
The Evolution of Computational Systems:
Foundations of Agent-Oriented Computing

Multiagent Systems LS
Sistemi Multiagente LS

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2008/2009

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 1 / 79



Outline

1 Complex Software Systems: The Paradigm Shift
Toward a Paradigm Change
Away from Objects

2 Towards Agents
Moving Toward Agent Technologies
The Many Agents Around

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 2 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

The Change is Widespread

[Zambonelli and Parunak, 2003]

Today software systems are essentially different from “traditional”
ones

The difference is widespread, and not limited to some application
scenarios

Computer science & software engineering are going to change

dramatically

complexity is too huge for traditional CS & SE abstractions

like object-oriented technologies, or component-based methodologies

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 4 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

The Next Crisis of Software

The Scenario of the Crisis

Computing systems

will be anywere

will be embedded in every environment item/ object

always connected

wireless technologies will make interconnection pervasive

always active

to perform tasks on our behalf

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 5 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Impact on Software Engineering

Which impact on the design & development of software systems?

Quantitative

in terms of computational units, software components, number of
interconnections, people involved, time required, . . .
current processes, methods and technologies do not scale

Qualitative

new software systems are different in kind
new features never experimented before

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 6 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Novel Features of Complex Software Systems

Situatedness

computations occur within an environment
computations and environment mutually affect each other, and cannot
be understood separately

Openness

systems are permeable and subject to change in size and structure

Locality in control

components of a system are autonomous and proactive loci of control

Locality in interaction

components of a system interact based on some notion of
spatio-temporal compresence on a local basis

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 7 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Examples

Fields like

distributed artificial intelligence

manufacturing and environmental control systems

mobile computing

pervasive / ubiquitous computing

Internet computing

peer-to-peer (P2P) systems

have already registered the news, and are trying to account for this in
technologies and methodologies

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 8 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Situatedness—Examples

Control systems for physical domains

manufacturing, traffic control, home care, health care systems

explicitly aim at managing / capturing data from the environment
through event-driven models / event-handling policies

Sensor networks, robot networks

are typically meant to sense, explore, monitor and control partially
known / unknown environments

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 9 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Situatedness I

Environment as a first-class entity

the notion of environment is explicit

components / computations interact with, and are affected by the
environment

interaction with the environment is often explicit, too

Is this new?

every computation always occurred in some context

however, the environment is masked behind some “wrapping”
abstractions

environment is not a primary abstraction

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 10 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Situatedness II

Does masking / wrapping work?

wrapping abstractions are often too simple to capture complexity of
the environment

when you need to sense / control the environment, masking it is not
always a good choice

environment dynamics is typically independent of system dynamics

the environment is often unpredictable and non-formalisable
[Wegner, 1997]

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 11 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Situatedness III

Trend in CS and SE

drawing a line around the system

explicitly representing

what is inside in terms of component’s behaviour and interaction
what is outside in terms of environment, and system interaction with
the environment

predictability of components vs. unpredictability of the environment

this dichotomy is a key issue in the engineering of complex software
systems

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 12 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Openness—Examples

Critical control systems

unstoppable systems, run forever

they need to be adapted / updated anyway, in terms of either
computational or physical components

openness to change, and automatic reorganisation are essential
features

Systems based on mobile devices

the dynamics of mobile devices is out of the system / engineer’s
control

system should work without assumptions on presence / activity of
mobile devices

the same holds for Internet-based / P2P systems

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 13 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Openness

Permeable boundaries

drawing lines around “systems” does not make them isolated

boundaries are often just conventional, thus allow for mutual
interaction and side-effects

The dynamics of change

systems may change in structure, cardinality, organisation, . . .

technologies, methodologies, but above all abstractions should
account for modelling (possibly governing) the dynamics of change

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 14 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Openness—Further Issues

Where is the system?

where do components belong?

are system boundaries for real?

Mummy, where am I?

how should components become aware of their environment?

when they enter a system / are brought to existence?

How do we control open systems?

where components come and go?

where they can interact at their will?

