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Abstract—Real time curvature classification is crucial for all
train localization problems. A reliable method to detected the
track taken by the train after a switch is necessary and essential
for train collision avoidance systems. At a larger scale, this
should be included in a global surveillance system. In this paper,
we discuss three possible track curvature detection methods
based on two accelerometers and one gyroscope. We define and
analyze corresponding test statistics that determine the actual
track curvature. Given system safety requirements, i.e., maximum
allowable probabilities of false alert and miss-detection, we derive
a minimum detectable curvature difference (MDCD) between
two possible tracks and compare these values with standard
curvatures used in Germany. In this paper, it is shown that these
MDCDs strongly depend on the sensor quality (for which an
analytical form of the Gaussian error overbound of the sensor
error is derived) and on the train dynamics (velocity). This
analysis shows for two detectors very promising results and
suggests a possible optimal combination of their test statistics.

I. I NTRODUCTION

Global Navigation Satellite Systems (GNSS) are inspir-
ing more and more safety of life applications like aviation,
maritime and railway. However, for terrestrial applications in
general and for rail applications especially, the signals provided
by satellites are often blocked and reflected by surroundingob-
stacles like trees, terrain and buildings. So the signals coming
to the receiving GNSS antenna might not be the direct signals
but distorted ones. This has a huge impact on the achievable
position accuracy, system availability, continuity and integrity.
Consequently, pure satellite based navigation/localization sys-
tems may fail to provide the required system performance
particularly for safety-of-life critical railway applications. Fur-
thermore, GNSS is generally delivering an absolute positioning
which is often not what matters in rail navigation. Here,
trains can only move on well-defined smooth tracks and the
localization objective consists of determining on which track
segment and at which level in this segment the train is located
and in which direction it moves. This information is crucialfor

collision avoidance system such as RCAS1. In case the position
of the trains within the track map is reliably and continuously
known, possible train collision situations can be identified and
avoided on time.

There are different approaches to solve this localization
problem: The two main methods are map matching and dead
reckoning system. The former obtains an absolute 3D position
estimating using GNSS and additional sensors for each epoch
and matches this position with the track map. This could
be done by choosing the closest point in the track as the
best estimate. In the second approach, the movement of the
train relatively to a reference point is estimated incorporating
all available sensors. Hence the position within the map is
directly known. This approach can provide a more accurate and
reliable solution since no intermediate solution is computed.
Train localization/navigation using GNSS and IMU has been
investigated by many different authors some of them providing
novel and promising techniques using Bayesian filters [6].

One of the most critical situations for dead reckoning
systems are switches. Here, the train localization system needs
to detect reliably and automatically with low latency which
track was taken by the train. This decision can be done by
determining the curvature of the track. In [1], low-cost MEMS
gyroscopes are used for curvature detection. By applying a
matched filter, the detection is optimized for real-time op-
erations. However, the reliability of the detection cannotbe
determined which is mandatory for integrity assessment.

In this paper, we define and investigate the usage of three
different test statistics to classify the curvature of the track
instantaneously. We also address the performance of this clas-
sification with respect the false alert and miss-detection prob-
abilities. Based on these results, we determine the minimum
velocity which is necessary to reliably identify the curvature.
In our approach, we use three inertial sensor components, i.e.,
an along-track and a cross-track accelerometer and a heading
rate gyroscope. As a matter of course, the classification perfor-

1Railway Collision Avoidance System (RCAS) - a project of theGerman
Aerospace Center (DLR) - investigating, developing and validating a ’safety
overlay’ system which can be deployed on top of any existing safety infras-
tructure in train networks. The core idea of RCAS is to broadcast the position
and intended track of trains as well as additional information like vehicle size
to all other trains in the area using an ad-hoc train-to-train communication
system. This enables train drivers to have an up-to-date accurate knowledge
of the traffic situation in the vicinity, and act in consequence.
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mance depends strongly on the quality of the sensor. Hence,
we discuss the sensor error model, derive the corresponding
stochastic differential equation and the Gaussian overbound of
the stochastic process solution. We then outline and analyze
the three possible curvature computation methods expressed
as ratios of sensor outputs. Later the resulting test statistics
of these three methods are evaluated with respect to standard
German track curvatures. Finally, we conclude this paper with
a summary and a direction for future work.

II. SYSTEM MODEL

A. General System Assumption

In this paragraph we list the major assumptions that we make
except those related to the error model extensively discussed
in the following section.

We neglect the effect of the gravity related errors in the
inertial sensors. That is we assume that the plan of motion
(formed by the along track and cross track vectors) is perpen-
dicular to the gravity vector. Hence, the acceleration due to the
gravity is not measured by the along and cross track sensors.
This assumption might be valid due to the planar construction
requirement of switches in general.

We assume that the accelerometers are perfectly aligned
with the body frame of the train. Hence, no along track and
cross track misalignment are considered.

For the heading rate gyroscope, we further assume a per-
fectly alignment of the motion plan. We further assume a
perfect correction of the turn rate errors due to the Coriolis
force and the earth rotation.

