Ammassi di galassie - a.a. 2008/2009

Bibliography

- $\rightarrow\,$ P. Rosati, S. Borgani and C. Norman, "The evolution of X-ray clusters of galaxies", 2002, ARA&A, 40, 539 (R)
- \rightarrow C.L. Sarazin, "X-ray Emission from Clusters of Galaxies", 1988, Cambridge University Press, Cambridge (S)
- \rightarrow G.M. Voit, "Tracing cosmic evolution with clusters of galaxies", 2005, Reviews of Modern Physics, 77, 207 (V)
- \rightarrow Biviano A., 2000, "From Messier to Abell: 200 Years of Science with Galaxy Clusters", astro-ph/0010409v1

1. History of the study of galaxy clusters

[Bibl.: Biviano A., 2000, astro-ph/0010409v1]

- \rightarrow 1784: Charles Messier notes Virgo cluster in catalogue of nebulae.
- \rightarrow 1785: Wilhelm Herschel notes Coma cluster in catalogue of nebulae. Later other clusters: Ursa Major, Hydra.
- \rightarrow 1864: John Herschel, General catalogue of nebulae. Fornax, Pisces.
- \rightarrow 1877: Edouard Stephan discovers Stephan's quintet (compact group)
- \rightarrow 1908: Max Wolf, photographic work on nebulae in Perseus and Coma clusters.
- \rightarrow 1920: Shapley (galactic) and Curtis (extragalactic) debate on nature of nebulae (Kant 1755!, Herschel 1785!).
- \rightarrow 1922-23 Edwin Hubble: nebulae are extragalactic objects (Cepheids in M31)
- \rightarrow 1927 Lundmark: clusters can form by galaxy-galaxy encounters
- \rightarrow 1931 Hubble & Humason: velocity dispersion of clusters.
- \rightarrow 1936 Hubble, Zwicky: distribution of clusters looks uniform: no superclusters?

- \rightarrow 1936 Hubble: suggests morphology-density relation.
- \rightarrow 1937 Zwicky: estimates mass of Coma cluster using virial theorem. Dark Matter. Also suggests gravitational lensing as method to measure cluster mass!
- \rightarrow 1941 Holmberg: first "N-body" simulation of galaxy encounter (with light bulbs)
- \rightarrow 1942 Zwicky: spatial distribution of galaxies in clusters
- \rightarrow 1943 Chandrasekhar: dynamical friction.
- $\rightarrow~1952$ Zwicky detects intracluster light in Coma
- \rightarrow 1953-1958, de Vaucouleurs: evidence of super-clustering
- \rightarrow 1957 Zwicky suggests modification of general relativity as an alternative to dark matter in clusters
- \rightarrow 1957-1967: Herzog, Wild & Zwicky catalogue of ~10000 clusters
- \rightarrow 1958 Abell' catalogue of clusters: 2712 clusters. Statistically homogeneous. 85% complete for the richest 1682 clusters. Starts study of clusters as a population of objects.
- $\rightarrow~1959$ Limber speculates that clusters contain hot gas
- \rightarrow 1959 Large et al. detect Coma C radio source.
- \rightarrow 1960 Minkowski: clusters around radio sources (3C295 $\implies z \sim 0.45$ cluster)
- \rightarrow 1960 van den Bergh: morphology density relation in Virgo and Ursa Major
- \rightarrow 1960 von Hoerner: first numerical N-body simulation

- \rightarrow 1961 van Albada: clusters can be formed by amplification of density fluctuations
- $\rightarrow~1962$ Abell's list of 17 superclusters.
- $\rightarrow~1964$ Hénon simulation of dynamical mixing in cluster
- $\rightarrow~1964$ Matthews et al.: cD galaxies
- \rightarrow 1965-1974 Dark matter hypothesis becomes accepted
- \rightarrow 1966 Byram et al.: first detection of M87 in X-rays (rocket experiment)
- \rightarrow 1966 Felten et al.: Coma must have hot gas at $T>10^7$ K.
- $\rightarrow~1967$ Lynden-Bell: violent relaxation
- \rightarrow 1970-1972 Sunyaev-Zeldovich (SZ) effect predicted
- $\rightarrow~1971$ UHURU X-ray satellite. Coma.
- \rightarrow 1972 Rood: kinematical segregation due to dynamical friction.
- \rightarrow 1972 Gunn & Gott: ram-pressure stripping of galaxy gas in clusters
- \rightarrow 1973-1977 Lea et al., Silk, Cowie & Binney, Fabian & Nulsen: cooling flow.
- $\rightarrow~1976$ Schechter Luminosity Function of galaxies
- $\rightarrow~1976$ ARIEL V satellite. Detection of 7 KeV iron line
- \rightarrow 1976 White: N-body simulation of dynamical friction in clusters
- $\rightarrow~1976$ Ostriker & Tremaine: galactic cannibalism
- \rightarrow 1976 Cavaliere & Fusco-Femiano: $\beta\text{-model}$ for cluster hot gas distribution