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 15 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Local Control—Examples

Cellular phone network

each cell with its own activity / autonomous control flow

autonomous (inter)acting in a world-wide network

World Wide Web

each server with its own (reactive) independent control flow

each browser client with its own (proactive) independent control flow

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 16 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Local Control

Flow of Control

key notion in traditional systems
key notion in Computer Science
multiple flows of control in concurrent / parallel computing
however, not an immediate notion in complex software systems

a more general / powerful notion is required

Autonomy

is the key notion here
subsuming control flow / motivating multiple, independent flows of
control
at a higher level of abstraction

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 17 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Local Control—Issues of Autonomy

in an open world, autonomy of execution makes it easy for
components to move across systems & environments

autonomy of components more effectively matches dynamics of
environment

autonomy of executions is a suitable model for multiple independent
computational entities

SE principles of locality and encapsulation cope well with delegation
of control to autonomous components

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 18 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Local Interactions—Examples

Control systems for physical domains

each control component is delegated a portion of the environment to
control
interactions are typically limited to the neighboring portions of the
environment
strict coordination with neighboring components is typically enforced

Mobile applications

local interaction of mobile devices is the basis for “context-awareness”
interactions are mostly with the surrounding environment
interoperation with neighboring devices is typically enabled

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 19 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Local Interactions

Local interactions in a global world

autonomous components interact with the environment where they
are located

interaction is limited in extension by either physical laws or logical
constraints

autonomous components interact openly with other systems

motion to and local interaction within the new system is the cheapest
and most suitable model

situatedness of autonomous components calls for context-awareness

a notion of locality is required to make context manageable

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 20 / 79



Complex Software Systems: The Paradigm Shift Toward a Paradigm Change

Summing Up

Complex software systems, then

made of autonomous components
locally interacting with each other
immersed in an environment—both components and the system as a
whole
system / component boundaries are blurred—they are conceptual tools
until they work

Change is going to happen soon

Computer Science is going to change
Software Engineering is going to change
a paradigm shift is occurring—a revolution, maybe [Kuhn, 1996]

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 21 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Evolution of Programming Languages: The Picture

[Odell, 2002]

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 23 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Evolution of Programming Languages: Dimensions

Historical evolution

Monolithic programming

Modular programming

Object-oriented programming

Agent programming

Degree of modularity & encapsulation

Unit behaviour

Unit state

Unit invocation

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 24 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Monolithic Programming

The basic unit of software is the whole program

Programmer has full control

Program’s state is responsibility of the programmer

Program invocation determined by system’s operator

Behaviour could not be invoked as a reusable unit under different
circumstances

modularity does not apply to unit behaviour

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 25 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Evolution of Programming Languages: The Picture

Monolithic Programming

Encapsulation? There is no encapsulation of anything, in the very end

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 26 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

The Prime Motor of Evolution

Motivations

Larger memory spaces and faster processor speed allowed program to
became more complex

Results

Some degree of organisation in the code was required to deal with the
increased complexity

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 27 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Modular Programming

The basic unit of software are structured loops / subroutines /
procedures / . . .

this is the era of procedures as the primary unit of decomposition

Small units of code could actually be reused under a variety of
situations

modularity applies to subroutine’s code

Program’s state is determined by externally supplied parameters

Program invocation determined by CALL statements and the likes

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 28 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Evolution of Programming Languages: The Picture

Modular Programming

Encapsulation? Encapsulation applies to unit behaviour only

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 29 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Object-Oriented Programming

The basic unit of software are objects & classes

Structured units of code could actually be reused under a variety of
situations

Objects have local control over variables manipulated by their own
methods

variable state is persistent through subsequent invocations
object’s state is encapsulated

Object are passive—methods are invoked by external entities

modularity does not apply to unit invocation
object’s control is not encapsulated

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 30 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Evolution of Programming Languages: The Picture

Object-Oriented Programming

Encapsulation? Encapsulation applies to unit behaviour & state

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 31 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Agent-Oriented Programming

The basic unit of software are agents
encapsulating everything, in principle

by simply following the pattern of the evolution

whatever an agent is

we do not need to define them now, just to understand their desired
features

Agents could in principle be reused under a variety of situations

Agents have control over their own state

Agents are active

they cannot be invoked
agent’s control is encapsulated

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 32 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Evolution of Programming Languages: The Picture

Agent-Oriented Programming

Encapsulation? Encapsulation applies to unit behaviour, state & invocation

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 33 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Features of Agents

Before we define agents. . .

