
Communication in Distributed Systems
Distributed Systems L-A

Sistemi Distribuiti L-A

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2007/2008

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 1 / 43



Outline

Outline

1 Previous Knowledge

2 Interaction & Communication

3 Fundamentals

4 Remote Procedure Call

5 Message-oriented Communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 2 / 43



Disclaimer

These Slides Contain Material from
[Tanenbaum and van Steen, 2007]

Slides were made kindly available by the authors of the book

Such slides shortly introduced the topics developed in the book
[Tanenbaum and van Steen, 2007] adopted here as the main book of
the course

Most of the material from those slides has been re-used in the
following, and integrated with new material according to the personal
view of the teacher of this course

Every problem or mistake contained in these slides, however, should
be attributed to the sole responsibility of the teacher of this course

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 3 / 43



Previous Knowledge

Outline

1 Previous Knowledge

2 Interaction & Communication

3 Fundamentals
Layers & Protocols
Types of Communication

4 Remote Procedure Call

5 Message-oriented Communication
Stream-oriented Communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 4 / 43



Previous Knowledge

What You Are Supposed to Know. . .

. . . from the Courses of Computer Networks, Telecommunication
Networks and Foundations of Informatics

Basics about protocols

ISO/OSI

Protocols and reference model

Main network and Internet protocols

Basics about communication

Procedure call

Representation formats and problems – e.g., little endian vs. big
endian

Sockets

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 5 / 43



Previous Knowledge

What You Are Supposed to Know. . .

. . . from the Courses of Computer Networks, Telecommunication
Networks and Foundations of Informatics

Basics about protocols

ISO/OSI

Protocols and reference model

Main network and Internet protocols

Basics about communication

Procedure call

Representation formats and problems – e.g., little endian vs. big
endian

Sockets

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 5 / 43



Interaction & Communication

Outline

1 Previous Knowledge

2 Interaction & Communication

3 Fundamentals
Layers & Protocols
Types of Communication

4 Remote Procedure Call

5 Message-oriented Communication
Stream-oriented Communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 6 / 43



Interaction & Communication

The Role of Interaction in Distributed System

Interaction vs. Computation

Talking of processes, threads, LWP, and the like, is just half of the story
Maybe, not even the most important half. . .

→ They represent the computational components of a (distributed) system
Components of a system actually make a system only by interacting with each other

→ Interaction represents an orthogonal dimension with respect to computation

Engineering Interaction

Methodologies and technologies for engineering communication are not the same as
those for engineering computation
New models and tools are required
which could be seamlessly integrated with those for engineering computational
components

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 7 / 43



Interaction & Communication

The Role of Interaction in Distributed System

Interaction vs. Computation

Talking of processes, threads, LWP, and the like, is just half of the story
Maybe, not even the most important half. . .

→ They represent the computational components of a (distributed) system
Components of a system actually make a system only by interacting with each other

→ Interaction represents an orthogonal dimension with respect to computation

Engineering Interaction

Methodologies and technologies for engineering communication are not the same as
those for engineering computation
New models and tools are required
which could be seamlessly integrated with those for engineering computational
components

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 7 / 43



Interaction & Communication

Interaction vs. Communication

Interaction is more general than communication

Communication is a form of interaction
Communication is interaction where information is exchanged
Not every interaction is communication
E.g., sharing the same space is a way of interacting without
communicating

Whereas such a distinction is not always evident from the literature. . .

On the one hand, we should keep this in mind
On the other hand, in the classical field of inter-process communication,
this distinction is often not essential

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 8 / 43



Interaction & Communication

Interaction vs. Communication

Interaction is more general than communication

Communication is a form of interaction
Communication is interaction where information is exchanged
Not every interaction is communication
E.g., sharing the same space is a way of interacting without
communicating

Whereas such a distinction is not always evident from the literature. . .

