
Software Architectures
Distributed Systems L-A

Sistemi Distribuiti L-A

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2007/2008

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 1 / 49



Outline

Outline

1 Architectural Styles

2 System Architectures

3 Architectures vs. Middleware

4 Self-Management in Distributed Systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 2 / 49



Disclaimer

These Slides Contain Material from
[Tanenbaum and van Steen, 2007]

Slides were made kindly available by the authors of the book

Such slides shortly introduced the topics developed in the book
[Tanenbaum and van Steen, 2007] adopted here as the main book of
the course

Most of the material from those slides has been re-used in the
following, and integrated with new material according to the personal
view of the teacher of this course

Every problem or mistake contained in these slides, however, should
be attributed to the sole responsibility of the teacher of this course

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 3 / 49



Architectural Styles

Outline

1 Architectural Styles

2 System Architectures
Centralised Architectures
Decentralised Architectures
Hybrid Architectures

3 Architectures vs. Middleware
General Approaches to Adaptive Software

4 Self-Management in Distributed Systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 4 / 49



Architectural Styles

Software Architectures to Handle Complexity

Distributed systems are complex

In order to manage their intrinsic complexity, distributed systems
should be properly organised

Organisation of a distributed system is mostly expressed in terms of
its software components

Software architectures expresses component organisation

Many ways to organise components of a distributed system, classified
as software architectures

Many instantiations where components have their actual placed in a
distributed system—often called system architectures

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 5 / 49



Architectural Styles

Software Architectures to Handle Complexity

Distributed systems are complex

In order to manage their intrinsic complexity, distributed systems
should be properly organised

Organisation of a distributed system is mostly expressed in terms of
its software components

Software architectures expresses component organisation

Many ways to organise components of a distributed system, classified
as software architectures

Many instantiations where components have their actual placed in a
distributed system—often called system architectures

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 5 / 49



Architectural Styles

Architectural Style

An architectural style is formulated in terms of. . .

components

the way in which components are connected to each other

the data flowing through the components

the way in which all the above things are configured altogether to
build the system

The notion of architectural style. . .

encompasses a way to cluster and classify groups of similar systems,
that is, having the same sort of organisation

allow distributed systems to be compared,

but also provide general patterns for their overall design

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 6 / 49



Architectural Styles

Architectural Style

An architectural style is formulated in terms of. . .

components

the way in which components are connected to each other

the data flowing through the components

the way in which all the above things are configured altogether to
build the system

The notion of architectural style. . .

encompasses a way to cluster and classify groups of similar systems,
that is, having the same sort of organisation

allow distributed systems to be compared,

but also provide general patterns for their overall design

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 6 / 49



Architectural Styles

Components & Connectors

Components

A component is a modular unit with well-defined interfaces
which is replaceable within its environment
interfaces are both required and provided—both ways, then

Connectors

A connector is an abstraction mediating communication, coordination, cooperation
among components
that is, anything providing a mechanism for interaction among components

Putting together components and connectors

. . . produces a huge range of possible organisations and configurations
that are then classified in terms of architectural styles

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 7 / 49



Architectural Styles

Components & Connectors

Components

A component is a modular unit with well-defined interfaces
which is replaceable within its environment
interfaces are both required and provided—both ways, then

Connectors

A connector is an abstraction mediating communication, coordination, cooperation
among components
that is, anything providing a mechanism for interaction among components

Putting together components and connectors

. . . produces a huge range of possible organisations and configurations
that are then classified in terms of architectural styles

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 7 / 49



Architectural Styles

Components & Connectors

Components

A component is a modular unit with well-defined interfaces
which is replaceable within its environment
interfaces are both required and provided—both ways, then

Connectors

A connector is an abstraction mediating communication, coordination, cooperation
among components
that is, anything providing a mechanism for interaction among components

Putting together components and connectors

. . . produces a huge range of possible organisations and configurations
that are then classified in terms of architectural styles

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 7 / 49



Architectural Styles

Architectural Styles for Distributed Systems

Identification of architectural styles

Architectural styles – like patterns in software engineering – are to be
devised out rather than invented

Today, four different architectural styles have been identified as the
main ones for distributed systems

Important styles of architecture for distributed systems

Layered architectures

Object-based architectures

Data-centered architectures

Event-based architectures

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 8 / 49



Architectural Styles

Architectural Styles for Distributed Systems

Identification of architectural styles

Architectural styles – like patterns in software engineering – are to be
devised out rather than invented

