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Abstract. We introduce a restriction of the stable roommates problem
in which roommate pairs are ranked globally. In contrast to the unre-
stricted problem, weakly stable matchings are guaranteed to exist, and
additionally, can be found in polynomial time. However, it is still the
case that strongly stable matchings may not exist, and so we consider
the complexity of finding weakly stable matchings with various desirable
properties. In particular, we present a polynomial-time algorithm to find
a rank-maximal (weakly stable) matching. This is the first generaliza-
tion of the algorithm due to Irving et al. [18] to a non-bipartite setting.
Also, we prove several hardness results in an even more restricted set-
ting for each of the problems of finding weakly stable matchings that are
of maximum size, are egalitarian, have minimum regret, and admit the
minimum number of weakly blocking pairs.

1 Introduction

The stable roommates problem (sr) [11, 16, 15, 17] involves pairing-up a set
of agents, each of whom ranks the others in (not necessarily strict) order of
preference. Agents can declare each other unacceptable, in which case they cannot
be paired together. Our task is to find a pairing of mutually acceptable agents
such that no two agents would prefer to partner each other over those that we
prescribed for them.

We represent acceptable pairs by a graph G = (V, E), with one vertex u ∈ V
for each agent, and an edge {u, v} ∈ E whenever agents u and v are mutually
acceptable. A pairing is just a matching M of G, i.e. a subset of edges in E,
no two of which share a vertex. If {u, v} ∈ M , we say that u is matched in M
and M(u) denotes v, otherwise u is unmatched in M . An agent u prefers one
matching M ′ over another M if i) u is matched in M ′ and unmatched in M , or
ii) u prefers M ′(u) to M(u). Similarly, u is indifferent between M ′ and M if i)
u is unmatched in M ′ and M , or ii) u is indifferent between M ′(u) and M(u).

? Research supported in part by NSF grants IIS-0427858 and CCF-0514922IIS-
0427858. Part of this work completed while visiting Microsoft Research, Redmond.

?? Supported by EPSRC grant EP/E011993/1.
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A matching M is weakly stable if it admits no strongly blocking pair, which is
an edge {u, v} ∈ E\M such that u and v prefer {{u, v}} to M . A matching M is
strongly stable if it admits no weakly blocking pair, which is an edge {u, v} ∈ E\M
such that u prefers {{u, v}} to M , while v either prefers {{u, v}} to M , or is
indifferent between them.

In this paper, we introduce and study the stable roommates with glob-

ally-ranked pairs problem (sr-grp). An instance of sr-grp is a restriction of
sr in which preferences may be derived from a ranking function rank : E → N.
An agent u prefers v to w if e = {u, v}, e′ = {u, w} and rank(e) < rank(e′),
and u is indifferent between them if rank(e) = rank(e′).

Before giving our motivation for studying this restriction, we introduce some
notation. We define Ei to be the set of edges with rank i, and E≤i to be the set
E1∪E2∪ . . .∪Ei. Additionally, let n = |V | be the number of agents, m = |E| be
the number of mutually acceptable pairs. Without loss of generality, we assume
the maximum edge rank is at most m. Also, we make the standard assumption
in stable marriage problems that the adjacency list for a vertex is given in order
of preference/rank.

Motivation. In several real-world settings, agents have restricted preferences
that can be represented by the sr-grp model. A pairwise kidney exchange mar-
ket [26, 25, 1] is one such setting. Here, patients with terminal kidney-disease ob-
tain compatible donors by swapping their own willing but incompatible donors.
We can model the basic market by constructing one vertex for each patient, and
an undirected edge between any two patients where the incompatible donor for
one patient is compatible with the other patient, and vice versa. Of course, pa-
tients may have different preferences over donors. However, since the expected
years of life gained from a transplant is similar amongst all compatible kid-
neys, the medical community has suggested that patient preferences should be
binary/dichotomous [14, 7] – i.e., patients are indifferent between all compatible
donors. Binary preferences are easily modelled in sr-grp by giving all edges the
same rank.

A second example also comes from pairwise kidney exchange markets. When
two (patient,donor) pairs are matched with each other (in order to swap donors),
we are not certain if the swap can occur until expensive last-minute compatibility
tests are performed on the donors and patients. If either potential transplant in
the swap is incompatible, the swap is cancelled and the two patients must wait
for a future match run. Since doctors can rank potential swaps by their chance of
success, and patients prefer swaps with better chances of success, this generalizes
the binary preference model above, and can clearly still be modelled by sr-grp.