B. Inertial Sensor Error Model

Inertial error models have been widely discussed in the
literature. According to [2], however it is sufficient to usea
simplified version of sensor model. Assuming the misalign-
ment of the different sensors with respect to the reference axes
are known, the measured sensor output can be written as:

m̂(t) = (1+ s f )m(t)+b(t), (1)

wherem̂(t) is the measured sensor output such as angular turn
rate and a 1-D acceleration, respectively. The true value ofthis
quantity is denoted asm(t) and can be used as the input value
in the simulations. It is possible to simulate different type of
scenarios as for example vibrations or constant acceleration,
deceleration [5]. An ideal accelerometer would directly sense
m(t) but in a non ideal case, the measured acceleration or turn
rate is decomposed into a proportional part (proportional to a
scaling factors f ) and a time dependent drift partb(t). The
latter can be modeled by a constant offsetb0 as well as a time
varying b1(t) and a sampling noise componentηm:

b(t) = b0+b1 (t)+ηm. (2)

We assume that the offsetb0 stays constant during each run
and is corrected by an initial calibration of the sensors. Ad-
ditionally, the sampling noise is assumed to be Gaussian dis-
tributed with zero-mean and a varianceσ2

m. The time-varying

component is represented by a 1st-order Gauss-Markov process
which can be expressed mathematically by

ḃ1(t) =−1
τ

b1(t)+ηb, (3)

where τ is the correlation time andηb is the driving noise
which can be assumed to be Gaussian distributed with zero
mean and varianceσ2

b . This is also known as an Ornstein-
Uhlenbeck process with a rate of mean reversion of1

τ and a
volatility σb.

In order to obtain realistic values for the sampling and
driving noise component as well as for the time correlation,
real sensor measurements have to be analyzed with the help
of the Allan variance and auto-correlation function of a long
series of zero-input measurements [2]. Exemplary, we show
the resulting parameters of three different qualities of inertial
sensors in Table 2. We will use these parameters and values
throughout our paper.

C. Stochastic Differential Equation and its Solution

Due to the focus of this paper, we need to investigate not
only the error of the measurement itself but also its propagation
via integration. In the following, we look into the stochastic
differential equation issues to solve our problem.

Let us first consider a one dimensional translational accel-
eration (without attitude change) only. The position of the
rover can be determined using only one accelerometer or the
combination of redundant accelerometers in the direction of
the acceleration. We combine the Equation (1) and (2) and
obtain:

m̂(t) = (1+ s f )m(t)+b0+b1(t)+ηm, (4)

Let the error of the measurement be noted by∆m̂(t) with:

∆m̂(t) = m̂(t)−m(t)
= s f m(t)+b0+b1(t)+ηm. (5)

The time-varying biasb1(t) is the solution of the stochastic
differential Equation (3). If we rewrite this equation intothe
Ito-form and introduce a one-dimensional Brownian motionBt ,
we obtain for the sensor time-varying bias the following [9]:

db1(t) =−1
τ

b1(t)dt +σbdBt,1. (6)

The corresponding erroru(t) introduced by the integration
of the measurement error can be expressed by:

du(t) =
(

s f m(t)+b0+b1(t)
)

dt +σmdBt,2 (7)

These equations can be applied to all our measurements
required for our test statistics, i.e., to the cross track and along
track accelerometer as well as to the heading rate gyroscope.

In order to solve our problem, let us define a state vector
xxx(t) = (b1(t) u(t))T . By applying the previous defined equa-
tions, we can rewrite our problem as follows:

dxxx(t) =

(

db1(t)
du(t)

)

= βββ t(xxx(t))dt +SSS dbbbt , (8)
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with βββ t(xxx(t)) =

((

−1/τ
1

)

b1(t)+

(

0
s f m(t)+b0

))

,

SSS =

(

σb 0
0 σm

)

anddbbbt = (dBt,1 dBt,2)
T .

In general, two different approaches are used to solve these
kind of problems. The first one uses a generator of the Ito-
diffusion process defined by the stochastic differential equation
and derive a partial differential equation, so called Kolmogorov
Forward Equation or Fokker Planck Equation. Its solution isa
transition probability density function of the solution process
(see [4] and [3]).

The second method takes advantage of the fact that the
process solution is Gaussian distributed, if the initial state den-
sities can be assumed to be also Gaussian distributed. Hence,
it is sufficient to investigate the evolution of the corresponding
expectation and variance of the transition density function. In
the section below, we apply the second concept and discuss
the results.

D. Analytical Form of the Transition Density solution of the
Stochastic Differential Equation

We consider a state vector comprising the drift of the sensor
and the integral with respect to time of the sensor error (e.g.,
the velocity error for an accelerometer or the heading errorfor
an angle rate gyro). So we need to solve this problem:

xxx(t) = xxx(0)+
∫ t

0
βββ l (xxx(l))dl +SSS dbbbt ,

where xxx(0) = (b1(0) u(0))T is our initial state vector.
Recall from before that this can be considered as an Ornstein-
Uhlenbeck process in case of a continuous time problem or
as an 1st-order auto-regressive process with equilibrium at 0
in case of a discrete time problem. Thus, we can reformulate
Equation (6) as integrated process:

b1(t) = b1(0)e
− t

τ +σb

∫ t

0
e

l−t
τ dBl,1.

