

Ground Assisted Onboard Planning Autonomy with VAMOS

Maria Theresia Wörle, Christoph Lenzen
DLR / GSOC Oberpfaffenhofen D – 82234

maria.woerle@dlr.de, christoph.lenzen@dlr.de

Abstract

The typical ground based mission planning system for a
low earth satellite mission has one major drawback: The
reaction time to onboard detected events includes at least
the two upcoming ground station contacts.
To address this disadvantage, DLR/GSOC implements the
software experiment VAMOS as part of the FireBIRD
mission, in which mission planning autonomy will be
transferred to the spacecraft up to some extent. This paper
presents the outcome of the VAMOS design phase – a
concept of minimized onboard complexity which allows
onboard reaction to telemetry measurements and event
detection. In order to minimize risks and the computational
effort onboard a solution has been chosen that demands
relatively simple tasks of the onboard autonomy but
nevertheless will lead to maximizing the mission output
and still takes care of all potentially to be considered
resource constraints.

 Introduction

VAMOS (Verification of Autonomous MissionPlanning
Onboard a Spacecraft) is an experiment that is prepared at
DLR/GSOC for performing scheduling and (re-)
commanding tasks onboard the satellite BIROS which will
be part of the FireBIRD mission.
VAMOS also consists of an on-ground component
embedded in the FireBIRD mission planning system that
will also be prepared and operated by/at GSOC.

This experiment extends previous research work of
DLR/GSOC colleagues (see [Axmann, Wickler, 2006] or
[Axmann, 2010]) who developed an approach for BIRD to
react to the results of cloud detection and image
compression algorithms by extending the timeline with
additional acquisitions. But for some reasons these times
no integration into the (already orbiting) satellite could

Copyright ©2013. All rights reserved.

take place and thus this functionality finally couldn’t be
tested in space at all.
So now, the aim is to really verify at last the applicability,
usage and benefit of a mission planning component that is
planning, scheduling and commanding in an automated
way onboard a spacecraft. It will combine the computation
power of on-ground hardware that enables complex
calculation operations and resource propagations with the
reaction times that are in general only available for a
system directly embedded in the soft- and hardware
onboard.

Motivation for onboard-autonomous mission
planning activities

In general the mission planning process for a low earth
orbiting (LEO) satellite is performed on-ground in a
control center, where fix timelines are generated that
contain the commands to be performed by the spacecraft in
the timeframe between the next and one of the succeeding
uplink sessions. The idea of onboard planning is to
delegate a part of the complex mission planning process to
the respective satellite. The algorithms of the on-ground
scheduling engines can be very complex and sophisticated,
but they cannot foresee what events will occur during the
execution time of these timelines. This might require
additional actions to be performed in near-real-time (NRT).
For instance the detection of fire, volcano-eruptions, ships
or the reduced usability of an image fully covered by
clouds could be responded by triggering another
acquisition over the same target. Cloud covered images
and acquisitions of fire-monitoring campaigns in which no
fire could be detected could be discarded immediately
onboard which would result in free memory that could be
used for additional acquisitions of lower priority that
originally had remained unplanned therefore.
Sometimes the ground control system cannot even predict
the exact state of all onboard resources after the execution
of a scheduled task, such as the current heat conditions

onboard in case the cooling system isn’t working
deterministically, the exact gain of the solar panels that
could be saved by an elderly battery or the fill-level of the
onboard memory which might vary according to the
content of acquired data and therefore its size after
compression. Thus the on-ground scheduler will have to
use worst case estimations for the consumption resp.
resource availability values and so many datatakes will
stay unplanned without actual needs. After finally
performing its scheduled tasks, the spacecraft might still
have resources left that could be exploited, but the ground
system first gets to know about this when evaluating the
telemetry dumps some time later after the next downlink
contact.
In these situations it would be helpful to allow the satellite
to autonomously introduce new commands. The challenge
however is to assure that these additional commands fit
into the existing timeline and that they do not violate any
constraints.
However some severe obstacles have to be faced for an
onboard mission planning system in comparison to a
system running on-ground:

Obstacles to onboard autonomous scheduling
in general

Onboard autonomy is often seen as an additional risk for
the spacecraft health rather than a powerful feature to
enhance the return of its mission. Mostly a fully
deterministic and predictable spacecraft behavior is
preferred. Furthermore the design of any onboard software
component has to cope with limited computation resources,
such as memory and processing power, and the fact that
the reaction time in case of problems (including their
detection at first) might be extended in comparison to on-
ground systems that can be permanently monitored and
perhaps directly fixed by human interaction on short
notice.
Therefore some restrictions have to be complied with when
designing an “autonomous onboard mission planning
software” such as limitations in the calculation operations
that can be performed, limitations of the commands that
may be commanded and/or even generated spacecraft-
internally and of course a thorough testing before and after
integrating the software onboard.