- \rightarrow 1978 Butcher & Oemler effect (higher fraction of blue galaxies in higher z clusters)
- $\rightarrow~1978$ EINSTEIN X-ray satellite
- \rightarrow 1989-1993 first measures of cluster mass using weak gravitational lensing
- $\rightarrow~1990$ ROSAT X-ray satellite
- $\rightarrow~1991$ first reliable measurements of SZ effect
- $\rightarrow~1993$ Boehringer: cavities in X-rays
- $\rightarrow\,$ 1999 XMM-Newton X-ray satellite & CHANDRA X-ray satellite
- \rightarrow 2001-2002 Boehringer et al., Tamura et al., Peterson et al.: XMM and CHANDRA data inconsistent with standard cooling flow model.
- $\rightarrow~2005$ SUZAKU X-ray satellite
- \rightarrow 2000-2008 Churazov et al., Fabian et al., McNamara et al...: evidence of interaction between AGN and cooling flows (X-ray cavities + radio lobes)

2. Optical observations of galaxy clusters

2.1 Optical catalogs

[Bibl.: S:2.1, S:2.2, V:II.A, R:546]

- \rightarrow Optical: $3\times 10^{14}\,\lesssim\,\nu\,\lesssim\,10^{15}$ Hz, 3000 $\lesssim\,\lambda\,\lesssim\,10000$ Å
- \rightarrow Abell (1958) and Zwicky et al. (1961-1968). Both used Palomar Observatory Sky Survey (POSS) plates (Northern sky). Southern Abell catalogue (Abell et al. 1989)
- \rightarrow Criteria for membership. Surface number density enhancement + angular scale of enhancement. Or: number of galaxies + size. Completeness out to a limiting redshift.
- → Abell criteria: 1) at least 50 galaxies with m in the range m_3 to $m_3 + 2$ (magnitude of the 3rd brightest galaxy); 2) galaxies contained within a (Abell) radius of 1.7/z arcmin or $2.1/h_{70}$ Mpc; redshift $0.02 \le z \le 0.2$. 2712 clusters of which 1672 satisfying selection criteria. ($H_0 = 70h_{70}$ km/s/Mpc)
- \rightarrow Zwicky criteria: 1) boundary of the cluster contour where density is twice the local background density; 2) at least 50 galaxies within boundary with *m* in the range m_1 to m_1+2 (magnitude of the brightest galaxy); Less strict criteria than Abell's: 10000 clusters.

- \rightarrow Abell estimated redshift from magnitude of the tenth-brightest galaxy. Now spectroscopic redshift. Sarazin et al. (1986) for 500 Abell clusters.
- \rightarrow In more modern cluster catalog, color is used as a criterion. Cluster galaxies are typically redder than field galaxies at the same redshift.
- → Automated catalogs of clusters. The Edinburgh/Durham Southern Galaxy Catalogue (EDSGC): 737 clusters (Lumsden et al. 1992). APM Galaxy survey: 1000 clusters (Maddox et al. 1990)
- \rightarrow Problems with optical identification: projection effects. Solution: X-ray selection.
- \rightarrow Observation in red or infra-red bands and photometric redshift techniques allow to select clusters out to redshift $z\sim1.3$

2.2 Richness

[Bibl.: S:2.3, V:II.A.1]

- \rightarrow It is a measure of the number of galaxies in a cluster. It is a statistical measure of the population of a cluster.
- $\rightarrow\,$ Definition should be independent of distance of the cluster.
- → Zwicky et al. Richness: number of galaxies within the cluster boundary minus the expected number of background galaxies. Definition dependent on distance! Larger area of cluster considered for more nearby clusters.
- → Abell: richness definition nearly independent of distance. Number of galaxies within the Abell radius. Richness classes (5 if > 300, 1 if 50 79). e.g. Coma in richness class 2.

 \rightarrow Postman et al. (1996) define richness as the number of galaxies more luminous than $L_* \sim 10^{11} L_{\odot}$. Correlates with Abell richness, with large scatter.