On the one hand, we should keep this in mind
On the other hand, in the classical field of inter-process communication,
this distinction is often not essential

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 8 / 43



Interaction & Communication

Communication in Non-distributed Settings

Communication does not belong to distributed systems only

Communication mechanisms like procedure call and message-passing
just require a plurality of interacting entities, not distributed ones

However, communication in distributed systems presents more
difficult challenges, like unreliability of communication and large scale

Of course, communication in distributed systems first of all deals with
distribution / location transparency

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 9 / 43



Fundamentals

Outline

1 Previous Knowledge

2 Interaction & Communication

3 Fundamentals
Layers & Protocols
Types of Communication

4 Remote Procedure Call

5 Message-oriented Communication
Stream-oriented Communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 10 / 43



Fundamentals Layers & Protocols

Outline

1 Previous Knowledge

2 Interaction & Communication

3 Fundamentals
Layers & Protocols
Types of Communication

4 Remote Procedure Call

5 Message-oriented Communication
Stream-oriented Communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 11 / 43



Fundamentals Layers & Protocols

Layered Communication

Communication involves a number of problems at many different levels

From the physical network level up to the application level
Communication can be organised on layers
A reference model is useful to understand how protocols, behaviours and
interactions

OSI model

Standardised by the International Standards Organization (ISO)
Designed to allow open systems to communicate
Rules for communication govern the format, content and meaning of messages
sent and received
Such rules are formalised in protocols
The collection of protocols for a particular system is its protocol stack, or
protocol suite

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 12 / 43



Fundamentals Layers & Protocols

Layered Communication

Communication involves a number of problems at many different levels

From the physical network level up to the application level
Communication can be organised on layers
A reference model is useful to understand how protocols, behaviours and
interactions

OSI model

Standardised by the International Standards Organization (ISO)
Designed to allow open systems to communicate
Rules for communication govern the format, content and meaning of messages
sent and received
Such rules are formalised in protocols
The collection of protocols for a particular system is its protocol stack, or
protocol suite

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 12 / 43



Fundamentals Layers & Protocols

Types of Protocols

Connection-oriented protocols

First of all, a connection is established between the sender and the
receiver

Possibly, an agreement over the protocol to be used is reached

Then, communication occurs through the connection

Finally, the connection is terminated

Connectionless protocols

No setup is required

The sender just send a message when it is ready

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 13 / 43



Fundamentals Layers & Protocols

Types of Protocols

Connection-oriented protocols

First of all, a connection is established between the sender and the
receiver

Possibly, an agreement over the protocol to be used is reached

Then, communication occurs through the connection

Finally, the connection is terminated

Connectionless protocols

No setup is required

The sender just send a message when it is ready

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 13 / 43



Fundamentals Layers & Protocols

The OSI Reference Model

Layers, interfaces, and protocols in the OSI Model
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 14 / 43



Fundamentals Layers & Protocols

A Message in the OSI Reference Model

A typical message as it appears on the network
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 15 / 43



Fundamentals Layers & Protocols

OSI Model 6= OSI Protocols

OSI protocols

Never successful

TCP/IP is not an OSI protocol, and still dominates its layers

OSI model

Perfect to understand and describe communication systems through
layers

However, some problems exist when middleware comes to play

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 16 / 43



Fundamentals Layers & Protocols

OSI Model 6= OSI Protocols

OSI protocols

Never successful

TCP/IP is not an OSI protocol, and still dominates its layers

OSI model

Perfect to understand and describe communication systems through
layers

However, some problems exist when middleware comes to play

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 16 / 43



Fundamentals Layers & Protocols

Middleware Protocols

The problem

Middleware mostly lives at the application level
Protocols for middleware services are different from high-level application
protocols

← Middleware protocols are application-independent, application protocols
are obviously application-dependent
How can we distinguish between the two sorts of protocols at the same
layer?