Today, four different architectural styles have been identified as the
main ones for distributed systems

Important styles of architecture for distributed systems

Layered architectures

Object-based architectures

Data-centered architectures

Event-based architectures

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 8 / 49



Architectural Styles

Layered Architectures

Basic idea

Components are organised in a layered fashion

where components of a layer only call components of the layer below,
and are only called by the components of the layer above

Data flow

The request-response flow is always top-down / bottom-up

Control flow follow the same pattern along with data

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 9 / 49



Architectural Styles

Layered Architectures

Basic idea

Components are organised in a layered fashion

where components of a layer only call components of the layer below,
and are only called by the components of the layer above

Data flow

The request-response flow is always top-down / bottom-up

Control flow follow the same pattern along with data

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 9 / 49



Architectural Styles

Layered Architecture Style

[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 10 / 49



Architectural Styles

Object-based Architectures

Basic idea

Components are objects

Components are connected through a RPC mechanism

Client-server architectures

. . . are built out of this style

Layered and object-based architectures

are the most important styles for distributed systems today

However, a lot of things are going to happen in the future, which may
change such an overall picture

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 11 / 49



Architectural Styles

Object-based Architectures

Basic idea

Components are objects

Components are connected through a RPC mechanism

Client-server architectures

. . . are built out of this style

Layered and object-based architectures

are the most important styles for distributed systems today

However, a lot of things are going to happen in the future, which may
change such an overall picture

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 11 / 49



Architectural Styles

Object-based Architectures

Basic idea

Components are objects

Components are connected through a RPC mechanism

Client-server architectures

. . . are built out of this style

Layered and object-based architectures

are the most important styles for distributed systems today

However, a lot of things are going to happen in the future, which may
change such an overall picture

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 11 / 49



Architectural Styles

Object-based Architecture Style

[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 12 / 49



Architectural Styles

Data-centred Architectures

Basic idea

Communication among processes occurs through a shared repository
The repository might be either passive (reactive) or (pro)active

Main features

. . . depends on the choice made for the shared repository
how information is represented
how events are handled
how the shared repository behave in response to interaction
how processes interact with / through the shared repository

Examples are everywhere

Web-based systems, for instance, are largely data-centric
Also, many distributed applications still work by sharing files around the network

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 13 / 49



Architectural Styles

Data-centred Architectures

Basic idea

Communication among processes occurs through a shared repository
The repository might be either passive (reactive) or (pro)active

Main features

. . . depends on the choice made for the shared repository
how information is represented
how events are handled
how the shared repository behave in response to interaction
how processes interact with / through the shared repository

Examples are everywhere

Web-based systems, for instance, are largely data-centric
Also, many distributed applications still work by sharing files around the network

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 13 / 49



Architectural Styles

Data-centred Architectures

Basic idea

Communication among processes occurs through a shared repository
The repository might be either passive (reactive) or (pro)active

Main features

. . . depends on the choice made for the shared repository
how information is represented
how events are handled
how the shared repository behave in response to interaction
how processes interact with / through the shared repository

Examples are everywhere

Web-based systems, for instance, are largely data-centric
Also, many distributed applications still work by sharing files around the network

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 13 / 49



Architectural Styles

Event-based Architectures

Basic idea

Processes communicate through an event bus

through which events are propagated

possibly carrying data along

Main example: Publish / subscribe systems

Publishers publish events through the middleware

Subscribers receive events to which they have subscribed

Main feature

Processes can communicate with no need of reference each other / to
know each other, they are referentially decoupled

Processes can communicate with no need to share the same space,
they are decoupled in space

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 14 / 49



Architectural Styles

Event-based Architectures

Basic idea

Processes communicate through an event bus

through which events are propagated

possibly carrying data along

Main example: Publish / subscribe systems

Publishers publish events through the middleware

Subscribers receive events to which they have subscribed

Main feature

Processes can communicate with no need of reference each other / to
know each other, they are referentially decoupled

Processes can communicate with no need to share the same space,
they are decoupled in space

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 14 / 49



Architectural Styles

Event-based Architectures

Basic idea

Processes communicate through an event bus

through which events are propagated

possibly carrying data along

Main example: Publish / subscribe systems

Publishers publish events through the middleware

Subscribers receive events to which they have subscribed

Main feature

Processes can communicate with no need of reference each other / to
know each other, they are referentially decoupled

