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Abstract—Real time curvature classification is crucial for all  collision avoidance system such as REAB case the position
train localization problems. A reliable method to detected the  of the trains within the track map is reliably and continugus
track taken by the train after a switch is necessary and essential  known, possible train collision situations can be idendifznd
for train collision avoidance systems. At a larger scale, this 5yoided on time.
should be included in a global surveillance system. In this paper, There are different approaches to solve this localization

we discuss three possible track curvature detection methods blem: The t - thod tchi d dead
based on two accelerometers and one gyroscope. We define and P'OP/€M: 1h€ tWo main Methods aré map malching and aea

analyze corresponding test statistics that determine the actual €ckoning system. The former obtains an absolute 3D pasitio
track curvature. Given system safety requirements, i.e., mamum  €stimating using GNSS and additional sensors for each epoct

allowable probabilities of false alert and miss-detection, we derive and matches this position with the track map. This could
a minimum detectable curvature difference (MDCD) between be done by choosing the closest point in the track as the
two possible tracks and compare these values with standard best estimate. In the second approach, the movement of the
curvatures used in Germany. In this paper, it is_shown tha_t these train relatively to a reference point is estimated incoapiog
MDCDs strongly depend on the sensor quality (for which an 5| available sensors. Hence the position within the map is
analytical form of the Gaussian error overbound of the sensor  giractly known. This approach can provide a more accurate an
error is derived) and on the train dynamics (velocity). This — rojiapie solution since no intermediate solution is coreput
analysis shows for twoidetectors.very promising results' apd Train | lization/ iqati ina GNSS and IMU has b
suggests a possible optimal combination of their test statistics. . rain localization/navigation using an as been
investigated by many different authors some of them progdi
novel and promising techniques using Bayesian filters [6].
One of the most critical situations for dead reckoning
systems are switches. Here, the train localization systsds
to detect reliably and automatically with low latency which
track was taken by the train. This decision can be done by
I, INTRODUCTION determining the curvature of the track. In [1]_, low-cost MEM
gyroscopes are used for curvature detection. By applying a
matched filter, the detection is optimized for real-time op-
erations. However, the reliability of the detection canbet
Global Navigation Satellite Systems (GNSS) are inspir-determined which is mandatory for integrity assessment.
ing more and more safety of life applications like aviation, In this paper, we define and investigate the usage of three
maritime and railway. However, for terrestrial applicasoin  different test statistics to classify the curvature of thack
general and for rail applications especially, the signatwiged  instantaneously. We also address the performance of thés cl
by satellites are often blocked and reflected by surroundirg  sification with respect the false alert and miss-detectiabp
stacles like trees, terrain and buildings. So the signatsin®  abilities. Based on these results, we determine the minimum
to the receiving GNSS antenna might not be the direct signalgelocity which is necessary to reliably identify the curwat
but distorted ones. This has a huge impact on the achievabla our approach, we use three inertial sensor componeaets, i.
position accuracy, system availability, continuity antegrity.  an along-track and a cross-track accelerometer and a fieadin
Consequently, pure satellite based navigation/locatimatys-  rate gyroscope. As a matter of course, the classificaticioper
tems may fail to provide the required system performance
particularly for safety-of-life critical railway applitins. Fur- 1Railway Collision Avoidance System (RCAS) - a project of Berman
thermore, GNSS is generally delivering an absolute pesitlp  Aerospace Center (DLR) - investigating, developing anddesing a 'safety
which is often not what matters in rail navigation. Here, overlay’ system which can be deployed on top of any existaigty infras-
rains can only move on welldefined smooth tracks and thdcre ¥ 1eh Tever, e core cea SLECASL o o postin
localization Ob]eCtIV.e ConSIS.tS Of. determining on Whl.cad{ to all other trains in the area using an ad-hoc train-tat@mmunication
segment and at which level in this segment the train is lacatesystem. This enables train drivers to have an up-to-dateratecknowledge
and in which direction it moves. This information is crudiat of the traffic situation in the vicinity, and act in conseqoen
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mance depends strongly on the quality of the sensor. Hencepmponent is represented by a 1st-order Gauss-Markovgsoce
we discuss the sensor error model, derive the correspondinghich can be expressed mathematically by
stochastic differential equation and the Gaussian overtai ) 1
the stochastic process solution. We then outline and amalyz bi(t) = —=ba(t) + np, (3)
the three possible curvature computation methods exptesse T
as ratios of sensor outputs. Later the resulting test statis Where 1 is the correlation time andy, is the driving noise
of these three methods are evaluated with respect to sthindawhich can be assumed to be Gaussian distributed with zerc
German track curvatures. Finally, we conclude this papém wi mean and variance?. This is also known as an Ornstein-
a summary and a direction for future work. Uhlenbeck process with a rate of mean reversion} and a
volatility op,.