. . . agents are autonomous entities

encapsulating their thread of control
they can say “Go!”

. . . agents cannot be invoked

they can say “No!”
they do not have an interface, nor do they have methods

. . . agents need to encapsulate a criterion for their activity

to self-govern their own thread of control

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 34 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Dimensions of Agent Autonomy

Dynamic autonomy

Agents are dynamic since they can exercise some degree of activity

they can say “Go!”

From passive through reactive to active

Unpredictable / non-deterministic autonomy

Agents are unpredictable since they can exercise some degree of
deliberation

they can say “Go!”, they can say “No!”
and also because they are “opaque”—may be unpredictable to external
observation, not necessarily to design

From predictable through partially predictable to unpredictable

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 35 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Objects vs. Agents: Interaction & Control

Message passing in object-oriented programming

Data flow along with control

data flow cannot be designed as separate from control flow

A too-rigid constraint for complex distributed systems. . .

Message passing in agent-oriented programming

Data flow through agents, control does not

data flow can be designed independently of control

Complex distributed systems can be designed by designing
information flow

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 36 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Agents Communication

Agents communicate

Interaction between agents is a matter of exchanging information

toward Agent Communication Languages (ACL)

Agents can be involved in conversations

they can be involved in associations lasting longer than the single
communication act
differently from objects, where one message just refer to one method

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 37 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Philosophical Differences [Odell, 2002] I

Decentralisation

Object-based systems are completely pre-determined in control.
Control is essential centralised at design time

Agent-oriented systems are essentially decentralised in control

Multiple & dynamic classification

Once created, objects typically have an unmodifiable class

After creation, agents can change their role, task, goal, class, . . . ,
according to their needs and to the ever-changing structure of the
surrounding environment

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 38 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Philosophical Differences [Odell, 2002] II

Instance-level features

Objects are class instances whose features are essentially defined by
classes themselves once and for all

Agents features can change during execution, by adaptation, learning,
. . .

Small in impact

Loosing an object in an object-oriented system makes the whole
system fail, or at least raise an exception

Loosing an agent in a multi-agent system may lead to decreases in
performance, but agents are not necessarily single points of failure

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 39 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Philosophical Differences [Odell, 2002] III

Small in time

Garbage collection is an extra-mechanism in object-oriented languages
for taking advantage of disappearing objects

Disappearing agents can simply be forgotten naturally, with no need
of extra-mechanisms

Small in scope

Objects can potentially interact with the whole object space, however
their interaction space is defined once and for all at design time: this
defines a sort of local information space where they can retrieve
knowledge from

Agents are not omniscient and omnipotent, and typically rely on local
sensing of their surrounding environment

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 40 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Philosophical Differences [Odell, 2002] IV

Emergence

Object-based systems are essentially predictable

Multi-agent systems are intrinsically unpredictable and
non-formalisable and typically give raise to emergent phenomena

Analogies from nature and society

Object-oriented systems have not an easy counterpart in nature

Multi-agent systems closely resembles existing natural and social
systems

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 41 / 79



Complex Software Systems: The Paradigm Shift Away from Objects

Towards the Coexistence of Agents and Objects

Final issues from [Odell, 2002]

Should we wrap objects to agentify them?

Could we really extend objects to make them agents?

How are we going to implement the paradigm shift, under the heavy
weight of legacy?

technologies, methodologies, tools, human knowledge, shared practises,
. . .

Answers are to be found in the remainder of the course

So, stay tuned!

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 42 / 79



Towards Agents Moving Toward Agent Technologies

Towards Seamless Agent Middleware

The first question

How are we going to implement the paradigm shift, under the heavy
weight of legacy?

Mainstreaming Agent Technologies

[Omicini and Rimassa, 2004]

Observing the state of agent technologies nowadays

Focussing on agent middleware

Devising out a possible scenario

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 44 / 79



Towards Agents Moving Toward Agent Technologies

The Technology Life-Cycle

A successful technology from conception to abandon

First ideas from research

Premiere technology examples

Early adopters

Widespread adoption

Obsolescence

Dismissal

Often, however, this does not happen

New technologies fail without even being tried for real

Which are the factors determining whether a technology will either
succeed or fail?