Two example use cases

In the following two example use cases will be presented
that should be feasible even with these restrictions.

Figure 1 shows a use case in which a consistent base

timeline is commanded to the spacecraft and currently
executed there. For several subschedules of it there exist
additional alternatives that have also been commanded but
are not activated yet. The alternative subschedules 31/32
might for instance contain the content of the according
original subschedule 3 and the commands for additional
acquisitions. At the bottom, snippets of resource fill level
profiles are sketched. E.g. resource A could show the
power availability onboard, which is constantly filled by
the gain of the solar panels and reduced whenever the
instrument for data acquisition is used. Resource B might
show the development of the memory usage, which
increases during storage of new data and stays constant in
the time in-between as long as no downlink takes place.
The onboard mission planning software then would check
the fill level of the selected resources at a pre-defined point
in time near the end of the execution of subschedule 2, and
compare it with given bounds resp. decision values that
lead to the choice of one of the alternatives.
Note that there are two profile snippets drawn during the
execution time of subschedule 4. These shall remind of the
impact on the two resources that are to be expected in the
future, i.e. after the execution of subschedule 3/31/32, and
have to be held available when the execution of the fix-
commanded subschedule 4 is ongoing. This means that
whatever the consumptions of the actions performed by the
additional/alternative subschedules might be, they are not
allowed to exceed time-specific limits. Therefore, when
making the decision whether not only the current resource
availabilities have to be considered but also the effects of
the to be executed subschedules and the resource
modifications already scheduled for the “future” in the
base timeline, as just described.
Different considerations might be needed and evaluated in
case this future may be changed, i.e. the base timeline may
be modified, too, e.g. by removing some resource
consuming task from it. Also the existence of different
priorities for each acquisition or other to be performed task
can be resp. might have to be applied therefore.
Another application of the subschedule selection is
indicated with subschedules 5/51 that could contain

Figure 1

different downlink schedules in terms of commanding of
additional transmission times or another sequence of the to
be downlinked data. This can be useful either in
combination to the selection of other/additional
acquisitions or might be useful in case the resource check
at some time shows that an overflow of one memory part
or the overwriting of not yet transmitted data is impending.
Then this could be preferred in the next downlink in case it
is likely to be transmitted in another, later ground station
contact otherwise.

Figure 2 shows another possibility how an autonomous
onboard mission planning software could be applied. The
nominal ground-generated base timeline sent to the
spacecraft during an uplink session commands the
instrument to acquire several wide-view pictures in a scan-
mode for example. In the gap between the ground station
contacts (and thus on-ground mission planning runs that
could change the commanded timeline customarily) some
classification software that examines the acquired data
directly onboard might detect a fire hot-spot or another
interesting event and would trigger the onboard planning
software that could, in a near-real-time decision, create an
additional command sequence and insert it into the
performed timeline in order to for instance make the
instrument immediately looking at the detected target area
again and acquire a kind of spot-mode picture with higher
resolution. If not having the possibility to react so fast by
the onboard actuators e.g. for changing the view direction
by changing the attitude, also the use case of taking
another picture during the next upcoming visibility of this
region of interest can be imagined instead (depending on
the target visibility in (one of) the next orbit(s) of course).
Transferred to the idea of handling the downlink, here the
trigger due to the detection of some event in an acquisition
could lead to the re-sorting of the downlink sequence in
order to transmit the data of the fire event as fast as
possible to the ground for example, provided that the
onboard data-storage and –downlink management would
be capable of such a re-sorting or the explicit announcing
of data packages in the downlink commands.