Extending the reference model for middleware

Session and presentation layers are replaced by a middleware layer, which
includes all application-independent protocols
Potentially, also the transport layer could be offered in the middleware one

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 17 / 43



Fundamentals Layers & Protocols

Middleware Protocols

The problem

Middleware mostly lives at the application level
Protocols for middleware services are different from high-level application
protocols

← Middleware protocols are application-independent, application protocols
are obviously application-dependent
How can we distinguish between the two sorts of protocols at the same
layer?

Extending the reference model for middleware

Session and presentation layers are replaced by a middleware layer, which
includes all application-independent protocols
Potentially, also the transport layer could be offered in the middleware one

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 17 / 43



Fundamentals Layers & Protocols

Middleware as an Additional Service in Client-Server
Computing

Adapted reference model for network communication
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 18 / 43



Fundamentals Types of Communication

Outline

1 Previous Knowledge

2 Interaction & Communication

3 Fundamentals
Layers & Protocols
Types of Communication

4 Remote Procedure Call

5 Message-oriented Communication
Stream-oriented Communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 19 / 43



Fundamentals Types of Communication

Types of Communication

Persistent vs. transient communication

Persistent communication — A message sent is stored by the communication middleware
until it is delivered to the receiver

→ No need for time coupling between the sender and the receiver
Transient communication — A message sent is stored by the communication middleware
only as long as both the receiver and the sender are executing

→ Time coupling between the sender and the receiver

Asynchronous vs. synchronous communication

Asynchronous communication — The sender keeps on executing after sending a message
→ The message should be stored by the middleware

Synchronous communication — The sender blocks execution after sending a message and
waits for response – until the middleware acknowledges trasmission, or, until the receiver
acknowledges the reception, or, until the receiver has completed processing the request

→ Some form of coupling in control between the sender and the receiver

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 20 / 43



Fundamentals Types of Communication

Types of Communication

Persistent vs. transient communication

Persistent communication — A message sent is stored by the communication middleware
until it is delivered to the receiver

→ No need for time coupling between the sender and the receiver
Transient communication — A message sent is stored by the communication middleware
only as long as both the receiver and the sender are executing

→ Time coupling between the sender and the receiver

Asynchronous vs. synchronous communication

Asynchronous communication — The sender keeps on executing after sending a message
→ The message should be stored by the middleware

Synchronous communication — The sender blocks execution after sending a message and
waits for response – until the middleware acknowledges trasmission, or, until the receiver
acknowledges the reception, or, until the receiver has completed processing the request

→ Some form of coupling in control between the sender and the receiver

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 20 / 43



Fundamentals Types of Communication

Communications with a Middleware Layer

Viewing middleware as an intermediate (distributed) service in
application-level communication

[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 21 / 43



Fundamentals Types of Communication

Actual Communication in Distributed Systems

Persistency & synchronisation in communication

In the practice of distributed systems, many combinations of persistency and
synchronisation are typically adopted
Persistency and synchronisation should then be taken as two dimensions along which
communication and protocols could be analysed and classified

Discrete vs. streaming communication

Communication is not always discrete, that is, it does not always happen through
complete units of information – e.g., messages
Discrete communication is then quite common, but not the only way available – and
does not respond to all the needs
Sometimes, communication needs to be continuous – through sequences of messages
constituting a possibly unlimited amount of information
Streaming communication — The sender delivers a (either limited or unlimited) sequence
of messages representing the stream of information to be sent to the receiver

→ Communication may be continuous

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 22 / 43



Fundamentals Types of Communication

Actual Communication in Distributed Systems

Persistency & synchronisation in communication

In the practice of distributed systems, many combinations of persistency and
synchronisation are typically adopted
Persistency and synchronisation should then be taken as two dimensions along which
communication and protocols could be analysed and classified

Discrete vs. streaming communication

Communication is not always discrete, that is, it does not always happen through
complete units of information – e.g., messages
Discrete communication is then quite common, but not the only way available – and
does not respond to all the needs
Sometimes, communication needs to be continuous – through sequences of messages
constituting a possibly unlimited amount of information
Streaming communication — The sender delivers a (either limited or unlimited) sequence
of messages representing the stream of information to be sent to the receiver