In order to obtain realistic values for the sampling and
driving noise component as well as for the time correlation,
A. General System Assumption real sensor measurements have to be analyzed with the hell

In this paragraph we list the major assumptions that we mak@f the Allan variance and auto-correlation function of agon

except those related to the error model extensively digcliss S€ries of zero-input measuremerits [2]. Exemplary, we show
in the following section. the resulting parameters of three different qualities eftial

We neglect the effect of the gravity related errors in theSENSOrs in TablE]2. We will use these parameters and value:

inertial sensors. That is we assume that the plan of motioff'roughout our paper.

(formed by the along track and cross track vectors) is perpen

dicular to the gravity vector. Hence, the acceleration dutaé A . : . .

gravity is not ngneas)l/Jred by the along and cross track sensorg.' Stochastic Differential Equation and its Solution

This assumption might be valid due to the planar constraoctio Due to the focus of this paper, we need to investigate not

requirement of switches in general. only the error of the measurement itself but also its propaga
We assume that the accelerometers are perfectly aligneda integration. In the following, we look into the stochast

with the body frame of the train. Hence, no along track anddifferential equation issues to solve our problem.

cross track misalignment are considered. Let us first consider a one dimensional translational accel-
For the heading rate gyroscope, we further assume a peeration (without attitude change) only. The position of the

fectly alignment of the motion plan. We further assume arover can be determined using only one accelerometer or the

perfect correction of the turn rate errors due to the Caioli combination of redundant accelerometers in the directibn o

force and the earth rotation. the acceleration. We combine the Equati@h (1) ddd (2) and

obtain:

Il. SYSTEM MODEL

M(t) = (1+s¢)m(t) +bo + by (t) + Nm, (4)

Let the error of the measurement be notedAmi(t) with:

B. Inertial Sensor Error Model

Inertial error models have been widely discussed in the

literature. According tol]2], however it is sufficient to uae Af(t) = m(t) —m(t)

simplified version of sensor model. Assuming the misalign- _

ment of the different sensors with respect to the refereres a Stm(t) +bo+ b (t) + . )

are known, the measured sensor output can be written as:  The time-varying bia$; (t) is the solution of the stochastic
oy differential Equation[(3). If we rewrite this equation intioe
m(t) = (1+sp)m(t) +b(t), 1) Ito-form and introduce a one-dimensional Brownian motipn

whereni(t) is the measured sensor output such as angular tuwe obtain for the sensor time-varying bias the following: [9]

rate and a 1-D acceleration, respectively. The true valubisf 1

quantity is denoted asi(t) and can be used as the input value dby (t) = — by (t)dt + opdBr.1. (6)

in the simulations. It is possible to simulate different eypf . . . _

scenarios as for example vibrations or constant accederati  The corresponding errar(t) introduced by the integration

deceleration[[5]. An ideal accelerometer would directipsse  of the measurement error can be expressed by:

m(t) but in a non ideal case, the measured acceleration or turn _

rate is decomposed into a proportional part (proportiooa t du(t) = (Sfm(t) +b°+b1(t)) dt + omdB 2 (7)

scaling factorst) and a time dependent drift palo(t). The These equations can be applied to all our measurements

latter can be modeled by a constant offisgts well as a time  required for our test statistics, i.e., to the cross track @iong

varying by (t) and a sampling noise componep: track accelerometer as well as to the heading rate gyroscope
b(t) = bo+ by (t) + Nm. ) In order to solve our problem, let us define a state vector

x(t) = (by(t) u(t))". By applying the previous defined equa-
We assume that the offsbg stays constant during each run tions, we can rewrite our problem as follows:
and is corrected by an initial calibration of the sensors: Ad
ditionally, the sampling noise is assumed to be Gaussian dis dx(t) = (dbl(t)> = B;(x(t))dt + S dby, 8
tributed with zero-mean and a variangg. The time-varying du(t)



with B.(x(t)) = /T b1 (t ' of the process in a snapshot manner, i.e., for each time step
B.(x(1)) (< 1 ) 1(t)+ <Sfm(t)+bo>) So, for the expectation we have to solve:

s— (% O>anddbt(dBt71 dB2)".