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 45 / 79



Towards Agents Moving Toward Agent Technologies

Dimensions of a Technology Shift

Technology scenario has at least three dimensions

Programming paradigm

new technologies change the way in which systems are conceived

Development process

new technologies change the way in which systems are developed

Economical environment

new technologies change market equilibrium, and their success is
affected by market situations

3-D space for a success / failure story

What will determine the success / failure of agent-based technologies?

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 46 / 79



Towards Agents Moving Toward Agent Technologies

The Programming Paradigm Dimension

Pushing the paradigm shift

Evangelists gain space on media
Technological geeks follow soon
Drawbacks

too much hype may create unsupported expectations
perceived incompatibility with existing approaches
possible dangers for conceptual integrity

Middleware for the paradigm shift

Technology support to avoid unsupported claims
Seamlessly situated agents vs. wrapper agents

communication actions towards agents
pragmatical actions towards objects

This allows agents to be used in conjunction with sub-systems adopting
different component models

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 47 / 79



Towards Agents Moving Toward Agent Technologies

The Development Process Dimension

Accounting for real-world software development

Availability of development methods & tools is critical

No technology is to be widely adopted without a suitable methodological
support

Day-by-day developer’s needs should be accounted, too

Agent-Oriented Software Engineering Methodologies

Adopting agent-based metaphors and abstractions to formulate new
practises in software engineering
Current state of AOSE methodologies

early development phases are typically well-studied
later phases are not, neither the tools, nor the fine-print details

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 48 / 79



Towards Agents Moving Toward Agent Technologies

The Economical Environment Dimension I

Innovation has to be handled with care

Stakeholders of new technologies may enjoy advantages of early
positioning

However, they often focus too much on novelty and product, rather
than on benefits and service

“We are different” alone does not help much
software is a quite peculiar product: nearly zero marginal cost, and
almost infinite production capability

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 49 / 79



Towards Agents Moving Toward Agent Technologies

The Economical Environment Dimension II

Agent-Oriented Middleware & Infrastructures

Promoting agent-oriented technologies through integration with
existing object-oriented middleware & infrastructures

Creating a no-cost space for agent technologies

Notions like coordination as a service [Viroli and Omicini, 2006]

where (agent) coordination technologies are no longer “sold” as whole
packages
whose choice do not require any design commitment

allow agent metaphors to add their value to existing systems with no
assumption on the component model

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 50 / 79



Towards Agents The Many Agents Around

Convergence Towards The Agent

Many areas contribute their own notion of agent

Artificial Intelligence (AI)

Distributed Artificial Intelligence (DAI)

Parallel & Distributed Systems (P&D)

Mobile Computing

Programming Languages and Paradigms (PL)

Software Engineering (SE)

Robotics

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 52 / 79



Towards Agents The Many Agents Around

On the Notion of Intelligence in AI

Reproducing intelligence

AI is first of all concerned with reproducing intelligent processes and
behaviours, where

intelligent processes roughly denote internal intelligence—like
understanding, reasoning, representing knowledge, . . .
intelligent behaviours roughly represent external, observable
intelligence—like sensing, acting, communicating, . . .

Symbolic intelligence

Classic AI promoted the so-called symbolic acceptation of (artificial)
intelligence

based on mental representation of the external environment
where the environment is typically oversimplified
and the agent is the only source of disruption

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 53 / 79



Towards Agents The Many Agents Around

On the Notion of Agent in AI

Encapsulating intelligence

Agents in AI have from the very beginning worked as the units
encapsulating intelligence

individual intelligence
within the symbolic interpretation of intelligence

Cognitive agents

AI agents are essentially cognitive agents

they are first cognitive entities
then active entities
in spite of their very name, coming from Latin agens [agere]—the one
who acts

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 54 / 79



Towards Agents The Many Agents Around

AI & Agents—A Note

Reversing perspective [Omicini and Poggi, 2006]