The FireBIRD mission

FireBIRD is a scientific mission that is dedicated
especially to the detection and monitoring of high
temperature events (HTE) all over the world. It will be a
constellation consisting of the two satellites TET-1 and
BIROS operated by DLR.
TET-1 (abbreviation for the German expression
“Technologieerprobungsträger 1”, i.e. a carrier for proving
new technologies) was successfully launched on July 22nd
2012 and currently serves the testing of industrial and
scientific experimental payloads and spacecraft
technologies in the On-Orbit Verification (OOV) program
of DLR. Beginning with its second year of operations, a
camera system as one of these payloads will become the
main payload on TET-1, which then will belong to the
FireBIRD mission.
BIROS (Berlin InfraRed Optical System) which is planned
to be launched in 2014 in contrast is mainly dedicated to
this constellation from the beginning, even though it will
also carry a number of additional experiments.
Both spacecraft are similarly constructed based on the bus
of BIRD and carry a camera system consisting of a bi-
spectral infrared hot spot recognition sensor system
together with a three-channel optical sensor as multi-
functional camera. The camera system is developed by the
DLR institute for optical information systems located in
Berlin and will provide a highly improved resolution in
comparison to other currently orbiting fire monitoring
systems. In addition to their HTE detection and monitoring
function the two spacecraft will as well be used for other
scientific earth observation applications.
For details see [Ruecker et al.].

Mission-specific challenges for the onboard
planning experiment:

Environment for the onboard planning

On BIROS, the mission planning software will be
integrated into the payload processing unit (PPU), which
means that it cannot be updated but through a PPU
software upload. The PPU will be providing a RODOS
operating system (see [RODOS links]), which assures real-
time execution of its processing cycle, provided the
software does not exceed its calculation budget.
This means that both – code complexity and calculation
complexity – should be restricted to a minimum.
Furthermore all awaited stages of extension, as far as
possible, should be prepared, compiled and integrated into
the spacecraft best before launch (though deactivated then
at the beginning of the mission and switched on step by
step).

Figure 2

VAMOS

In order to achieve minimum complexity for the onboard
software, VAMOS is split up into three components, the
on-ground add-on to the mission planning system, the
onboard component OBoTiS, which restricts to activating
pre-calculated timeline alternatives and the onboard
component OBETTE, which adds new timeline
alternatives and their activation criteria.

OBoTiS (OnBoard Timeline Selection)
When OBoTiS is activated, the onboard planner will check
at predefined times, whether certain telemetry parameters
stay within pre-calculated values. If all these telemetry
checks are passed, the respective timeline extension will be
activated.
This part of the onboard software remains extremely
simple, still allowing the exploitation of the satellite
resources to their maximum. However on ground multiple
scenarios together with their conditions that determine
when activation may be performed have to be prepared,
taking into account not only the current resource states
given by telemetry values but also the needs of later
datatakes of higher priority, i.e. those that will still have to
be acquirable later on. The automated creation of these
timeline extension scenarios and their conditions, will be
described later on in section “On-Ground Add-On”.
The following pictures shall illustrate the OBoTiS
workflow:

Figure 3 shows the uplink of the on-ground pre-calculated
base timeline (green) and two timeline extensions (yellow),
which may be activated in case certain telemetry
conditions are met.

Figure 4 shows the time of decision whether to activate
timeline extension 1 or not to activate it. Here, the
telemetry value is far below the propagated value (maybe
an unusable image file has been deleted), therefore
timeline extension 1 may be activated:

OBETTE (On Board Event Triggered Timeline
Extension)
When OBETTE is activated, the onboard planner will
listen to event information generated by other spacecraft
components which indicate that an additional image should
be taken.
OBETTE derives certain parameters (e.g. the required
execution time and looking angle) from this event. A
predefined command template will be copied, filled with
these parameters and added to OBoTiS as new timeline
extension, together with the corresponding set of telemetry
conditions that are also derived from the event parameters.
Of course also more than a list of templates with different
pre-defined settings or parameters derived from the
configuration might be used from which the algorithm then
first chooses one according to the event type or event
parameters.
Details of this mechanism will be described in section
“OBETTE on-ground add-on”.

