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Abstract: We consider the design of a model predictive guidance controller in a cascaded control
scheme for an autonomous kite with significant input delay. The rate of change of the signal
commanded by the guidance is bounded to ensure robust performance of the underlying tracking
controller. We analyse the limitations of the tracking controller arising from model parameter
uncertainty and input delay. The delay is accounted for in the control design by predicting the
values of the feedback variables ahead of time based on the past inputs and the system models.
To account for changing operating conditions the model parameters are updated online. The
proposed method has been tested in a real-time hardware-in-the-loop simulation study.

Keywords: Airborne wind energy, renewable energy systems, predictive control, delay
compensation, robust control, cascade control

1. INTRODUCTION

Airborne Wind Energy (AWE) generators extract wind
power from aerodynamic forces acting on a tethered wing
or kite. Such systems have been envisioned as an alterna-
tive to conventional wind turbines due to lower material
costs and the ability of reaching higher altitudes where
the wind is typically stronger and more consistent. To
date, many different types of AWE systems exist and an
overview of the field can be found in Ahrens et al. (2013).

We consider a ground-based kite system where power is
generated at winches on the ground by unreeling tethers
connected to a kite flying in crosswind motion, i.e. approx-
imately perpendicular to the wind direction. The system
operates in a periodic two-phase cycle as, for example,
demonstrated in Zgraggen et al. (2015). In the so-called
traction phase, power is generated by flying with high
tether forces; in the retraction phase, the kite is reeled
back in under low tether forces. In this work, we focus on
the flight control during the traction phase. In particular,
we consider the flight control of a two-line kite system with
ground-based steering actuation. For experimental imple-
mentations of flight controllers, feedback variables relating
to the kite flight direction have been shown to be useful in
cascaded control approaches, see e.g. Erhard and Strauch
(2013a); Fagiano et al. (2014). They employ model-free
guidance strategies based on switching reference signals to
fly figure-of-eight patterns.
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The steering control performance, especially for ground-
based systems with line angle measurements, can be af-
fected by estimation and actuation delay. Kite state es-
timation given output delay is addressed in Polzin et al.
(2017). In Wood et al. (2015a) the estimated kite heading
angle was related to the steering input with a model that
includes an input delay. This model was applied to improve
the tracking performance in the inner loop of the cascaded
control approach in Fagiano et al. (2014).

Kinematic models have been proposed in Rontsis et al.
(2015); Erhard and Strauch (2013b); Wood et al. (2015b)
to further link the kite heading angle to the overall kite mo-
tion. In Rontsis et al. (2015) a kinematic model was used
to develop a delay-compensating path controller which
was experimentally demonstrated for constant line length.
Wood et al. (2015b) also used a kinematic model includ-
ing input delay to further improve the outer loop of the
control approach in Fagiano et al. (2014). The proposed
method includes a figure-of-eight path planning strategy
in which limitations on the tracking bandwidth imposed
by the input delay are considered. Online identification
of the model parameters, the input delay and steering
gain, allowed adaptation of the reference path to varying
limitations during the traction phase, e.g. those arising
from varying wind conditions and winch settings.

In this work, we extend the guidance strategy in Wood
et al. (2015b) by formulating an optimisation problem
with constraints on the input, input rate, and on the
kite position. Respecting the input rate constraint in
the cascaded control architecture ensures robust tracking
performance of the underlying controller. Model Predictive
Control (MPC) is an optimisation based method that
accounts for constraints on the states and inputs of a



θ(t)r

W
ind

   D
ire

cti
on

ex

ez

eyϕ(t)ϕW(t)
Fig. 1. Kite position, p, in the ground coordinate frame,

(ex, ey, ez), related to the elevation angle, θ, azimuth
angle, φ, and wind window for line length, r.

control system. MPC applied to kites has been studied, e.g.
in Canale et al. (2010); Ilzhöfer et al. (2007). In Diehl et al.
(2005) a real-time iteration scheme is considered, where
an MPC problem with nonlinear kite dynamics is solved
by iteratively linearising around past solutions. In this
work, we consider a path following method, similar to the
approach in Liniger et al. (2015), where the dynamics are
linearised around the reference path. We design a model
predictive guidance controller that minimises the deviation
from a reference path while satisfying constraints imposed
by the limitations of the lower-level tracking controller
that are subject to model uncertainty and input delay.

