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CTCF orchestrates the germinal centre
transcriptional program and prevents premature
plasma cell differentiation
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In germinal centres (GC) mature B cells undergo intense proliferation and immunoglobulin
gene modification before they differentiate into memory B cells or long-lived plasma cells
(PC). GC B-cell-to-PC transition involves a major transcriptional switch that promotes a halt
in cell proliferation and the production of secreted immunoglobulins. Here we show that the
CCCTC-binding factor (CTCF) is required for the GC reaction in vivo, whereas in vitro the
requirement for CTCF is not universal and instead depends on the pathways used for B-cell
activation. CTCF maintains the GC transcriptional programme, allows a high proliferation rate,
and represses the expression of Blimp-1, the master regulator of PC differentiation.
Restoration of Blimp-1 levels partially rescues the proliferation defect of CTCF-deficient
B cells. Thus, our data reveal an essential function of CTCF in maintaining the GC
transcriptional programme and preventing premature PC differentiation.
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erminal centres (GC) are microstructures that develop in

secondary lymphoid organs as a result of B-cell activation

by antigen and that allow the generation of high-affinity
memory B cells or long-lived antibody secreting plasma
cells (PC), the effector cells of the humoral immune response!-2.
After antigen engagement, naive B cells are activated
by interaction with CD4% T cells and initiate a vigorous
proliferative response that promotes the clonal expansion of the
cells that recognized the antigen. Proliferating GC B cells engage
in the somatic remodelling of immunoglobulin (Ig) genes by
somatic hypermutation, which introduces mutations in the
variable region of the immunoglobulin genes and generates
clonally related B cells expressing immunoglobulins with slightly
altered binding specificities!>. Within these closely related clones,
only those B cells with a higher affinity for the initiating antigen
are selected for survival and further proliferation in the process
known as affinity maturation?. Thus, the biology of GCs is
extremely complex and entails proliferation, B-cell receptor
signalling for survival, cell death and cell fate decisions along
with a significant reorganization of the genomic architecture that
encodes the GC B-cell transcriptome?.

The exit of B cells from the GC and their differentiation
into PCs involves a major transcriptional switch that promotes on
one hand, a halt in cell-cycle progression and immunoglobulin
diversification, and on the other, a boost in the transcription of
immunoglobulin genes togsether with a massive production of
secreted immunoglobulin®. Two important transcriptional
regulators orchestrate the transition from naive to GC B cell
and from GC B cell to PC: Bcl-6 and Blimp-1. The transcriptional
repressor Bcl-6 is considered the master regulator of the
GC reaction. Bcl-6 is upregulated at the GC stage and regulates
the expression of genes involved in B-cell activation, survival,
DNA-damage response and cell-cycle arrest, among other
pathways. Mice lacking Bcl-6 cannot form GCs or produce
high-affinity antibodies (reviewed in ref. 6). Blimp-1 is a
transcriptional regulator expressed at the transition from GC to
PC differentiation. B cells that lack Blimp-1 are unable to proceed
to the PC fate and cannot secrete immunoglobulins’. Blimp-1
acts as a transcriptional repressor that promotes B-cell
proliferation arrest, establishes the PC transcriptional progra-
mme and triggers immunoglobulin secretion’ !, Importantly,
Bcl-6 and Blimp-1 establish mutual negative regulatory loops,
such that Bcl-6 prevents Blimp-1 expression and Blimp-1 is
considered key to extinguish the GC reaction®!112, In this regard,
the GC and PC differentiation stages can be considered as
antagonistic transcriptional programs orchestrated by Bcl-6 and
Blimp-1.

The CCCTC-binding factor (CTCF) is a ubiquitous architectural
protein with eleven zinc-finger domains. Although initially
described as a transcriptional regulator of the c-myc proto-
oncogene!3~1° that establishes fhysical barriers on the DNA acting
as a transcriptional insulator', studies have shown that CTCF is
also associated with regions of active transcription!®. CTCF
mediates long-range chromatin loops to facilitate or prevent
promoter—enhancer interactions'’"!%, suggesting that CTCF may
have a general function in the control of gene transcription
(reviewed in ref. 20). A number of studies have addressed
the function of CTCF during B-cell development. Removal of
CTCF-binding sites at the immunoglobulin heavy chain locus has
revealed an important function of CTCF in the regulation of V(D)]
recombination during bone marrow differentiation. In addition,
elimination of CTCF in early B-cell precursors, although
compatible with immunoglobulin heavy chain recombination,
resulted in a block in B-cell differentiation in the bone
marrow?! 2%, However, the function of CTCF in mature B cells,
and particularly during the GC reaction, is unclear.