→ Communication may be continuous

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 22 / 43



Remote Procedure Call

Outline

1 Previous Knowledge

2 Interaction & Communication

3 Fundamentals
Layers & Protocols
Types of Communication

4 Remote Procedure Call

5 Message-oriented Communication
Stream-oriented Communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 23 / 43



Remote Procedure Call

Remote Procedure Call (RPC)

Basic idea

Programs can call procedures on other machines
When a process A calls a procedure on a machine B, A is suspended,
and execution of procedure takes place on B
Once the procedure execution has been completed, its completion is
sent back to A, which resumes execution

Information in RPC

Information is not sent directly from sender to receiver
Parameters are just packed and transmitted along with the request
Procedure results are sent back with the completion
No message passing

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 24 / 43



Remote Procedure Call

Remote Procedure Call (RPC)

Basic idea

Programs can call procedures on other machines
When a process A calls a procedure on a machine B, A is suspended,
and execution of procedure takes place on B
Once the procedure execution has been completed, its completion is
sent back to A, which resumes execution

Information in RPC

Information is not sent directly from sender to receiver
Parameters are just packed and transmitted along with the request
Procedure results are sent back with the completion
No message passing

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 24 / 43



Remote Procedure Call

Issues of RPC

Main problems

The address space of the caller and the callee are separate and
different

→ Need for a common reference space

Parameters and results have to be passed and handled correctly

→ Need for a common data format

Either / both machines could unexpectedly crash

→ Need for suitable fault-tolerance policies

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 25 / 43



Remote Procedure Call

Conventional Procedure Call

Parameter passing in a local procedure call
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 26 / 43



Remote Procedure Call

Client & Server Stubs

Main goal: transparency

RPC should be like local procedure call from the viewpoint of both
the caller and the callee

→ Procedure calls are sent to the client stub and transmitted to the
server stub through the network to the called procedure

Principle of RPC between a client and server program
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 27 / 43