2.3 Luminosity function

[Bibl.: S:2.3, V:II.A.1]

- → Differential Luminosity Function (LF): n(L) number of galaxies with luminosity between L and L + dL. Integral LF $N(L) = \int_{L}^{\infty} n(L) dL$. n(L) = -dN/dL.
- \rightarrow Schechter (1976) LF:

$$n(L)dL = N_*(L/L_*)^{-\alpha} \exp(-L/L_*)d(L/L_*), \qquad (2.2)$$

where L_* is a characteristic luminosity and α is the faint-end slope. Good fit to cluster galaxies if BCG/cD galaxies $(L \sim 10L_*)$ are excluded.

- \rightarrow Typical values $\alpha \sim 1.2 1.3$ and $L_* \sim 10^{11} L_{\odot}$.
- → The integral Schechter LF is $N(L) = N_*\Gamma(1 \alpha, L/L_*)$, where $\Gamma(a, x) = \int_x^\infty t^{a-1} \exp(-t)dt$ is the incomplete gamma function. Total number of galaxies diverges, but total luminosity is finite $(1 < \alpha < 2)$: $L_{tot} = N_*\Gamma(2 - \alpha)L_*$ where $\Gamma(a) = \int_0^\infty t^{a-1} \exp(-t)dt$ is the gamma function.
- → Schechter: power law of index α at the faint end. Exponential cut-off at $L > L_*$. Break at L_* .
- → Brightest Cluster Galaxies (BCG) (including cD galaxies) are not statistically drawn from the LF. Special formation mechanism (galactic cannibalism).

2.4 Morphological classification

[Bibl.: S:2.5]

- $\rightarrow\,$ Different criteria of classification
- \rightarrow Abell: regular \rightarrow irregular (less dynamically evolved)
- \rightarrow Zwicky: compact (concentrated), medium compact, open (not concentrated)
- \rightarrow Bautz-Morgan: Type I (with cD), Type II (dominant BCG but not cD), Type III (no dominant galaxy)
- → Rood-Sastry: "bifurcated" classification based on distribution of 10 brightest galaxies . cD: dominated by cD (e.g. A2199) ; B: binary (Coma); L: line, 3 or more galaxies in a straight line (Perseus); C: core, 4 or more galaxies in the core (A2065); F: flattened distribution (Hercules); I: irregular (A400)
- \rightarrow Struble & Rood revised Rood-Sastry classification, changing the tuning-fork diagram into a line-split diagram.
- \rightarrow Other classification, based on galaxy content: spiral-rich, spiral-poor.
- $\rightarrow\,$ Different classifications are correlated. No clear trend with richness.

2.5 Velocity distribution of galaxies in clusters

[Bibl.: S:2.6, V:II.A.2]

→ Consider a cluster in which $\langle z \rangle$ is the mean galaxy redshift. The lineof-sight velocity of a galaxy with redshift z in the rest frame of the cluster is $v_{los} = (z - \langle z \rangle)c$ $\rightarrow p(v_{los})dv_{los}$ is the probability of finding a galaxy with velocity in the range v_{los} to $v_{los} + dv_{los}$. If Gaussian (as observed in many clusters) we have

$$p(v_{los})dv_{los} = \frac{1}{\sqrt{2\pi\sigma_{los}}} \exp[-v_{los}^2/2\sigma_{los}^2]dv_{los}$$
 (2.3)

where σ_{los} is the line-of-sight velocity dispersion.

- $\rightarrow \sigma_{los}$ depends on position in the cluster. Typically decreasing for increasing projected distance \implies galaxy velocity distribution is not exactly isothermal.
- \rightarrow Consider "Temperature" of galaxies T_{qal} :

$$\sigma_{los}^2 \propto \frac{k_B T_{gal}}{M_{gal}},\tag{2.4}$$

where M_{gal} is the galaxy mass. σ_{los} independent (or only slightly dependent) on galaxy mass: no thermodynamical equilibrium. \implies two-body relaxation not advanced $(t_{2b}/t_{cross} \propto N/\ln N)$. T_{gal} proportional to mass (\implies clusters are collisionless systems \implies violent relaxation). One can also define an equivalent gas temperature $T_{gal,equiv}$ that

$$\sigma_{los}^2 \propto \frac{k_B T_{gal,equiv}}{\mu m_p} \tag{2.5}$$

where μ is the mean gas particle mass in units of the proton mass $m_{\rm p}$ and k_B is the Boltzmann constant. $T_{gal,equiv}$ is comparable to the temperature of the ICM.