Processes can communicate with no need to share the same space,
they are decoupled in space

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 14 / 49



Architectural Styles

Event-based Architecture Style

[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 15 / 49



Architectural Styles

Shared Data-space Architectures

Basic idea

Putting together Data-centric and Event-based architectures
The shared repository is a shared persistent data-space, and also an event bus
where data is stored and accessed
along with related events

Main example: Blackboard systems

Processes put data in the blackboard
The blackboard aggregates knowledge, implements policies and drive the
coordination of processes

Main feature

Processes can communicate with no need of compresence
Processes are also decoupled in time

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 16 / 49



Architectural Styles

Shared Data-space Architectures

Basic idea

Putting together Data-centric and Event-based architectures
The shared repository is a shared persistent data-space, and also an event bus
where data is stored and accessed
along with related events

Main example: Blackboard systems

Processes put data in the blackboard
The blackboard aggregates knowledge, implements policies and drive the
coordination of processes

Main feature

Processes can communicate with no need of compresence
Processes are also decoupled in time

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 16 / 49



Architectural Styles

Shared Data-space Architectures

Basic idea

Putting together Data-centric and Event-based architectures
The shared repository is a shared persistent data-space, and also an event bus
where data is stored and accessed
along with related events

Main example: Blackboard systems

Processes put data in the blackboard
The blackboard aggregates knowledge, implements policies and drive the
coordination of processes

Main feature

Processes can communicate with no need of compresence
Processes are also decoupled in time

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 16 / 49



Architectural Styles

Shared Data-space Architecture Style

[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 17 / 49



System Architectures

Outline

1 Architectural Styles

2 System Architectures
Centralised Architectures
Decentralised Architectures
Hybrid Architectures

3 Architectures vs. Middleware
General Approaches to Adaptive Software

4 Self-Management in Distributed Systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 18 / 49



System Architectures

Where are Software Components?

Component Topology

When a software architecture is actually instantiated, components are
placed somewhere in a distributed system

This is typically taken as an instantiation of a software architecture in
a system architecure

Sorts of System Architectures

Centralised architectures

Decentralised architectures

Hybrid architectures

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 19 / 49



System Architectures

Where are Software Components?

Component Topology

When a software architecture is actually instantiated, components are
placed somewhere in a distributed system

This is typically taken as an instantiation of a software architecture in
a system architecure

Sorts of System Architectures

Centralised architectures

Decentralised architectures

Hybrid architectures

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 19 / 49



System Architectures Centralised Architectures

Outline

1 Architectural Styles

2 System Architectures
Centralised Architectures
Decentralised Architectures
Hybrid Architectures

3 Architectures vs. Middleware
General Approaches to Adaptive Software

4 Self-Management in Distributed Systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 20 / 49



System Architectures Centralised Architectures

Clients & Servers

Main feature

In a centralised architecture, clients request services from
servers—and that is all, more or less

In the basic client-server model, processes are classified in two
groups—obviously, clients and servers

Possibly, the two groups may overlap

Servers

A server is a process implementing a specific service—like, say, a database
service

Clients

A client is a process requiring a specific service from a server

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 21 / 49



System Architectures Centralised Architectures

Clients & Servers

Main feature

In a centralised architecture, clients request services from
servers—and that is all, more or less

In the basic client-server model, processes are classified in two
groups—obviously, clients and servers

Possibly, the two groups may overlap

Servers

A server is a process implementing a specific service—like, say, a database
service

Clients

A client is a process requiring a specific service from a server

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 21 / 49



System Architectures Centralised Architectures

Clients & Servers

Main feature

In a centralised architecture, clients request services from
servers—and that is all, more or less

In the basic client-server model, processes are classified in two
groups—obviously, clients and servers

Possibly, the two groups may overlap

Servers

A server is a process implementing a specific service—like, say, a database
service

Clients

A client is a process requiring a specific service from a server

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 21 / 49



System Architectures Centralised Architectures

Client-server Interaction

Scheme of client-server interaction: request-reply behaviour
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 22 / 49



System Architectures Centralised Architectures

Client-Server Communication

Efficiency vs. reliability

Connectionless protocols is ok for idempotent operations

that is, operations that could be repeated more than once without harm

Connection-oriented protocols are less efficient, but ensure reliability

For instance, Internet protocols are typically based on TCP/IP
connections—reliable but relatively costly for small-grain
communication

