O activities

• Quantitative measurement for performance: speedup

5

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
=

1
1− P + P

N

(2)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

1

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1− P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

1

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

AMDAHL’S LAW
• Maximum speedup parallelizing a system:

• Theoretically maximum for P = 1 (linear speedup)
– actually there are specific cases with S > N (super-linear) speedup

6

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1− P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

1

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1− P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

1

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

WHY CONCURRENCY AND CONCURRENT
PROGRAMMING (2/2)

• Abstraction and engineering
– more appropriate level of abstraction for programs which interact with

the environment, control multiple activities and handle multiple events
– e.g. reactive systems

• Concurrency an a tool for software design and construction
– rethinking to the way in which we solve problems

• parallel algorithms
– rethinking to the way in which we design and build systems

• new level of abstraction
– different kind of decomposition, modularization, encapsulation

• full engineering spectrum
– modelling, implementing, testing, ...

7

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

BASIC JARGON OF CONCURRENT
PROGRAMMING
• Processes ~ a sequential program in execution

– abstract / general concept
• different kind of incarnation depending on the specific context
• the basic unit of a concurrent system, single thread of control

– synonim: task
• sequence of instructions operating together as a group, unit of work

– process execution is meant to be completely asynchronous with each other
• different speed in executing statements ==> non-determism

• Process interaction
– any non trivial concurrent program is based on multiple processes that need

to interact in some way in order to achieve the objective of the system
– basic kinds of interaction:

• competition / contention, cooperation, interferences

8

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

PROCESS INTERACTION:
CONTENTION (OR COMPETITION)
• Refers to interactions which are expected and necessary, but not

wanted
– typically concerns the need of coordinating the access by multiple

processes to shared resources
• Two basic class of problems

– mutual exclusion
• ruling the access to shared resources by distinct processes

– critical sections
• ruling the concurrent execution of blocks of actions by distinct processes

9

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

PROCESS INTERACTION:
COOPERATION
• Refers to interactions which are expected and wanted

– they are part of the semantics of the concurrent program
• Two basic kinds

– synchronization
• concerns the explicit definition or presence of temporal relationships or

dependencies among processes and among actions of distinct processes
• introduction of specific supports for the exchange of temporal signals

– communication
• concerns the need of realising an information flow among processes, typically

realised in terms of messages
• introduction of specific supports for the exchange of messages

10

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

SYNCHRONIZATION VS. MUTUAL
EXCLUSION
• Profoundly different - even if related - concepts

– “synchronization = mutual exclusion urban legend” [BUH-05]
• false story, still present in textbooks / research papers

– synchronization defines a timing relationship among processes
• mantaining time-relationships which includes actions happening at the same

time or happening at the same relative rate or simply some action having to
occur before another (precedence relationships)

– mutual-exclusion defines a restriction on access to shared data
• mutual-exclusion is meaningless if no shared data is involved

• Relationships
– mutual-exclusion typically require some forms of implicit synchronization

• blocking some actions, waiting for other actions to complete
– synchronization does not necessarily require any kind of shared data

and the mutual exclusion

11

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

ON THE DIFFICULTY OF SYNCHRONIZATION:
EXAMPLE 1: “BUY-THE-MILK” PROBLEM
• “Alice and Bob live together, happily without cell-phones. Both are

responsible to buy the milk when it finishes...”

12

Time Alice Bob

5:00 Arrive home

5:05 Look in the fridge; no milk

5:10 Leave for a grocery

5:15 Arrive home

5:20 Look in the fridge; no milk

5:25 Buy milk Leave for grocery

5:30 Arrive home; put milk in fridge

5:40 Buy milk

5:45 Arrive home; oh no!

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

A SOLUTION: NOTES IN THE FRIDGE (1/2)
• Looking for a solution to ensure that:

– only one person buys the milk, when there is no milk
– someone always buys the milk, when there is no milk

• Tentative solution: using notes on the fridge!

– “if you find that there is no milk and there is no note on the door of the
fridge, then leave a note on the fridge’s door, go and buy milk, put the
milk in the fridge, and remove your note.”

• Does it work? Not always actually...

13

PROGRAM for Alice & Bob
1 if (no note) then
2 if (no milk) then
3 leave note
4 buy milk
5 remove note
6 fi
7 fi

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

A SOLUTION: NOTES IN THE FRIDGE (2/2)
(..NOT SO EASY, ACTUALLY..)

14

Time Alice Bob

5:00 Arrive home

5:05 Look at the fridge; no note

5:10 ...ops! need a toilet

5:15 ...still in the toilet... Arrive home

5:20 ...still in the toilet... Look at the fridge; no note

5:21 ...still in the toilet... Look in the fridge; no milk (argh)

5:22 ...still in the toilet... leave note

5:25 ...still in the toilet... go and buy milk

5:45 look in the fridge: no milk (*) ...

5:50 leave note...

[*] Alice does not realize that a note was put on the fridge (she is not really a
good observer) and strictly follows the esablished program

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

ON THE DIFFICULTY OF SYNCHRONIZATION:
EXAMPLE 2: “COORDINATED ATTACK” PROBLEM

• “Two camps of the same army in different locations need to decide
on the exact time for a coordinated attack on the enemy camp”

• Communication between 1-2 through messangers
– each general: send a message (messanger), wait for an ack

• If communication is not reliable, the problem has no solution

15

Enemy

1 2

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

PROCESS INTERACTION:
INTERFERENCES
• Refers to interactions which are neither expected, not wanted

– producing bad effects only when the ratio among the process speeds
assumes specific values (time-dependent errors)

– the “nightmare” of concurrent programming
• race condition or race hazard or simply race

– whenever two or more processes concurrently access and update
shared resources, and the result depends on the specific order occurring
in process access

• Related to two main types of programming errors
– bad management of expected interactions
– presence of spurious interactions not expected in the problem

• Interferences and errors in concurrent programs can lead to critical
situations for the concurrent system in the overall.
– deadlock, starvation, livelock

16

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

CRITICAL SITUATIONS
• deadlock

– situation wherein two or more competing actions (processes) are
waiting for the other to finish, and thus neither ever does

– such actions typically concerns the release of a locked shared resource,
the receiption of a temporal signal or a message

• starvation
– situation wherein a process is blocked in an infinite waiting
– resource starvation = the process is perpetually denied in accessing

necessary resources.
• without those resources, the program can never finish its task

• livelock
– a livelock is similar to a deadlock, except that the states of the processes

involved in the livelock constantly change with regard to one another,
none progressing

– livelock is a special case of resource starvation: the general definition
only states that a specific process is not progressing

17

Basic conceptsSISCO LS - II Facoltà Ingegneria - Cesena

BIBLIOGRAPHY
• [HAN-73]

– Per Brinch Hansen - “Concurrent Programming Concepts”, ACM Computing
Surveys, Vol. 5, No. 4, Dec. 1973

• [AND-83]
– Gregory Andrews and Fred Schneider - “Concepts and Notations for Concurrent

Programming”, ACM Computing Surveys, Vol. 15, No. 1, March 1983
• [CLE-96]

– Rance Cleaveland, Scott Smolka et al - “Strategic Directions in concurrency
Research”, ACM Computing Surveys, Vol. 28, No. 4, Dec. 1996

• [ROS-97]
– Roscoe, A. W. (1997). The Theory and Practice of Concurrency. Prentice Hall.

ISBN 0-13-674409-5.
• [BUH-05]

– Peter Buhr and Ashif Harji. “Concurrent Urban Legends”. Concurrency and
Computation: Practice and Experience. 2005. 17:1133-1172.

18