2. CONTROL SCHEME

We consider a two-line tethered kite system in the traction
phase. The wing is flown in crosswind conditions while the
tethers are slowly reeled out in order to generate power.
The control of the tether length is decoupled from the
flight controller which steers the kite to achieve figure-of-
eight flight paths. The steering input, δ, is the difference in
line length between the right and the left line. The position
of the kite in Cartesian coordinates,

p =

[
px
py
pz

]
=

[
r cos(θ) cos(φ)
r cos(θ) sin(φ)

r sin(θ)

]
, (1)

is obtained from measurements of the elevation angle, θ,
the azimuth angle, φ, and line length, r. Note that θ is
defined as the angle from the ground plane towards the
kite positions, see Figure 1.

For flight control of autonomous kites the heading angle,
γ, has proven to be a suitable feedback control variable. It
has been defined in Fagiano et al. (2014) as,

γ = arctan

(
cos(θ)φ̇

θ̇

)
, (2)

and is the angle between the local north of the kite and
the projection of the kite velocity onto the tangent plane of
the wind window at the kite position. We further consider
the control model presented in Wood et al. (2015b),

γ̇(t) = Kδ(t− td) , (3a)

θ̇(t) =
vθφ
r

cos(γ(t)) , (3b)

φ̇(t) =
vθφ

r cos(θ(t))
sin(γ(t)) , (3c)
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Fig. 2. Cascaded control architecture where the inner
loop controls the heading angle, γ, given the signal
commanded by the outer loop guidance controller,
γcmd, based on the deviations of the line angles, θ
and φ, from the reference figure-of-eight path, ξ∗.

where the model parameters consist of the delay, td, the
tangential velocity of the kite, vθφ, the line length, r, and
the steering gain, K. We assume that these parameters
vary only slowly such that they can be approximated
as constants within the control horizon and are adapted
online based on updated measurements.

2.1 Cascaded Control

Model (3) is nonlinear and subject to significant input
delay, td. As shown in Figure 2, we split the problem of
following the figure-of-eight path, ξ∗, into two parts: the
linear steering model (3a) is used in a low-level controller
for tracking a commanded signal, γcmd; this commanded
signal is produced by the predictive guidance strategy
based on the nonlinear model given in (3b) and (3c).

Starting from the control approach presented in Wood
et al. (2015b), we propose an improved guidance control
in this work to ensure the ability of the low-level controller
to track the commanded signal. In a path-planning step a
periodic reference figure-of-eight path in the (θ, φ)-plane is
obtained by designing the corresponding flight direction as
a sinusoidal function which renders a closed figure-of-eight
trajectory according to the model equations (3b) and (3c).
The resulting reference path, denoted by ξ∗ = (θ∗, φ∗), is
parametrised by the cycle frequency ω∗.

As the model used in the low-level controller is linear, a
frequency domain robustness analysis can be performed
to identify and parametrise the limitations of the tracking
controller. In contrast to the high-level controller con-
sidered in Wood et al. (2015b), the guidance controller
presented in Section 3 accounts for constraints that restrict
the position of the kite in the wind window and, more
crucially, shape the commanded heading angle signal in a
way that it can be tracked by the low-level controller.

In Wood et al. (2015a) the low-level tracking controller
is designed as a Smith predictor. A nominal proportional
controller, C0, is designed assuming an idealised delay-
free plant, γ = G0(s)δ, where we use operator notation
to denote the input δ being applied to the linear system
with transfer function G(s). The delay is accounted for in
the system model,

G(s) = G0(s)e−std =
K

s
e−std , (4)

used in the design of the controller,

C(s) =
C0

1 + C0G0(s)(1− e−std)
. (5)



Neglecting any model mismatch this controller achieves a
closed-loop response, γ = T (s)γcmd, that is the same as
the desired nominal response shifted by the time delay,

T (s) =
L(s)

1 + L(s)
=

L0(s)

1 + L0(s)
e−std = T0(s)e−std (6)

with L0(s) := C0G0(s) and L(s) := C(s)G(s).

