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Abstract 

The typical ground based mission planning system for a 
low earth satellite mission has one major drawback: The 
reaction time to onboard detected events includes at least 
the two upcoming ground station contacts. 
To address this disadvantage, DLR/GSOC implements the 
software experiment VAMOS as part of the FireBIRD 
mission, in which mission planning autonomy will be 
transferred to the spacecraft up to some extent. This paper 
presents the outcome of the VAMOS design phase – a 
concept of minimized onboard complexity which allows 
onboard reaction to telemetry measurements and event 
detection. In order to minimize risks and the computational 
effort onboard a solution has been chosen that demands 
relatively simple tasks of the onboard autonomy but 
nevertheless will lead to maximizing the mission output 
and still takes care of all potentially to be considered 
resource constraints. 

 Introduction    

VAMOS (Verification of Autonomous MissionPlanning 
Onboard a Spacecraft) is an experiment that is prepared at 
DLR/GSOC for performing scheduling and (re-) 
commanding tasks onboard the satellite BIROS which will 
be part of the FireBIRD mission. 
VAMOS also consists of an on-ground component 
embedded in the FireBIRD mission planning system that 
will also be prepared and operated by/at GSOC.  
  
This experiment extends previous research work of 
DLR/GSOC colleagues (see [Axmann, Wickler, 2006] or 
[Axmann, 2010]) who developed an approach for BIRD to 
react to the results of cloud detection and image 
compression algorithms by extending the timeline with 
additional acquisitions. But for some reasons these times 
no integration into the (already orbiting) satellite could 
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take place and thus this functionality finally couldn’t be 
tested in space at all. 
So now, the aim is to really verify at last the applicability, 
usage and benefit of a mission planning component that is 
planning, scheduling and commanding in an automated 
way onboard a spacecraft.  It will combine the computation 
power of on-ground hardware that enables complex 
calculation operations and resource propagations with the 
reaction times that are in general only available for a 
system directly embedded in the soft- and hardware 
onboard. 

Motivation for onboard-autonomous mission 
planning activities 

In general the mission planning process for a low earth 
orbiting (LEO) satellite is performed on-ground in a 
control center, where fix timelines are generated that 
contain the commands to be performed by the spacecraft in 
the timeframe between the next and one of the succeeding 
uplink sessions. The idea of onboard planning is to 
delegate a part of the complex mission planning process to 
the respective satellite. The algorithms of the on-ground 
scheduling engines can be very complex and sophisticated, 
but they cannot foresee what events will occur during the 
execution time of these timelines. This might require 
additional actions to be performed in near-real-time (NRT). 
For instance the detection of fire, volcano-eruptions, ships 
or the reduced usability of an image fully covered by 
clouds could be responded by triggering another 
acquisition over the same target. Cloud covered images 
and acquisitions of fire-monitoring campaigns in which no 
fire could be detected could be discarded immediately 
onboard which would result in free memory that could be 
used for additional acquisitions of lower priority that 
originally had remained unplanned therefore.  
Sometimes the ground control system cannot even predict 
the exact state of all onboard resources after the execution 
of a scheduled task, such as the current heat conditions 



onboard in case the cooling system isn’t working 
deterministically, the exact gain of the solar panels that 
could be saved by an elderly battery or the fill-level of the 
onboard memory which might vary according to the 
content of acquired data and therefore its size after 
compression. Thus the on-ground scheduler will have to 
use worst case estimations for the consumption resp. 
resource availability values and so many datatakes will 
stay unplanned without actual needs. After finally 
performing its scheduled tasks, the spacecraft might still 
have resources left that could be exploited, but the ground 
system first gets to know about this when evaluating the 
telemetry dumps some time later after the next downlink 
contact.  
In these situations it would be helpful to allow the satellite 
to autonomously introduce new commands. The challenge 
however is to assure that these additional commands fit 
into the existing timeline and that they do not violate any 
constraints. 
However some severe obstacles have to be faced for an 
onboard mission planning system in comparison to a 
system running on-ground: 