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 23 / 49



System Architectures Centralised Architectures

Application Layering

Logical layering in client-server architectures

User-interface level contains the interface with the user

Processing level contains the logic of the control, in short, the core of the
applications

Data level manages the actual data that are relevant to the applications

Typical organisation for client-server applications

with a part handling user interaction,

a part dealing with data and files,

and a part containing the core functionality of an application

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 24 / 49



System Architectures Centralised Architectures

Application Layering

Logical layering in client-server architectures

User-interface level contains the interface with the user

Processing level contains the logic of the control, in short, the core of the
applications

Data level manages the actual data that are relevant to the applications

Typical organisation for client-server applications

with a part handling user interaction,

a part dealing with data and files,

and a part containing the core functionality of an application

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 24 / 49



System Architectures Centralised Architectures

Example: Internet Search Engine

The simplified organisation of an Internet search engine into three different
layers

[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 25 / 49



System Architectures Centralised Architectures

Multi-tiered Architectures

How to physically distribute logical layers?

Logical organisation is not physical organisation

Clients and servers could be placed on the same node, or be
distributed according to several different topologies

Two-tiered architecture

The simplest choice is to have just two sort of machines

hosting either servers or clients

resulting in the (physically) two-tiered architecture

Choices for two-tiered architecture

Where are the three application-layers placed?

On the client machines, or on the server machines?

a range of possible solutions, accordingly

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 26 / 49



System Architectures Centralised Architectures

Multi-tiered Architectures

How to physically distribute logical layers?

Logical organisation is not physical organisation

Clients and servers could be placed on the same node, or be
distributed according to several different topologies

Two-tiered architecture

The simplest choice is to have just two sort of machines

hosting either servers or clients

resulting in the (physically) two-tiered architecture

Choices for two-tiered architecture

Where are the three application-layers placed?

On the client machines, or on the server machines?

a range of possible solutions, accordingly

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 26 / 49



System Architectures Centralised Architectures

Multi-tiered Architectures

How to physically distribute logical layers?

Logical organisation is not physical organisation

Clients and servers could be placed on the same node, or be
distributed according to several different topologies

Two-tiered architecture

The simplest choice is to have just two sort of machines

hosting either servers or clients

resulting in the (physically) two-tiered architecture

Choices for two-tiered architecture

Where are the three application-layers placed?

On the client machines, or on the server machines?

a range of possible solutions, accordingly

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 26 / 49



System Architectures Centralised Architectures

Possible Two-tiered Organisations

Alternative client-server organisations
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 27 / 49



System Architectures Centralised Architectures

Current Trends in Two-tiered Architectures

Moving toward the clients

Scalability pushes charge far from servers

Along with more efficient network connections, more powerful client
machines, and above all more expressive technologies for distributing
applications

Thin vs. Fat clients

Thin clients are simpler

Fat clients are more complex, but are typically more efficient from the
user’s viewpoint, and more scalable from the engineer’s viewpoint

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 28 / 49



System Architectures Centralised Architectures

Current Trends in Two-tiered Architectures

Moving toward the clients

Scalability pushes charge far from servers

Along with more efficient network connections, more powerful client
machines, and above all more expressive technologies for distributing
applications

Thin vs. Fat clients

Thin clients are simpler

Fat clients are more complex, but are typically more efficient from the
user’s viewpoint, and more scalable from the engineer’s viewpoint

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 28 / 49



System Architectures Centralised Architectures

Three-tiered Architectures

Servers may sometimes act as clients

Servers might be layered, in turn

We may (physically) distinguish between application servers and
database servers

Example: the Transaction Processing Monitor discussed in the
previous lessons

An example of a server acting as client
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 29 / 49



System Architectures Decentralised Architectures

Outline

1 Architectural Styles

2 System Architectures
Centralised Architectures
Decentralised Architectures
Hybrid Architectures

3 Architectures vs. Middleware
General Approaches to Adaptive Software

4 Self-Management in Distributed Systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 30 / 49



System Architectures Decentralised Architectures

Vertical vs. Horizontal Distribution

Vertical distribution

Multi-tiered client-server architectures directly derive from the three levels of
applications
Logical organisation is mapped onto the tiers
Often, distributed processing amounts at building a client-server application
according to a multi-tiered architecture
This is typically called vertical distribution

Horizontal distribution

Sometimes, the physical distribution of the clients and the servers is what actually
counts
Clients and servers may be physically split into logically-equivalent parts, each one
working on its own portion of the whole data set
This is typically called horizontal distribution
This is an obviously decentralised class of systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 31 / 49