2

Here we use a conditional mouse model to deplete CTCF
specifically in GC B cells. We find that CTCF is required for the
GC reaction in vivo. By contrast, the sensitivity to CTCF
deficiency in vitro is selectively dependent on the pathways
mediating B-cell activation. Extensive transcriptome and
functional analyses reveal that CTCF is required to maintain
the GC transcriptional programme and to prevent premature PC
differentiation by facilitating cell proliferation and by blocking
Blimp-1 expression. Thus our data unveil CTCF as an important
regulatory factor for late B-cell differentiation.

Results

CTCEF is required for the germinal centre reaction in vivo. To
address the role of CTCF during the GC reaction we specifically
depleted CTCF in GC B cells by breeding mice carrying a floxed
CTCF allele with transgenic AID-CRE mice (AID-CRETG/ +),
where the Cre recombinase is inserted together with a cDNA
encoding the human CD2 molecule (hCD2) in a BAC construct
that contains the complete activation-induced deaminase (AID)
locus (Supplementary Fig. la). AID is a deaminase expressed
in GC B cells that initiates antibody diversification by
somatic hypermutation and class switch recombination. Thus, in
CTCHY,~ AID-CRET®/* mice the expression of CRE and
the deletion of CTCF is triggered by the expression of
AID—therefore specifically expressed in GC B cells—and surface
expression of hCD2 can be used to track GC B cells and CTCF
depletion (Supplementary Fig. 1b). As expected, analysis of B-cell
differentiation in bone marrow and spleen did not show
any difference between CTCFf; AID-CRET®+ and CTCFY*;
AID-CRET™®*  mice  (Supplementary ~Fig. 1lc-e and
Supplementary Table 1), indicating that B-cell differentiation is
not affected before GC formation in CTCF"; AID-CRETS/+
mice.

To determine the role of CTCF in GCs, we immunized CTCFf;
AID-CRET®/* (CTCF deficient), and CTCF"*; AID-CRETV/+,
CTCF*/*; AID-CRETY'* CTCF*/*; AID-CRE*/* (control)
mice with sheep red blood cells (SRBC) and analysed the GC
response in spleen 7 days later (Fig. la—c). We found that the
proportions of GC B cells (Fas ™ GL7 7) and IgG1 T -switched cells
were markedly reduced in CTCF; AID-CRET®* mice when
compared to all groups of control mice (Fig. 1a,b). Accordingly,
the e)%ression of hCD2 is almost undetectable in CTCF/LATD-
CRETY* mice (Fig. 1ab). The absence of GC B cells upon CTCF
depletion was also evident by immunofluorescence staining, which
showed that immunized CTCFfl mice have normal splenic and
follicular architecture but completely lack PNA+, GC B cells
(Fig. 1c). Given that we did not detect any significant difference
among the three control groups of mice, hereafter all experiments
will be performed using CTCFY*; AID-CRET*+ (CTCFV* for
brevity) and CTCF"%; AID-CRET®+ (CTCF/) littermates as
control and CTCF-deficient groups, respectively. Consistently with
the novo GC formation, we found a profound GC block in Peyer’s
patches (Supplementary Fig. 1f). Together, these results show that
CTCEF is absolutely required for the GC reaction in vivo.

B-cell activation pathway determines CTCF loss sensitivity.
To address the molecular mechanisms of GC impairment in
CTCEF-deficient mice we made use of a standard in vitro system in
which LPS/IL4 stimulation of naive B cells recapitulates many
features of the GC reaction such as induction of B-cell
proliferation, AID expression and class switch recombination.
Splenic B cells from CTCFfl or CTCFV + mice were stimulated
with LPS/IL4 and we used the expression of the hCD2 reporter as
a surrogate to track the extent of B-cell activation. Surprisingly,
we did not find any difference in the proportion of hCD2 positive
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Figure 1| CTCF is required for the germinal centre reaction. (a) FACS analysis of GL7, Fas, IgG1 and hCD2 expression in spleen B cells from CTCF/*;
AID-CRE*/+ (n=5), CTCF*/+;AID-CRE'® *+ (n=6), CTCH/*+,AID-CRET* (n=5) and CTCA": AID-CRET®/*+ (n=5) mice 7 days after SRBC
immunization. Plots are gated on B220 T cells (top) or on total live lymphocytes (middle and bottom). (b) Quantifications of GL7, Fas, IgG1and hCD2 cells as
percentages within B220* cells. ***P<0.007; ****P<0.0001. (¢) Confocal immunofluorescence microscopy of immunized spleen cryosections from
CTCF*/+;AID-CRE*/+, CTCF*+/+;AID-CRET®/+, CTCF/ +;AID-CRET™™ * and CTCFfl AID-CRET®/+ mice. The sections were stained with anti-B220
(green), PNA (red) and DAPI. Scale bar, 200 um. Mean values (b)  s.d. are shown. Statistical analysis was done with two-tailed unpaired Student's t-test.