Obstacles to onboard autonomous scheduling 
in general 

Onboard autonomy is often seen as an additional risk for 
the spacecraft health rather than a powerful feature to 
enhance the return of its mission. Mostly a fully 
deterministic and predictable spacecraft behavior is 
preferred. Furthermore the design of any onboard software 
component has to cope with limited computation resources, 
such as memory and processing power, and the fact that 
the reaction time in case of problems (including their 
detection at first) might be extended in comparison to on-
ground systems that can be permanently monitored and 
perhaps directly fixed by human interaction on short 
notice. 
Therefore some restrictions have to be complied with when 
designing an “autonomous onboard mission planning 
software” such as limitations in the calculation operations 
that can be performed, limitations of the commands that 
may be commanded and/or even generated spacecraft-
internally and of course a thorough testing before and after 
integrating the software onboard. 

Two example use cases  

In the following two example use cases will be presented 
that should be feasible even with these restrictions.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 shows a use case in which a consistent base 

timeline is commanded to the spacecraft and currently 
executed there. For several subschedules of it there exist 
additional alternatives that have also been commanded but 
are not activated yet. The alternative subschedules 31/32 
might for instance contain the content of the according 
original subschedule 3 and the commands for additional 
acquisitions. At the bottom, snippets of resource fill level 
profiles are sketched. E.g. resource A could show the 
power availability onboard, which is constantly filled by 
the gain of the solar panels and reduced whenever the 
instrument for data acquisition is used. Resource B might 
show the development of the memory usage, which 
increases during storage of new data and stays constant in 
the time in-between as long as no downlink takes place.  
The onboard mission planning software then would check 
the fill level of the selected resources at a pre-defined point 
in time near the end of the execution of subschedule 2, and 
compare it with given bounds resp. decision values that 
lead to the choice of one of the alternatives.  
Note that there are two profile snippets drawn during the 
execution time of subschedule 4. These shall remind of the 
impact on the two resources that are to be expected in the 
future, i.e. after the execution of subschedule 3/31/32, and 
have to be held available when the execution of the fix-
commanded subschedule 4 is ongoing. This means that 
whatever the consumptions of the actions performed by the 
additional/alternative subschedules might be, they are not 
allowed to exceed time-specific limits. Therefore, when 
making the decision whether not only the current resource 
availabilities have to be considered but also the effects of 
the to be executed subschedules and the resource 
modifications already scheduled for the “future” in the 
base timeline, as just described.  
Different considerations might be needed and evaluated in 
case this future may be changed, i.e. the base timeline may 
be modified, too, e.g. by removing some resource 
consuming task from it. Also the existence of different 
priorities for each acquisition or other to be performed task 
can be resp. might have to be applied therefore. 
Another application of the subschedule selection is 
indicated with subschedules 5/51 that could contain 

Figure 1 



different downlink schedules in terms of commanding of 
additional transmission times or another sequence of the to 
be downlinked data. This can be useful either in 
combination to the selection of other/additional 
acquisitions or might be useful in case the resource check 
at some time shows that an overflow of one memory part 
or the overwriting of not yet transmitted data is impending. 
Then this could be preferred in the next downlink in case it 
is likely to be transmitted in another, later ground station 
contact otherwise. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 shows another possibility how an autonomous 
onboard mission planning software could be applied. The 
nominal ground-generated base timeline sent to the 
spacecraft during an uplink session commands the 
instrument to acquire several wide-view pictures in a scan-
mode for example. In the gap between the ground station 
contacts (and thus on-ground mission planning runs that 
could change the commanded timeline customarily) some 
classification software that examines the acquired data 
directly onboard might detect a fire hot-spot or another 
interesting event and would trigger the onboard planning 
software that could, in a near-real-time decision, create an 
additional command sequence and insert it into the 
performed timeline in order to for instance make the 
instrument immediately looking at the detected target area 
again and acquire a kind of spot-mode picture with higher 
resolution. If not having the possibility to react so fast by 
the onboard actuators e.g. for changing the view direction 
by changing the attitude, also the use case of taking 
another picture during the next upcoming visibility of this 
region of interest can be imagined instead (depending on 
the target visibility in (one of) the next orbit(s) of course).  
Transferred to the idea of handling the downlink, here the 
trigger due to the detection of some event in an acquisition 
could lead to the re-sorting of the downlink sequence in 
order to transmit the data of the fire event as fast as 
possible to the ground for example, provided that the 
onboard data-storage and –downlink management would 
be capable of such a re-sorting or the explicit announcing 
of data packages in the downlink commands. 