Under the assumption that the initial value of the time-
variant biasb1(0) can be considered as normal distributed
random variable with meanE [b1(0)] = µb1,0 and variance
V [b1(0)] = σ2

b1,0
, the solution of the bias differential equation

results also in a Gaussian distributed quantity, where the
corresponding mean and variances are given by:

E [b1(t)] = µb1,t = µb1,0e−
t
τ

V [b1(t)] = σ2
b1,t =

τ
2

σ2
b

(

1−exp

(

−2t
τ

))

+σ2
b1,0

e−
2t
τ

Similar steps, we can apply to the full stochastic differential
equationxxx(t) = (b1(t) u(t))T and we obtain:

xxx(t) =

(

e−t/τ 0
0 1

)

xxx(0)+hhh(t)+

(

0
σmBt,2

)

,

where hhh(t) =

(

σb
∫ t

0 e
l−t
τ dBl,1

∫ t
0

(

s f m(l)+b0+b1(l)
)

dl

)

. To solve our

problem, we propose to compute the expectation and variance

of the process in a snapshot manner, i.e., for each time step.
So, for the expectation we have to solve:

E [xxx(t)] = E [xxx(0)]+E

[

∫ t

0
βββ l (xxx(l))dl

]

+E [SSS bbbt ]

= E [xxx(0)]+
∫ t

0
E [βββ l (xxx(l))dl] ,

since E [bbbt ] = (0 0)T by definition of a Brownian motion.
The two components of the sum can be rewritten as:

E [xxx(0)] =

(

e−t/τ 0
−τ(e−t/(τ−1)) 1

)(

µb1,0

µu0

)

∫ t

0
E [βββ l (xxx(l))dl] =

(

0
s f
∫ t

0 m(l)dl +b0t

)

The derivation of the corresponding state vector covariance
matrix is quite complex, so we just want to state the result
here in this paper.

V [xxx(t)] =

(

c11(t) c12(t)
c21(t) c22(t)

)

. (9)

Please note that the covariance matrix is symmetric, i.e.,
c12(t) = c21(t). Also we define an auxiliary Gaussian random
variableετ(t) =

∫ t
0

∫ r
0 e

l−r
τ dBl,1dr. So, we get

(

c11(t)
c22(t)
c22(t)

)

=





e−2t/τ 0
τ2(e−t/τ −1)2 1

−τ(e−2t/τ − e−t/τ) 0





(

σ2
b1,0

σu,0

)

+

+







τ/2(1− e−2t/τ) 0
σ2

ετ (t)
t

E

[

ετ (t)
∫ t

0 e
l−t
τ dBl,1

]

0







(

σ2
b

σ2
m

)

.

Recall thatετ (t) is function ofBt,1, we kept the cross products
as non necessarily zero terms. In fact (See Appendix A for
more details), the meanE

[

ετ (t)
∫ t

0 e
l−t
τ dBl,1

]

= 1
2τ2 − τ2

e
t
τ
+

τ2

2e2 t
τ

, and the variance ofετ (t) is given byσ2
ετ (t)

= tτ2− 3
2τ3+

2 τ3

e
t
τ
− τ3

2e2 t
τ

Finally we observe that the covariance matrixV [xxx(t)] is not
diagonal in the general case.

We observe that when the random variables in the model
of the sensor are all Gaussian distributed (including the initial
pointb1(0) andu0, the state vector is also Gaussian distributed.
Therefore the propagation of the mean and the variance is
sufficient if we want to characterize the whole distribution.

Given all these expressions, we can deduce the expectation
and the variance of the state vector as function of timet, time
constantτ and the parameters of the problem.
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E [b1(t)] =
µb10

e
t
τ

E [u(t)] = Ists f +b0t +µb10τ − µb10τ
e

t
τ

+µu0

V [b1(t)] =
1
2

σ2
b τ − σ2

b τ
2e2 t

τ
+

σ2
b10

e2 t
τ

V [u(t)] = σ2
b tτ2− 3

2
σ2

b τ3+2
σ2

b τ3

e
t
τ

− σ2
b τ3

2e2 t
τ
+σ2

b10τ2−

−2
σ2

b10τ2

e
t
τ

+
σ2

b10τ2

e2 t
τ

+σ2
mt +σ2

u,0

By using Equation (5), we deduce the expectation and the
variance of the sensor error:

E [∆m̂t ] = s f m(t)+b0+ e−
t
τ µb10

V [∆m̂t ] =
1
2

σ2
b τ − σ2

b τ
2e2 t

τ
+

σ2
b10

e2 t
τ
+σ2

m

III. SNAPSHOTTRACK CURVATURE CLASSIFICATION

A. Curvature Determination

ψ
eAT

eCT

C r

ω

dψ

dψ

M
ds

+

Figure 1: Display of the 2D curvilinear coordinate system todetermine the
track curvature.

In the following section, the physical assessment of the
track curvature is introduced and three different methods are
outlined. Lets(t) being the curvilinear abscissa representing
the length of the arc represented by the track from a reference
position to a current point. The velocity vector of the trainis
v = ṡeAT and the acceleration vector is:

a=
dv
dt

=
d (ṡeAT )

dt
= s̈eAT + ṡėAT (10)

In this expression and in the rest of this chapter we drop the
time t for simplification. The dot above variables always means

the derivative of the given variable with respect to time. To
expresṡeAT , we use the notations of Figure 1. Duringdt, the
point M moved froms to s+ds and the unit along track vector
has rotated with the angledψ. This drives to the following
relation:

ėAT = ψ̇eCT

Observing that the acceleration vector lies in the osculating
plan defined by(eAT ,eCT ), we can decompose the acceleration
into 2 components: and taking the same notation as for the unit
vectors, we have:

a(t) = aAT eAT +aCT eCT

aAT = s̈
aCT = ṡψ̇

We observe that ˙s = rψ̇, so we have the following expression:

aCT = rψ̇2 (11)

With r being the local radius of the trajectory.
We observe that Equation (11) can be expressed in terms of

ṡ rather thanψ̇ and observing that‖v‖= ṡ, we have:

aCT =
‖v‖2

r
(12)

There is a relation between the speed of the train, the cross
track acceleration and the heading rate for a given trajectory.