cells between CTCF deficient and control mice (82.84% * 7.3% in
CTCFY+ cells and 84.31% + 10.7% in CTCF/1 cells) (Fig. 2a,b).
To rule out that the absence of phenotype could be due to a
defective deletion of the CTCF-floxed allele, we measured the
levels of CTCF in sorted hCD2 " B cells from LPS/IL4 cultures
(Fig. 2c). We observed a strong reduction of CTCF protein
and mRNA levels in CTCFfl compared with CTCFV+ mice
(Fig. 2d), suggesting that the disparity between the results
obtained in vivo and in vitro is likely due to the failure of LPS/IL4
stimulation to faithfully recapitulate the need for CTCF in vivo.

To address this issue, we sought for in vitro stimulation
conditions that could better mimic in vivo B-cell activation and
decided to use a strategy where B cells can be stimulated in vitro
by T cells in the presence of immobilized anti-CD3 together with
soluble anti-CD28, as previously described3®-32. Under these
conditions, we observed that the population of hCD2 positive
cells, used to track B-cell activation, was significantly reduced
in the CTCF-deficient samples compared with control mice
(72h: 17.34% + 7.2% in CTCF+ cells versus 10.71% + 2.9% in
CTCF cells; 96h: 23.67% +7.2% in CTCFY+ cells versus
15.33% * 3.8% in CTCF cells; percentages of hCD2* gated in
B220" cells) (Fig. 2ef). Quantification of CTCF protein in
hCD2 7 cells revealed a similar degree of depletion to LPS/IL4
cultures (Fig. 2g), along with a significant reduction of CTCF
mRNA levels (Fig. 2h). Therefore, the distinct impact of CTCF
deletion in LPS/IL4 versus CD3/CD28 T-stimulated B cells was
not due to differential degree of CTCF depletion as measured by
protein levels (Fig. 2c,g and Supplementary Fig. 2) by RNA levels

(Fig. 2d,h) or allele excision (Supplementary Fig. 3a,b). Likewise,
the increased sensitivity to CTCF loss of CD3/CD28-stimulated B
cells could not be accounted for by an increased proliferation rate
under these conditions (Supplementary Fig. 3c). Thus, our data
suggest that similarly to GC B cells in vivo, B cells activated
in vitro in the presence of T cells are sensitive to CTCF loss.
In contrast, B cells stimulated by LPS and IL4 seem refractory
to the absence of CTCF.

T-B-cell co-cultures recapitulate the GC reaction. To under-
stand the differential requirement for CTCF of B cells under
different activation cues, we first performed RNA-seq of hCD2 ™
CTCF proficient B cells stimulated with LPS/IL4, hCD2" B cells
stimulated with CD3/CD28 T cells and in vivo activated Fas™
GL7% GC B cells (Supplementary Fig. 4a). Each of these samples
was compared with RNA-seq data from resting splenic B cells and
the three pairwise comparisons were first analysed with Venn
diagrams (Fig. 3ab). We observed that all three stimulation
conditions shared a high proportion of both downregulated
and upregulated genes. However, we found that CD3/CD28
T-stimulated B cells and GC B cells shared a specific set of
267 downregulated genes (shaded area 1), whereas LPS/IL4-
stimulated B cells only shared 97 unique downregulated genes
(shaded area 2) with GC B cells (Fig. 3a). Similar results were found
for upregulated genes (Fig. 3b). Next, we selected the 10% most
differentially expressed genes between GC and resting B cells, and
compared their expression levels in all four conditions. Importantly,
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Figure 2 | Activation context determines the requirement of activated B cells for CTCF. (a) hCD2 expression in spleen B cells from CTCF" * and
CTCF! mice after 48 and 72 h of LPS/IL4 stimulation. (b) Quantification of hCD2* cells from CTCF!/+ and CTCFV!l mice after 48, 72 and 96 h of
LPS/IL4 stimulation. n(CTCF/ +) =11; n(CTCF”f) =10. (¢) Western blot analysis of CTCF in isolated hCD2* B cells from CTCF!/+ and CTCF/fl mice
after 72 h of LPS/IL4 stimulation. CTCF amount normalized to GAPDH is shown underneath. (d) CTCF mRNA quantification by gqRT-PCR (P =0.0283) and
by RNA-seq (P=0.0003). (e) hCD2 expression in spleen B cells from CTCF+ and CTCFV mice after 48 and 72 h of stimulation in CD3/CD28 T-B
co-cultures. Histograms show hCD2 expression gated on B220 + B cells. (f) Quantification of hCD2 " cells from CTCFV+ and CTCFV# mice after 48,
72 and 96 h of CD3/CD28 T-cell stimulation. Percentages of hCD2 + cells gated on B220 + B cells are shown. n(CTCF +y=7; n(cTcF"fy =7.
P(72h) =0.0438; P(96 h) = 0.0187. (g) Western blot analysis of CTCF in isolated hCD2+ B cells from CTCF+ and CTCF"" mice after 72h of
stimulation with CD3/CD28 and T cells. CTCF amount normalized to GAPDH is shown underneath. (h) mRNA CTCF quantification by gRT-PCR
(P=0.0059) and by RNA-seq (P=0.0002). Mean values (a and e) *s.d. are shown. CTCFﬂ/*, white dots; CTCFﬂ/ﬂ; black dots. Statistical analysis