= 't
0 on) ¥ S0 =5 XO)+6 | [ Bix)al] +5[5b]
In general, two different approaches are used to solve these ! 0
kind of problems. The first one uses a generator of the Ito- .
diffusion process defined by the stochastic differentiaiatipn =& [x(0)] +/0 & 1B (x(1)di]

and derive a partial differential equation, so called Kojyoimv ) T L . .
Forward Equation or Fokker Planck Equation. Its solution is Since ¢'[b] = (0 0)" by definition of a Brownian motion.
transition probability density function of the solutionogess ~ The two components of the sum can be rewritten as:

(see [4] andl[[B]). e t/T 0\ /o
The second method takes advantage of the fact that the & [X(0)] = ( o t/(1-1 1) ( 1*'0)

process solution is Gaussian distributed, if the initiatestden- . -1 ) Huo

sities can be assumed to be also Gaussian distributed. Hence / &1, (x(1))dl] = . 0

it is sufficient to investigate the evolution of the corresgimg 0 ! st Jom(l)dl + bot

expectation and variance of the transition density fumctia

the section below, we apply the second concept and discuThe derivation of the corresponding state vector covadanc

TRatrix is guite complex, so we just want to state the result

the results. here in this paper.
D. Analytical Form of the Transition Density solution of the ¥ X(t)] = (Cll(t) °12(t)) . 9)
Sochastic Differential Equation Ca1(t)  Caa(t)

We consider a state vector comprising the drift of the sensor
and the integral with respect to time of the sensor error.,(e.g . o o
the velocity error for an accelerometer or the heading dmor Please note that the covariance matrix is symmetric, i.e.,
an angle rate gyro). So we need to solve this problem: C12(t) = c21(t). Also we define an auxiliary Gaussian random

t variableg; (t) = f(t, for e'%rdBler. So, we get
X(t) = X(O)+ [ By (x(1))dl +S db,

c11(t) , e &/t , 0 o2
— —t/T b1,0
where x(0) = (b1(0)  u(0))" is our initial state vector. <C22(:)> . (?Z//r 71,)t/r 1 (Uud) *
Recall from before that this can be considered as an Orstein ~ \°22(! —T(e T -e’T) 0 7
Uhlenbeck process in case of a continuous time problem or T/2(1—e 2/T) 0
as an 1st-order auto-regressive process with equilibriu® a n a2 t <0§>
in case of a discrete time problem. Thus, we can reformulate { o5 )’

t 1=t
Equation [6) as integrated process: & [Sr (t) oeT dBI,l} 0

_t Uit Recall thate; (t) is function ofB; 1, we kept the cross products
by () = by (O)e™ +ob/0 e dBy. as non necessarily zero terms. In fact (See Appehdix A for
. . . ; t -t 2
Under the assumption that the initial value of the time-more details), the mea#f [er (t) oe dBl.l} =31~ ot

variant biasb;(0) can be considered as normal distributed 12 4.4 the variance o, () is qiven bvg? .. —t72— 373
random variable with meaw [b1(0)] = py,, and variance 2&f ' vanl v (1) is given by ) =tT°—37°+
e T

¥ [b1(0)] = agw, the solution of the bias differential equation Zgrg o2t
results also in a Gaussian distributed quantity, where the

corresponding mean and variances are given by: . . ] )
Finally we observe that the covariance matfiXx(t)] is not

& [br(t)] = tpyt = ubl’oe*% diagonal in the general case.

2t
Y bu(0] = o = oE (1-e(- 3 ) o, o F
' 2 T 1,0 . .
We observe that when the random variables in the model
Similar steps, we can apEI)_Iy to the full stochastic diffei@nt of the sensor are all Gaussian distributed (including tliteain

equationx(t) = (by(t) u(t))’ and we obtain: pointb;(0) anduO, the state vector is also Gaussian distributed.
y Therefore the propagation of the mean and the variance is
/1 " : ) e
X(t) = (e 0 (1)> x(0) +h(t) + (a (I)Bt > : sufficient if we want to characterize the whole distribution
mbt, 2
-t