2.2 Limitations of the Tracking Controller

To generate signals that can be tracked reliably by the
Smith predictor (5) we derive a bound on the rate of the
commanded signal such that robust tracking performance
is guaranteed when considering uncertainty in the steering
gain, K, and time delay, td. This bound, lr, is taken into
account as an input rate constraint in the optimisation
performed in the guidance presented in Section 3.

We consider a model uncertainty description for first
order linear systems with input delay given in Laughlin
et al. (1987). That is, we consider the perturbed transfer
functions, Gp(s), in the set

G :=
{

(1 +Wm(s)∆(s))G(s)
∣∣∣‖∆(s)‖∞ ≤ 1

}
,

where the uncertainty weight satisfies,

Wm(jω) =

{∣∣K+δK
K e−jδtdω − 1

∣∣ if ω < π
δtd
,∣∣K+δK

K

∣∣+ 1 if ω ≥ π
δtd
,

with δK and δtd being the largest considered deviations
of the model parameters from the estimated values used
in the plant model (4). ∆(s) is the unknown but bounded
perturbation.

The Smith predictor in (5) can be interpreted as the
application of the nominal control gain, C0, to the signal
γcmd − γ̂td , where γ̂td := γ + G0(s)(1 − e−std)δ is the
prediction of the value of γ, td ahead of time, given its
current value and the past control inputs.

In the guidance control design we assume that the heading
angle follows the commanded value with a time delay,
γ(t) ≈ γcmd(t− td). For evaluating the performance of the
tracking controller we therefore consider the closed-loop
transfer function, Std(s), between the steering input, δ(t),
and the shifted tracking error etd(t) := γcmd(t)−γ(t+ td).
Assuming no parameter mismatch we have Std(s) = S0(s);
considering perturbed plants Gp(s) ∈ G we have,

Sptd(s) =
1 + L(s)(1− estd) + L(s)(1− estd)Wm(s)∆(s)

1 + L(s) + L(s)Wm(s)∆(s)
.

To keep the shifted tracking error small we bound the
magnitude of the commanded signal, |γcmd| ≤ lm, and
its derivative, |γ̇cmd| ≤ lr. This objective is approximately
described in the frequency domain with the performance
specification of ensuring |etd(ω)| < be while |γcmd(ω)| ≤
lm, |ωγcmd(ω)| < lr, for all frequencies ω. To capture this
specification, we define the performance weight,

Wp(jω) =

{
lm
be

if ω < lr
lm
,

lr
beω

if ω ≥ lr
lm
.

(7)

Satisfying the performance specification robustly is equiv-
alent to

sup
‖∆‖∞≤1

‖Wp(jω)Sptd(jω)‖∞ < 1 . (8)
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Fig. 3. Robustness analysis for typical parameter values.
The red line captures the right-hand of (9); the black
dotted line depicts the structured singular value.

Given the control, model, and weighting parameters, C0,
K, td, δK, δtd, lm, be, and lr, upper and lower bounds for
sup‖∆‖∞≤1 ‖Wp(jω)Sptd(jω)‖∞ can be found numerically
by structured singular value analysis. To select the pa-
rameter lr from a closed-form expression such that robust
performance is guaranteed we consider a sufficient analytic
condition for satisfying (8),

1 > |Wm(jω)T0(jω)|
(
1 + |Wp(jω)||1− ejωtd |

)
+ |Wp(jω)S0(jω)| , (9)

for all frequencies ω. See Appendix A for this derivation.

Based on (7) and (9), the sufficient condition on robust
performance depends on the derivative of the signal that is
to be tracked. For larger time delays, the roll-off frequency
of the performance weight in (7) has to be lower to ensure
robust tracking performance. Assuming a fixed upper
bound on the magnitude of the commanded signal, lm,
and given a nominal control gain, C0, the time delay, td,
and the uncertainty levels, δK and δtd, lead to an upper
bound on the rate of the commanded signal, lr, for which
robust performance is guaranteed by (9).