Figure 3

Figure 4

Figure 5

Figure 6 shows the evaluation of an event: timeline
extension 3 is generated from the template and the event’s
parameters.
Thereafter OBoTiS is in charge to activate or discard this
timeline extension:

Figure 7 shows the decision time when OBoTiS has to
decide whether to activate or discard timeline extension 3.
In this case the telemetry values show that activation is
possible:

But of course it will also happen that a telemetry check
fails and thus a timeline extension is rejected. And in
addition, overlapping timeline extensions must not be

activated in parallel, so in the depicted example, timeline
extension 2 must be rejected:

Priorities
Within the OBoTiS functionality, the onboard telemetry
check compares on-ground calculated thresholds against
the real-time telemetry as measured onboard the satellite.
Since such a threshold is specified individually for each
timeline extension, it will reflect the priority of the
contained datatake: The base timeline used to determine
the telemetry check for timeline extension 1 will already
contain all timeline extensions of higher priority, which
especially also includes all future timeline extensions of
higher priority. This way, the higher the priority of a
timeline extension, the less timeline extensions are part of
the base timeline when calculating the thresholds for this
timeline extension. This means that the thresholds will be
more relaxed for timeline extensions containing high-
priority datatakes.
For the on-ground scheduler this means to schedule all
timeline extensions in the order of their priority, ignoring
resource bounds, and before adding a timeline extension to
the timeline, the maximum telemetry value at decision time
(i.e. just before the timeline extension starts) is determined,
which assures that the bound will not be exceeded in the
future of this decision time.
For OBETTE, we define a constant priority. This way we
only need to uplink one propagated state, which
corresponds to a base timeline including all timeline
extensions of higher priority than the OBETTE-generated
timeline extensions. In case we had multiple event triggers
of different priority, this approach might be extended by
uploading multiple propagated states, which reflect base
timelines including timeline extensions of different priority
levels. However, then OBETTE-generated timeline
extensions of lower priority with an earlier decision time
might block later OBETTE-generated timeline extensions
of higher priority.
Of course, the overall priority concept might be somehow
disturbed by OBETTE, too: In case a new high-priority

Figure 6

Figure 7

Figure 8

Figure 9

event occurs after the decision of OBoTiS in favor of a low
priority timeline extension has been made, a later medium-
priority ground-generated timeline extension may be
blocked, even though it would have been executed if only
the low- or only the additional high-priority timeline
extension would have taken place before. However this is
an inevitable drawback of allowing timeline extensions of
different priorities to become activated when new events
may generate timeline extensions of even higher priority.

Commanding Interface
The above described mechanisms depict the ideas behind
the onboard scheduling features. However the BIROS
spacecraft does not support the ingestion of timeline
extensions into an existing base timeline. Therefore each
timeline extension must form a separate, consistent
timeline block, which may be activated individually
depending on the corresponding telemetry and envelope
checks. The whole timeline must be represented by such
timeline blocks that are commanded to the spacecraft.

Figure 10 shows the ground-prepared, commanded
Timeline Blocks 1, 2a, 2b,3a and 3b, of which Timeline
Block 1, 2b and 3a are activated by OBoTiS.

Figure 11 depicts OBETTE: an event is received from
which an additional timeline extension is derived. This
timeline extension doesn’t have to fit together with the
existing timeline blocks. Thus its activation and the
decision about this must be performed before the earliest
overlapping timeline block starts in order to be able to
decide to discard all overlapping timeline blocks.

On-Ground Add-On
So far, we explained the onboard mechanisms, which were
designed to have minimum complexity. In this section we
describe which support the on-ground mission planning
system has to provide in order to achieve the goals of
onboard autonomy.
OBoTiS on-ground add-on
As a first step, we restrict to OBoTiS, in which the onboard
planner decides which timeline blocks to activate and
which to discard. Therefore OBoTiS needs the following
information for each timeline block:
• the timelineID of this timeline block
• the time interval of this timeline block
• a set of telemetry checks, each consisting of

1. the time when to check this real-time telemetry
2. the memory-address where to read the telemetry

value
3. the threshold which the telemetry value must not

exceed
When deriving the timeline extensions from the planning
requests, the on-ground scheduling process will consist of
the following steps in order to supply the according
conditions:
• Define the base timeline as an empty timeline.
• For each timeline block’s planning request, in

descending order of priority (highest priority will have
the downlink sessions):

1. In case there exists an overlapping not-discarded
planning request of higher priority with start time
later or equal, discard this planning request, because
the onboard decision whether to activate the higher-
priority datatake mustn’t be blocked by the lower-
priority planning request’s execution.

2. Define the decision time of the timeline extension
as starttime – 1sec.

3. For each resource, propagate the resource profile
that results when adding this planning request to the
timeline and derive the minimum remaining
availability (including the consideration of the
whole future and beginning with the planning
request’s timeline entry). For the critical resources,
this value will become negative some time.