was done with two-tailed unpaired Student’s t-test.

we found a remarkable similarity between GC and CD3/CD28
T-stimulated B cells in the expression of genes related with cell cycle
and other key features of the GC reaction (Fig. 3c,d for repre-
sentative examples of some functionally relevant genes in GC B
cells, and Supplementary Fig. 4b). Together, these data indicate that
co-culturing B cells with CD3/CD28-activated T cells recapitulates
the in vivo GC transcriptional programme better than LPS/IL4
stimulation does, which in turn could explain the differential
requirement for CTCF of B cells stimulated under these conditions.

CTCEF transcriptionally regulates key processes of GC biology.
To further characterize the role of CTCF in the GC reaction, and
given the unfeasibility to obtain CTCF-deficient GC cells in vivo,
we performed RNA-seq analysis of hCD2 1 B cells after in vitro
stimulation with CD3/CD28 T cells or with LPS/IL4. We found
that 2,229 genes were differentially expressed when we compared
CTCF and CTCFY+ cells from CD3/CD28 T cultures
(adjusted P <0.05), approximately half of which were upregulated

4

(1,154) and half were downregulated (1,064) (Fig. 4a and
Supplementary Data 1). In sharp contrast, only 50 genes were
differentially expressed in CTCF versus CTCF+ hCD2*
cells from LPS/IL4 cultures (Fig. 4a and Supplementary Data 2).
This notion was reinforced after plotting the Z-scores of the 20%
most differentially expressed genes between CTCF-deficient and
control CD3/CD28 T-stimulated B cells, which showed identical
profiles in CTCF/ and CTCFY + cells after LPS/IL4 stimulation
(Fig. 4b). Together, these data agree with the finding that CTCF
is dispensable for LPS/IL4-stimulated B cells but required for
CD3/CD28 T-stimulated B cells and for GC B cells.

To gain mechanistic insights into the function of CTCF in
GC B cells we first compared the transcriptional shifts induced
in GC B cells (GC versus naive B cells) with those induced
upon CTCF depletion (CTCFY versus CTCFY +, CD3/CD28
T-stimulated B cells), and found that most (75.7%, 1,668 genes) of
all genes controlled by CTCF are part of the GC transcriptional
programme in vivo (Fig. 4c). Importantly, we observed that
almost 65% (30.7% + 34.1%) of these common genes (1,095 out
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Figure 3 | In vitro B cell stimulation through T cells recapitulates the GC reaction. RNA-seq analysis was performed in triplicate samples from
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right indicate pathways found to be enriched by Gene Ontology Enrichment Analysis. (d) Expression profile of representative individual genes selected
from ¢. For comparison, two genes with similar expression changes in GC, LPS/IL4 and CD3/CD28 sets are represented in the square below.

of 1,688) showed anti-correlative expression changes, that is,
genes normally upregulated in GC cells are downregulated upon
CTCEF depletion, and vice versa (Fig. 4d). Pathway enrichment
analysis of the genes differentially expressed upon CTCF
depletion showed enrichment in terms included in the p53
pathway, B-cell receptor signalling, hematopoietic cell lineage and
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cell cycle (Fig. 4e,f), among others. Analysis of individual genes
revealed that CTCF depletion deregulates key players of cell-cycle
progression and B-cell function (representative examples shown
in Fig. 4f). The vast majority of these genes showed antagonistic
shifts in expression levels when comparing GC and CTCF
depletion programs (Fig. 4f). Together, our results indicate that
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CTCEF is critical to regulate the expression of key components of
the GC transcriptional programme.