Today, results from AI and MAS research are no longer so easily
distinguishable
Agents and MAS have become the introductory metaphors to most of the AI
results

as exemplified by one of the most commonly used AI textbooks
[Russell and Norvig, 2002]

Classic AI results on planning, practical reasoning, knowledge representation,
machine learning, and the like, have become the most obvious and fruitful
starting points for MAS research and technologies
It is quite rare nowadays that new findings or lines of research in AI might
ignore the agent abstractions at all
Altogether, rather than a mere subfield of AI, agents and MAS could be seen
as promoting a new paradigm, providing a new and original perspective about
computational intelligence and intelligent systems

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 55 / 79



Towards Agents The Many Agents Around

On the Notion of Agent in DAI [Wooldridge, 2002]

Overcoming the individual dimension

no more a single unit encapsulating individual intelligence

and acting alone within an oversimplified environment

Social acceptation of agency

agents are individuals within a society of agents

agents are components of a multiagent system (MAS)

agents are distributed within a distributed environment

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 56 / 79



Towards Agents The Many Agents Around

Agent Features in DAI [O’Hare and Jennings, 1996]

A DAI agent. . .

. . . has an explicit representation of the world

. . . is situated within its environment

. . . solves a problem that requires intelligence

. . . deliberates / plans its course of actions

. . . is flexible

. . . is adaptable

. . . learns

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 57 / 79



Towards Agents The Many Agents Around

A DAI Agent Represents the World: What?

What should be represented?

What is relevant? What is not relevant?

More precisely, which knowledge about the environment is relevant for
an agent to effectively plan and act?
So, which portion of the environment should the agent explicitly
represent somehow in order to have the chance to behave intelligently?

Representation is partial

Necessarily, an agent has a partial representation of the world

Its representation includes in general both the current state of the
environment, and the laws regulating its dynamics

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 58 / 79



Towards Agents The Many Agents Around

A DAI Agent Represents the World: How?

The issue of Knowledge Representation (KR)

How should an agent represent knowledge about the world?

Representation is not neutral with respect to the agent’s model and
behaviour

and to the engineer’s possibilities as well

Choosing the right KR language / formalism

according to the agent’s (conceptual & computational) model
multisets of tuples, logic theories, description logics, . . . ?

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 59 / 79



Towards Agents The Many Agents Around

A DAI Agent Represents the World: Consistency I

Perception vs. representation

Environment changes, either by agent actions, or by its own dynamics

Even supposing that an agent has the potential to observe all the
relevant changes in the environment, it can not spend all of its
activity monitoring the environment and updating its internal
representation of the world

So, in general, how could consistency of internal representation be
maintained? And to what extent?

in other terms, how and to what extent can an agent be ensured that
its knowledge about the environment is at any time consistent with its
actual state

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 60 / 79



Towards Agents The Many Agents Around

A DAI Agent Represents the World: Consistency II

Reactivity vs. proactivity

An agent should be reactive, sensing environment changes and
behaving accordingly

An agent should be proactive, deliberating upon its own course of
actions based on its mental representation of the world

So, more generally, how should the duality between reactivity and
proactivity be ruled / balanced?

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 61 / 79



Towards Agents The Many Agents Around

A DAI Agent Solves Problems

An agent has inferential capabilities

New data representing a new solution to a given problem
New knowledge inferred from old data
New methods to solve a given problem
New laws describing a portion of the world

An agent can change the world

An agent is equipped with actuators that provide it with the ability to
affect its environment
The nature of actuators depends on the nature of the environment in
which the agent is immersed / situated
In any case, agent’s ability to change the world is indeed limited

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 62 / 79



Towards Agents The Many Agents Around

A DAI Agent Deliberates & Plans

An agent has a goal to pursue

A goal, typically, as a state of the world to be reached—something to achieve
A task, sometimes, as an activity to be brought to an end—something to do

An agent understands its own capabilities

Its capabilities in terms of actions, pre-conditions on actions, effects of actions
“Understands” roughly means that its admissible actions and related notions are
somehow represented inside an agent, and there suitably interpreted and handled by the
agent
Perception should in some way interleave with action either to check action
pre-conditions, or to verify action effects

An agent is able to build a plan of its actions

It builds possible plans of action according to its goal/task, and to its knowledge of the
environment
It deliberates on the actual course of action to follow, then acts consequently

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 63 / 79



Towards Agents The Many Agents Around

A DAI Agent is Flexible & Adaptable

Define flexible. Define adaptable.