- \rightarrow No mass significant segregation \implies dark matter more diffuse than associated with single galaxies.
- \rightarrow Brightest galaxies have somewhat smaller velocity dispersion than the luminous galaxies (dynamical friction).

2.6 Spatial distribution of galaxies in clusters

[Bibl.: S:2.7]

 \rightarrow Simplest models (for regular clusters): spherically symmetric. Intrinsic number density of galaxies n(r); projected number density of galaxies (derive)

$$\Sigma(R) = 2 \int_{R}^{R_{max}} \frac{n(r)rdr}{\sqrt{r^2 - R^2}},$$
(2.6)

where R_{max} is the maximum radius of the cluster galaxy distribution. Here we assume $R_{max} = \infty$.

 \rightarrow By deprojecting Σ one obtains the corresponding intrinsic density distribution (derive using Abel integral equation)

$$n(r) = -\frac{1}{\pi} \int_{r}^{\infty} \frac{d\Sigma}{dR} \frac{dR}{\sqrt{R^2 - r^2}}$$
(2.7)

 $\rightarrow\,$ A widely adopted model is the analytic King model

$$n(r) = n_0 \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-3/2}$$
(2.8)

$$\Sigma(R) = \Sigma_0 \left[1 + \left(\frac{R}{r_c}\right)^2 \right]^{-1}, \qquad (2.9)$$

where r_c is the core radius, $\Sigma_0 = 2n_0r_c$ and the integrated number of galaxies diverges logarithmically. $\Sigma(r_c) = \Sigma_0/2$. Typically $r_c \sim 0.2$ Mpc.

- \rightarrow Most clusters are not spherically symmetric, but are highly elongated. They have intrinsic ellipticities $\epsilon \sim 0.5 - 0.7$, so clusters are more flattened on average than elliptical galaxies ($\epsilon \leq 0.3$). Ellipticity is $\epsilon \equiv 1 - b/a$, where a and b are major and minor axis.
- \rightarrow In non-spherical clusters with a central dominant cluster, there is alignment between the cluster and the central cluster galaxy.

2.6.1 Abel integral equation

[BT]

$$f(x) = \int_{x}^{\infty} \frac{dt g(t)}{(t-x)^{\alpha}}$$
(2.10)

 \implies

$$g(x) = -\frac{\sin(\alpha\pi)}{\pi} \frac{d}{dx} \int_x^\infty dt \, \frac{f(t)}{(t-x)^{1-\alpha}} \tag{2.11}$$

$$= -\frac{\sin(\alpha\pi)}{\pi} \int_{x}^{\infty} \frac{df}{dt} \frac{dt}{(t-x)^{1-\alpha}}$$
(2.12)

2.7 Morphology of galaxies in clusters

2.7.1 BCGs and cD galaxies

[S:2.10.1]

- \rightarrow Brightest Cluster Galaxies (BCGs) are dominant giant elliptical galaxies. Typically they sit at the centre of the cluster.
- \rightarrow Many BCGs have double or multiple nuclei. If the two central nuclei are surrounded by a common luminous halo \implies "dumbbell" galaxy.
- \rightarrow cD galaxies are special BCGs. They are dominant, central giant elliptical galaxies. They are special because they have an extended amorphous luminous halo of low surface brightness.
- \rightarrow The central light profile is well fitted by a $R^{1/4}$ De Vaucouleurs law

$$I(R) = I_e \exp\left\{-7.67 \left[\left(\frac{R}{R_e}\right)^{1/4} - 1 \right] \right\},$$
 (2.13)

but the extended halo deviates from the $R^{1/4}$ (light excess in the outer regions). R_e is effective radius (=half-light radius).

 $\rightarrow R^{1/4}$ law is a special case of Sérsic $R^{1/m}$ law:

$$I(R) = I_e \exp\left\{-b(m)\left[\left(\frac{R}{R_e}\right)^{1/m} - 1\right]\right\}$$
(2.14)

where $b(m) \sim 2m - 1/3 + 4/(405m)$. Typically $m \gtrsim 4$ for giant ellipticals.

- → The luminous halo can be considered as associated to the BCG (\implies cD) or to the cluster (\implies Intracluster Light: stars in clusters of galaxies that are not in galaxies). ICL: less than ~10% of stars in galaxies.
- $\rightarrow\,$ About 20% of BCGs are cD galaxies.
- → Luminosity ~ $10L_* \sim 10^{12}L_{\odot}$. Masses BCG/cD galaxies of the order of $10^{13}M_{\odot}$. But difficult to separate galaxy by cluster.
- \rightarrow Mechanism of formation of BCG: galactic cannibalism (by dynamical friction). Not so clear how to form diffuse luminous halo.