System Architectures Decentralised Architectures

Vertical vs. Horizontal Distribution

Vertical distribution

Multi-tiered client-server architectures directly derive from the three levels of
applications
Logical organisation is mapped onto the tiers
Often, distributed processing amounts at building a client-server application
according to a multi-tiered architecture
This is typically called vertical distribution

Horizontal distribution

Sometimes, the physical distribution of the clients and the servers is what actually
counts
Clients and servers may be physically split into logically-equivalent parts, each one
working on its own portion of the whole data set
This is typically called horizontal distribution
This is an obviously decentralised class of systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 31 / 49



System Architectures Decentralised Architectures

Horizontal Distribution: Main Example

Peer-to-peer systems

All the processes in a peer-to-peer system are equal
So, every process works to the system main function, whatever it is
Each process works then at the same time as a client and as a server
So, it is typically called servent

Overlay network

Peer-to-peer architectures are symmetric
So, the main problem of peer-to-peer architectures is how to organise the network whose nodes
are the servents and the links are the communications among them
Such a network organisation is typically called an overlay network

Types of overlay networks

Processes communicate through available communication channels
Overlay networks may be either structured or unstructured
Accordingly, the two main sorts of peer-to-peer architectures are

Structured peer-to-peer architectures
Unstructured peer-to-peer architectures

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 32 / 49



System Architectures Decentralised Architectures

Horizontal Distribution: Main Example

Peer-to-peer systems

All the processes in a peer-to-peer system are equal
So, every process works to the system main function, whatever it is
Each process works then at the same time as a client and as a server
So, it is typically called servent

Overlay network

Peer-to-peer architectures are symmetric
So, the main problem of peer-to-peer architectures is how to organise the network whose nodes
are the servents and the links are the communications among them
Such a network organisation is typically called an overlay network

Types of overlay networks

Processes communicate through available communication channels
Overlay networks may be either structured or unstructured
Accordingly, the two main sorts of peer-to-peer architectures are

Structured peer-to-peer architectures
Unstructured peer-to-peer architectures

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 32 / 49



System Architectures Decentralised Architectures

Horizontal Distribution: Main Example

Peer-to-peer systems

All the processes in a peer-to-peer system are equal
So, every process works to the system main function, whatever it is
Each process works then at the same time as a client and as a server
So, it is typically called servent

Overlay network

Peer-to-peer architectures are symmetric
So, the main problem of peer-to-peer architectures is how to organise the network whose nodes
are the servents and the links are the communications among them
Such a network organisation is typically called an overlay network

Types of overlay networks

Processes communicate through available communication channels
Overlay networks may be either structured or unstructured
Accordingly, the two main sorts of peer-to-peer architectures are

Structured peer-to-peer architectures
Unstructured peer-to-peer architectures

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 32 / 49



System Architectures Hybrid Architectures

Outline

1 Architectural Styles

2 System Architectures
Centralised Architectures
Decentralised Architectures
Hybrid Architectures

3 Architectures vs. Middleware
General Approaches to Adaptive Software

4 Self-Management in Distributed Systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 33 / 49



System Architectures Hybrid Architectures

Combining the Benefits

Hybrid architectures

Many distributed systems require properties from both client-server
and peer-to-peer architectures

So, they put together features from both centralised and decentralised
architectures

These are typically called hybrid architectures

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 34 / 49



System Architectures Hybrid Architectures

Edge-Server Systems

Servers are “on the edge” of the network

The “edge” is formed by the boundary between the enterprise
network and the actual Internet

For instance, home clients connecting through an ISP (Internet
Service Provider)

Viewing the Internet as consisting of a collection of edge servers
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 35 / 49



System Architectures Hybrid Architectures

Collaborative Distributed Systems

Main idea

The main problems of these systems is to get started: a traditional
client-server scheme is then used here
Once a node has joined the system, collaboration proceeds using a fully
decentralised scheme

Main example: BitTorrent

BitTorrent is a peer-to-peer file downloading system
When a user needs a file in BitTorrent, he/she gets chunks of the file from
other users around until he/she gets it all
A file can be downloaded by a client only when the client is providing files to
other clients
A global directory provides .torrent files that points to the trackers
Trackers are servers knowing active, collaborating nodes that can provide the
requested chunks
Collaboration of nodes is promoted by suitable reward / punishment policies