The FireBIRD mission 

FireBIRD is a scientific mission that is dedicated 
especially to the detection and monitoring of high 
temperature events (HTE) all over the world. It will be a 
constellation consisting of the two satellites TET-1 and 
BIROS operated by DLR. 
TET-1 (abbreviation for the German expression 
“Technologieerprobungsträger 1”, i.e. a carrier for proving 
new technologies) was successfully launched on July 22nd 
2012 and currently serves the testing of industrial and 
scientific experimental payloads and spacecraft 
technologies in the On-Orbit Verification (OOV) program 
of DLR. Beginning with its second year of operations, a 
camera system as one of these payloads will become the 
main payload on TET-1, which then will belong to the 
FireBIRD mission. 
BIROS (Berlin InfraRed Optical System) which is planned 
to be launched in 2014 in contrast is mainly dedicated to 
this constellation from the beginning, even though it will 
also carry a number of additional experiments.  
Both spacecraft are similarly constructed based on the bus 
of BIRD and carry a camera system consisting of a bi-
spectral infrared hot spot recognition sensor system 
together with a three-channel optical sensor as multi-
functional camera. The camera system is developed by the 
DLR institute for optical information systems located in 
Berlin and will provide a highly improved resolution in 
comparison to other currently orbiting fire monitoring 
systems. In addition to their HTE detection and monitoring 
function the two spacecraft will as well be used for other 
scientific earth observation applications. 
For details see [Ruecker et al.]. 

Mission-specific challenges for the onboard 
planning experiment: 

Environment for the onboard planning 

On BIROS, the mission planning software will be 
integrated into the payload processing unit (PPU), which 
means that it cannot be updated but through a PPU 
software upload. The PPU will be providing a RODOS 
operating system (see [RODOS links]), which assures real-
time execution of its processing cycle, provided the 
software does not exceed its calculation budget. 
This means that both – code complexity and calculation 
complexity – should be restricted to a minimum. 
Furthermore all awaited stages of extension, as far as 
possible, should be prepared, compiled and integrated into 
the spacecraft best before launch (though deactivated then 
at the beginning of the mission and switched on step by 
step). 
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VAMOS 

In order to achieve minimum complexity for the onboard 
software, VAMOS is split up into three components, the 
on-ground add-on to the mission planning system, the 
onboard component OBoTiS, which restricts to activating 
pre-calculated timeline alternatives and the onboard 
component OBETTE, which adds new timeline 
alternatives and their activation criteria. 

OBoTiS (OnBoard Timeline Selection) 
When OBoTiS is activated, the onboard planner will check 
at predefined times, whether certain telemetry parameters 
stay within pre-calculated values. If all these telemetry 
checks are passed, the respective timeline extension will be 
activated. 
This part of the onboard software remains extremely 
simple, still allowing the exploitation of the satellite 
resources to their maximum. However on ground multiple 
scenarios together with their conditions that determine 
when activation may be performed have to be prepared, 
taking into account not only the current resource states 
given by telemetry values but also the needs of later 
datatakes of higher priority, i.e. those that will still have to 
be acquirable later on. The automated creation of these 
timeline extension scenarios and their conditions, will be 
described later on in section “On-Ground Add-On”. 
The following pictures shall illustrate the OBoTiS 
workflow: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 shows the uplink of the on-ground pre-calculated 
base timeline (green) and two timeline extensions (yellow), 
which may be activated in case certain telemetry 
conditions are met. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows the time of decision whether to activate 
timeline extension 1 or not to activate it. Here, the 
telemetry value is far below the propagated value (maybe 
an unusable image file has been deleted), therefore 
timeline extension 1 may be activated: 
 

 

 

 
 
 
 
 
 
 

