
simpA
An Agent-Oriented Approach for Prototyping

Concurrent Applications on Top of Java

Alessandro Ricci
aliCE group at DEIS, Università di Bologna, Cesena

a.ricci@unibo.it

SISMA 2008/2009 - Seminar

joint work with:
- Mirko Viroli
- Giulio Piancastelli, PhD student at DEIS

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

MOTIVATIONS
• Looking for new abstraction layers for programming

and engineering complex software systems
- concurrent, distributed

• Concurrency in particular
- “Software Concurrency Revolution” [Sutter,Larus

(Microsoft) - ACM QUEUE 3(7) 2005]
• Concurrency as important aspect in mainstream programming and

software engineering
• Pushing technologies

- Multi-core architectures, Internet, ..., etc

> Beyond fine-grained OS-based mechanisms
- beyond processes, threads, synchronized blocks,

semaphores, futures, call-backs, ...
- [Sutter, Larus]:“...What we need is OO for concurrency - higher-level

abstractions that help build concurrent programs, just as object-
oriented abstractions help build large componentized programs..."

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

SOME RELATED

• OOCP research (80s / 90s in particular)
- actors and actor-like approaches
- active objects
- ...

• State of the art
- Polyphonic C#, JR, JAC, ...
- Scala (+ actors)
- Erlang (-> process & msg passing)
- ...
> most of them basically extends the basic OO model

• java.util.concurrent library (JDK 5.0)
- very efficient and flexible low-level mechanisms
- patterns

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

OUR CONTRIBUTION

• A&A (Agents and Artifacts)
- novel conceptual / programming model
- introducing a new abstraction layer based on

agent-oriented abstractions

• simpA
- Java extension supporting A&A

• simpAL (ongoing work)
- full-fledged language and VM implementing A&A

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

AGENDA

• Motivations and Background

• A&A programming model

• simpA framework

A&A BASIC ABSTRACTIONS
• Inspiration from Activity

Theory and human working
environments
- human actors doing activities in

shared context, cooperating by msg
passing and sharing and using
artifacts (resources, tools,...)

• Applications as workspaces
composed by agents and
artifacts
- agents ~ human actors
- artifacts ~ artifacts used by humans
- workspaces ~ shared environments

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

THE “AGENT” ABSTRACTION

• Pro-active entities in the workspace
- designed to encapsulate the logic and control of

activities
• action as basic computational step
• activities as composition of actions

- Strong encapsulation
• state + (active) behaviour + control of the behaviour
• agents have no interfaces (!)

• Interacting with artifacts
- observation and use

• Interacting with other agents
- exchanging messages

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

AN AGENT
ABSTRACT MODEL

• Hierarchical model of
activities
– agents as scheduler, executors,

controllers of activities
– activity agenda specified by

programmers
• interpreted and executed by

agents

• Long-term memory for
doing activity
– associative access
– + short term memory

contextualised to individual
actitivities (activity context)

• Sensor space
– sensors where to collect stimuli

from the environment

Agent mind

long-term memory

agent body

effectors

sensors Memo-Space
 - associative access

activity controller & scheduler

running activities

activity
context

suspended activities

activity
context

short-term
memory

current
activity
context

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

THE “ARTIFACT” ABSTRACTION

• Passive, function-oriented abstraction
- designed to encapsulate some kind of function

• the intended purpose of the artifact

- functionality structured in terms of operations
- instantiated, shared and used by agents to support

their activities

• Basic kinds
- resources

• a dbase, a counter, a GUI interface, a printer,...

- tools
• a blackboard, a map, a channel, a synchronizer,

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

AN ARTIFACT ABSTRACT MODEL

INTERFACE

CONTROL

(COMMAND)

<NAME+PARAMS>

 OPERATION Y

 OPERATION Z

 OPERATION X

USAGE

INTERFACE

PROP_NAMEX

PROP_VALUEX
OBSERVABLE

PROPERTIES

<NAME,VALUE>

OBSERVABLE

PROPERTIES

OBSERVABLE EVENTS

GENERATION ARTIFACT

MANUAL<DESCR,CONTENT>

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

AGENT-ARTIFACT INTERACTION:
USE & OBSERVATION

use opX(params)

 opX EXECUTION

TRIGGERED

1a

2a

XYZ

 opX EXECUTION

e

e

SENSOR

my_event1

op_exec_completed

sense with-my-filter

2b

1b

• No control coupling

– ...operations are not methods...