Remote Procedure Call

Steps for a RPC

The client procedure calls the client stub in the normal way

The client stub builds a message and calls the local operating system

The client’s OS sends the message to the remote OS

The remote OS gives the message to the server stub

The server stub unpacks the parameters and calls the server

The server does the work and returns the result to the stub

The server stub packs it in a message and calls its local OS

The server’s OS sends the message to the client’s OS

The client’s OS gives the message to the client stub

The stub unpacks the result and returns to the client

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 28 / 43



Remote Procedure Call

Steps for a RPC

The client procedure calls the client stub in the normal way

The client stub builds a message and calls the local operating system

The client’s OS sends the message to the remote OS

The remote OS gives the message to the server stub

The server stub unpacks the parameters and calls the server

The server does the work and returns the result to the stub

The server stub packs it in a message and calls its local OS

The server’s OS sends the message to the client’s OS

The client’s OS gives the message to the client stub

The stub unpacks the result and returns to the client

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 28 / 43



Remote Procedure Call

Steps for a RPC

The client procedure calls the client stub in the normal way

The client stub builds a message and calls the local operating system

The client’s OS sends the message to the remote OS

The remote OS gives the message to the server stub

The server stub unpacks the parameters and calls the server

The server does the work and returns the result to the stub

The server stub packs it in a message and calls its local OS

The server’s OS sends the message to the client’s OS

The client’s OS gives the message to the client stub

The stub unpacks the result and returns to the client

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 28 / 43



Remote Procedure Call

Steps for a RPC

The client procedure calls the client stub in the normal way

The client stub builds a message and calls the local operating system

The client’s OS sends the message to the remote OS

The remote OS gives the message to the server stub

The server stub unpacks the parameters and calls the server

The server does the work and returns the result to the stub

The server stub packs it in a message and calls its local OS

The server’s OS sends the message to the client’s OS

The client’s OS gives the message to the client stub

The stub unpacks the result and returns to the client

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 28 / 43



Remote Procedure Call

Steps for a RPC

The client procedure calls the client stub in the normal way

The client stub builds a message and calls the local operating system

The client’s OS sends the message to the remote OS

The remote OS gives the message to the server stub

The server stub unpacks the parameters and calls the server

The server does the work and returns the result to the stub

The server stub packs it in a message and calls its local OS

The server’s OS sends the message to the client’s OS

The client’s OS gives the message to the client stub

The stub unpacks the result and returns to the client

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 28 / 43



Remote Procedure Call

Steps for a RPC

The client procedure calls the client stub in the normal way

The client stub builds a message and calls the local operating system

The client’s OS sends the message to the remote OS

The remote OS gives the message to the server stub

The server stub unpacks the parameters and calls the server

The server does the work and returns the result to the stub

The server stub packs it in a message and calls its local OS

The server’s OS sends the message to the client’s OS

The client’s OS gives the message to the client stub

The stub unpacks the result and returns to the client

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 28 / 43



Remote Procedure Call

Steps for a RPC

The client procedure calls the client stub in the normal way

The client stub builds a message and calls the local operating system

The client’s OS sends the message to the remote OS

The remote OS gives the message to the server stub

The server stub unpacks the parameters and calls the server

The server does the work and returns the result to the stub

The server stub packs it in a message and calls its local OS

The server’s OS sends the message to the client’s OS

The client’s OS gives the message to the client stub

The stub unpacks the result and returns to the client

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 28 / 43



Remote Procedure Call

Steps for a RPC

The client procedure calls the client stub in the normal way

The client stub builds a message and calls the local operating system

The client’s OS sends the message to the remote OS

The remote OS gives the message to the server stub

The server stub unpacks the parameters and calls the server

The server does the work and returns the result to the stub

The server stub packs it in a message and calls its local OS

The server’s OS sends the message to the client’s OS

The client’s OS gives the message to the client stub

The stub unpacks the result and returns to the client

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 28 / 43



Remote Procedure Call

Steps for a RPC

The client procedure calls the client stub in the normal way

The client stub builds a message and calls the local operating system

The client’s OS sends the message to the remote OS

The remote OS gives the message to the server stub

The server stub unpacks the parameters and calls the server

The server does the work and returns the result to the stub

The server stub packs it in a message and calls its local OS

The server’s OS sends the message to the client’s OS

The client’s OS gives the message to the client stub

The stub unpacks the result and returns to the client

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 28 / 43



Remote Procedure Call

Steps for a RPC

The client procedure calls the client stub in the normal way

The client stub builds a message and calls the local operating system

The client’s OS sends the message to the remote OS

The remote OS gives the message to the server stub

The server stub unpacks the parameters and calls the server

The server does the work and returns the result to the stub

The server stub packs it in a message and calls its local OS

The server’s OS sends the message to the client’s OS

The client’s OS gives the message to the client stub

The stub unpacks the result and returns to the client

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 28 / 43



Remote Procedure Call

Parameter Passing

Passing value parameters

Parameters are marshalled to pass across the network

→ Procedure calls are sent to the client stub and transmitted to the
server stub through the network to the called procedure

Steps of a remote computation through a RPC
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 29 / 43



Remote Procedure Call

Issues in Parameter Passing

Passing value parameters

Problems of representation and meaning
E.g., little endian vs. big endian
In order to ensure transparency, stubs should be in charge of the mapping & translation
Possible approach: interfaces described through and IDL (Interface Definition
Languange), and consequent handling compiled into the stubs

Passing reference parameters

Main problem: reference space is local
First solution: forbidding reference parameters
Second solution: copying parameters (suitably updating the reference), then copying
them back (according to the original reference)

→ Call-by-reference becomes copy&restore
Third solution: creating a global/accessible reference to the caller space from the callee

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 30 / 43



Remote Procedure Call

Issues in Parameter Passing

Passing value parameters

Problems of representation and meaning
E.g., little endian vs. big endian
In order to ensure transparency, stubs should be in charge of the mapping & translation
Possible approach: interfaces described through and IDL (Interface Definition
Languange), and consequent handling compiled into the stubs