One final real-world setting is described in [4]. When colleges pair-up fresh-
men roommates, it is not feasible for students to rank each other explicitly.
Instead, each student submits a form which describes him/herself in several dif-
ferent dimensions (e.g. bedtime preference, cleanliness preference etc). Students
can then be represented as points in a multidimensional space, and preferences
over other students can be inferred by a distance function. Note that this model
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[4] is a restriction of sr-grp in that it is not possible to declare another student
unacceptable.

In order to highlight the generality of the sr-grp model, we introduce a
second restriction of sr called stable roommates with globally-acyclic

preferences (sr-gap). Instances of sr-gap satisfy the following characteri-
zation test: given an arbitrary instance I of sr with G = (V, E), construct a
digraph P (G), containing one vertex e for each edge in e ∈ E, and an arc from
e = {u, v} ∈ E to e′ = {u, w} ∈ E if u prefers w to v. Now, for each e = {u, v}
and e′ = {u, w} in E, if u is indifferent between v and w, merge vertices e and e′.
Note that a merged vertex may contain several original edge-vertices and have
self-loops. Instance I belongs to sr-gap iff P (G) is acyclic.

Instances of sr-grp satisfy the sr-gap test, since any directed path in
P (G) consists of arcs with monotonically improving ranks, and so no cycles
are possible. In the reverse direction, given any instance of sr-gap, we can
derive a suitable rank function from a reverse topological sort on P (G), i.e.
rank(e) < rank(e′) iff e appears before e′. The following proposition is clear:

Proposition 1. Let I be an instance of sr. Then I is an instance of sr-grp if
and only if I is an instance of sr-gap.

As well as modelling real-world problems, sr-grp is an important theoretical
restriction of sr. It is well-known that sr has two key undesirable properties.
First, some instances of sr admit no weakly stable matchings (see, for example,
[15, page 164]). And second, the problem of finding a weakly stable matching,
or proving that no such matching exists, is NP-hard [24, 17]. It turns out that
sr-grp has neither of these undesirable properties [4] 3.

Lemma 1. Let G = (V, E1 ∪ . . . ∪ Em) be an instance of sr-grp. Then M is
a weakly stable matching of G if and only if M ∩E≤i is a maximal matching of
E≤i, for all i.

So we can construct a weakly stable matching in O(n + m) time by finding
a maximal matching on rank-1 edges, removing the matched vertices, finding a
maximal matching on rank-2 edges, and so on.

Strongly stable matchings are also easy to characterize in sr-grp [4].

Lemma 2. Let G = (V, E1 ∪ . . . ∪ Em) be an instance of sr-grp. Then M is
a strongly stable matching of G if and only if M ∩ Ei is a perfect matching of
{e ∈ Ei : e is not adjacent to any e′ ∈ E<i}, for all i.

Of course, even E1 may not admit a perfect matching, and so strongly stable
matchings may not exist. However, we can find a strongly stable matching, or
prove that no such matching exists in O(m

√
n) time by using the maximum

matching algorithm of Micali and Vazirani for non-bipartite graphs [23]. This
improves on the best known running time of O(m2) for general sr [27].

3 Lemmas 1 and 2 are proved by [4] in a restricted setting. However, their extensions
to sr-grp are straightforward.
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These observations show that sr-grp can be far simpler than sr. In this
paper, we are interested in which problems become more tractable in sr-grp,
and which problems maintain their hardness. Work along these lines has been
done before [5, 28, 6, 4]. For example, Chung [6] shows that the “no odd ring”
condition on preferences is sufficient for the existence of a weakly stable match-
ing. The sr-gap acyclic condition is a restriction of the “no odd ring” condition,
in that neither odd nor even rings are permitted.

The possible non-existence of a strongly stable matching motivates the search
for weakly stable matchings with desirable properties. A rank-maximal matching
[18, 29] includes the maximum possible number of rank-1 edges, and subject to
this, the maximum possible number of rank-2 edges, and so on. More formally,
define the signature of a matching M as 〈s1, s2, . . . , sm〉, where si is the number of
rank-i edges in M . Then a matching is rank-maximal iff it has the lexicographic-
maximal signature amongst all matchings.