_ beé et dB Given all these expressions, we can deduce the expectatiol

where h(t) <f5 (stm(l) +bg+by(1)) dI To solve our and the variance of the state vector as function of tiptene

problem, we propose to compute the expectation and variananstantt and the parameters of the problem.



the derivative of the given variable with respect to time. To
Ub10 expressear, we use the notations of Figué 1. Duridg, the
&ba(t)] = point M moved froms to s+ ds and the unit along track vector
has rotated with the angldy. This drives to the following

T
et

Hp10T ,
Eu(t)] = lgSt + bot + Hp1oT — ol + Huo relation:
T
1 fora S et = Yect

Vo) = 50T~ B+ 0 | | . |

2e°t et Observing that the acceleration vector lies in the osaugati
¥ [u(t)] = o2 — §02r3+20‘§r3 B ogt3 g plan defined byear,ect), we can decompose the acceleration
b 2°b er 262+ b10 into 2 components: and taking the same notation as for the uni

02 12 g2 .12 vectors, we have:
—2-P10- 4 PO 4 G2t + 0g,

er et a(t) = aarear +acrect
By using Equation[{5), we deduce the expectation and the
variance of the sensor error:

&AM = sm(t) + by +e 7 Bar =S
[ n’t]—slfm()‘*‘ 2+e I-21b10 acT = S
. OiT G L : .
VA = §0§T T3 b T+ bllo + 03 We observe thas=r(, so we have the following expression:
T T
act = r? (11)

I1l.  SNAPSHOTTRACK CURVATURE CLASSIFICATION
A. Curvature Determination With r being the local radius of the trajectory.
We observe that Equatioh (11) can be expressed in terms of
$ rather thanyy and observing thafv|| = §, we have:

2
v
actT = M rH 12)

There is a relation between the speed of the train, the cross
track acceleration and the heading rate for a given trajgcto
We have the following relations:

12 HVH2

\ act =1y ="—" (13)
W e In this equation, we can directly sense the cross track
; Ear acceleratioract, the heading ratgy and indirectly the velocity
9 Wy of the trainv (integral of the along track acceleration). This
B is an important a-priori information that can be used in & tes
statistic to decide which direction the train has takenrafte
a switch. By convention we will choose to work with the
curvature rather than with. Let k = 1/r the relation above
+ can be written as follows:

@2 2
Figure 1: Display of the 2D curvilinear coordinate systend&iermine the acrt = K =K HV” (14)
track curvature. . . . . .
In this equationk can be obtained in three different ways:

In the following section, the physical assessment of the

track curvature is introduced and three different methads a Ky = ‘LZ (15)
outlined. Lets(t) being the curvilinear abscissa representing act
the length of the arc represented by the track from a referenc ,
position to a current point. The velocity vector of the trén Ky = M (16)
v = sear and the acceleration vector is: [V
Cdv d(Sear) . . ke — €T 17
BTG T T a oAt (10) e )

In this expression and in the rest of this chapter we drop the All three methods can also be used in a non-stationary sce-
timet for simplification. The dot above variables always meansario, i.e., while the train is moving. Otherwise the cuwat



determination might be not defined. That isaft =0, k1 is  which no closed form could be found.

undefined and if|v(t)|| = 0, k2 and ks are undefined. Third methodks: Similar to k2, to nominator can be seen as
o normal distributed random variable. However, the denotoma
B. Test Statistic is not only linear dependent on an folded normal distributed