Passing reference parameters

Main problem: reference space is local
First solution: forbidding reference parameters
Second solution: copying parameters (suitably updating the reference), then copying
them back (according to the original reference)

→ Call-by-reference becomes copy&restore
Third solution: creating a global/accessible reference to the caller space from the callee

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 30 / 43



Remote Procedure Call

Asynchronous RPC

Synchronicity might be a problem in distributed systems

Synchronicity is often unnecessary, and may create problems

→ Asynchronous RPC is an available alternative in many situations

Traditional RPC Asynchronous RPC

[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 31 / 43



Remote Procedure Call

Deferred Synchronous RPC

Combining asynchronous RPCs

Sometimes some synchronicity is required, but too much is too much

→ Deferred Synchronous RPC combines two asynchronous RPC to
provide an ad hoc form of synchronicity

The first asynchronous call selects the procedure to be executed and
provides for the parameters

The second asynchronous call goes for the results

In between, the caller may keep on computing

Deferred synchronous RPC
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 32 / 43



Remote Procedure Call

Limits of RPC

Coupling in time

Co-existence in time is a requirement for any RPC mechanism

Sometimes, a too-hard requirement for effective communication in
distributed systems

An alternative is required that does not require the received to be
executing when the message is sent

The alternative: messaging

Please notice: message-oriented communication is not synonym of
uncoupling

However, we can take this road toward uncoupled communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 33 / 43



Remote Procedure Call

Limits of RPC

Coupling in time

Co-existence in time is a requirement for any RPC mechanism

Sometimes, a too-hard requirement for effective communication in
distributed systems

An alternative is required that does not require the received to be
executing when the message is sent

The alternative: messaging

Please notice: message-oriented communication is not synonym of
uncoupling

However, we can take this road toward uncoupled communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 33 / 43



Message-oriented Communication

Outline

1 Previous Knowledge

2 Interaction & Communication

3 Fundamentals
Layers & Protocols
Types of Communication

4 Remote Procedure Call

5 Message-oriented Communication
Stream-oriented Communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 34 / 43



Message-oriented Communication

Message-oriented Transient Communication

Basic idea

Messages are sent through a channel abstraction

The channel connects two running processes

Time coupling between sender and receiver

Transmission time is measured in terms of milliseconds, typically

Examples

Berkeley Sockets — typical in TCP/IP-based networks

MPI (Message-Passing Interface) — typical in high-speed
interconnection networks among parallel processes

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 35 / 43



Message-oriented Communication

Message-oriented Transient Communication

Basic idea

Messages are sent through a channel abstraction

The channel connects two running processes

Time coupling between sender and receiver

Transmission time is measured in terms of milliseconds, typically

Examples

Berkeley Sockets — typical in TCP/IP-based networks

MPI (Message-Passing Interface) — typical in high-speed
interconnection networks among parallel processes

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 35 / 43



Message-oriented Communication

Message-Oriented Persistent Communication

Message-queuing systems – a.k.a. Message-Oriented Middleware (MOM)

Basic idea: MOM provides message storage service
A message is put in a queue by the sender, and delivered to a destination queue
The target(s) can retrieve their messages from the queue
Time uncoupling between sender and receiver
Example: IBM’s WebSphere

General architecture of a message-queuing system
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 36 / 43



Message-oriented Communication Stream-oriented Communication

Outline

1 Previous Knowledge

2 Interaction & Communication

3 Fundamentals
Layers & Protocols
Types of Communication

4 Remote Procedure Call

5 Message-oriented Communication
Stream-oriented Communication

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 37 / 43



Message-oriented Communication Stream-oriented Communication

Streams

Sequences of data

A stream is transmitted by sending sequences of related messages

Single vs. complex streams: a single sequence vs. several related
simple streams

Data streams: typically, streams are used to represent and transmit
huge amounts of data