OBETTE (On Board Event Triggered Timeline 
Extension) 
When OBETTE is activated, the onboard planner will 
listen to event information generated by other spacecraft 
components which indicate that an additional image should 
be taken. 
OBETTE derives certain parameters (e.g. the required 
execution time and looking angle) from this event. A 
predefined command template will be copied, filled with 
these parameters and added to OBoTiS as new timeline 
extension, together with the corresponding set of telemetry 
conditions that are also derived from the event parameters. 
Of course also more than a list of templates with different 
pre-defined settings or parameters derived from the 
configuration might be used from which the algorithm then 
first chooses one according to the event type or event 
parameters.  
Details of this mechanism will be described in section 
“OBETTE on-ground add-on”.  
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Figure 6 shows the evaluation of an event: timeline 
extension 3 is generated from the template and the event’s 
parameters. 
Thereafter OBoTiS is in charge to activate or discard this 
timeline extension: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 shows the decision time when OBoTiS has to 
decide whether to activate or discard timeline extension 3. 
In this case the telemetry values show that activation is 
possible: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
But of course it will also happen that a telemetry check 
fails and thus a timeline extension is rejected. And in 
addition, overlapping timeline extensions must not be 

activated in parallel, so in the depicted example, timeline 
extension 2 must be rejected: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Priorities 
Within the OBoTiS functionality, the onboard telemetry 
check compares on-ground calculated thresholds against 
the real-time telemetry as measured onboard the satellite. 
Since such a threshold is specified individually for each 
timeline extension, it will reflect the priority of the 
contained datatake: The base timeline used to determine 
the telemetry check for timeline extension 1 will already 
contain all timeline extensions of higher priority, which 
especially also includes all future timeline extensions of 
higher priority. This way, the higher the priority of a 
timeline extension, the less timeline extensions are part of 
the base timeline when calculating the thresholds for this 
timeline extension. This means that the thresholds will be 
more relaxed for timeline extensions containing high-
priority datatakes. 
For the on-ground scheduler this means to schedule all 
timeline extensions in the order of their priority, ignoring 
resource bounds, and before adding a timeline extension to 
the timeline, the maximum telemetry value at decision time 
(i.e. just before the timeline extension starts) is determined, 
which assures that the bound will not be exceeded in the 
future of this decision time. 
For OBETTE, we define a constant priority. This way we 
only need to uplink one propagated state, which 
corresponds to a base timeline including all timeline 
extensions of higher priority than the OBETTE-generated 
timeline extensions. In case we had multiple event triggers 
of different priority, this approach might be extended by 
uploading multiple propagated states, which reflect base 
timelines including timeline extensions of different priority 
levels. However, then OBETTE-generated timeline 
extensions of lower priority with an earlier decision time 
might block later OBETTE-generated timeline extensions 
of higher priority.  
Of course, the overall priority concept might be somehow 
disturbed by OBETTE, too: In case a new high-priority 
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event occurs after the decision of OBoTiS in favor of a low 
priority timeline extension has been made, a later medium-
priority ground-generated timeline extension may be 
blocked, even though it would have been executed if only 
the low- or only the additional high-priority timeline 
extension would have taken place before. However this is 
an inevitable drawback of allowing timeline extensions of 
different priorities to become activated when new events 
may generate timeline extensions of even higher priority. 

Commanding Interface 
The above described mechanisms depict the ideas behind 
the onboard scheduling features. However the BIROS 
spacecraft does not support the ingestion of timeline 
extensions into an existing base timeline. Therefore each 
timeline extension must form a separate, consistent 
timeline block, which may be activated individually 
depending on the corresponding telemetry and envelope 
checks. The whole timeline must be represented by such 
timeline blocks that are commanded to the spacecraft.  
 
 
 
 
 
 
 
 
 
Figure 10 shows the ground-prepared, commanded 
Timeline Blocks 1, 2a, 2b,3a and 3b, of which Timeline 
Block 1, 2b and 3a are activated by OBoTiS. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 depicts OBETTE: an event is received from 
which an additional timeline extension is derived. This 
timeline extension doesn’t have to fit together with the 
existing timeline blocks.  Thus its activation and the 
decision about this must be performed before the earliest 
overlapping timeline block starts in order to be able to 
decide to discard all overlapping timeline blocks. 