In this section, we analyze the resulting test statistietas random variable, but quadratically dependent. Also in ¢aise
on the three curvature determination methods. To computB0 close for solution can be found.
ki,i=1,...,3, we need the heading rate, along-track and cross- In the remaining paper, we assess the distributiong o=
track accelerations. These measurements are distorteenby s 1, ..., 3 via Monte-Carlo simulations. As derived before we can
sor errors which can be modeled as described in Secfioh I1-B:ompute the probability distributions e (t), ¢ (t) andv (t)
Using the SDE results from Sectign 1I-C, we can access théepending on the quality of the sensor as well as initidtirat
error distribution of each measurement required to deteemi Please note that the direct use of heavy tailed distribstion
the curvature. However, the distribution of curvatureslitss ~ can generate instabilities of the test statistics. In thsec the
not simple to derive since we have to obtain the distributionmean and variance may not exist especially in the case of high
of a ration of random variables. The resulting distributiondensities around zero for the test statistics denominators
might not be symmetric and can be even heavy tailed. In One possibility is to exclude the samplesagfr (t), [|v(t)||
the following, we discuss the expected behavior of the tesand||v (t)||® that are close to zero, or in an interval around zero.
statistics. The area to exclude using a pretest should not be too large for
Naturally, if all measurements would be error-free, allone reason essentially: the exclusion reduces the au#itabi
three curvature computations would deliver the same resubsf the test statistics (for each sample falling in the exetiid
K1 = K2 = K3. But due to the randomness of the measurementarea, the corresponding test statistics is set as unalailab
of acr (t), ¢(t) and v(t), the performance of the obtained But the closer the exclusion bounds are to zero, the wider the
curvatures can only be characterized in terms of distidiouti  distribution of the test statistics and therefore the senélhe
First methodk1: The measurements of this methods canminimum detectable curvature difference (MDCD).
be directly sensed, so no integration of the measurements is
required. However, we can see that if the curvature of the _
path is zero, i.e., the track is straight, the numerator tae ~ C- Hypothesis Test
positive random values following g2 distribution and the
denominator will take values centered at 0. This induces fat A pdf H Ho
tails in the distribution ofk;. Consequently, it might be not a
very promising to use this method for the hypothesis test.
Second methodk,: Here, we observe a ratio between a (a)
normally distributed random variable and a folded normat di
tribution (the absolute value of a normally distributeddam
variable). In the case of a ratio between two independent,
normally distributed random variables with zero mean, the A
distribution of the ratio follows a Cauchy distribution. the
case of non-centered distributions, it has been demoedtfat
that the probability density function can be written asdois:  (b)

=Y

xY

102 1
aexpy 55 —35¢&
= {zy 2 }1 <2¢a_1>+

s (K. — X
pKz( 2 y3 w ‘ !
1 1 b
+——expy —=¢& } , 18 Pnd
ymy p{ 2 (18) (c)
where
s, €M ) >
a VA 2+ v Kp K
o 1 2 1 Figure 2: Curvature error distribution for different hypeses.
y —K5 + ——
V(Y] V|V ) _ _ .
éa[d]]z £[v]2 To classify or identify a certain curvature, we compare
E=—"— our computed curvature with a threshold. The latter, we have

YT determined by a standard hypothesis test algorithm. In the
Y=Yy following, this algorithm is described briefly.
(o) - L _ First of all, reliable knowledge of curvature determinatio
and k3 = gy, and ® (u) = ffmﬁexp{—ézz}dz_ This ex-  error behavior is required. We denoted this curvature error
pression is not representing the test statistic of intexggor ~ probability density function agpx (k). We assume that this



pdf is centered at the true curvature. Then we can define th
distributions for two different track curvature hypothedhat 9000
we want to test. For example, after a switch a train might
have two possibilities to move on, i.e., track segment one
with curvaturek, or track segment two with curvature,. 7000
Figuré2 (a) illustrates the resulting curvature pdfs, ihei
track segment on@k (k|Ha) or track segment twa@x (K|Hp)

has been taken. In order to make a decision, we have ti
define a threshold against which we compare our curvature
measurements. If our measurement is below the obtaine
threshold, we decide foH,; and if it exceeds this threshold, 3000
we decide forH,. To find this threshold we have to consider
the probability of false alarn®,. This probability is a system
reliability requirement and accounts for the case, where we 1000
decided forHp (indicated segment two, while hypothesis 5
WasF_corree[g; Eg;()a t(r:am took thteI sc;gmtehnt or?el%.l This is dglb'Cte 00t statistc with ve50 ki and inertil coasting time of 275 s
on Figur . Consequently, the threshold is given by

Probability density of «, =a../|[v(t)]”

EEm Hypothesis 0: r=10000 m
Hypothesis 1: r=1749 m |

8000

6000 -

5000

4000

Probability density

2000

*© Figure 3: Test statistigz for two different hypothesis: In blue = 104 [m~]
T =arg( Pa=P(k > T|Ha) = Pk (K[Ha)dk | . and in redk = 1/1749 [m 1] which correspond to a minimum detectable
T curvature difference of MDCB-= 4.7176x 10-94 [m~1] with B,q = 1075,
Similar considerations can now be done for hypothékjsas
well. A probability of missed detection, i.e., we decided fo

segment one while the train took segment two, is normally V. SIMULATION AND EVALUATION

defined as A. Smulation Environment
T For simulation, we used standard curvatures found in the
Pnd = Pk (k < T[Hp) =/ Px (K|Hp)dK. German railway. A summary of available curvatures and cor-

o o ) ~ responding maximum allowed train velocity can be found in
This is displayed in Figuriel 2 (clPmq is also a system reliability Table[1. As mentioned before, the error model parameters of
requirement and normally pre-defined by the system. So for ¢he used inertial sensors are shown in Téble 2.