Recall from Lemma 2 that a strongly stable matching is perfect on rank-1
edges, and subject to this, perfect on rank-2 edges, and so on. It is clear that
a rank-maximal matching is strongly stable, when strong stability is possible.
If no strongly stable matching exists, then a rank-maximal matching, which by
Lemma 1 is always weakly stable, seems a natural substitute. Irving et al. [18]
gave an O(min(n + R, R

√
n)m) algorithm for the problem of finding a rank-

maximal matching in a bipartite graph, where R is the rank of the worst-ranked
edge in the matching.

Other desirable types of weakly stable matchings may be those that have
maximum cardinality, are egalitarian, are of minimum regret, or admit the fewest
number of weakly blocking pairs. An egalitarian (respectively minimum regret)
weakly stable matching satisfies the property that the sum of the ranks (re-
spectively the maximum rank) of the edges is minimised, taken over all weakly
stable matchings. Given a general sr instance I , each of the problems of finding
an egalitarian and a minimum regret weakly stable matching is NP-hard [9, 20]
(in the former case, even if the preference lists are complete and strictly-ordered,
and in the latter case, even if the underlying graph is bipartite). However the
complexity of the problem of finding a weakly stable matching with the minimum
number of weakly blocking pairs in I has, until now, been open.

Paper outline and summary of contribution. In Section 2, we consider
rank-maximal matchings, and present the first generalization of Irving et al.’s [18]
algorithm to a non-bipartite setting. In Section 3, we prove hardness results for
for each of the problems of finding weakly stable matchings that are of maximum
size, are egalitarian, have minimum regret, and admit the minimum number of
weakly blocking pairs. We also show that this last problem is inapproximable
within a factor of n1−ε, for any ε > 0, unless P = NP. These hardness results
apply even in a restricted version of sr-grp in which the graph G is bipartite,
and (in the first three cases) if an agent v is incident to an edge of rank k, then
v is incident to an edge of rank k′, for 1 ≤ k′ ≤ k. Finally, Section 4 contains
concluding remarks.
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2 Rank-Maximal Matching

One obvious way to construct a rank-maximal matching is to find a maximum-
weight matching using edge weights that increase exponentially with improving
rank. However, with K distinct rank values, Gabow and Tarjan’s matching al-
gorithm [10] takes O(K2

√

nα(m, n) lg nm lg n) time4, where α is the inverse
Ackermann function. As in the bipartite restriction [18], our combinatorial al-
gorithm avoids the problem of exponential-sized edge weights, leading to an
improved runtime of O(min {n + R, R

√
n}m), where R ≤ K is the rank of the

worst-ranked edge in the matching.
Let Gi = (V, E≤i). Our algorithm begins by constructing a maximum match-

ing M1 on G1. Note that M1 is rank-maximal on G1 by definition. Then induc-
tively, given a rank-maximal matching Mi−1 on Gi−1, the algorithm exhaustively
augments Mi−1 with edges from Ei to construct a rank-maximal matching Mi

on Gi. In order to ensure rank-maximality, certain types of edges are deleted be-
fore augmenting. With these edges deleted, it becomes possible to augment Mi−1

arbitrarily, while still guaranteeing rank-maximality. Hence, we can perform the
augmentations using Micali and Vazirani’s fast maximum matching algorithm
[23]. In the non-bipartite setting, we perform one additional type of edge deletion
beyond the bipartite setting. Additionally, we shrink certain components into su-
pervertices. Note that this shrinking is separate from any blossom-shrinking [8]
that might occur in the maximum matching subroutine.

In order to understand the edge deletions and component shrinking, recall the
Gallai-Edmonds decomposition lemma [19]: Let G = (V, E) be an arbitrary undi-
rected graph. Then V can be partitioned into the following three sets, namely
ged-u[G], ged-o[G] and ged-p[G]. Vertices in ged-u[G] are underdemanded,
since they are unmatched in some maximum matching of G. All other vertices
that are adjacent to one in ged-u[G] are overdemanded and belong to ged-o[G].
Finally, all remaining vertices are perfectly demanded and belong to ged-p[G].
The decomposition lemma gives many useful structural properties of maximum
matchings. For example, in every maximum matching, vertices in ged-o[G] are
always matched, and their partner is in ged-u[G]. Similarly, vertices in ged-p[G]
are always matched, though their partners are also in ged-p[G]. We will use the
properties given in Lemma 3.