On-Ground Add-On 
So far, we explained the onboard mechanisms, which were 
designed to have minimum complexity. In this section we 
describe which support the on-ground mission planning 
system has to provide in order to achieve the goals of 
onboard autonomy. 
OBoTiS on-ground add-on 
As a first step, we restrict to OBoTiS, in which the onboard 
planner decides which timeline blocks to activate and 
which to discard. Therefore OBoTiS needs the following 
information for each timeline block: 
• the timelineID of this timeline block 
• the time interval of this timeline block 
• a set of telemetry checks, each consisting of 

1. the time when to check this real-time telemetry 
2. the memory-address where to read the telemetry 

value 
3. the threshold which the telemetry value must not 

exceed 
When deriving the timeline extensions from the planning 
requests, the on-ground scheduling process will consist of 
the following steps in order to supply the according 
conditions: 
• Define the base timeline as an empty timeline. 
• For each timeline block’s planning request, in 

descending order of priority (highest priority will have 
the downlink sessions): 

1. In case there exists an overlapping not-discarded 
planning request of higher priority with start time 
later or equal, discard this planning request, because 
the onboard decision whether to activate the higher-
priority datatake mustn’t be blocked by the lower-
priority planning request’s execution. 

2. Define the decision time of the timeline extension 
as starttime – 1sec. 

3. For each resource, propagate the resource profile 
that results when adding this planning request to the 
timeline and derive the minimum remaining 
availability (including the consideration of the 
whole future and beginning with the planning 
request’s timeline entry). For the critical resources, 
this value will become negative some time. 

4. The resource availability as calculated in the 
preceding step is added to the propagated value of 
the resource at the time when this check shall be 
performed. This is the maximum value the 
telemetry may reach when checking this condition 
and is stored as the threshold condition to the 
timeline extension. 

5. If there exists no planning request of higher priority 
overlapping with the current planning request, keep 
the  modifications on the propagated resource 
profiles (in order to ensure that lower-priority 
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planning requests will preserve sufficient 
resources). Otherwise the resource modifications 
resulting of this planning request must be discarded 
before going on with the next planning request. 

 
 
 
 
 
 
 
 
 
 
Figure 12 illustrates the calculation of a resource condition, 
which needs to be checked by OBoTiS before activating a 
timeline extension: first the propagated value including the 
timeline extension is calculated. The remaining availability 
is added to the propagated value at the decision time. In 
case the telemetry will show that the value is less or equal 
to this threshold, it can safely activate the timeline 
extension, since the corrected propagated values with 
activated extension will remain below the upper bound. 
Note that this rule reflects all future resource modifications 
of timeline extensions of higher priority, so unless 
OBETTE adds a new timeline extension of even higher 
priority, the priority rules are strictly obeyed. 
Furthermore, note that we do not have any problem at the 
beginning of a new timeline horizon, where we do not 
know the actual state of the resources - the absolute value 
of the propagated state at decision time is completely 
irrelevant: adding a value x to the state at decision time 
leads to an availability reduced by x, which means that the 
threshold, which is calculated as propagated value at 
decision time + availability remains constant. So whatever 
state the resource will actually have when the new 
scheduling horizon begins, the thresholds calculated by this 
rule are correctThe past is completely reflected in the 
telemetry check: It does not matter how we have reached 
the observed telemetry values, all that matters is that we 
activate the timeline extension only when there is enough 
margin for the future. 
OBETTE on-ground add-on 
In order to support event-triggered timeline extension 
generation onboard the satellite, the ground planner cannot 
perform the above illustrated calculation itself. Instead it 
must supply remaining availability profiles to the onboard 
planner, which indicate for each point in time, how much 
availability is left at this point in time, taking into account 
the whole future. This remaining availability must be 
calculated on basis of a timeline, which includes all  
ground-prepared timeline extensions of higher priority than 
the one the onboard-generated timeline extensions would 
get. This way, sufficient margins are preserved only for 

those timeline extensions which have higher priority than 
the OBETTE-generated timeline extensions: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to the availability profile, the onboard planner 
must be given the on-ground propagated values profile. 
When generating a new timeline extension derived from an 
onboard event, the onboard planner will derive the 
resource consumption of this timeline extension from the 
event parameters or use a fix, configured value. The 
resource condition for this timeline extension now can be 
calculated as follows: 

1. Decision time  
= 1 sec before the decision time of the first 
overlapping timeline extension of lower priority or 
the new timeline extension’s execution time, 
whatever comes first. This allows the new timeline 
extension to block overlapping timeline extensions. 