2.7.2 Morphology-density relation & redshift evolution

[S:2.10.2]

- \rightarrow Elliptical and S0 galaxies are more common than spirals in regular clusters, while the opposite is true in the field and in irregular clusters.
- → Many spirals in cluster have less cold neutral gas ($T \leq 1000$ K) than field spirals ("anemic" spirals).
- \rightarrow Butcher-Oemler effect: higher redshift clusters contain a higher fraction of blue galaxies than lower redshift galaxies.
- \rightarrow Most probable explanation: spirals in clusters lose their gas and become S0 (=lenticular). Gas might be removed by ram pressure

stripping and/or thermal evaporation by cluster hot gas \implies stop to star-formation.

3. X-ray observations

3.1 Detection and identification of clusters in Xrays

[S:4.1, V:II.B, R:548]

- \rightarrow X-ray: $10^{16} \lesssim \nu \lesssim 10^{19}$ Hz, $0.1 \lesssim \lambda \lesssim 10$ nm, 0.1 $\lesssim E = h\nu \lesssim 100$ keV
- \rightarrow Clusters of galaxies are the most common X-ray sources. They are extremely luminous in X-ray $L_X = 10^{43-45}$ erg/s. X-ray emission from clusters is extended and not time-variable.
- \rightarrow Detected in X-ray emission line of highly ionized metals (e.g. iron) \implies metal enriched plasma
- \rightarrow Cluster X-ray emission is thermal emission from the hot $(2 \times 10^7 10^8 \text{ K})$ gas of the intracluster medium (ICM).
- \rightarrow X-rays cannot be observed by ground-based telescopes because they are efficiently absorbed by the earth's atmosphere. Need to observe from very high altitude \implies rockets (1960-1970) \implies satellites (1970-today).

- → Satellites: UHURU (1971), Einstein Observatory (1979), ROSAT (1990), XMM-Newton (1999), CHANDRA (1999), SUZAKU (2005). Increasing sensitivity, spatial (and spectral) resolution.
- → Highest resolution: spectral $E/\Delta E \sim 50$ (XMM), spatial ~ 0.5 arcsec (CHANDRA)
- → Advantage of X-ray selection of clusters: reveals bound systems; X-ray luminosity correlated with mass; X-ray emissivity proportional to gas density squared.
- \rightarrow Cluster X-ray photometric samples mainly determined by area and flux limit.

3.2 X-ray luminosity function of cluster of galaxies

[S:4.2, R:556]

- → differential Luminosity Function (LF): $n(L_X)dL_X$ number of clusters with X-ray luminosity between L_X and $L_X + dL_X$. Integral LF $N(L_X) = \int_{L_X}^{\infty} n(L_X)dL_X$.
- $\rightarrow\,$ The cluster X-ray LF is well described by the Schechter function

$$n(L_X)dL_X = N_*(L_X/L_X^*)^{-\alpha_X} \exp(-L_X/L_X^*)d(L_X/L_X^*), \quad (3.2)$$

where L_X^* is a characteristic luminosity and α_X is the faint-end slope.

- $\rightarrow L_X$ in some specified energy range $(E = h\nu)$. For instance, 'soft' X-rays (0.5-2 keV).
- \rightarrow Best-fit values $\alpha_X \sim 1.8$ and $L_* \sim 4 \times 10^{44}$ erg/s in soft X-rays 0.5-2 keV.
- $\rightarrow\,$ Cluster X-ray LF better determined than galaxy optical LF.

3.3 X-ray spectra of clusters

[S:4.3, V:II.B.2-3]

- \rightarrow Spectral X-ray observations of clusters fundamental to determine emission mechanism
- $\rightarrow\,$ It is thermal emission from diffuse hot intracluster gas:

$$I_{\nu} \propto \exp(-h\nu/k_B T) \tag{3.3}$$

where T is the gas temperature; thermal velocity of protons $\sim \sqrt{k_B T/m_p} \sim \sigma$, where σ is the velocity dispersion of galaxies in the cluster; no low-energy photoabsorption (optically thin); emission line from heavy elements (iron).