We have the following relations:

aCT = rψ̇2 =
‖v‖2

r
(13)

In this equation, we can directly sense the cross track
accelerationaCT , the heading ratėψ and indirectly the velocity
of the trainv (integral of the along track acceleration). This
is an important a-priori information that can be used in a test
statistic to decide which direction the train has taken after
a switch. By convention we will choose to work with the
curvature rather than withr. Let κ = 1/r the relation above
can be written as follows:

aCT =
ψ̇2

κ
= κ ‖v‖2 (14)

In this equation,κ can be obtained in three different ways:

κ1 =
ψ̇2

aCT
(15)

κ2 =
|ψ̇|
‖v‖ (16)

κ3 =
aCT

‖v‖2 (17)

All three methods can also be used in a non-stationary sce-
nario, i.e., while the train is moving. Otherwise the curvature
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determination might be not defined. That is ifaCT = 0, κ1 is
undefined and if‖v(t)‖= 0, κ2 andκ3 are undefined.

B. Test Statistic

In this section, we analyze the resulting test statistic based
on the three curvature determination methods. To compute
κi, i= 1, . . . ,3, we need the heading rate, along-track and cross-
track accelerations. These measurements are distorted by sen-
sor errors which can be modeled as described in Section II-B.
Using the SDE results from Section II-C, we can access the
error distribution of each measurement required to determine
the curvature. However, the distribution of curvatures itself is
not simple to derive since we have to obtain the distribution
of a ration of random variables. The resulting distribution
might not be symmetric and can be even heavy tailed. In
the following, we discuss the expected behavior of the test
statistics.

Naturally, if all measurements would be error-free, all
three curvature computations would deliver the same result
κ1 = κ2 = κ3. But due to the randomness of the measurements
of aCT (t), ψ̇ (t) and v(t), the performance of the obtained
curvatures can only be characterized in terms of distribution.

First methodκ1: The measurements of this methods can
be directly sensed, so no integration of the measurements is
required. However, we can see that if the curvature of the
path is zero, i.e., the track is straight, the numerator willtake
positive random values following aχ2 distribution and the
denominator will take values centered at 0. This induces fat
tails in the distribution ofκ1. Consequently, it might be not
very promising to use this method for the hypothesis test.

Second methodκ2: Here, we observe a ratio between a
normally distributed random variable and a folded normal dis-
tribution (the absolute value of a normally distributed random
variable). In the case of a ratio between two independent,
normally distributed random variables with zero mean, the
distribution of the ratio follows a Cauchy distribution. Inthe
case of non-centered distributions, it has been demonstrated [7]
that the probability density function can be written as follows:

pK∗
2
(κ∗

2) =
α exp

{

1
2

α2

γ − 1
2ξ
}

γ3

1
ψ

×
(

2Φ
α
γ
−1

)

+

+
1

γπψ
exp

{

−1
2

ξ
}

, (18)

where

α =
E [ψ̇]

V [ψ̇]
κ2+

E [v]
V [v]

γ =
1

V [ψ̇]
κ2

2 +
1

V [v]

ξ =
E [ψ̇ ]2

V [ψ̇ ]
+

E [v]2

V [v]

ψ =
√

V [ψ̇]V [v]

and κ∗
2 = ψ̇(t)

v(t) , and Φ(u) =
∫ u
−∞

1√
2π exp

{

−1
2z2
}

dz. This ex-
pression is not representing the test statistic of interestκ2 for

which no closed form could be found.
Third methodκ3: Similar toκ2, to nominator can be seen as

normal distributed random variable. However, the denominator
is not only linear dependent on an folded normal distributed
random variable, but quadratically dependent. Also in thiscase
no close for solution can be found.

In the remaining paper, we assess the distributions ofκi, i =
1, . . . ,3 via Monte-Carlo simulations. As derived before we can
compute the probability distributions ofaCT (t), ψ̇ (t) andv(t)
depending on the quality of the sensor as well as initialization.
Please note that the direct use of heavy tailed distributions
can generate instabilities of the test statistics. In this case, the
mean and variance may not exist especially in the case of high
densities around zero for the test statistics denominators.

One possibility is to exclude the samples ofaCT (t), ‖v(t)‖
and‖v(t)‖2 that are close to zero, or in an interval around zero.
The area to exclude using a pretest should not be too large for
one reason essentially: the exclusion reduces the availability
of the test statistics (for each sample falling in the excluded
area, the corresponding test statistics is set as unavailable).
But the closer the exclusion bounds are to zero, the wider the
distribution of the test statistics and therefore the smaller the
minimum detectable curvature difference (MDCD).

C. Hypothesis Test

(a)

(b)

(c)

κ

κ

κ

T

T

Ha

Ha

Hb

Hb

κa

κa

κb

κb

Pfa

Pmd

pdf

pdf

pdf

Figure 2: Curvature error distribution for different hypotheses.

To classify or identify a certain curvature, we compare
our computed curvature with a threshold. The latter, we have
determined by a standard hypothesis test algorithm. In the
following, this algorithm is described briefly.