2. In case an overlapping timeline extension of higher 
priority with decision time later than this decision 
time exists, the whole timeline extension is to be 
discarded. (Otherwise the high-priority timeline 
extension might be blocked.) 

3. Remaining availability including this extension  
= remaining availability profile at decision time 
 - resource consumption of this timeline extension. 
This represents the remaining availability as it would 
have been propagated on-ground. Note that this value 
may be negative. 

4. Telemetry threshold  
= Propagated value at Decision time  
 + Remaining availability including this extension 

 
 
 
 
 
 
 

The telemetry threshold indicates the maximum 
telemetry value which will be allowed to be observed 
at decision time.  
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Please note that although we have to transfer profiles to the 
satellite, we do not have to perform any profile operations 
other than evaluating the profile at a given time. The 
onboard software therefore remains simple and fast. 
However storing a resource profile may consume some 
memory. In case this turns out to become a bottleneck, the 
on-ground planning system may be adapted to simplify the 
propagated values profile and the remaining availability 
profile. If this is necessary, it has to be ensured that the 
simplified profiles have lower values than the original 
profiles. 
Note that, similar to the OBoTiS case, we do not have a 
problem in case the executed timeline before decision time 
differs from the timeline used for propagation, because the 
calculated threshold only depends on the expected future 
resource consumptions. The past is completely reflected in 
the telemetry check. 

Testing and activation of extensions 
In general it is planned to test the features of each stage of 
extension of the onboard software in simulation mode 
before arming it. During these times it will only log what it 
had measured and what it would have done resp. how it 
would have decided. The log will be checked on ground, 
compared with the other spacecraft telemetry and the result 
will be tested against the ground mission planning system, 
i.e. it will be checked whether this would have reacted the 
same way.  
Afterwards, if proven reliable and ready for use, the 
respective code will be configured for “real” execution 
during dedicated campaign time frames. All in all a similar 
approach as performed for the TAFF (autonomous 
formation flight keeping system of the TanDEM-X 
mission), see [Ardaens et al.]. If then the functionalities are 
thoroughly tested and presented to run smoothly, and when 
the main satellite user groups agree on the profit it will 
have for the whole mission it can be transferred into a 
nominal operational use. 
 
Currently Planned VAMOS Use Cases on BIROS 
In the first increment the onboard mission planning shall 
be able to activate the execution of additional or alternative 
datatakes. Perhaps it might also modify the downlink 
sequence of acquired data by (re-)configuring the sequence 
of memory partitions to be transmitted. Furthermore it 
shall react to triggers coming from the main classificator as 
well as of the experimental image analyzer. If one of them 
classifies an image as useless, e.g. due to cloud coverage, 
VAMOS can be used to delete the according data package, 
and then use the freed memory for a new acquisition which 
it will pick from the ground-calculated timeline extensions 
(see OBoTiS). On the other hand, if they have detected a 
fire event and provide the onboard planner with the next 

visibility of this region, a completely new acquisition will 
be generated and commanded “spacecraft-internally” (see 
OBETTE). This is part of the second increment. 