Lemma 3 (Gallai-Edmonds Decomposition). In any maximum matching
M of G,

1. For all u in ged-o[G], M(u) is in ged-u[G]

2. For all even (cardinality) components C of G \ged-o[G], i) C ⊆ ged-p[G],
and ii) M(u) is in C, for all u in C

3. For all odd (cardinality) components C of G\ged-o[G], i) C ⊆ ged-u[G], ii)
M(u) is in C, for all u in C except one, say v, and iii) either v is unmatched
in M , or M(v) is in ged-o[G]

4 See [22] for an explanation of the K2 factor.
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Fig. 1. Example of shrinking operation

Consider the first inductive step of the algorithm, in which we are trying to
construct a rank-maximal matching M2 of G2 = (V, E≤2), given a maximum
matching M1 of G1 = (V, E1). We do not want to commit to edges in M1 at this
point, because perhaps no rank-maximal matching on G2 contains these edges.
However, according to the decomposition lemma, we can safely delete any edge
e = {u, v} such that:

(i) u ∈ ged-o[G1] and v ∈ ged-o[G1] ∪ ged-p[G1]
(ii) e ∈ E≥2, and u ∈ ged-o[G1] ∪ ged-p[G1]
(iii) e ∈ E≥2, and both u and v belong to the same odd component of G1

We delete all such edges to ensure they are not subsequently added to the
matching when we augment. Note that the third deletion type is required for non-
bipartite graphs, since only one vertex in each odd component C is unmatched
internally.

After deleting edges in G1, we shrink each odd component C into a superver-
tex. We define the root r of C as the one vertex in C that is unmatched within
C. Note that C’s supervertex is matched iff r is matched. Now, when we add
in undeleted edges from e = {u, v} ∈ E≥2 into the graph, if u ∈ C and v /∈ C,
we replace e with an edge between v and C’s supervertex. Note that during the
course of the algorithm, we will be dealing with graphs containing supervertices,
which themselves, recursively contain supervertices. In such graphs, we define
a legal matching to be any collection of independent edges such that in every
supervertex, all top-level vertices but the root are matched internally.

To give some intuition for why we shrink odd components, consider the graph
in Figure 1. The triangle of rank-1 edges is an odd component (with {u, v}
matched), and so neither rank-2 edges are deleted. One way to augment this
graph is to include the two rank-2 edges and take out the rank-1 {u, v} edge. This
destroys the rank-maximal matching on G1. If we shrink the triangle however,
the supervertex is unmatched, and so {x, u} and {y, v} are both valid augmenting
paths. Note how these augmenting paths can be expanded inside the supervertex
by removing and adding one rank-1 edge to end at the root r. This expansion
makes the augmenting path legal in the original graph, while not changing the
number of matching edges internal to the supervertex.

Figure 2 contains pseudocode for our non-bipartite rank-maximal matching
algorithm. One aspect that requires more explanation is how we augment Mi in
G′

i. The overall approach is to find an augmenting path P while regarding each
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Rank-Maximal-Matching(G = (V, E1 ∪ E2 ∪ . . . ∪ Em))
Set G′

1 to G1;
Let M1 be any maximum matching of G1;
For i = 2 to m:

Set G′
i to G′

i−1, and Mi to Mi−1;
Compute the GED of G′

i−1 using Mi−1;
Delete edges in G′

i between two vertices in ged-o[G′
i−1];

Delete edges in G′
i between vertices in ged-o[G′

i−1] and ged-p[G′
i−1];

Delete any edge e in E≥i where:
i) e is incident on a ged-o[G′

i−1] or ged-p[G′
i−1] vertex, or

ii) e is incident on two vertices in the same odd component of Gi−1;
Shrink each odd component of Gi−1 in the graph G′

i;
Add undeleted edges in Ei to G′

i;
Augment Mi in G′

i until it is a maximum matching;
End For

Return Mm;

Fig. 2. Non-bipartite rank-maximal matching algorithm

top-level supervertex in G′
i as a regular vertex. Then for each supervertex C in

P , we expand P through C in the following way. Let u be the vertex in C that
P enters along an unmatched edge. If u is the root r of C, then C is unmatched,
and we can replace C by u in P . Otherwise, u 6= r, and either C is unmatched or
P leaves C via the matched edge incident on r. In the next lemma, we show that
there is an even-length alternating path from u to r, beginning with a matched
edge. We can expand P by replacing C with this even-length alternating path.