- → Intensity I_{ν} in units of erg cm⁻² s⁻¹ Hz⁻¹. Spectrum made by continuum + line emission.
- → The continuum is due to thermal bremsstrahlung $I_{\nu} \propto \exp(-h\nu/k_B T)$ if single-temperature gas. Temperature 2 × 10⁷ − 10⁸ K, so bremsstrahlung emission is truncated at \lesssim 10 keV (often T is expressed in keV: $k_BT = 1 keV$ if $T \simeq 1.16 \times 10^7$ K).
- → Observations in the hard X-ray ($\gtrsim 20$ keV) can constrain the contribution from non-thermal emission (inverse Compton and synchrotron: $I_{\nu} \propto \nu^{-\alpha_{syn}}$)
- → The most important emission line in the cluster X-ray spectra is the "7 keV Fe line" from mainly Fe⁺²⁴ and Fe⁺²⁵ [e.g. K β line: n = 1 (K shell), $\Delta n = 2$ (β). Shells: K,L,... Δn : α , β ,...]
- \rightarrow Beside Fe 7 keV line, many lower energy lines from highly ionized Ni, Fe, C, N, O, Ne, Mg, Si, S...

 \rightarrow Line equivalent width

$$EW \equiv \int \frac{I_{\nu} - I_{\nu,cont}}{I_{\nu,cont}} d(h\nu)$$
(3.4)

(in keV). Measures of EW of iron lines allows to determine metal abundance of cluster gas . Iron abundance $Fe/H \sim 10^{-5}$ (~ 0.3 solar value).

 \rightarrow Also metallicity gradient: higher metallicity in the core.

3.4 Spatial distribution of X-ray emission form clusters

[S:4.4, V:II.B.1]

- \rightarrow Extended X-ray emission peaked on the cluster center (on the cD or BGC if there is a central dominant galaxy)
- $\rightarrow \beta$ model: both the gas and the galaxy distribution are assumed to be isothermal, in hydrostatic equilibrium in the cluster gravitational potential. Galaxy distribution with isotropic velocity dispersion. The parameter β is the ratio between gas (T_{gas}) and galaxy $(T_{gal,equiv} = \mu m_p \sigma^2/k_b)$, where μ is the mean gas particle mass in units of the proton mass m_p and k_B is the Boltzmann constant. Thus

$$\beta \equiv \frac{\mu m_p \sigma^2}{k_b T_{gas}},\tag{3.5}$$

where σ is the 1-dimensional galaxy velocity dispersion. $\implies \rho_{gas} \propto \rho_{gal}^{\beta}$ (derive from hydrostatic equilibrium equation).

 $\rightarrow\,$ If galaxy distribution is King analytic model then

$$n_{gas}(r) = n_{gas,0} \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-3\beta/2}$$
(3.6)

 $(\rho_{gas} = \mu m_p n_{gas}).$

 \rightarrow The X-ray surface brightness is

$$S_X(R) = 2 \int_R^\infty \frac{\epsilon r dr}{\sqrt{r^2 - R^2}},\tag{3.7}$$

where $\epsilon = n_i n_e \Lambda(T)$ is the emissivity and $\Lambda(T)$ is the cooling function $\Lambda(T) \propto T^{1/2}$ for bremsstrahlung $(n_i \text{ and } n_e \text{ are the ion and electron}$ number densities and $n_{gas} = n_i + n_e$). In the case of β model one obtains

$$S_X(R) \propto \left[1 + \left(\frac{R}{r_c}\right)^2\right]^{-3\beta + \frac{1}{2}}.$$
 (3.8)

- \rightarrow Best fit values for beta models of clusters $\beta \simeq 2/3$. Thus at $r \gg r_c$ $\rho_{gas} \propto r^{-2}$ while $\rho_{gal} \propto r^{-3}$ (gas distribution more extended).
- → Gas mass diverges at large radii for $\beta \leq 1$. The integrated X-ray luminosity converges for $\beta > 0.5$.
- \rightarrow Morphology of X-ray emission: regular/irregular; with or without a central dominant galaxy; with or without cool core.

3.5 Thermal emission mechanisms in X-rays

[S:5.1.3, S:5.2]

3.5.1 Ionization and X-ray emission

- $\rightarrow~T\sim 10^8$ K, $n_e\sim 10^{-3}~{\rm cm}^{-3}$
- \rightarrow Assumptions: Coulomb collision timescale short \implies Maxwell-Boltzmann distribution at temperature $T_e = T_i$; low density \implies collisional excitation and deexcitation slower than radiative decay; gas is optically thin; ionization determined by electron-ion collisions (negligible ion-ion collisions); plasma in ionization equilibrium.