given Pyg, we can find ak, such that ) . )
Table 1: Basic Design Parameters of German standard swifBhes [

Km = arg (/ px (K|Hm)dk = Pmd) , radius curvature max velocity

T rinm | cin 1073 1/m | Vinax in km/h
where Hp, is the hypothesis that the train has taken a track 190 5.26 20
with curvaturekn,. Thus, we can define a minimum detectable 300 333 50
curvature difference MDCE:= ki, — K5 for the given system 500 20 60
requirements of false alert and missed detection. Both-prob 760 132 30
abilities, Bnq and B, indicate that a wrong decision is made. 1200 0.83 100
Since we want to protected hypothekig andHy equally, we 5500 0 v 120

setP,; = Png = Ryvp, Where WD stands for wrong decision.

In Figure [3), we show two histograms observed while using We propose to investigate a curvature detector based on the
the test statistics oks. The train moves with a speed of three test statistics defined in Equations (15,16, 17). Eie p
50 [km/h] and the coasting time is 75 seconds. By coastingdentification after a switch is crucial for train surveillze and
time we understand the time for which the inertial sensorsrain collision avoidance systems. If we assume not to know
run free, so the time after initialization. We assume thathe itinerary but just the map with the switch locations amel t
during the coasting period, the speed is obtained by inteeurvature of the possible paths after the switches, it isiptes
grating the along track acceleration. In blue, we show thao determine the path followed by the train with a confidence
distribution of the test statistic under the hypothdsis(with  depending on the quality of the sensors.

a curvature radius of 10 km) and the red curve corresponds In the simulations, we use a sensor having the following
to the hypothesidH, (with a curvature radius of 1749 m). characteristics:

So the minimum detectable curvature difference is equitale  We solve the stochastic differential system for the expecta
to MDCD = 1/1749— 1074 = 4.7176x 107%* [m~Y]. The tion and the variance for all three different sensor grades.
probability of wrong detection is set tByg = 10> and is We draw paths following the process distributions cal@adat
generally a requirement based on the level of hazard forgbeinand we build the histograms for each test statigtick, and

on another track than the one expected. This risk is usuallks.

defined as a probability of being in this hazardous situation The initial along track velocity uncertainty might be given
during a predefined exposure time. by GNSS and is assumed to haveog0 = 0.05 [m/s].



Table 2: Sensor error model parameter developeflin [2] foethifferent
classes of IMU grades, i.e., tactical, automotive and consgrale IMUs.
The notation can be read as following the sampling noise isteenby oy,
whereas the noise of the time variant bias is representeg,hpynd its time

constant byr.

C. Minimum Detectable Curvature Difference

We have seen in the precedent section that the probability of
wrong decision is an important system reliability requisstn
The question we need to answer is now: What is the minimum

| Sensor | Om \ Ob, | T ] curvature difference for which we can detect an alternative
o Tactical | 0.0017 deg/s| 0.35 deg/hr | 100 s curvature with a probability of £ Ryp? In order to answer this
5 Auto. 0.05 deg/s | 180 deg/hr | 300 s guestion, we first have to determine our test statistic Hulels
O Consumer| 0.05 deg/s | 360 deg/hr | 300 s T =fct(ko, Ryp) which is a function of the curvature of oty
o | Tactical | 50x 105g | 50x10°g | 60s hypothesiskg and the all_qwed pr(_)bability. of false alerp Then
S Auto. 1x103g | 12x103¢g| 100 s we generate the probability d_ensny function for a continslp
Consumer| 1x103g | 24x103g | 100 s growing curvaturexy > Ko until we get:

T
. _ - /pK(Ki|Hm)dKi:P(Ki < T|Hm), (19)
When GNSS is not longer available, the velocity is drifting s

from its initial value considering a coasting using alonack

accelerometer. where Hy, is the hypothesis centered &t, and k;, for i =

1,...,3 are the different test statistics defined in Equation (15,
[I8[17). Finally, the MDCD iy, — Ko.