First of all, reliable knowledge of curvature determination
error behavior is required. We denoted this curvature error
probability density function aspK(κ). We assume that this
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pdf is centered at the true curvature. Then we can define the
distributions for two different track curvature hypotheses that
we want to test. For example, after a switch a train might
have two possibilities to move on, i.e., track segment one
with curvatureκa or track segment two with curvatureκb.
Figure2 (a) illustrates the resulting curvature pdfs, if either
track segment onepK(κ |Ha) or track segment twopK(κ |Hb)
has been taken. In order to make a decision, we have to
define a thresholdT against which we compare our curvature
measurements. If our measurement is below the obtained
threshold, we decide forHa and if it exceeds this threshold,
we decide forHb. To find this threshold we have to consider
the probability of false alarmPfa. This probability is a system
reliability requirement and accounts for the case, where we
decided forHb (indicated segment two, while hypothesisHa
was correct (the train took the segment one). This is depicted
on Figure 2 (b)). Consequently, the threshold is given by

T = arg

(

Pfa = PK(κ > T |Ha) =
∫ ∞

T
pK(κ |Ha)dκ

)

.

Similar considerations can now be done for hypothesisHb as
well. A probability of missed detection, i.e., we decided for
segment one while the train took segment two, is normally
defined as

Pmd = PK(κ < T |Hb) =
∫ T

−∞
pK(κ |Hb)dκ .

This is displayed in Figure 2 (c).Pmd is also a system reliability
requirement and normally pre-defined by the system. So for a
given Pmd, we can find aκm such that

κm = arg

(

∫ ∞

T
pK(κ |Hm)dκ = Pmd

)

,

where Hm is the hypothesis that the train has taken a track
with curvatureκm. Thus, we can define a minimum detectable
curvature difference MDCD= κm − κa for the given system
requirements of false alert and missed detection. Both prob-
abilities, Pmd and Pfa indicate that a wrong decision is made.
Since we want to protected hypothesisHa andHb equally, we
setPfa = Pmd = PWD, where WD stands for wrong decision.

In Figure (3), we show two histograms observed while using
the test statistics ofκ3. The train moves with a speed of
50 [km/h] and the coasting time is 75 seconds. By coasting
time we understand the time for which the inertial sensors
run free, so the time after initialization. We assume that
during the coasting period, the speed is obtained by inte-
grating the along track acceleration. In blue, we show the
distribution of the test statistic under the hypothesisHa (with
a curvature radius of 10 km) and the red curve corresponds
to the hypothesisHb (with a curvature radius of 1749 m).
So the minimum detectable curvature difference is equivalent
to MDCD = 1/1749− 10−4 = 4.7176× 10−04 [m−1]. The
probability of wrong detection is set toPwd = 10−5 and is
generally a requirement based on the level of hazard for being
on another track than the one expected. This risk is usually
defined as a probability of being in this hazardous situation
during a predefined exposure time.

Figure 3: Test statisticκ3 for two different hypothesis: In blueκ = 10−4 [m−1]
and in redκ = 1/1749 [m−1] which correspond to a minimum detectable
curvature difference of MDCD= 4.7176×10−04 [m−1] with Pwd = 10−5.

IV. SIMULATION AND EVALUATION

A. Simulation Environment

For simulation, we used standard curvatures found in the
German railway. A summary of available curvatures and cor-
responding maximum allowed train velocity can be found in
Table 1. As mentioned before, the error model parameters of
the used inertial sensors are shown in Table 2.

Table 1: Basic Design Parameters of German standard switches [8]

radius curvature max velocity
r in m c in 10−3 1/m vmax in km/h

190 5.26 40
300 3.33 50
500 2.0 60
760 1.32 80
1200 0.83 100
2500 0.4 120

We propose to investigate a curvature detector based on the
three test statistics defined in Equations (15, 16, 17). The path
identification after a switch is crucial for train surveillance and
train collision avoidance systems. If we assume not to know
the itinerary but just the map with the switch locations and the
curvature of the possible paths after the switches, it is possible
to determine the path followed by the train with a confidence
depending on the quality of the sensors.

In the simulations, we use a sensor having the following
characteristics:

We solve the stochastic differential system for the expecta-
tion and the variance for all three different sensor grades.

We draw paths following the process distributions calculated
and we build the histograms for each test statisticκ1, κ2 and
κ3.

The initial along track velocity uncertainty might be given
by GNSS and is assumed to have aσv̂(0)0 = 0.05 [m/s].



7

Table 2: Sensor error model parameter developed in [2] for three different
classes of IMU grades, i.e., tactical, automotive and consumer grade IMUs.
The notation can be read as following the sampling noise is denoted byσw,
whereas the noise of the time variant bias is represented byσb1 and its time

constant byτ.

Sensor σm σb1 τ

G
yr

o Tactical 0.0017 deg/s 0.35 deg/hr 100 s
Auto. 0.05 deg/s 180 deg/hr 300 s

Consumer 0.05 deg/s 360 deg/hr 300 s

A
cc

Tactical 50×10−5 g 50×10−6 g 60 s
Auto. 1×10−3 g 1.2×10−3 g 100 s

Consumer 1×10−3 g 2.4×10−3 g 100 s

When GNSS is not longer available, the velocity is drifting
from its initial value considering a coasting using along track
accelerometer.

B. Assumptions for train localization

At a given initial epoch we assume to know the position
and the direction of displacement of the train (for example at
the departure station). The localization problem consistsof de-
termining the track segment ID, the direction of displacement
and the curvilinear abscissa on the track segment.