4. The resource availability as calculated in the
preceding step is added to the propagated value of
the resource at the time when this check shall be
performed. This is the maximum value the
telemetry may reach when checking this condition
and is stored as the threshold condition to the
timeline extension.

5. If there exists no planning request of higher priority
overlapping with the current planning request, keep
the modifications on the propagated resource
profiles (in order to ensure that lower-priority

Figure 10

Figure 11

planning requests will preserve sufficient
resources). Otherwise the resource modifications
resulting of this planning request must be discarded
before going on with the next planning request.

Figure 12 illustrates the calculation of a resource condition,
which needs to be checked by OBoTiS before activating a
timeline extension: first the propagated value including the
timeline extension is calculated. The remaining availability
is added to the propagated value at the decision time. In
case the telemetry will show that the value is less or equal
to this threshold, it can safely activate the timeline
extension, since the corrected propagated values with
activated extension will remain below the upper bound.
Note that this rule reflects all future resource modifications
of timeline extensions of higher priority, so unless
OBETTE adds a new timeline extension of even higher
priority, the priority rules are strictly obeyed.
Furthermore, note that we do not have any problem at the
beginning of a new timeline horizon, where we do not
know the actual state of the resources - the absolute value
of the propagated state at decision time is completely
irrelevant: adding a value x to the state at decision time
leads to an availability reduced by x, which means that the
threshold, which is calculated as propagated value at
decision time + availability remains constant. So whatever
state the resource will actually have when the new
scheduling horizon begins, the thresholds calculated by this
rule are correctThe past is completely reflected in the
telemetry check: It does not matter how we have reached
the observed telemetry values, all that matters is that we
activate the timeline extension only when there is enough
margin for the future.
OBETTE on-ground add-on
In order to support event-triggered timeline extension
generation onboard the satellite, the ground planner cannot
perform the above illustrated calculation itself. Instead it
must supply remaining availability profiles to the onboard
planner, which indicate for each point in time, how much
availability is left at this point in time, taking into account
the whole future. This remaining availability must be
calculated on basis of a timeline, which includes all
ground-prepared timeline extensions of higher priority than
the one the onboard-generated timeline extensions would
get. This way, sufficient margins are preserved only for

those timeline extensions which have higher priority than
the OBETTE-generated timeline extensions:

In addition to the availability profile, the onboard planner
must be given the on-ground propagated values profile.
When generating a new timeline extension derived from an
onboard event, the onboard planner will derive the
resource consumption of this timeline extension from the
event parameters or use a fix, configured value. The
resource condition for this timeline extension now can be
calculated as follows:

1. Decision time
= 1 sec before the decision time of the first
overlapping timeline extension of lower priority or
the new timeline extension’s execution time,
whatever comes first. This allows the new timeline
extension to block overlapping timeline extensions.

2. In case an overlapping timeline extension of higher
priority with decision time later than this decision
time exists, the whole timeline extension is to be
discarded. (Otherwise the high-priority timeline
extension might be blocked.)

3. Remaining availability including this extension
= remaining availability profile at decision time
 - resource consumption of this timeline extension.
This represents the remaining availability as it would
have been propagated on-ground. Note that this value
may be negative.

4. Telemetry threshold
= Propagated value at Decision time
 + Remaining availability including this extension

The telemetry threshold indicates the maximum
telemetry value which will be allowed to be observed
at decision time.

Figure 12

Figure 13

Figure 15

Figure 14

Please note that although we have to transfer profiles to the
satellite, we do not have to perform any profile operations
other than evaluating the profile at a given time. The
onboard software therefore remains simple and fast.
However storing a resource profile may consume some
memory. In case this turns out to become a bottleneck, the
on-ground planning system may be adapted to simplify the
propagated values profile and the remaining availability
profile. If this is necessary, it has to be ensured that the
simplified profiles have lower values than the original
profiles.
Note that, similar to the OBoTiS case, we do not have a
problem in case the executed timeline before decision time
differs from the timeline used for propagation, because the
calculated threshold only depends on the expected future
resource consumptions. The past is completely reflected in
the telemetry check.