The MDCD is a function of the velocity of the train.
Intuitively the larger the velocity of the train, the smaltbe
dispersion of the test statistic.

We investigate the MDCD for each test statistic as function
of the train velocity at a switch and for different IMU qual-

B. Assumptions for train localization

At a given initial epoch we assume to know the position
and the direction of displacement of the train (for examgle a
the departure station). The localization problem consistie-
termining the track segment ID, the direction of displaceme .. A L
and the curvilinear abscissa on the track segment. ﬁlesét:]ne;?;fcll(ljoyrpigyzsflrgﬁl]ons, we set our curvatiof

A track segment is defined as a path between two switches?P a 0= '
We assume that between two guaranteed positions (e.g
obtained by GNSS and verified by a receiver autonomous
integrity monitoring), velocity fixes a coasting with theeitial
unit based on along track, cross track accelerometers and
heading rate gyro using the characteristics defined in Tble
The coasting time is not longer than 1 second when at leas
5 satellites are visible which is generally the case. But in
some cases (long tunnels or in the general case of bad atelli
visibility or when the satellite signals are blocked or retfs
by a strong multipath environment) the coasting time could
be last much longer (up to several minutes). Nevertheless, a
long as the information used is not integrated in the time
to obtain velocity, position or heading angle, the error in
the information is stationary and can be overbounded by &
Gaussian distribution for a non zero required integritk.ris 05¢
This overbound remains constant assuming the error is 0
stationary process.

MDCD using a consumer grade IMU
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Figure 5: Minimum detectable curvature difference with ezggoko =104
[m*l] obtained for the three different curvature determinatiorthodsky, K»
andks vs. velocity are shown. For comparison, the standard Gernmaatcues
and their max. velocities are indicated by black lines. That s valid for a
Pvd = 107> and using consumer grade sensors.
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Figure 4: Tracks configuration assumption

In Figures [(b,[6,17) we have plotted the corresponding
MDCD vs. the velocity for each test statistic and for each
IMU quality. The black horizontal lines represent the staad
curvatures of tracks observed in Germany. Each standagd lin
starts atv = 0 [km/h] and stop at the maximal allowed velocity

In Figure [4) we show the topology we adopt for the switchfor the corresponding curvature. The larger the curvatile,
scenario. We assume at each switch, only two possible traclksmaller the maximal allowable speed. The initial and rafeee
can be taken. curvature to be almost zero (a curvature of exactly 0 lends to
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Figure 6: Minimum detectable curvature difference with exdgioko =104

[m~1] obtained with the three different curvature determinatiwthods1, k>

andks vs. velocity are shown. For comparison, the standard Germaatcues
and their max. velocities are indicated by black lines. Thét 3 valid for a
Ruvd = 10°° and using automotive grade sensors.
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Figure 7: Minimum detectable curvature difference with ezdfioko =104

[m~1] obtained with the three different curvature determinatiwthodsy, >

andks vs. velocity are shown. For comparison, the standard Germaatcues
and their max. velocities are indicated by black lines. That [ valid for a
Rvd = 107> and using tactical grade sensors.

K, ~test availability vs. velocity
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Figure 8: Availability degradation plot of; vs. velocity. for different IMU
grades.

and therefore a clear signature when the train change dk.tra
For this tactical grade IMUk, and k3 are not crossing in the
velocity range[0— 200 [km/h].

For both the consumer and the automotive grade IMUs, the
MDCD curves cross at a speed of approximately 50 [km/h].
This suggests a velocity based test selection: below 50Hkm/
we usek, to make our decision and above this limit, we uge
which performs better. A more efficient strategy could csensi
of defining a weighted combination of both test statistics
enabling even lower MDCD. However, this is beyond the scope
of this paper.

The results obtained suggest a weighted sum0énd k3
in order to improve the detectability. Some intrinsic peshk
may appear because of the dependency of all 3 test statistics
Correlations need to be considered while seeking an optimal
combination of curvature types.

V. CONCLUSION

In this paper we explored three different ways to determine
track curvatures. The tests are based on ratios of randomn
variables that can be directly sensed like the heading sate g
and the cross track acceleration and indirectly sensedhi&e
speed of the train which can be obtained by an integration of
the along track acceleration.