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

A&A FOR DESIGNING
CONCURRENT SYSTEMS

• Decomposing a system in terms of
workspaces with agents and artifacts as basic
building blocks
- static & dynamic decomposition

• Agents execute their activities concurrently
- hierarchical activity model to structure complex

activities

• Agents interact and coordinate by means of
(1) using shared artifacts (2) directly
communicating

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

simpA

• A Java-based framework to develop programs
based on A&A abstraction layer
- realised as a library

• compiled and executed on top of a standard Java
platform

- exploiting Java 5 annotation

• Simplicity and minimality
- minimizing the number of classes needed to

define agents and artifacts

• Open-source project
- http://www.alice.unibo.it/simpa

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

DEFINING AGENTS

• Single class extending alice.simpa.Agent

• Specifying activities
- atomic: @ACTIVITY methods

• sequence of statements and actions
- internal actions
- external actions

- structured: @ACTIVITY_WITH_AGENDA methods
• hierarchically composed by sub-activities described in

activity agenda

• Agent behaviour
- activity execution, following the agenda
- main as default starting activity

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

NAIVE EXAMPLE

public class HelloAgent extends Agent {

 @ACTIVITY void main(){
 ArtifactId id = lookupArtifact("console");
 use(id,new Op("print","Hello, world!"));
 }

}

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

SPECIFYING
STRUCTURED ACTIVITIES

• Activity agenda description
- declaration of sub-activities to-do

• TODO description: @TODO annotation
- specifying activity name + pre-condition +

attributes
• as soon as the precondition holds, the activity is

executed
> multiple activities can be executed in parallel

• Pre-conditions
- boolean expressions over the agent state
- events occurred, agent knowledge

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

EXAMPLE

public class MyAgent extends Agent {

 @ACTIVITY_WITH_AGENDA({
 @TODO(activity="activityA"),
 @TODO(activity="activityB", pre="completed(activityA)"),
 @TODO(activity="activityC", pre="completed(activityA)"),
 @TODO(activity="activityD",
 pre="completed(activityB),completed(activityC)")
 }) void main(){}

 @ACTIVITY void activityA(){...}
 @ACTIVITY void activityB(){...}
 @ACTIVITY void activityC(){...}
 @ACTIVITY void activityD(){...}
}

activityA

activityB

activityC

activityD

main

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

AGENT MEMORY: MEMOs

• Long-term memory organized as a memo-space
- associative store ~ blackboard with memos
- internal actions to create, associatively access, read

memos

• Memo data structure
- flat labelled tuples of data-objects and values

• can be partially specified (-> with variables)

• Memo usage
- storing information useful or result of agent work
- coordinating activities

• memo predicate in TODO precondition

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

public class MyAgent extends Agent {

 @ACTIVITY_WITH_AGENDA({
 @TODO(activity="activityA"),
 @TODO(activity="activityB", pre="completed(activityA)"),
 @TODO(activity="activityC", pre="completed(activityA)"),
 @TODO(activity="activityD",
 pre="completed(activityB),completed(activityC)")
 }) void main(){}

 @ACTIVITY void activityA(){
 memo("x",1); // attach a new memo x(1)
 }

 @ACTIVITY void activityB(){
 int v = getMemo("x").intValue(0); // read 0-th memo argument
 memo("y", v+1, null); // attach a new memo y(2,_)
 }

 @ACTIVITY void activityC(){
 memo("z", getMemo("x").intValue(0)*5);
 }

 @ACTIVITY void activityD(){
 int z = getMemo("z").intValue(0);
 int w = z*y0.intValue();
 log("the result is: "+w);
 }
}

MEMO
EXAMPLE

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

public class MyAgent extends Agent {

 @ACTIVITY_WITH_AGENDA({
 @TODO(activity="activityA"),
 @TODO(activity="activityB", pre="memo(x(_))"),
 @TODO(activity="activityC", pre="memo(x(1))"),
 @TODO(activity="activityD", pre="memo(y(_,_)),memo(z(_))")
 }) void main(){}

 @ACTIVITY void activityA(){
 memo("x",1); // attach a new memo x(1)
 }

 @ACTIVITY void activityB(){
 int v = getMemo("x").intValue(0); // read 0-th memo argument
 memo("y", v+1, null); // attach a new memo y(2,_)
 }

 @ACTIVITY void activityC(){
 memo("z", getMemo("x").intValue(0)*5);
 }

 @ACTIVITY void activityD(){
 int z = getMemo("z").intValue(0);
 int w = z*y0.intValue();
 log("the result is: "+w);
 }
}