An example of the closed-loop transfer function magni-
tudes, weighting functions, and robustness analysis func-
tions for typical parameter values observed in experiments
is shown in Figure 3. The inverse of the weighting func-
tions are plotted to illustrate that nominal performance
and robust stability are satisfied because |S0| lies below

1
|Wp| and |T0| lies below 1

|Wm| respectively. Considering

20% uncertainty in the model parameters, δK = 0.2K,
δtd = 0.2td, robust tracking of the commanded signal
with maximal tracking error be = 0.8, is guaranteed if the
red line representing the right hand side of (9), denoted

as |WpŜ
p
td
|, remains below 1. The nominal control gain,

C0 = −0.83 m, and the bound on the rate of the com-
manded signal, lr = 0.89 s−1, have been selected such that
this is the case. The dotted black line shows the value of
the structured singular value that calculates the left hand
side of (8) accurately for this case. We observe the gap
between the red and the dotted black line to assess the
conservativeness of the sufficient condition given in (9).

3. GUIDANCE CONTROL

In the guidance we consider a model-based optimisation
approach and assume perfect delay compensated tracking
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in the low-level controller, γ(t) = γcmd(t − td). The
objective is to find a commanded heading angle, γcmd,
that minimises the deviation of position trajectory in line
angles, ξ = (θ, φ), from the reference figure-of-eight path,
ξ∗ = (φ∗, θ∗), while satisfying constraints on the position
and the commanded signal. The rate of the commanded
signal is bound such that it satisfies the limits of the
tracking controller discussed in Sections 2.2, |γ̇cmd| ≤
lr. Constraint satisfaction is the main advantage of the
method presented here in comparison to the unconstrained
approach introduced in Wood et al. (2015b).

3.1 Delay Compensation

The input delay of the steering dynamics carries through
to the guidance control. The value of the commanded
heading angle at time t does not affect the position until
time t + td. A delay compensating scheme, where the
predicted values of the state after the delay time, td, are
fed to the MPC, is applied as illustrated in Figure 4.

By applying forward Euler discretisation to the model
equations (3b) and (3c) we obtain a discrete-time model,

ξk+1 := [θk+1 φk+1]
>

= fd(ξk, γk), where k denotes
the discrete time step with sampling time, Ts, and d
is an integer such that td = dTs. This model and the
assumption γk = γcmd

k−d is used to predict the positions

d-steps ahead of time, ξ̂k+d, given the current positions,
ξk, and the d past commanded heading angles, γcmd

hist :=
(γcmd
k−d, γ

cmd
k−d+1, . . . , γ

cmd
k−1).

3.2 Predictive Path Following

The reference figure-of-eight path is generated in the
path-planning step discussed in Section 2.1. The path
is discretised, ξ∗ = (ξ∗1 , ξ

∗
2 , . . . , ξ

∗
N ), ξ∗i = (θ∗i , φ

∗
i ), such

that it is periodic and fulfils the system dynamics, i.e.
there exists a sequence of reference directions, γ∗ =
(γ∗1 , γ

∗
2 , . . . , γ

∗
N ), such that (θ∗i+1, φ

∗
i+1) = fd(θ

∗
i , φ
∗
i , γ
∗
i ), for

i = 0, 1, . . . , N − 1 and (θ∗1 , φ
∗
1) = fd(θ

∗
N , φ

∗
N , γ

∗
N ).

We linearise the dynamics around the reference trajectory,
starting at the closest point from the d-step ahead predic-
tion, ξl. and obtain a linear time-varying deviation system,

χi+1 ≈ Aiχi+Biui, where χi := ξ̂k+d+i−ξ∗l+i, ui := γcmd
k+i−

γ∗l+i, Ai := ∂f
∂ξ (ξ∗l+i, γ

∗
l+i), and Bi := ∂f

∂γ (ξ∗l+i, γ
∗
l+i).

The commanded heading angle is determined by the
optimiser of the following optimisation problem:

min
u,ε

H−1∑
i=0

(
χ>i Qχi+Ru

2
i +ε>i Sεi

)
+χ>HQHχH+ε>HSHεH ,

s. t. χi = Aiχi +Biui , (10)

χ
i
≤ χi + εi , χi − εi ≤ χi , εi ≥ 0 ,

ui ≤ ui ≤ ui , ∆ui ≤ ∆ui ≤ ∆ui ,
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Fig. 5. Predicted position trajectory given the current
state (blue), delay compensation of td = 0.54s (cyan),
and MPC prediction of 0.3s (magenta) for following a
reference figure-of-eight path (green).

with the input sequence u := (u0, u1, . . . , uH−1), slack
variable sequence ε := (ε1, ε2, . . . , εH), slew rate ∆ui :=
ui − ui−1, and diagonal, positive-definite cost weighting
matrices Q,QH , R, S, SH .