Lemma 4. Let M be a legal matching on some supervertex C with root r. Let
u be any other node in C. Then there is an even-length alternating path from u
to r beginning with a matched edge.

Proof. Let M ′ be a legal matching of C in which u is unmatched (such a matching
is guaranteed by the decomposition lemma). Consider the symmetric difference
of M and M ′. Since every vertex besides u and r is matched in both matchings,
there must be an even-length alternating path consisting of M and M ′ edges
from u to r. ut

In all cases of P and C, note that C has the same number of internally
matched edges before and after augmentation by P , and so the matching remains
legal. Also, if r was matched prior to augmentation, then it is still matched
afterwards.

The next three lemmas, which generalize those in [18], establish the correct-
ness of the algorithm. Lemma 5 proves that no rank-maximal matching contains
a deleted edge. Lemma 6 proves that augmenting a rank-maximal matching Mi−1

of Gi−1 does not change its signature up to rank (i − 1). And finally, Lemma 7
proves that the final matching is rank-maximal on the original graph G.
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Lemma 5. Suppose that every rank-maximal matching of Gi−1 is a maximum
legal matching on G′

i−1. Then every rank-maximal matching of Gi is contained
in G′

i.

Proof. Let M be an arbitrary rank-maximal matching of Gi. Then M∩E≤i−1 is a
rank-maximal matching of Gi−1, and by assumption, a maximum legal matching
of G′

i−1. By Lemma 3, the edges we delete when constructing G′
i belong to no

maximum matching of G′
i−1, in particular M∩E≤i−1. So M∩E≤i−1 is contained

in G′
i. Furthermore, since M is a matching and M ⊇ M ∩E≤i−1, it follows that

M contains no deleted edges, and therefore must be contained in G′
i. ut

Lemma 6. Let Mi and Mj be the matchings produced by the algorithm, where
i < j. Then Mi and Mj have the same number of edges with rank at most i.

Proof. Mi consists of edges contained within top-level supervertices of G′
i, and

edges between top-level (super)vertices of G′
i. We have already shown that aug-

menting through a supervertex does not change the number of matching edges
internal to the supervertex. Hence, Mj contains the same number of such edges
as Mi.

By Lemma 3, the remaining edges of Mi are all be incident on some ged-o[G′
i]

or ged-p[G′
i] (super)vertex. Since these vertices are matched in Mi, they are

also matched in Mj , as augmenting does not affect the matched status of a
vertex. Also, no edges of rank worse than i are incident on such vertices, due
to deletions, and so each must be matched along a rank-i edge or better in Mj .
Hence |Mi| ≤ |Mj ∩E≤i|. Of course, |Mj ∩E≤i| ≤ |Mi|, since all edges from E≤i

in G′
j are also in G′

i, and Mi is a maximum legal matching of G′
i. ut

Lemma 7. For every i, the following statements hold: 1) Every rank-maximal
matching of Gi is a maximum legal matching of G′

i, and 2) Mi is a rank-maximal
matching of Gi.

Proof. For the base case, rank-maximal matchings are maximum matchings on
rank-1 edges, and so both statements hold for i = 1. Now, by Lemma 5 and the
inductive hypothesis, every rank-maximal matching of Gi is contained in G′

i. Let
〈s1, s2, .., si〉 be the signature of such a matching. By Lemma 6, Mi has the same
signature as Mi−1 up to rank-(i − 1). Hence, Mi’s signature is 〈s1, s2, .., ti〉 for
some ti ≤ si, since Mi−1 is a rank-maximal matching of Gi−1. However, Mi is a
maximum legal matching of G′

i, hence ti = si and Mi is rank-maximal matching
of Gi. This proves the second statement.