MEMO
EXAMPLE 2

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

IMPLEMENTING
CYCLIC ACTIVITIES

• Cyclic / non-terminating activities is quite common
when programming agents

• in simpA: persistent todo
- todos re-inserted in the agenda as soon as the activity

has completed

while (true){
 ...
}

...considered harmful

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

public class MyAgent extends Agent {

 @ACTIVITY_WITH_AGENDA({
 @TODO(activity="preparing"),
 @TODO(activity="processing", persistent=true,
 pre=”completed(preparing), memo(ntasks_done(X)),X<100”)
 }) void main(){}

 @ACTIVITY void preparing(){...}

 @ACTIVITY_WITH_AGENDA({
 @TODO(activity="getTaskTodo"),
 @TODO(activity="doTask", pre=”task_todo(_)”)
 }) void processing(){}

 @ACTIVITY void getTaskTodo(){
 // <get a new task todo>
 memo("task_todo",taskInfo);
 }
 @ACTIVITY void doTask(){
 Memo m = delMemo("task_todo");
 // <do task>
 }
}

EXAMPLE

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

DEFINING ARTIFACTS

• Single class extending alice.simpa.Artifact

• Specifying the operations
- atomic: @OPERATION methods

• name+params -> usage interface control
• no return value

- structured
• linear composition of atomic operation steps composed

dynamically

- init operation
• automatically executed when the artifact is created

• Specifying artifact state
- instance fields of the class

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

NAIVE EXAMPLE

public class Count extends Artifact {
 int count;

 @OPERATION void init(){
 count = 0;
 }

 @OPERATION void inc(){
 count++;
 }
}

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

ARTIFACT OBSERVABLE EVENTS

• Observable events
- generated by signal primitive
- represented as labelled tuples

• event_name(Arg0,Arg1,...)

• Automatically made observable to...
- the agent who executed the operation
- all the agents observing the artifact

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

EXAMPLE

public class Count extends Artifact {
 int count;

 @OPERATION void init(){
 count = 0;
 }

 @OPERATION void inc(){
 count++;
 signal("new_count_value", count);
 }
}

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

ARTIFACT OBSERVABLE
PROPERTIES

• Observable properties
- declared by defineObsProperty primitive

• characterized by a property name and a property value

- internal primitives to read / update property value
• updateObsProperty
• getObsProperty

• Automatically made observable to all the
agents observing the artifact

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

EXAMPLE

public class Count extends Artifact {

 @OPERATION void init(){
 defineObsProperty("count", 0);
 }

 @OPERATION void inc(){
 int count = getObsProperty("count");
 updateObsProperty("count", count + 1);
 }
}

inc

count 5
OBSERVABLE PROPERTIES:

count: int

USAGE INTERFACE:

inc: [op_exec_completed]

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

MORE ON ARTIFACTS

• Structured operations
- specifying operations composed by chains of atomic

operation steps
- to support the concurrent execution of multiple operations

on the same artifact
• by interleaving steps

• Linkability
- dynamically composing / linking multiple artifacts together

• Artifact manual
- document containing a formal description of artifact

functionality and operating instructions
• open systems
• toward ‘intelligent’ use of artifacts

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

AGENT-ARTIFACT INTERACTION

• Basic actions available to agents for interacting with
artifacts
- use

• to use an artifact through its usage interface, triggering the
execution of operation

- sense
• to retrieve events collected by sensors

- focus
• to start / stop a continuous observation of an artifact

use(what:Artifact, op:Operation{,sid:SensorId}{,timeout:long}):OpId

sense(sid:SensorId{,filter:String}{,timeout:long}):Perception

focus(what:Artifact,sid:SensorId)
stopFocusing(what:Artifact)

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

ARTIFACT INSTANTIATION &
LOOKUP

• using “factory” artifacts
- providing functionalities to instantiate dynamically

artifacts and agents
- one for each workspace
- agent auxiliary action: makeArtifact

• encapsulating the access to factory artifacts

• using “registry” artifacts
- providing functionalities to lookup dynamically

artifacts and agents
- one for each workspace
- agent auxiliary action: lookupArtifact

• encapsulating the access to registry artifacts

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

AN EXAMPLE
public class CountUser extends Agent {
 @ACTIVITY void main() {

 SensorId sid = linkDefaultSensor();
 ArtifactId countId = makeArtifact("myCount","Count");

 use(countId,new Op("inc"));

 use(countId,new Op("inc"),sid);

 try {
 Perception p = sense(sid,"new_count_value",1000);
 long value = p.getContent(0).longValue;

 ArtifactId dbaseId = lookupArtifact("myArchive");
 focus(dbaseId,sid);
 use(dbaseId, new Op("write",new DBRecord(value));

 } catch (NoPerceptionException ex){
 log("No count_value perception from the count");
 }
 }
}

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

APPLICATION MODEL

• An application is defined by a workspace + one
main (boot) agent
- default artifacts

• registry, factory, security-registry, etc.