The slack variables ensure that the state constraints, with
χ = ξmin − ξ∗l+i and χ = ξmax − ξ∗l+i, are soft. That
is, the limits on the kite position, ξmin, ξmax can be
violated with high penalisation, S � Q, SH � QH .
The soft constraints prevent the optimisation problem
from becoming infeasible when there is no possibility of
satisfying the bounds on the position. This is important
for the application to autonomous kites, particularly, when
initialising the controller.

The input bounds, ui := −lm − γ∗l+i, ui := lm − γ∗l+i,
with lm < π, limit the magnitude of the commanded
heading angle and prevent the guidance controller from
commanding the kite to fly straight down towards the
ground. The slew rate bounds, ∆ui := −lrTs − (γ∗l+i −
γ∗l+i−1), ∆ui := lrTs − (γ∗l+i − γ∗l+i−1), limit the rate at
which the commanded flight direction can change. This
bound is crucial in this control scheme and is to be set in
correspondence with the tracking limitations discussed in
Section 2.2 to ensure good control performance.

Note that the kite dynamics are predicted up to d+H steps
ahead of the current time step. The first d time steps of the
prediction are given by the d past inputs and the nonlinear
system model. The second part of the prediction with
length H depends on the current and future inputs based
on the linearised time-varying system model. Figure 5
illustrates the combined prediction horizon of the predictor
and MPC block.

The commanded heading angle is set to be the first element
of the optimal sequence, uopt, that solves (10), γcmd

k =

uopt
0 + γ∗l . The optimisation is repeated in every discrete

time step with a receding horizon.

4. RESULTS

The control scheme is implemented in Matlab Simulink
running on a Speedgoat real-time target machine and
tested with the high fidelity kite simulation framework
presented in Gohl and Luchsinger (2013). This kite simula-
tion tool contains a quasi-steady three-dimensional model
of the kite aerodynamics and a tether model that accounts
for line dynamics and line stretching. The real-time target
machine running the controller is the same hardware as
used in real-world experiments in the Autonomous Air-
borne Wind Energy (A2WE) research project. The control
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block has access to the simulated measurement variables
produced by the simulation tool running on a separate
computer via serial connection. The Simulink block per-
forms the state estimation, data processing, and control
input computation within Ts = 10 ms as required in the
real-world experiments.

The optimisation problem (10) is solved online. A cus-
tomised solver is implemented with the optimisation soft-
ware generation tool FORCES Pro by Domahidi and Jerez
(2014). A Primal-Dual Interior-Point method is applied.
The input rate constraint is implemented by augmenting
the state with the previous input and solving a standard
MPC problem with modified dynamics such that the input
rate is part of the decision variables. The optimisation
horizon is selected to be H = 30.

We consider a constant wind speed of 10 ms−1 aligned in
the direction of the x-axis. The winch control is simulated
to follow a function linking the line force and the reel-
out speed. Measurement noise is simulated and a state
estimation approach as in Fagiano et al. (2014) is applied
to obtain position and velocity estimates. The model pa-
rameters in (3) are estimated online and adapted through-
out the simulation to changing conditions as suggested
in Wood et al. (2015a). Despite not including wind vari-
ation in the simulation the estimated model parameters
vary depending on the flight conditions as a result of
varying line lengths, flight patterns and winch settings.

We set the weights in the MPC cost function to be Q =
diag(1, 2), QH = 5 ·Q, R = 5 ·10−3, S = 105 ·Q, and SH =
105 ·QH . The bound on the magnitude of the commanded
signal is lm = 2.5. Considering 20% uncertainty in td and
K, the control gain, C0, is set adaptively to the maximal
value such that robust stability is satisfied and the bound
on the rate of the commanded signal, lr, is subsequently set
to the maximum value such that the robust performance
condition (9) is satisfied.