Examples: JPEG images, MPEG movies

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 38 / 43



Message-oriented Communication Stream-oriented Communication

Streams & Time

Continuous vs. discrete media

In the case of continuous (representation) media, time is relevant to
understand the data – e.g., audio streams
In the case of discrete (representation) media, time is not relevant to
understand the data – e.g., still images

Transmission of time-dependent information

Asynchronous transmission mode data items of a stream are transmitted in
sequence without further constraints—e.g., a file representing a still
image

Synchronous transmission mode data items of a stream are transmitted in
sequence with a maximum end-to-end delay—e.g., data generation
by a pro-active sensor

Isochronous transmission mode data items of a stream are transmitted in sequence
with both a maximum and a minimum end-to-end delay—e.g., audio
& video

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 39 / 43



Message-oriented Communication Stream-oriented Communication

Streams & Time

Continuous vs. discrete media

In the case of continuous (representation) media, time is relevant to
understand the data – e.g., audio streams
In the case of discrete (representation) media, time is not relevant to
understand the data – e.g., still images

Transmission of time-dependent information

Asynchronous transmission mode data items of a stream are transmitted in
sequence without further constraints—e.g., a file representing a still
image

Synchronous transmission mode data items of a stream are transmitted in
sequence with a maximum end-to-end delay—e.g., data generation
by a pro-active sensor

Isochronous transmission mode data items of a stream are transmitted in sequence
with both a maximum and a minimum end-to-end delay—e.g., audio
& video

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 39 / 43



Message-oriented Communication Stream-oriented Communication

Streams & Quality of Service

Quality of service

Timing and other non-functional properties are typically expressed as Quality
of Service (QoS) requirements
In the case of streams, QoS typically concerns timing, volume, and reliability
In the case of middleware, the issue is how can a given middleware ensure QoS
to distributed applications

A practical problem

Whatever the theory, many distributed systems providing streaming services
rely on top of the IP stack
IP specification allow for a protocol implementation dropping packets when
needed
QoS should be enforced at the higher levels

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 40 / 43



Message-oriented Communication Stream-oriented Communication

Streams & Quality of Service

Quality of service

Timing and other non-functional properties are typically expressed as Quality
of Service (QoS) requirements
In the case of streams, QoS typically concerns timing, volume, and reliability
In the case of middleware, the issue is how can a given middleware ensure QoS
to distributed applications

A practical problem

Whatever the theory, many distributed systems providing streaming services
rely on top of the IP stack
IP specification allow for a protocol implementation dropping packets when
needed
QoS should be enforced at the higher levels

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 40 / 43



Conclusions

Summing Up

Interaction & communication

Interaction as an orthogonal dimension w.r.t. computation

Communication as a form of interaction

High-level abstractions for process-level communication

Remote Procedure Call

Message-oriented models

Streaming

Other forms like multicasting and epidemic protocols are important,
but are not a subject for this course

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 41 / 43



Conclusions

Summing Up

Interaction & communication

Interaction as an orthogonal dimension w.r.t. computation

Communication as a form of interaction

High-level abstractions for process-level communication

Remote Procedure Call

Message-oriented models

Streaming

Other forms like multicasting and epidemic protocols are important,
but are not a subject for this course

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 41 / 43



Conclusions

Bibliography

Tanenbaum, A. S. and van Steen, M. (2007).
Distributed Systems. Principles and Paradigms.
Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition.

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 42 / 43



Conclusions

Communication in Distributed Systems
Distributed Systems L-A

Sistemi Distribuiti L-A

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2007/2008

Andrea Omicini (Università di Bologna) 4 – Communication A.Y. 2007/2008 43 / 43


	Outline
	Disclaimer
	Previous Knowledge
	Interaction & Communication
	Fundamentals
	Layers & Protocols
	Types of Communication

	Remote Procedure Call
	Message-oriented Communication
	Stream-oriented Communication

	Conclusions