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 36 / 49



System Architectures Hybrid Architectures

Collaborative Distributed Systems

Main idea

The main problems of these systems is to get started: a traditional
client-server scheme is then used here
Once a node has joined the system, collaboration proceeds using a fully
decentralised scheme

Main example: BitTorrent

BitTorrent is a peer-to-peer file downloading system
When a user needs a file in BitTorrent, he/she gets chunks of the file from
other users around until he/she gets it all
A file can be downloaded by a client only when the client is providing files to
other clients
A global directory provides .torrent files that points to the trackers
Trackers are servers knowing active, collaborating nodes that can provide the
requested chunks
Collaboration of nodes is promoted by suitable reward / punishment policies

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 36 / 49



System Architectures Hybrid Architectures

BitTorrent as a Collaborative Distributed System

The principal working of BitTorrent
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 37 / 49



Architectures vs. Middleware

Outline

1 Architectural Styles

2 System Architectures
Centralised Architectures
Decentralised Architectures
Hybrid Architectures

3 Architectures vs. Middleware
General Approaches to Adaptive Software

4 Self-Management in Distributed Systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 38 / 49



Architectures vs. Middleware

Which Middleware for Which Architecture?

Main problem

In practice, middleware commonly incorporates some architectural element /
abstraction / component / style
For instance, CORBA is designed around the object-oriented architectural style
This means that middleware tends to be not adaptable to every application
scenario
The solution of adding different abstractions and elements affects conceptual
integrity of middleware and of the resulting applications

The typical solution

As usual and as generic as it may seem, it is again separating mechanisms
from policies
This allow the behaviour of the middleware to be modified according to the
application needs

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 39 / 49



Architectures vs. Middleware

Which Middleware for Which Architecture?

Main problem

In practice, middleware commonly incorporates some architectural element /
abstraction / component / style
For instance, CORBA is designed around the object-oriented architectural style
This means that middleware tends to be not adaptable to every application
scenario
The solution of adding different abstractions and elements affects conceptual
integrity of middleware and of the resulting applications

The typical solution

As usual and as generic as it may seem, it is again separating mechanisms
from policies
This allow the behaviour of the middleware to be modified according to the
application needs

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 39 / 49



Architectures vs. Middleware

Interceptors

Main idea

A software construct

Intercepting the
normal flow of control

Allowing policies to be
added that are
application-specific

Using interceptors to handle
remote-object invocations
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 40 / 49



Architectures vs. Middleware General Approaches to Adaptive Software

Outline

1 Architectural Styles

2 System Architectures
Centralised Architectures
Decentralised Architectures
Hybrid Architectures

3 Architectures vs. Middleware
General Approaches to Adaptive Software

4 Self-Management in Distributed Systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 41 / 49



Architectures vs. Middleware General Approaches to Adaptive Software

Adapting Middleware

Main idea

The problem of (unpredictable) change

Any fixed solution / response may fail when facing an unpredictable
modification

E.g., interceptors represent a generic solution to adaptation in terms
of a naive mechanism

Adaptive software?

Easier said than done

Preparing for the unpredictable might result quite an issue, indeed

Said that, this is one of the hottest fields of research in computer
science

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 42 / 49



Architectures vs. Middleware General Approaches to Adaptive Software

Adapting Middleware

Main idea

The problem of (unpredictable) change

Any fixed solution / response may fail when facing an unpredictable
modification

E.g., interceptors represent a generic solution to adaptation in terms
of a naive mechanism

Adaptive software?

Easier said than done

Preparing for the unpredictable might result quite an issue, indeed

Said that, this is one of the hottest fields of research in computer
science

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 42 / 49



Architectures vs. Middleware General Approaches to Adaptive Software

Toward Adaptive Software

Three basic techniques [McKinley et al., 2004]

Separation of concerns
Computational reflection
Component-based design

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 43 / 49



Architectures vs. Middleware General Approaches to Adaptive Software

Toward Adaptive Software

Three basic techniques [McKinley et al., 2004]

Separation of concerns
Computational reflection
Component-based design

Separation of concerns

Separating functional and non-functional

Non-fuctional properties like reliability, performance, security, . . . ,
should be faced separatedly
????
OK, forget about this, this does not work really
Aspect-oriented programming and aspect-oriented software
development deals with cross-cutting concerns

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 43 / 49



Architectures vs. Middleware General Approaches to Adaptive Software

Toward Adaptive Software

Three basic techniques [McKinley et al., 2004]