What do these words exactly mean?

Adaptable / flexible with respect to what?

Can an agent change its goal dynamically?

Or, can it solve different problems in different contexts, or in
dynamics contexts?

Can an agent change its strategy dynamically?

These properties are misleading, since they are apparently intuitive,
and everybody thinks he/she understands them exactly

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 64 / 79



Towards Agents The Many Agents Around

A DAI Agent Learns

What is (not) learning?

Learning is not merely agent’s change of state
Learning is not merely dynamic perception—even though this change the
agent’s state and knowledge

What could an agent learn?

New knowledge
New laws of the world
New inferential rules?

new ways to learn?

A number of areas insisting on this topic

Machine Learning, Abductive / Inductive Reasoning, Data Mining, Neural
Networks, . . .

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 65 / 79



Towards Agents The Many Agents Around

DAI Agents: Summing Up

In the overall, a DAI agent has a number of important features

It has a (partial) representation of the world (state & laws)

It has a limited but dynamic perception of the world

It has inferential capabilities

It has a limited but well-known ability to change the world

It has a goal to pursue (or, a task to do)

It is able to plan its course of actions, and to deliberate on what to
do actually

Once understood what this means, it might also be flexible and
adaptable

It learns, regardless of how this term is understood

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 66 / 79



Towards Agents The Many Agents Around

A PL Agent is Autonomous in Control

Complexity is in the control flow

The need is to abstract away from control

An agent encapsulates control flow

An agent is an independent locus of control

An agent is never invoked—it merely follows / drives its own control
flow

An agent is autonomous in control

it is never invoked—it cannot be invoked

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 67 / 79



Towards Agents The Many Agents Around

A PL Agent is neither a Program, nor an Object

An agent is not merely a program

A program represents the only flow of control

An agent represents a single flow of control within a multiplicity

An agent is not merely a “grown-up” object

An object is invoked, and simply responds

An agent is never invoked, and can deliberate whether to respond or
not to any stimulus

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 68 / 79



Towards Agents The Many Agents Around

A P&D Agent is mobile [Fuggetta et al., 1998]

An agent is not bound to the Virtual Machine where it is born

Reversing the perspective

it is not that agents are mobile
it is that objects are not

Mobility is then another dimension of computing, just uncovered by
agents

A new dimension requires new abstractions

New models, technologies, methodologies

To be used for reliability, limitations in bandwidth, fault-tolerance, . . .

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 69 / 79



Towards Agents The Many Agents Around

A Robotic Agent is Physical & Situated

A robot is a physical agent

It has both a computational and a physical nature

complexity of physical world enters the agent boundaries, and cannot be
confined within the environment

A robot is intrinsically situated

Its intelligent behaviour cannot be considered as such separately from the
environment where the robot lives and acts
Some intelligent behaviour can be achieved even without any symbolic
representation of the world

non-symbolic approach to intelligence, or situated action approach
[Brooks, 1991]

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 70 / 79



Towards Agents The Many Agents Around

A SE Agent is an Abstraction

An agent is an abstraction for engineering systems

It encapsulate complexity in terms of

information / knowledge
control
goal / task
intelligence?
mobility?

Agent-Oriented Software Engineering (AOSE)

engineering computational systems using agents
agent-based methodologies & tools

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 71 / 79



Towards Agents The Many Agents Around

A MAS Agent is a Melting Pot

Putting everything together

The area of Multiagent Systems (MAS) draws from the results of the many
different areas contributing a coherent agent notion
The MAS area is today an independent research field & scientific community
As obvious, MAS emphasise the multiplicity of the agents composing a system

Summing up

A MAS agent is an autonomous entity pursuing its goal / task by interacting
with other agents as well as with its surrounding environment
Its main features are

autonomy / proactivity
interactivity / reactivity / situatedness

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 72 / 79



Towards Agents The Many Agents Around

A MAS Agent is Autonomous

A MAS agent is goal / task-oriented

It encapsulates control
Control is finalised to task / goal achievement

A MAS agent pursues its goal / task. . .