Outlook to the future  

We are convinced that the future will bring more and more 
the need for (partially) autonomous systems like the one 
described above. Not only for missions that operate far 
away from the earth so that the long distance imposes a 
reaction delay and which therefore have to react 
autonomously to detected events, but also for low-earth-
orbiting spacecraft that don’t have a continuous ground 
station contact, since a tight net of ground stations as well 
as communicating via one or more relay satellites are 
assumed to be too expensive, especially for scientific 
missions. Especially the reaction delay is not negligible 
and solvable by a purely ground-based system, since for 
the delay at least the time spans from detection to 
downlink, processing on-ground and commanding the 
actions back to the spacecraft have to be counted. So real 
NRT-reactions need the autonomy of the spacecraft up to 
some extent, not only in terms of navigation and motion 
(e.g. for formation keeping, as well as for approximation 
operations and docking maneuvers), but also in terms of 
scheduling and tasking its payload instruments and other 
onboard actuators. The same applies for optimized 
resource exploitation, see the use cases described in the 
introduction (optical missions, clouds, not predictable 
memory usage after compression, …). 
Next steps will be an operationalization of such features, 
adapted to the respective mission’s goals. With the 
experience gathered by the experiment VAMOS, for 
upcoming missions also non-experimental planning and 
scheduling solutions that contain onboard components can 
be offered and developed.  
And once the onboard support is required by a mission, a 
big advantage will be that the surrounding onboard 
software might be adapted or provided accordingly. As 
stated in the beginning, VAMOS restricts to the rare given 
available memory and computation power for its onboard 
calculations. However further research is ongoing in order 
to move the more complex profile propagation to the 
spacecraft, e.g. by using a dedicated FPGA. This would 
allow more sophisticated features such as to support the 
strict priority concept with multiple priorities for OBETTE 
or even a continuous optimization of the onboard timeline 
based on the increasing accuracy of a recalculated resource 
profile propagation.  
Furthermore the cooperation possibilities resp. onboard 
communication/commanding possibilities to various 
actuators as well as triggers that inform about events could 
be extended as soon as autonomy is no longer seen as an 



additional risk for the satellite health rather than a big 
benefit. With such features of autonomy, the value return 
of scientific as well as commercial missions can be further 
enhanced in comparison to fully ground-controlled 
systems. 

Conclusion and assessment 

With the paper on hand we wanted to present a new 
approach to distribute mission planning tasks to the 
autonomy of a spacecraft without a loss of complexity of 
the found decisions and finally performed plans for 
acquisitions and other payload operations. It combines the 
NRT-capabilities and accessibility to up-to-date, exact 
current telemetry values with the processing power, 
calculation and propagation capabilities of the on-ground 
mission planning system to a relatively simple, low-risk 
application that matches the pre-conditions given on the 
hosting spacecraft. 
Previous research works, developments and ideas for 
onboard mission planning from outside DLR suggest, for 
instance, an onboard greedy search with a limited number 
of constraints ([Khatib et al.]), probability estimations as 
basis for the onboard decisions ([Gough et al.]), or using 
the local search algorithms, similarly onboard as for the 
on-ground scheduling when (re-)planning lists of 
acquisitions together with a (partly downstream) checking 
of the resource developments for the future (as with 
CASPER as part of ASE on EO-1, see e.g. [Rabideau et al., 
2006 & 2009]) are suggested. 
In comparison to these, for VAMOS a different approach 
was invented to cope with the given practical specifications 
and restrictions: A distributed system, in which as well the 
base timeline with potential timeline extensions is 
commanded via timeline blocks as the embedded onboard 
planner itself newly create such command blocks from 
templates and pre-calculated profiles, and then these 
consistent timeline parts are activated or discarded for 
execution after “only” checking a list of several pre-
calculated criteria, but nevertheless with the goal to 
achieve a similar optimized exploitation of all to be 
considered onboard resources without exceeding any 
limits.  
In general, it must be clear that such a system requires 
(depending on the complexity) even more development 
and pre-launch testing efforts than purely ground-based 
systems. But, apart of relay-satellite-solutions or a really 
dense ground station network that would also require a 
complex mission planning system for rapidly (re-)tasking 
the spacecraft, (and that have to be considered separately in 
terms of costs), real NRT-reactions can only be achieved 
with (at least partly) autonomous onboard automated 

mission planning features, not only for “far-distance” but 
also for LEO missions. 
For VAMOS, we are looking forward to integrate and run 
this software into the BIROS spacecraft’s onboard 
processing units and the according on-ground mission 
planning system. It will verify that with such a solution the 
overall generated output of a mission that combines the 
challenges of Earth observation with those of “Earth 
watching” (as introduced by [Damiani et al.]) can be 
enhanced and a NRT-reaction to detected events with a 
complex computation background is possible. In the future 
then even more sophisticated onboard solutions might 
follow. 
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