A track segment is defined as a path between two switches.
We assume that between two guaranteed positions (e.g.,
obtained by GNSS and verified by a receiver autonomous
integrity monitoring), velocity fixes a coasting with the inertial
unit based on along track, cross track accelerometers and a
heading rate gyro using the characteristics defined in Table2.
The coasting time is not longer than 1 second when at least
5 satellites are visible which is generally the case. But in
some cases (long tunnels or in the general case of bad satellite
visibility or when the satellite signals are blocked or reflected
by a strong multipath environment) the coasting time could
be last much longer (up to several minutes). Nevertheless, as
long as the information used is not integrated in the time
to obtain velocity, position or heading angle, the error in
the information is stationary and can be overbounded by a
Gaussian distribution for a non zero required integrity risk.
This overbound remains constant assuming the error is a
stationary process.

Figure 4: Tracks configuration assumption

In Figure (4) we show the topology we adopt for the switch
scenario. We assume at each switch, only two possible tracks
can be taken.

C. Minimum Detectable Curvature Difference

We have seen in the precedent section that the probability of
wrong decision is an important system reliability requirement.
The question we need to answer is now: What is the minimum
curvature difference for which we can detect an alternative
curvature with a probability of 1−PWD? In order to answer this
question, we first have to determine our test statistic threshold
T = fct(κ0,PWD) which is a function of the curvature of ourHa
hypothesisκ0 and the allowed probability of false alert. Then
we generate the probability density function for a continuously
growing curvatureκm > κ0 until we get:

T
∫

−∞

pK (κi|Hm)dκi = P(κi < T |Hm) , (19)

where Hm is the hypothesis centered atκm and κi, for i =
1, . . . ,3 are the different test statistics defined in Equation (15,
16,17). Finally, the MDCD isκm −κ0.

The MDCD is a function of the velocity of the train.
Intuitively the larger the velocity of the train, the smaller the
dispersion of the test statistic.

We investigate the MDCD for each test statistic as function
of the train velocity at a switch and for different IMU qual-
ities. In the following investigations, we set our curvature of
hypothesisHa to κ0 = 10−4 [m−1].
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Figure 5: Minimum detectable curvature difference with respect toκ0 = 10−4
[m−1] obtained for the three different curvature determination methodsκ1, κ2
andκ3 vs. velocity are shown. For comparison, the standard German curvatures
and their max. velocities are indicated by black lines. This plot is valid for a
Pwd = 10−5 and using consumer grade sensors.

In Figures (5, 6, 7) we have plotted the corresponding
MDCD vs. the velocity for each test statistic and for each
IMU quality. The black horizontal lines represent the standard
curvatures of tracks observed in Germany. Each standard line
starts atv= 0 [km/h] and stop at the maximal allowed velocity
for the corresponding curvature. The larger the curvature,the
smaller the maximal allowable speed. The initial and reference
curvature to be almost zero (a curvature of exactly 0 lends to
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Figure 6: Minimum detectable curvature difference with respect toκ0 = 10−4
[m−1] obtained with the three different curvature determinationmethodsκ1, κ2
andκ3 vs. velocity are shown. For comparison, the standard German curvatures
and their max. velocities are indicated by black lines. This plot is valid for a
Pwd = 10−5 and using automotive grade sensors.
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Figure 7: Minimum detectable curvature difference with respect toκ0 = 10−4
[m−1] obtained with the three different curvature determinationmethodsκ1, κ2
andκ3 vs. velocity are shown. For comparison, the standard German curvatures
and their max. velocities are indicated by black lines. This plot is valid for a
Pwd = 10−5 and using tactical grade sensors.

a singularity). We see that the lower the velocity, the higher
the MDCD.

Although κ1 seems to provide acceptable performance in
the case of tactical grade IMU, its low availability for a large
range of velocities see Figure (8) makes it unusable for the
simulated scenario. Onlyκ2 and κ3 are providing acceptable
results (their availabilities were always 100% for any typeof
IMU).

For tactical grade IMU, we see a very effectiveκ2 based test
statistic. In fact the combination of high accurate velocity and
high performance heading gyro provides a sharp distribution
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Figure 8: Availability degradation plot ofκ1 vs. velocity. for different IMU
grades.

and therefore a clear signature when the train change its track.
For this tactical grade IMU,κ2 andκ3 are not crossing in the
velocity range[0−200] [km/h].

For both the consumer and the automotive grade IMUs, the
MDCD curves cross at a speed of approximately 50 [km/h].
This suggests a velocity based test selection: below 50 [km/h]
we useκ2 to make our decision and above this limit, we useκ3
which performs better. A more efficient strategy could consist
of defining a weighted combination of both test statistics
enabling even lower MDCD. However, this is beyond the scope
of this paper.

The results obtained suggest a weighted sum ofκ2 and κ3
in order to improve the detectability. Some intrinsic problems
may appear because of the dependency of all 3 test statistics.
Correlations need to be considered while seeking an optimal
combination of curvature types.

V. CONCLUSION

In this paper we explored three different ways to determine
track curvatures. The tests are based on ratios of random
variables that can be directly sensed like the heading rate gyro
and the cross track acceleration and indirectly sensed likethe
speed of the train which can be obtained by an integration of
the along track acceleration.