Now, for the first statement, let Ni be any rank-maximal matching of Gi. By
Lemma 5 and the inductive hypothesis, we know that Ni is contained in G′

i. Ni

has signature 〈s1, s2, ..., si〉, which is the same signature as Mi. Hence, Ni is also
a maximum legal matching of G′

i. ut

We now comment on the runtime of the algorithm. In each iteration i, it is
clear that computing the decomposition (given a maximum matching), deleting
edges and shrinking components all take O(m) time. Constructing Mi from Mi−1

requires |Mi|− |Mi−1|+1 augmentations. At the top-level of augmenting (when
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supervertices are regarded as vertices), we can use the Micali and Vazirani non-
bipartite matching algorithm, which runs in time O(min(

√
n, |Mi+1| − |Mi| +

1)m). Next, we have to expand each augmenting path P through its incident
supervertices. Let u be the first vertex of some supervertex C that P enters
along an unmatched edge. It is clear that we can do this expansion in time
linear in the size of C by appending a dummy unmatched vertex d to u, and
then looking for an augmenting path from d to r in C. Since each supervertex
belongs to at most one augmenting path in each round of the Micali and Vazirani
algorithm, this does not affect the asymptotic runtime. It follows that after R
iterations, the running time is at most O(min(n+R, R

√
n)m). Using the idea in

[18], we can stop once R is the rank of the worst-ranked edge in a rank-maximal
matching, because we can test in O(m) time if MR is a maximum matching of
GR together with all undeleted edges of rank worse than R (in which case MR

is rank-maximal).

Theorem 1. Let R be the rank of the worst-ranked edge in a rank-maximal
matching of G = (V, E1 ∪ . . . ∪ Em). Then a rank-maximal matching of G can
be found in time O(min(n + R, R

√
n)m).

3 Hardness Results

In this section we establish several NP-hardness results for a special case of
sr-grp. We refer to this restriction as stable marriage with symmetric

preferences (sm-sym). An instance of sm-sym is an instance of sr in which
the underlying graph is bipartite (with men and women representing the two sets
of agents in the bipartition) subject to the restriction that a woman wj appears
in the kth tie in a man mi’s list if and only if mi appears in the kth tie in wj ’s
list. Clearly an instance of sm-sym is a bipartite instance of sr-grp in which
rank({mi, wj}) = k if and only if wj appears in the kth tie in mi’s preference list,
for any man mi and woman wj . Indeed it will be helpful to assume subsequently
that rank is defined implicitly in this way, given an instance of sm-sym.

Our first result demonstrates the NP-completeness of com-sm-sym, which
is the problem of deciding whether a complete weakly stable matching (i.e. a
weakly stable matching in which everyone is matched) exists, given an instance
of sm-sym. Our transformation begins from exact-mm, which is the problem
of deciding, given a graph G and an integer K, whether G admits a maximal
matching of size K.

Theorem 2. com-sm-sym is NP-complete.

Proof. Clearly com-sm-sym is in NP. To show NP-hardness, we reduce from
exact-mm in subdivision graphs, which is NP-complete [21]. Let G = (V, E),
a subdivision graph of some graph G′, and K, a positive integer, be an in-
stance of exact-mm. Suppose that V = U ∪ W is a bipartition of G, where
U = {m1, m2, . . . , mn1

} and W = {w1, w2, . . . , wn2
}. Then we denote the set of
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Men’s preferences
mi : (Wi) (y1 y2 . . . yn1−K) (1 ≤ i ≤ n1)
xi : a′

i (W ) (1 ≤ i ≤ n2 − K)
ai : (yi b′i) (1 ≤ i ≤ K)
bi : a′

i (1 ≤ i ≤ K)

Women’s preferences
wj : (Uj) (x1 x2 . . . xn2−K) (1 ≤ j ≤ n2)
yj : aj (U) (1 ≤ j ≤ n1 − K)
a′

j : (xj bj) (1 ≤ j ≤ K)
b′j : aj (1 ≤ j ≤ K)

Fig. 3. Preference lists for the constructed instance of com-sm-sym

vertices adjacent to a vertex mi ∈ U in G by Wi and similarly the set of vertices
adjacent to wj ∈ W in G by Uj .

We construct an instance I of com-sm-sym as follows: let U ∪ X ∪ A ∪ B
be the set of men and W ∪ Y ∪ A′ ∪ B′ be the set of women, where X =
{x1, x2, . . . , xn2−K}, Y = {y1, y2, . . . , yn1−K}, A = {a1, a2, . . . , aK}, B = {b1, b2,
. . . , bK}, A′ = {a′

1, a
′
2, . . . , a

′
K} and B′ = {b′1, b′2, . . . , b′K}. The preference lists of

I are shown in Figure 3 (entries in round brackets are tied). It may be verified
that I is an instance of sm-sym. We claim that G has an exact maximal matching
of size K if and only if I admits a complete weakly stable matching.