Separation of concerns
Computational reflection
Component-based design

Computational reflection

The ability to inspect oneself and possibly self-adapt behaviour

Reflection if at the core of modern programming language like Java
Observing the state of a program by the program itself
Reification is changing the state of the program after reflection
Observing oneself state related with the environment makes it
possible to change behaviour adaptively

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 43 / 49



Architectures vs. Middleware General Approaches to Adaptive Software

Toward Adaptive Software

Three basic techniques [McKinley et al., 2004]

Separation of concerns
Computational reflection
Component-based design

Component-based design

Adaptation through composition

Once an architecture is open—e.g., hot-pluggable
A new behaviour may be added by adding a component on the fly
Once an architecture for open systems is available, the point is how
to select a component that may add the required behaviour to the
system

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 43 / 49



Self-Management in Distributed Systems

Outline

1 Architectural Styles

2 System Architectures
Centralised Architectures
Decentralised Architectures
Hybrid Architectures

3 Architectures vs. Middleware
General Approaches to Adaptive Software

4 Self-Management in Distributed Systems

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 44 / 49



Self-Management in Distributed Systems

Automatic Adaptation

Main idea

Unpredictability of change makes guided adaptation essentially faulty

Systems should be able to detect (relevant) change in the
environment and consequently change / adapt

This is the field of autonomic computing [Kephart and Chess, 2003]
and of self-* systems [Babaoglu et al., 2005]

Many views on self-* systems

What all of them have in common is that adaptations come from
some feedback loop of some sort

Including some perception of the environment and of its change in the
loop

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 45 / 49



Self-Management in Distributed Systems

Automatic Adaptation

Main idea

Unpredictability of change makes guided adaptation essentially faulty

Systems should be able to detect (relevant) change in the
environment and consequently change / adapt

This is the field of autonomic computing [Kephart and Chess, 2003]
and of self-* systems [Babaoglu et al., 2005]

Many views on self-* systems

What all of them have in common is that adaptations come from
some feedback loop of some sort

Including some perception of the environment and of its change in the
loop

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 45 / 49



Self-Management in Distributed Systems

The Feedback Control Model

Feedback control model: Logical organisation
[Tanenbaum and van Steen, 2007]

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 46 / 49



Conclusions

Summing Up

Organisation of distributed systems

Software architectures and system architectures deal with software organisation
They are approximative and maybe non-scientific ways to model systems
However they are expressive and abstract enough to help distributed system
engineering

Main issues

Software architectures are concerned with logical organisation
System architectures are concerned with component placement in a
distributed setting
Adaptation is a must in modern and forthcoming systems
Autonomic computing and self-* systems are at the edge of research in
distributed systems nowadays

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 47 / 49



Conclusions

Summing Up

Organisation of distributed systems

Software architectures and system architectures deal with software organisation
They are approximative and maybe non-scientific ways to model systems
However they are expressive and abstract enough to help distributed system
engineering

Main issues

Software architectures are concerned with logical organisation
System architectures are concerned with component placement in a
distributed setting
Adaptation is a must in modern and forthcoming systems
Autonomic computing and self-* systems are at the edge of research in
distributed systems nowadays

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 47 / 49



Conclusions

Bibliography

Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S.,
van Moorsel, A., and van Steen, M., editors (2005).
Self-star Properties in Complex Information Systems: Conceptual and
Practical Foundations, volume 3460 of Lecture Notes in Computer
Science.
Springer.

Kephart, J. O. and Chess, D. M. (2003).
The vision of autonomic computing.
IEEE Computer, 36(1):41–50.

McKinley, P. K., Sadjadi, S. M., Kasten, E. P., and Cheng, B. H.
(2004).
Composing adaptive software.
IEEE Computer, 37(7):56–64.

Tanenbaum, A. S. and van Steen, M. (2007).
Distributed Systems. Principles and Paradigms.
Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition.

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 48 / 49



Conclusions

Software Architectures
Distributed Systems L-A

Sistemi Distribuiti L-A

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2007/2008

Andrea Omicini (Università di Bologna) 2 – Software Architectures A.Y. 2007/2008 49 / 49


	Outline
	Disclaimer
	Architectural Styles
	System Architectures
	Centralised Architectures
	Decentralised Architectures
	Hybrid Architectures

	Architectures vs. Middleware
	General Approaches to Adaptive Software

	Self-Management in Distributed Systems
	Conclusions