. . . proactively

. . . not in response to an external stimulus

So, what is new here?

agents are goal / task oriented. . .
. . . but also MAS as wholes are
Individual vs. global goal / task

how to make them coexist fruitfully, without clashes?

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 73 / 79



Towards Agents The Many Agents Around

A MAS Agent is Interactive

Limited perception, limited capabilities

It depends on other agents and external resources for the achievement of its
goal / task
It needs to interact with other agents and with the environment [Agre, 1995]

communication actions & pragmatical actions

A MAS agent lives not in isolation

It lives within an agent society
It lives immersed within an agent environment

Key-abstractions for MAS

agents
society
environment

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 74 / 79



Conclusions

The Notion of Agent is Multi-faceted

Many reliable scientific sources

Many more or less convergent / divergent definitions
A synthesis is currently ongoing in the MAS community

Finally, defining the agent notion

It is now possible. . .
. . . but it is also insufficient, now
to fully define MAS

Meta-model is incomplete

What about agent society?
What about agent environment?

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 75 / 79



Conclusions

Bibliography I

Agre, P. E. (1995).
Computational research on interaction and agency.
Artificial Intelligence, 72(1-2):1–52.
Special volume on computational research on interaction and agency, part 1.

Brooks, R. A. (1991).
Intelligence without representation.
Artificial Intelligence, 47:139–159.

Fuggetta, A., Picco, G. P., and Vigna, G. (1998).
Understanding code mobility.
IEEE Transactions on Software Engineering, 24(5):342–361.

Kuhn, T. S. (1996).
The Structure of Scientific Revolutions.
University of Chicago Press, 3rd edition.

Odell, J. (2002).
Objects and agents compared.
Journal of Object Technologies, 1(1):41–53.

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 76 / 79



Conclusions

Bibliography II

O’Hare, G. M. and Jennings, N. R., editors (1996).
Foundations of Distributed Artificial Intelligence.
Sixth-Generation Computer Technology. John Wiley & Sons Ltd., hardcover edition.

Omicini, A. and Poggi, A. (2006).
Multiagent systems.
Intelligenza Artificiale, III(1-2):76–83.
Special Issue: The First 50 Years of Artificial Intelligence.

Omicini, A. and Rimassa, G. (2004).
Towards seamless agent middleware.
In IEEE 13th International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE 2004), pages 417–422, 2nd International Workshop
“Theory and Practice of Open Computational Systems” (TAPOCS 2004), Modena, Italy.
IEEE CS.
Proceedings.

Russell, S. J. and Norvig, P. (2002).
Artificial Intelligence: A Modern Approach.
Prentice Hall / Pearson Education International, Englewood Cliffs, NJ, USA, 2nd edition.

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 77 / 79



Conclusions

Bibliography III

Viroli, M. and Omicini, A. (2006).
Coordination as a service.
Fundamenta Informaticae, 73(4):507–534.
Special Issue: Best papers of FOCLASA 2002.

Wegner, P. (1997).
Why interaction is more powerful than algorithms.
Communications of the ACM, 40(5):80–91.

Wooldridge, M. J. (2002).
An Introduction to MultiAgent Systems.
John Wiley & Sons Ltd., Chichester, UK.

Zambonelli, F. and Parunak, H. V. D. (2003).
Towards a paradigm change in computer science and software engineering: A synthesis.
The Knowledge Engineering Review, 18(4):329–342.

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 78 / 79



Conclusions

The Evolution of Computational Systems:
Foundations of Agent-Oriented Computing

Multiagent Systems LS
Sistemi Multiagente LS

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2008/2009

Andrea Omicini (Università di Bologna) Foundations of AOC A.Y. 2008/2009 79 / 79


	Outline
	Complex Software Systems: The Paradigm Shift
	Toward a Paradigm Change
	Away from Objects

	Towards Agents
	Moving Toward Agent Technologies
	The Many Agents Around

	Conclusions