Suppose G has a maximal matching M , where |M | = K. We construct a
matching M ′ in I as follows. Initially let M ′ = M . There remain n1−K men in U
that are not assigned to women in W ; denote these men by mki

(1 ≤ i ≤ n1−K)
and add (mki

, yi) to M ′. Similarly there remain n2 − K women in W that are
not assigned to men in U ; denote these women by wlj (1 ≤ j ≤ n2 − K), and
add (xj , wlj ) to M ′. Finally we add (ai, b

′
i) and (bi, a

′
i) (1 ≤ i ≤ K) to M ′. It

may then be verified that M ′ is a complete weakly stable matching in I .
Conversely suppose that M ′ is a complete weakly stable matching in I . Let

M = M ′ ∩ E. We now show that |M | = K. First suppose that |M | < K. Then
since M ′ is a complete weakly stable matching, at least n1 − K + 1 men in U
must be assigned in M ′ to women in Y , which is impossible as there are only
n1 −K women in Y . Now suppose |M | > K. Hence at most n1 −K − 1 women
in Y are assigned in M ′ to men in U . Then since M ′ is complete, there exists
at least one women in Y assigned in M ′ to a man in A. Thus at most K − 1
men in A are assigned in M ′ to women in B′. Hence only K − 1 women in B′

are assigned in M ′, contradicting the fact that M ′ is a compete weakly stable
matching. Finally, it is straightforward to verify that M is maximal in G. ut

The following corollary (see [3] for the proof) will be useful for establishing
subsequent results.

Corollary 1. com-sm-sym is NP-complete, even if each preference list com-
prises exactly two ties (where a tie can be of length 1).
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We next consider minimum regret and egalitarian weakly stable matchings, given
an instance I of smc-sym, which is the restriction of sm-sym in which each
person finds all members of the opposite sex acceptable. Let U and W be the
set of men and women in I respectively, let M be a weakly stable matching in
I , and let p be some agent in I . Then we define the cost of p with respect to
M , denoted by costM (p), to be rank(p, M(p)). Furthermore we define the regret
of M , denoted by r(M) to be maxp∈U∪W costM (p). M has minimum regret if
r(M) is minimised over all weakly stable matchings in I . Similarly we define the
cost of M , denoted by c(M), to be

∑

p∈U∪W costM (p). M is egalitarian if c(M)
is minimised over all weakly stable matchings in I .

We define regret-smc-sym (respectively egal-smc-sym) to be the problem
of deciding, given an instance I of smc-sym and a positive integer K, whether I
admits a weakly stable matching such that r(M) ≤ K (respectively c(M) ≤ K).
We now show that regret-smc-sym is NP-complete.

Theorem 3. regret-smc-sym is NP-complete.

Proof. Clearly the problem belongs to NP. To show NP-hardness, we reduce
from the restriction of com-sm-sym in which each person’s list has exactly two
ties, which is NP-complete by Corollary 1. Let I be such an instance of this
problem. We form an instance I ′ of regret-smc-sym as follows. Initially the
people and preference lists in I and I ′ are identical. Next, in I ′, each person
adds a third tie in their preference list containing all members of the opposite
sex that are not already contained in their first two ties. It is not difficult to
verify that I admits a complete weakly stable matching if and only if I ′ admits
a weakly stable matching M such that r(M) ≤ 2. ut

We next prove that egal-smc-sym is NP-complete, using a result of Gergely
[13], shown in Theorem 4, relating to diagonalized Latin squares. A transversal
of an order-n Latin square is a set S of n distinct-valued cells, no two of which
are in the same row or column. A Latin square is said to be diagonalized if the
main diagonal is a transversal.

Theorem 4 (Gergely [13]). For any integer n ≥ 3, there exists a diagonalized
Latin square of order n having a transversal which has no common entry with
the main diagonal.

Theorem 5. egal-smc-sym is NP-complete.