The expectation and the variance of the Gaussian over-
bound of the sensor errors are analytically expressed and the
test statistics after pretreatment of the random denominators
(exclusion of an interval around zero to prevent heavy tailed
distributions) are investigated using Monte Carlo simulations.
The minimum detectable curvatures difference is determined
for three different classes of IMUs, namely consumer, auto-
motive and tactical grade. The resulting MDCD curves have
been compared to standard curvatures and their performance
have been assessed.

It is shown thatκ1 in addition to being unavailable a large
part of the time (exclusion of the high density around zero of
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the cross track acceleration) provides when a bad performance.
In comparison,κ2 and κ3 show best results with a maximum
availability when the train is moving. A performance crossover
can be observed for the consumer and automotive grade IMUs.
That is κ3 can outperformκ2 when the velocity of the train
is larger than 50 km/h. However,κ3 depends on the cross
track acceleration which is difficult to sense in a more realistic
dynamic scenarios (for a non-perfect horizontal plan of motion,
for which the gravity vector may introduce a component in
cross track direction). In contrast,κ2 shows a real improvement
as it can be reliably used for a large range of velocities.
Furthermore, it has a dependency on the heading rate rather
than on the accelerations which makes it more robust to
realistic scenarios (non-perfect horizontal displacements).

Future studies will consider a generalization of this concept
for a three dimensional tracks (with gravity vector not always
perpendicular to the motion plan), misalignment of sensors,
transition curvatures. The performance crossover observed for
κ2 and κ3 for low cost IMUs suggests to use a combination
of both test statistics which is investigated in a future paper.
Another investigation might consider the minimum probability
of wrong detection for a given type of IMU and as function
of the speed at the switch. This approach can give the level of
safety achieved by different types of IMU.

APPENDIX A
EXPECTATION AND VARIANCE OF BROWNIAN MOTIONS

(APPEARING IN THE ANALYTICAL FORM OF THE
EXPECTATION AND THE VARIANCE OF THE ALONG TRACK

VELOCITY ERROR)

A. Expectation of the Brownian Motion

Consider the following Brownian Motion:
xxx(t) = Bt

∫ t
0 Bsds, so we can express its expected value as

E [xxx(t)] = E

[

Bt

∫ t

0
Bsds

]

(20)

We define∆t = t/n andtk = k∆t. The Riemann sum approx-
imation of xxx(t)is:

Xtn = Btn

n−1

∑
k=0

Btk ∆t (21)

E [Xtn ] = E

[

Btn

n−1

∑
k=0

Btk ∆t

]

(22)

E [Xtn ] = ∆t
n−1

∑
k=0

E
[

Btn Btk

]

(23)

E [Xtn ] = ∆t
n−1

∑
k=0

(tn ∧ tk) (24)

wheretn ∧ tk = min(tn, tk)

E [Xtn ] = ∆t
n−1

∑
k=0

tk (25)

E [Xtn ] = ∆t2
n−1

∑
k=0

k (26)

E [Xtn ] = ∆t2 n(n−1)
2

(27)

E [Xtn ] =
t2

n2

n(n−1)
2

(28)

By continuity we haveE [Xtn ]→ E [xxx(t)] whenn → ∞ and

E [xxx(t)] =
t2

2
(29)

B. Expectation of xxx(t) = ηt (τ)
∫ t

0 e
l−t
τ dBb1u

With ηt (τ) =
∫ t

0 Brdr − 1
τ
∫ t

0

∫ r
0 e

l−r
τ Budldr and

∫ t
0 e

l−t
τ dBb1u = Bb1t − 1

τ
∫ t

0 e
l−t
τ Bb1udl.

xxx(t) =
∫ t

0
BtBrdr− 1

τ

∫ t

0

∫ r

0
e

l−r
τ BtBudldr−

− 1
τ

∫ t

0
e

r−t
τ Brdr

∫ t

0
Brdr+

+
1
τ2

∫ t

0
e

r−t
τ Brdr

∫ t

0

∫ r

0
e

l−r
τ Budldr

E [xxx(t)] =
∫ t

0
rdr− 1

τ

∫ t

0

∫ r

0
ue

l−r
τ dldr−

− 1
τ

∫ t

0

∫ t

0
e

r′−t
τ
(

r′∧ r
)

drdr′+

+
1
τ2

∫ t

0

∫ t

0

∫ r

0
e

r′−t+l−r
τ

(

r′∧u
)

dldrdr′

Finally we have:

E [xxx(t)] =
1
2

τ2− τ2

e
t
τ
+

τ2

2e2 t
τ

C. Variance of ηt (τ)
We recall thatηt (τ) =

∫ t
0 Brdr− 1

τ
∫ t

0

∫ r
0 e

l−r
τ Budldr

The expectation ofγt (τ) is equal to zero. Therefore the
variance is:

V [ηt (τ)] = E

[

ηt (τ)2
]

V [ηt (τ)] =
t3

3
+E

[

−2
τ

∫ t

0
Brdr

∫ t

0

∫ r

0
e

l−r
τ Budldr

]

+

+E

[

1
τ2

∫ t

0

∫ r

0
e

l−r
τ Budldr

∫ t

0

∫ r

0
e

l−r
τ Budldr

]

V [ηt (τ)] =
t3

3
− 2

τ

∫ t

0

∫ t

0

∫ r

0
e

l−r
τ
(

r′∧u
)

dldrdr′

+
1
τ2

∫ t

0

∫ r′

0

∫ t

0

∫ r

0
e

u′−r′+l−r
τ

(

u′∧u
)

dldrdl′dr′
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V [ηt (τ)] = tτ2− 3
2

τ3+2
τ3

e
t
τ
− τ3

2e2 t
τ

ACKNOWLEGMENT

The authors would like to thank the DLR’s Traffic Man-
agement Directorate and the Institute of Communications and
Navigation for their support.