The expectation and the variance of the Gaussian over-

a singularity). We see that the lower the velocity, the highe bound of the sensor errors are analytically expressed and th

the MDCD.

test statistics after pretreatment of the random denomigat

Although k; seems to provide acceptable performance inexclusion of an interval around zero to prevent heavy daile
the case of tactical grade IMU, its low availability for adar

distributions) are investigated using Monte Carlo sinial.

range of velocities see Figurk] (8) makes it unusable for th&@he minimum detectable curvatures difference is deterthine

simulated scenario. Only, and k3 are providing acceptable for three different classes of IMUs, namely consumer, auto-

results (their availabilities were always 100% for any tyfie motive and tactical grade. The resulting MDCD curves have

IMU). been compared to standard curvatures and their performanc
For tactical grade IMU, we see a very effectigbased test have been assessed.

statistic. In fact the combination of high accurate velpeind It is shown thatk; in addition to being unavailable a large

high performance heading gyro provides a sharp distributio part of the time (exclusion of the high density around zero of



the cross track acceleration) provides when a bad perfarenan
In comparisonky and k3 show best results with a maximum

n-1
] = At L (26)
availability when the train is moving. A performance crosso k=0

can be observed for the consumer and automotive grade IMUs. £1%] = Atzn(n— 1) 27)

That is k3 can outperformk, when the velocity of the train ni 2

is larger than 50 km/h. Howeveks depends on the cross )

track acceleration which is difficult to sense in a more stiali &%) = t“n(n-1) (28)
n

dynamic scenarios (for a non-perfect horizontal plan ofiomt n2 2
for which the gravity vector may introduce a component in By continuity we haves

— & [X(t)] whenn — o and
cross track direction). In contrast; shows a real improvement X ()

as it can be reliably used for a large range of velocities. t2

Furthermore, it has a dependency on the heading rate rather &xt)] = B (29)
than on the accelerations which makes it more robust to

realistic scenarios (non-perfect horizontal displacemsjen B. Expectation of x(t) = n; (1) ée'%‘ dBy,u

Future studies will consider a generalization of this cghce i
for a three dimensional tracks (V\glllth gravity vector not ggla W'th m(1) = fO B’dr -1 fO Jo ev ‘Budldr  and
perpendicular to the motion plan), misalignment of sensorsfoe delu = Bpyt — foe Bbludl
transition curvatures. The performance crossover obddore
K2 and k3 for low cost IMUs suggests to use a combination
of both test statistics which is investigated in a future grap / BBrdr _*/ / et BBydldr—

Another investigation might consider the minimum probiail

of wrong detection for a given type of IMU and as function —f/ et Brdr/ Brdr+
of the speed at the switch. This approach can give the level of
safety achieved by different types of IMU. 4+ = / et B,dr/ / et Budldr
APPENDIXA t 1t
EXPECTATION AND VARIANCE OF BROWNIAN MOTIONS EXt)] = / rdr — f/ / uet dlidr—
(APPEARING IN THE ANALYTICAL FORM OF THE 70
EXPECTATION AND THE VARIANCE OF THE ALONG TRACK - ,/ / a8 (r' Ar)drdr’+
VELOCITY ERROR)
. . . 1 i t+| r
A. Expectation of the Brownian Motion TZ/O /o /o e ( /\u) didrdr’
Con5|der the following Brownian Motion: Finally we have:
X(t) = B /3 Bsds, s0 we can express its expected value as
1 1
Sxt)] =& [Bt / Bsds} (20) EXM)] =52~ — +—r
2 et 2t

We defineAt —t/n andt, = kAt. The Riemann sum approx- C. variance of n (1)
imation of x(t)is: i 1t r et
We recall thatn; (1) = [y Brdr — 1 [ o€ T Budldr

n-1 The expectation ofy (1) is equal to zero. Therefore the
X =By, ) Byt (21)  variance is:
o
n—1 . 2
&% B, 3 Bl 22) Y m(0)] =& ()]
k=
n—1
& [X,) = Ot Zf[&ﬁd (23) Ve (1)] = +é"{—/ Brdr//er Budldr}

k=
n1 +5[2//erBudldr/ / erBudIdr]
(24) T<Jo Jo 0 JO

E%,] = At k;) (ta At)

wheret, Aty = min(ty,ty) vt ——7/ / / et Au didrdr’

n—-1 u—r'+l-r
ALYt 25 +—// //e A= (0 Au) didrdl’dr’
kZok (29) 2 Jo Jo Jo Jo (Vru)
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