• Application launcher
- specifying the workspace name + boot agent

public class HelloWorld {
 public static void main(String[] args) throws Exception {
 SIMPALauncher.launchApplication("hello-world-app",
 "basic.HelloAgent","Michelangelo”);
 }
}

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

ADVANCED ISSUES

• Openness
- agents can dynamically join and quit workspaces
- RBAC model for ruling agent access & use of

artifacts
• security-registry artifact to keep track of roles and role

policies

• Distribution
- agents can join and work concurrently on multiple

workspaces..
- ..distributed over multiple simpA nodes

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

COMPLETE EXAMPLES

• Well-known examples in concurrent programming
- Dining Philosophers

• philosopher agents using a table as coordination artifact

- Producers-Consumers
• producers and consumers agents sharing and using a

bounded buffer artifact

- Readers-Writers
• readers and writers agents sharing and using a dbase artifact

providing locking functionalities

- ...

• Implementation available in simpA distribution

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

“HELLO PHILOSOPHERS” EXAMPLE

• Dijkstra well-known problem
about cooperative processes
coordination
– 5 philosophers thinking and eating rice

at the same table, sharing 5 chopsticks
– coordination to share chopsticks &

avoid deadlock
– kind of “hello world” for concurrent

programming

• Rethinking the problem in
simpA
– restaurant as a workspace
– philosophers + waiter as agents
– a table as a coordination artifact

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

THE TABLE ARTIFACT

public class Table extends Artifact {

 boolean[] chops;

 @OPERATION void init(int nchops){
 chops = new boolean[nchops];
 for (int i = 0; i < chops.length; i++){
 chops[i]=true;
 }
 }

 @OPERATION(guard ="chopsAvailable") void getChops(int firstChop, int secondChop){
 chops[firstChop] = chops[secondChop] = false;
 signal("chops_acquired");
 }

 @GUARD boolean chopsAvailable(int firstChop,int secondChop){
 return chops[firstChop] && chops[secondChop];
 }

 @OPERATION void releaseChops(int firstChop, int secondChop){
 chops[firstChop] = chops[secondChop] = true;
 }
}

Usage interface:
- getChops
- releaseChops

Observable events
generateds
- chops_acquired

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

public class Philosopher extends Agent {

 @ACTIVITY_WITH_AGENDA({
 @TODO(activity="init"),
 @TODO(activity="living", pre="completed(init),!memo(starved)", persistent=true),
 }) void main(){}

 @ACTIVITY void init() {
 memo("hungry");
 }

 @ACTIVITY_WITH_AGENDA({
 @TODO(activity="eating", pre="memo(hungry)"),
 @TODO(activity="thinking", pre="completed(eating)"),
 }) void living(){}

 @ACTIVITY void eating(){
 ArtifactId tableId = lookupArtifact("table");
 SensorId sid = linkDefaultSensor();
 use(tableId, new Op("getChops", MYLEFTCHOP_ID, MYRIGHTCHOP_ID), sid);
 try {
 sense(sid,"chops_acquired",5000);
 // eat
 use(tableId, new Op("releaseChops", MYLEFTCHOP_ID, MYRIGHTCHOP_ID));
 removeMemo("hungry");
 } catch (NoPerceptionException ex){
 memo(“starved”);
 }
 }

 @ACTIVITY void thinking(){
 // think
 memo("hungry");
 }
}

PHILOSOPHER AGENT

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

CONCLUDING REMARKS

• First-class abstractions for active and passive entities
- a solution to the active & passive object issue
- strong encapsulation

• Bridging the gap between design & implementation
- A&A as a simple and intuitive way to decompose a system
- simpA as a first simple implementation framework

• Orthogonality with respect to OO
- OO used for ADTs
- using pure Java without concurrency mechanisms

SISMA 2008/2009 Seminar, Oct. 2008 simpA Framework

AVAILABLE THESES

• Extending the basic simpA model
- integrating AI techniques on top of activities and

agenda
- exploiting tuProlog

• Exploring new agent-oriented languages
- integrating main strenghts of simpA & Jason

• Applications
- applying simpA for SOA/WS, Autonomic

Computing, Virtualization systems