Proof. Clearly egal-smc-sym is in NP. To show NP-hardness, we reduce from
the restriction of com-sm-sym in which each person’s list has exactly two ties,
which is NP-complete by Corollary 1. Let I be such an instance of this problem,
where U = {m1, m2, . . . , mn} is the set of men and W = {w1, w2, . . . , wn} is the
set of women. For each man mi ∈ U (1 ≤ i ≤ n) we denote the women in the
first and second ties on mi’s preference list in I by Wi,1 and Wi,2 respectively,
and let Wi = Wi,1 ∪ Wi,2. Similarly for each woman wj ∈ W (1 ≤ j ≤ n) we
denote the men in the first and second ties on wj ’s preference list in I by Uj,1

and Uj,2 respectively, and let Uj = Uj,1 ∪ Uj,2.
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Men’s preferences
mi : Wi,1 Wi,2 (y1 q) y2 . . . yn (W \ Wi) (1 ≤ i ≤ n)
x1 : y1 q (W ) ys1,2 ys1,3 ys1,4 . . . ys1,n

x2 : y2 q ys2,1 (W ) ys2,3 ys2,4 . . . ys2,n

x3 : y3 q ys3,1 ys3,2 (W ) ys3,4 . . . ys3,n

...
xn : yn q ysn,1 ysn,2 ysn,3 ysn,4 . . . (W )
p : q (Y ) (W )

Women’s preferences
wj : Uj,1 Uj,2 (x1 p) x2 . . . xn (U \ Uj) (1 ≤ j ≤ n)
y1 : x1 p (U) xt1,2 xt1,3 xt1,4 . . . xt1,n

y2 : x2 p xt2,1 (U) xt2,3 xt2,4 . . . xt2,n

y3 : x3 p xt3,1 xt3,2 (U) xt3,4 . . . xt3,n

...
yn : xn p xtn,1 xtn,2 xtn,3 xtn,4 . . . (U)
q : p (X) (U)

Fig. 4. Preference lists for the constructed instance of egal-smc-sym

We construct an instance I ′ of egal-smc-sym as follows: let U ∪ X ∪ {p}
be the set of men and let W ∪ Y ∪ {q} be the set of women, where X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Then we construct the preference
lists in I ′ by considering the diagonalized Latin square S = (si,j) of order n,
as constructed using Gergely’s method [13] (we note that Gergely’s method is
polynomial-time computable). Without loss of generality we may assume that
the entries in the main diagonal are in the order 1, 2, . . . , n (this can be achieved
by simply permuting symbols in S if necessary). Next we construct a matrix
T = (ti,j) from S as follows: for each i and j (1 ≤ i, j ≤ n), if si,j = k then
tk,j = i. We claim that T is a Latin square.

For, suppose not. First suppose ti,j = ti,k = l, for some j 6= k. Thus it
follows that sl,j = sl,k = i, contradicting the fact that S is a Latin square. Now
suppose ti,j = tk,j = l, for some i 6= k. Therefore sl,j = i and sl,j = k, which is
impossible. Hence T is a Latin square. Moreover the elements 1, 2, . . . , n appear
in order on the main diagonal of T .

We then use S and T to constructed the preference lists as shown in Figure 4.
By the construction of T from S and by inspection of the remaining preference
list entries, we observe that I ′ is an instance of egal-smc-sym. Let K = 2(3n+
1). It may be verified (see [3] for the proof) that I has a complete weakly stable
matching M if and only if I ′ has a weakly stable matching M ′ such that c(M ′) ≤
K. ut

Our final hardness result (whose proof appears in [3]) applies to sm-grp,
which is the restriction of sr-grp to bipartite graphs. Recall that a strongly
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stable matching has no weakly blocking pairs. min-bp-sm-grp is the problem of
finding a weakly stable matching (which by definition has no strongly blocking
pairs) with the minimum number of weakly blocking pairs, given an instance of
sm-grp.

Theorem 6. min-bp-sm-grp is not approximate within a factor of n1−ε, for
any ε > 0, unless P=NP, where n is the number of men and women.

4 Future Work

We conclude with an open problem. A matching M ′ is more popular than another
M if more agents prefer M ′ to M than M to M ′. A matching M is popular
if there is no matching M ′ that is more popular than it. Because the more
popular than relation is not acyclic, popular matchings may not exist. As with
rank-maximality, the problem of finding popular matchings (or proving no such
matching exists) has been solved in the bipartite setting [2]. This setting involves
allocating items to agents, when only agents have preferences. However, the
original popular matching problem, as proposed by Gärdenfors [12], applied to
the stable marriage setting (with preferences on both sides). We believe that
sr-grp, and its bipartite restriction, are promising models in which to begin to
solve Gärdenfors’ original problem.
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