Testing and activation of extensions
In general it is planned to test the features of each stage of
extension of the onboard software in simulation mode
before arming it. During these times it will only log what it
had measured and what it would have done resp. how it
would have decided. The log will be checked on ground,
compared with the other spacecraft telemetry and the result
will be tested against the ground mission planning system,
i.e. it will be checked whether this would have reacted the
same way.
Afterwards, if proven reliable and ready for use, the
respective code will be configured for “real” execution
during dedicated campaign time frames. All in all a similar
approach as performed for the TAFF (autonomous
formation flight keeping system of the TanDEM-X
mission), see [Ardaens et al.]. If then the functionalities are
thoroughly tested and presented to run smoothly, and when
the main satellite user groups agree on the profit it will
have for the whole mission it can be transferred into a
nominal operational use.

Currently Planned VAMOS Use Cases on BIROS
In the first increment the onboard mission planning shall
be able to activate the execution of additional or alternative
datatakes. Perhaps it might also modify the downlink
sequence of acquired data by (re-)configuring the sequence
of memory partitions to be transmitted. Furthermore it
shall react to triggers coming from the main classificator as
well as of the experimental image analyzer. If one of them
classifies an image as useless, e.g. due to cloud coverage,
VAMOS can be used to delete the according data package,
and then use the freed memory for a new acquisition which
it will pick from the ground-calculated timeline extensions
(see OBoTiS). On the other hand, if they have detected a
fire event and provide the onboard planner with the next

visibility of this region, a completely new acquisition will
be generated and commanded “spacecraft-internally” (see
OBETTE). This is part of the second increment.

Outlook to the future

We are convinced that the future will bring more and more
the need for (partially) autonomous systems like the one
described above. Not only for missions that operate far
away from the earth so that the long distance imposes a
reaction delay and which therefore have to react
autonomously to detected events, but also for low-earth-
orbiting spacecraft that don’t have a continuous ground
station contact, since a tight net of ground stations as well
as communicating via one or more relay satellites are
assumed to be too expensive, especially for scientific
missions. Especially the reaction delay is not negligible
and solvable by a purely ground-based system, since for
the delay at least the time spans from detection to
downlink, processing on-ground and commanding the
actions back to the spacecraft have to be counted. So real
NRT-reactions need the autonomy of the spacecraft up to
some extent, not only in terms of navigation and motion
(e.g. for formation keeping, as well as for approximation
operations and docking maneuvers), but also in terms of
scheduling and tasking its payload instruments and other
onboard actuators. The same applies for optimized
resource exploitation, see the use cases described in the
introduction (optical missions, clouds, not predictable
memory usage after compression, …).
Next steps will be an operationalization of such features,
adapted to the respective mission’s goals. With the
experience gathered by the experiment VAMOS, for
upcoming missions also non-experimental planning and
scheduling solutions that contain onboard components can
be offered and developed.
And once the onboard support is required by a mission, a
big advantage will be that the surrounding onboard
software might be adapted or provided accordingly. As
stated in the beginning, VAMOS restricts to the rare given
available memory and computation power for its onboard
calculations. However further research is ongoing in order
to move the more complex profile propagation to the
spacecraft, e.g. by using a dedicated FPGA. This would
allow more sophisticated features such as to support the
strict priority concept with multiple priorities for OBETTE
or even a continuous optimization of the onboard timeline
based on the increasing accuracy of a recalculated resource
profile propagation.
Furthermore the cooperation possibilities resp. onboard
communication/commanding possibilities to various
actuators as well as triggers that inform about events could
be extended as soon as autonomy is no longer seen as an

additional risk for the satellite health rather than a big
benefit. With such features of autonomy, the value return
of scientific as well as commercial missions can be further
enhanced in comparison to fully ground-controlled
systems.