- → H and He fully ionized with primordial composition X = 0.75 and Y = 0.25 (H and He fraction in mass) $\implies n_H = 6n_e/7$, $n_{\text{He}} = n_e/14$, where n_H and n_{He} are H and He number densities $\implies n_i \simeq 0.93n_e$, $n = n_i + n_e \simeq 1.93n_e$ and $\mu \simeq 0.59$ (derive). By definition, in fully ionized plasma $n_H = n_p$ (proton number density).
- \rightarrow The equilibrium ionization state depends only on the electron temperature.
- → Continuum X-ray emission due to free-free (bremsstrahlung) and freebound (recombination). Bremsstrahlung dominant.
- \rightarrow Line X-ray emission due to radiative deexcitation of collisionally excited inner shell electrons \implies radiative recombination.
- $\rightarrow\,$ Line ratios useful to determine temperature, abundance and ionization state of the cluster gas.
- \rightarrow The combined emissivity from this mechanisms can be expressed as

$$\epsilon_{\nu} = n_p n_e \sum_{X,i} \frac{n(X)}{n(H)} f(X^i, T_e) \Lambda_{\nu}(X^i, T), \qquad (3.9)$$

where X^i is a ion of the generic element X, f is the ionization fraction and Λ_{ν} is the emission per ion at unit electron density. The bolometric emissivity can be written

$$\epsilon = \int \epsilon_{\nu} dh\nu = n_e n_i \Lambda(T), \qquad (3.10)$$

where Λ is the radiative cooling function, strongly dependent on metallicity for $T \lesssim 3 \times 10^7$ K. (units of ϵ : $erg s^{-1} cm^{-3}$ or $W m^{-3}$)

→ It is useful to define the Emission Integral $EI \equiv \int n_e n_p dV$. The normalization of the spectrum depends on EI. The shape on the abundance and on $d(EI)/dT_e$.

 \rightarrow The clearest evidence for thermal emission in clusters is the presence of metal lines, especially iron 7 keV line. Inverse Compton does not produce lines.

3.5.2 Thermal bremsstrahlung

 $\rightarrow T \sim 10^8 \text{ K}, n_e \sim 10^{-3} \text{ cm}^{-3}$ gas with Maxwell-Boltzmann distribution \implies thermal bremsstrahlung (free-free) with emissivity

$$\epsilon_{\nu} \equiv \frac{dL}{d\nu dV} \propto Z^2 n_e n_i g(Z, T_e, \nu) T_e^{-1/2} \exp(-h\nu/k_B T_e), \qquad (3.11)$$

where T_e is the electron temperature, k_B is the Boltzmann constant, n_e (n_i) is the electron (ion) number density, Z is the charge of ions and g is the Gaunt factor accounting for quantum mechanical effects.

 \rightarrow Bolometric bremsstrahlung emissivity, neglecting temperature and frequency dependence of g (derive)

$$\epsilon = \int \epsilon_{\nu} dh\nu \propto T_e^{1/2} n_e n_i. \tag{3.12}$$

Total X-ray luminosity

$$L_X = \int \epsilon dV. \tag{3.13}$$

31/10/2008

4. Microwave observations of clusters

4.1 Clusters in microwaves

[Bibl: S:3.5, V:II.C]

- \rightarrow Millimetric/submillimetric band: 30 \lesssim ν \lesssim 300 GHz, 0.1 \lesssim λ \lesssim 10 mm.
- → Clusters of galaxies do not emit significantly in the microwaves, but can be detected by their effect on the Cosmic Microwave Background (CMB): known as Sunyaev-Zeldovich (SZ) effect

4.2 Thermal Sunyaev-Zeldovich effect

 $\rightarrow\,$ CMB: black body radiation at $T_{CMB}=2.725$ K. CMB spectrum:

$$I_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp\left(\frac{h\nu}{k_{\rm B}T_{CMB}}\right) - 1}.$$
 (4.2)

 \rightarrow Free electrons of cluster hot gas scatter CMB photons \implies distortion of CMB spectrum. The optical depth is

$$d\tau_T = \sigma_T n_e dl, \tag{4.3}$$

where n_e is the electron number density and

$$\sigma_T = \frac{8\pi}{3} \left[\frac{e^2}{m_e c^2} \right]^2 \tag{4.4}$$

is the Thomson electron scatter cross section. For typical values $n_e \sim 10^{-3}$ and $l \sim 1 Mpc \implies$

$$\tau_T = \int \sigma_T n_e dl \sim 10^{-2} \tag{4.5}$$

 $\implies 1\%$ probability of scattering.