Figure 5 shows the flight path predicted by the guidance
controller. Given the estimated position of the kite in
terms of line angles, (θ, φ), shown in blue, the predicted
position of the kite after the delay time is computed in the
predictor block and illustrated in cyan. The MPC min-
imises the further evolution of the kite with an input rate
constraint of lr = 0.99 s−1 which satisfies Equation (9).
The predicted path applying the optimal input sequence,
uopt, is shown in magenta. The corresponding derivative
of the optimiser sequence is plotted in Figure 6. In this
example, the rate hits the rate constraints. That is, in
this situation the commanded turn rate is limited in order
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Fig. 7. Trajectory of the kite position (blue) following a
varying reference figure-of-eight path, ξ∗, (green) for
a simulation with slow line reel-out.

to respect the bound imposed by the underlying velocity
vector orientation tracking controller.

Next, we consider a simulation with slow line reel out from
124m to 216m in 300s. The reel-out speed is a function of
the line forces resulting in a non-uniformly increasing line
length. Figure 7 shows the trajectory of the line angles
throughout the simulation in blue. The trajectory follows
varying figure-of-eight paths shown in green. Note that
despite the figure-of-eight cycles appearing smaller in the
(θ, φ)-plane for longer line lengths, the actual path length
per cycle in (x, y, z)-coordinates is increasing.

As the line length, the velocity and actuation pattern
change, the forces acting on the wing and the lines vary.
These variations influence the dynamics. To account for
the changing operating conditions the model, parame-
ters are re-estimated twice per figure-of-eight cycle. With
varying model parameters the reference path, ξ∗, and the
control parameters are also changed. In particular, the rate
limit, lr, is adapted to the increasing delay observed with
increasing tether length. Figure 8 shows the evolution of
the model parameters and the adapted rate limit to ensure
good tracking performance throughout.

5. CONCLUSION

An optimisation based MPC path-following guidance has
been designed that accounts for limitations of the under-
lying tracking controller in a cascaded control architecture
for a kite system affected by input delay. The limitations
of the tracking controller arise from uncertainty in the
model used for delay compensation and feedback control.
Good tracking performance can be guaranteed despite
these limitations by limiting the rate of the commanded
signal produced by the guidance controller. This is encoded
into the optimisation problem as input rate constraint.

Given delay compensated predictions, the MPC is based
on dynamics that are linearised around the reference path.
The models applied are of low order and neglect variations
of slowly evolving variables such as the line length or the
input delay. Instead, these parameters are updated online
based on current measurement data. Consequently, the
bounds on the limitations are adapted to account for the
varying operating conditions.

The path-following control method has been successfully
tested in a hardware-in-the-loop simulation study on a
real-time computer running at a sampling time of 10 ms.
Future work will include disturbance models in the analy-
sis of the control limitations.
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Appendix A. ROBUST PERFORMANCE

In this section we derive the sufficient condition given
in (9) for robust performance defined in (8). We start by
finding an upper bound on sup|∆(jω)|≤1 |S

p
td

(jω)|,
sup

|∆(jω)|≤1

|Sptd(jω)|

≤
sup|∆(jω)|≤1 |1 + L(jω)(1− ejωtd)(1 +Wm(jω)∆(jω))|

inf |∆(jω)|≤1 |1 + L(jω)(1 +Wm(jω)∆(jω))|

=
|1 + L(jω)(1− ejωtd)|+ |L(jω)(1− ejωtd)Wm(jω)|

|1 + L(jω)| − |L(jω)Wm(jω)|
By applying S0(jω) + T0(jω) = 1, S(jω) + T (jω) = 1,
and (6), we get a sufficient condition for robust perfor-
mance if the following holds for all frequencies ω,

1 >|Wm(jω)| |L(jω)|
|1 + L(jω)|

+ |Wm(jω)Wp(jω)| |L(jω)(1− ejωtd)|
|1 + L(jω)|

+ |Wp(jω)| |1 + L(jω)(1− ejωtd)|
|1 + L(jω)|

=|Wm(jω)T (jω)|
+ |Wm(jω)Wp(jω)T (jω)(1− ejωtd)|
+ |Wp(jω)||S(jω) + T (jω)− T0(jω)|

=|Wm(jω)T0(jω)|
+ |Wm(jω)T0(jω)||Wp(jω)(1− ejωtd)|
+ |Wp(jω)||1− T0(jω)|

= |Wm(jω)T0(jω)|
(
1 + |Wp(jω)||1− ejωtd |

)
+ |Wp(jω)S0(jω)| .