Conclusion and assessment

With the paper on hand we wanted to present a new
approach to distribute mission planning tasks to the
autonomy of a spacecraft without a loss of complexity of
the found decisions and finally performed plans for
acquisitions and other payload operations. It combines the
NRT-capabilities and accessibility to up-to-date, exact
current telemetry values with the processing power,
calculation and propagation capabilities of the on-ground
mission planning system to a relatively simple, low-risk
application that matches the pre-conditions given on the
hosting spacecraft.
Previous research works, developments and ideas for
onboard mission planning from outside DLR suggest, for
instance, an onboard greedy search with a limited number
of constraints ([Khatib et al.]), probability estimations as
basis for the onboard decisions ([Gough et al.]), or using
the local search algorithms, similarly onboard as for the
on-ground scheduling when (re-)planning lists of
acquisitions together with a (partly downstream) checking
of the resource developments for the future (as with
CASPER as part of ASE on EO-1, see e.g. [Rabideau et al.,
2006 & 2009]) are suggested.
In comparison to these, for VAMOS a different approach
was invented to cope with the given practical specifications
and restrictions: A distributed system, in which as well the
base timeline with potential timeline extensions is
commanded via timeline blocks as the embedded onboard
planner itself newly create such command blocks from
templates and pre-calculated profiles, and then these
consistent timeline parts are activated or discarded for
execution after “only” checking a list of several pre-
calculated criteria, but nevertheless with the goal to
achieve a similar optimized exploitation of all to be
considered onboard resources without exceeding any
limits.
In general, it must be clear that such a system requires
(depending on the complexity) even more development
and pre-launch testing efforts than purely ground-based
systems. But, apart of relay-satellite-solutions or a really
dense ground station network that would also require a
complex mission planning system for rapidly (re-)tasking
the spacecraft, (and that have to be considered separately in
terms of costs), real NRT-reactions can only be achieved
with (at least partly) autonomous onboard automated

mission planning features, not only for “far-distance” but
also for LEO missions.
For VAMOS, we are looking forward to integrate and run
this software into the BIROS spacecraft’s onboard
processing units and the according on-ground mission
planning system. It will verify that with such a solution the
overall generated output of a mission that combines the
challenges of Earth observation with those of “Earth
watching” (as introduced by [Damiani et al.]) can be
enhanced and a NRT-reaction to detected events with a
complex computation background is possible. In the future
then even more sophisticated onboard solutions might
follow.

References
Ardaens, J.S., D’Amico, S., Fischer, D.: Early Flight Results from
the TanDEM-X Autonomous Formation Flying System; 4th
Spacecraft Formation Flying Missions & Technologies
Conference, St. Hubert, Canada, 2011.

Axmann, R. (2010): Interactive acquisition scheduling for low
earth orbiting satellites; München, Verlag Dr. Hut, ISBN: 978-3-
86853-571-6.

Axmann, R., Wickler, M.: Development and Verification of an
Autonomous Onboard Mission Planning System - an Example
from the BIRD Satellite; SpaceOps 2006, AIAA 2006-5851.

Damiani, S., Verfaillie, G., Charmeau, M.-C.: An Earth Watching
satellite Constellation: How to Manage a Team of Watching
Agents with Limited Communications; Autonomous Agents &
Multiagent Systems/International Conference on Autonomous
Agents - AAMAS 2005, ACM 1-59593-094-9, pp. 455-462.

Gough, J., Fox, M., Long, D.: Plan Execution under Resource
Consumption Uncertainty; In: Proceedings of the Workshop on
Connecting Planning Theory with Practice at 13th International
Conference on Automated Planning and Scheduling (ICAPS'04).

Khatib, L., Frank, J., Smith, D., Morris, R., Dungan, J.:
Interleaved Observation Execution and Rescheduling on Earth
Observing Systems; In: Proceedings of the ICAPS-03 Workshop
on Plan Execution. Trento, Italy. June 2003.

Rabideau, G., Chien, S., McLaren, D.: Tractable Goal Selection
with Oversubscribed Resources; International Workshop on
Planning and Scheduling for Space (IWPSS 2009). Pasadena,
CA, 2009.

Rabideau, G. et al.: Mission Operations of Earth Observing-1
with Onboard Autonomy; Second IEEE International Conference
on Space Mission Challenges for Information Technology (SMC-
IT 2006). Pasadena, CA, 2006.

RODOS links, as on March 11, 2013:
http://www.dlr.de/irs/en/desktopdefault.aspx/tabid-
5976/9736_read-19576/,
http://www.dlr.de/sc/en/desktopdefault.aspx/tabid-
5276/8847_read-15871/.

Ruecker, G., Lorenz, E., Hoffmann, A., Oertel, D., Tiemann, J.,
Halle, W.: Upcoming and prospective fire monitoring missions
based on the heritage of the BIRD (bi-spectral infrared detection)
satellite; IGARSS 2012, in: Geoscience and Remote Sensing
Symposium (IGARSS), 2012 IEEE International.