REFERENCES

[1] Antoni Broquetas, Adolf Comerón, Antoni Gelonch, Josep M. Fuertes,
J. Antonio Castro, Damià Felip, Miguel A. López, and José A. Pulido.
Track Detection in Railway Sidings Based on MEMS Gyroscope Sensors.
Sensors, 12(12):16228–16249, 2012.

[2] Demoz Gebre-Egziabher.Design and Performance Analysis of a Low-
Cost Aided Dead Reckoning Navigator. PhD thesis, Stanford University,
2004.

[3] Anja Grosch and Boubeker Belabbas. Parameter Study of Loosely
Coupled INS/GNSS Integrity Performance. InProceedings of IEEE/ION
PLANS, Myrtle Beach, SC, USA, 24-26 Apr 2012 2012.

[4] Anja Grosch, Boubeker Belabbas, and Michael Meurer. Redundant
Inertial-Aided GBAS for Civil Aviation. In European Space Research
and Technology Centre (ESTEC), editors,Navitec 2010, Noordwijk, The
Netherlands, 08.-10. Dez. 2010 2010.

[5] Oliver Heirich, Andreas Lehner, Patrick Robertson, andThomas Strang.
Measurement and Analysis of Train Motion and Railway Track Char-
acteristics with Inertial Sensors. InIntelligent Transportation Systems
Conference (ITSC), Washington, USA, 2011.

[6] Oliver Heirich, Patrick Robertson, Adrian Cardalda Garcia, and Thomas
Strang. Bayesian Train Localization Method Extended By 3D Geometric
Railway Track Observations From Inertial Sensors. In15th International
Conference on Information Fusion, Singapore, 9.-12. Jul. 2012 2012.
International Society of Information Fusion (ISIF).

[7] D. V. Hinkley. On the Ratio of Two Correlated Normal Random
Variables.Biometrika, Vol. 56, No. 3:635–639, 1969.

[8] H. Jochim and F. Lademann.Planung von Bahnanlagen. Carl Hanser
Verlag München, Germany, 2009.

[9] Bernt Oksendal.Stochastic Differential Equations Sixth Edition. Number
ISBN 978-3-540-04758-2. Springer, 6 edition, 2007.

BIOGRAPHIES

Boubeker Belabbas is the leader of the Integrity group of
the Institute of Communications and Navigation at the German
Aerospace Center (DLR) in Oberpfaffenhofen near Munich.
He obtained an MSc. degree in Mechanical Engineering
from the Ecole Nationale Supérieure de l’Electricité et de
Mecanique in Nancy (France) and a specialized Master in
Aerospace Mechanics from Ecole Nationale Supérieure de
lAéronautique et de l’Espace in Toulouse (France).

In March 2007, Anja Grosch received the German diploma
in Computer Engineering from the Ilmenau University of
Technology, Germany. After her graduation, she continued
working for the communications department in the area
of channel coding, OFDM systems and relay networks.
Since March 2008, she has been a research associate at
the DLR (German Aerospace Center) in the Institute of
Communications and Navigation. She joined the integrity
group and since then her main focus has been multi-sensor

fusion, especially GNSS and INS integration. Furthermore she
is developing integrity concepts of these integrated systems
optimized for different safety-of-life applications suchas civil
aviation and railway.

Oliver Heirich graduates in electrical engineering (Dipl.-
Ing.) at University of Ulm (Germany) in 2008 and works for
the cooperative systems group at DLR. His current research
activity involves train localization and railway track mapping
based on probabilistic filters with multiple, train-side mounted
sensors.

Andreas Lehner was born in Gmunden, Austria. He received
the Dipl. Ing. degree in Mechatronics from the University
of Linz in 2001 and a Ph.D. in Electrical Engineering
from the University Erlangen-Nuremberg in 2007. He is a
senior research scientist at the Institute for Communications
and Navigation at the German Aerospace Center DLR.
His research and project work focuses on safety systems in
transportation, the design of vehicle-to-vehicle communication
systems, media access control in ad-hoc networks, and on the
characterization and analysis of multipath and interference
effects in satellite navigation and communication systems.

Thomas Strang is working as a senior researcher in the
Institute of Communications and Navigation at the DLR
in Oberpfaffenhofen. He joined DLR in 2000 where he
is responsible for the Institute’s program in transportation
research since 2004, which includes new services for
Intelligent Transport Systems and adhoc vehicle-to-vehicle
communications. Since 2004 he has also been a professor
for computer science at the University of Innsbruck. In 2012
he was co-founder of a DLR spin-off company in the ITS
domain and since then acting as CEO.


	Introduction
	System Model
	General System Assumption
	Inertial Sensor Error Model
	Stochastic Differential Equation and its Solution
	Analytical Form of the Transition Density solution of the Stochastic Differential Equation

	Snapshot Track Curvature Classification
	Curvature Determination
	Test Statistic
	Hypothesis Test

	Simulation and Evaluation
	Simulation Environment
	Assumptions for train localization
	Minimum Detectable Curvature Difference

	Conclusion
	Appendix A: Expectation and variance of Brownian motions (appearing in the analytical form of the expectation and the variance of the along track velocity error) 
	Expectation of the Brownian Motion
	Expectation of 
	Variance of 

	References