 $\rightarrow E_e \gg E_\gamma \implies$ inverse Compton \implies distortion of CMB spectrum. Frequency change:

$$\frac{\Delta\nu}{\nu} = \frac{4k_B T_e}{m_e c^2}.\tag{4.6}$$

 \rightarrow The distorted spectrum is not black body. Define brightness temperature T_b of a source as the temperature of a black body having the same intensity at a given frequency. In terms of T_b the spectral distortion is

$$\frac{\Delta T_b}{T_b} = \frac{\Delta I_\nu}{I_\nu} \frac{d\ln T_b}{d\ln I_\nu} = f(x)y, \qquad (4.7)$$

where $x \equiv h\nu/k_B T_b$, the Compton *y*-parameter is

$$y \equiv \int \frac{k_B T_e}{m_e c^2} d\tau_T = \int \frac{k_B T_e}{m_e c^2} n_e \sigma_T dl$$
(4.8)

and $f(x) = [x \coth(x/2) - 4]$ if nonrelativistic.

 \rightarrow In the Rayleigh-Jeans regime ($x \ll 1$)

$$T_b \equiv \frac{I_\nu c^2}{2k_B \nu^2},\tag{4.9}$$

and $f(x) \to -2 \implies$

$$\frac{\Delta T_b}{T_b} = -2y = -\int \frac{2k_B T_e}{m_e c^2} n_e \sigma_T dl \tag{4.10}$$

- → Intensity decreases at $\nu < 218$ GHz and increases at at $\nu > 218$ GHz. Usually measurements at low frequency \implies "microwave diminution"
- $\rightarrow\,$ In the hottest clusters relativistic corrections become important

- \rightarrow SZ effect is small $(\Delta T_b/T_b \sim 10^{-3}) \implies$ difficult to observe.
- \rightarrow SZ effect independent of cluster distance (redshift) \implies detection of high-redshift clusters.

4.3 Observations of the Sunyaev-Zeldovich effect

- \rightarrow Radio telescopes. BIMA radio telescope (30 GHz).
- \rightarrow Brightness is independent of redshift. But not all high-redshift clusters can be resolved $\implies Y$ parameter:

$$Y = \int y dA \propto \int n_e T_e dV, \qquad (4.11)$$

where dA is projected cluster area element.

 $\rightarrow Y \propto M_{gas} < T_e >$

4.4 Hubble constant with SZ effect

- \rightarrow SZ + X-ray \implies independent estimate of distance \implies estimate of H_0 (derive). Absorption $A \propto n_e D_A \theta$, emission $E \propto n_e^2 D_A \theta$ $\implies A^2/E \propto D_A \theta$ (θ angular size of cluster, D_A angular diameter distance).
- $\rightarrow\,$ Combining the SZ effect for a spherical cluster

$$\frac{\Delta T_b}{T_b} \propto T_e n_e \Delta l \sim T_e n_e D_A \theta \tag{4.12}$$

with the X-ray surface brightness is

$$S_X \propto \frac{n_e^2 T_e^{1/2} \Delta V}{D_L^2} \propto \frac{n_e^2 T_e^{1/2} \theta^3 D_A}{(1+z)^4}$$
 (4.13)

[because $D_L = (1+z)^2 D_A$ and $\Delta V \propto \theta^3 D_A^3$], we get (derive)

$$D_A \propto \frac{(\Delta T_b)^2}{T_b^2} \frac{\theta}{S_X T_e^{3/2} (1+z)^4}.$$
 (4.14)

 \rightarrow at low redshift $D_A \simeq cz/H_0 \implies$ estimate of H_0 . At higher redshift estimates of deceleration parameter q_0

4.5 Kinetic Sunyaev-Zeldovich effect

- \rightarrow If a cluster is moving w.r.t. the CMB (or Hubble flow) \implies additional spectral distortion of CMB.
- \rightarrow If $\tau_T \ll 1 \implies$ brightness temperature change is almost independent of frequency

$$\frac{\Delta T_b}{T_b} = -\frac{v_r}{c} \tau_T, \qquad (4.15)$$

where v_r is the radial component of the cluster peculiar velocity. Here $v_r > 0$ corresponds to a recession velocity exceeding that of the Hubble's law.

- $\rightarrow v_r > 0 \implies$ negative temperature variation; $v_r < 0 \implies$ positive temperature variation;
- \rightarrow Temperature change independent of $\nu \implies$ Planck spectrum.
- $\rightarrow\,$ Kinetic SZ effect much weaker than thermal SZ effect.