CTCF deficiency recapitulates key features of PCs. Our
transcriptome results indicate that numerous genes involved in

cell-cycle progression fail to be upregulated in CTCF-deficient
cells (Fig. 4f). To address whether cell-cycle progression was
affected by the lack of CTCF we /pf)lerformed Hoechst staining of
CD3/CD28 T-stimulated CTCF and CTCF* B cells. We
observed a reduced proportion of $/G2 phase CTCFf cells
(42.8% £ 5.4%) when compared with control cells (52.9% + 4.8%),
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as well as an increase in the proportion of G1 ﬂphase in CTCF-
deficient cells (55.2% +5.6% in CTCFVT cells versus
44.7% +53% in CTCFVf+ cells) (Fig. 5a). Expectedly, no
proliferation defect was detected in LPS/IL4-stimulated B cells
(Supplementary Fig. 5). Thus, CTCF deficiency impairs the
proliferation of CD3/CD28 T-stimulated B cells.

GC and PC transcriptional programs are generally considered
antagonistic processes at least in part due to the counter-regulation
of the Bcl-6 and Blimp-1 master regulators. One of the hallmarks of
GC to PC differentiation is a halt in cell proliferation. To address
whether the proliferation defect found in CTCF-deficient B cells
could be associated with transcriptional features of PC differentia-
tion we compared the shifts found in the PC transcriptional
programme (PC versus GC transcriptomes, Y axis)®> with the
transcriptional shifts induced by CTCF deficiency (CTCFf versus
CTCFY+ CD3/CD28-activated B cells, X axis). In contrast to the
anti-correlative shifts found when compared to the GC transition
(Fig. 4d) we found a positive correlation between the
transcriptional shifts at the transition from GC to PC and those
promoted by CTCF depletion. Specifically, about 60% of the genes
showed the same sign of change in both conditions, that is,
were either upregulated both at the GC to PC transition and upon
CTCF depletion (26.4%) or downregulated in both cases (34%)
(Fig. 5b). A major category of genes showing parallel regulation in
the PC transition and upon CTCF deletion was cell-cycle genes
(Fig. 5c). These data agrees with the observation that CTCF
expression decreases at the transition from GC to PC
differentiation (Fig. 5d, data from GSE60927 (ref. 33)).
Remarkably, one of the genes upregulated upon CTCF depletion
was the master regulator of PC differentiation, Blimp-1 (refs 7,8)
(Fig. 5€). Accordingly, we found reciprocal downregulation of Bcl-6
upon CTCF depletion (Fig. 5e). To address the mechanism by
which CTCF controls Blimp-1, we first analysed published data®*
and found that CTCF binds to Blimp-1 (Prdm1 gene) in B cells
(Fig. 5f). Further, we performed chromatin immunoprecipitation
(ChIP)-quantitative PCR (qPCR) in CD3/CD28 T-cell-stimulated
B cells, and confirmed that under these experimental conditions
CTCF also binds to Blimp-1 (Fig. 5e), suggesting that direct
binding of CTCF to Prdml gene could mediate a chromatin
configuration that hinders Blimp-1 expression. In addition,
numerous PC genes were upregulated, including immunoglobulin
genes or the PC marker Syndecan-1 and genes considered direct
targets of Blimp-1, such as Myc, CIITA, Bcllla or Lta were
downregulated (Fig. 5h,i). Finally, we detected an increase in the
secretion of IgM in CD3/CD28 T-activated CTCFl B cells when
compared with CTCF+ controls (Fig. 5j), suggesting that the
generation of antibody secreting cells is more efficient in the
absence of CTCF. Together these results support the notion that
CTCF maintains the GC programme by preventing the premature
activation of the PC programme.

CD40 signalling partially rescues CTCF deficiency. To address
the contribution of Blimp-1 to the phenotype observed in
CTCF-deficient B cells we cultured B cells in the presence of
T cells and CD3/CD28 and then added anti-CD40 (Fig. 6a),
since signalling through the CD40 receptor has been shown to
downregulate Blimp-1 levels in B cells*>=37. qRT-PCR analysis
confirmed once again that CTCF-deficient B cells have higher
Blimp-1 expression levels than their littermate controls (Fig. 6b,
0.92% *0.17% in CTCFY* versus 2.97% +0.7% in CTCFI/M).
Importantly, this effect was dampened in cells treated with
anti-CD40 (Fig. 6b) (2.97% % 0.7% in CTCFl — anti-CD40 cells
versus 1.60% + 0.6% in CTCF! 4 anti-CD40 cells).

Next, we determined the proportion of B cells in the CD3/CD28
T-cell cultures after 48h of treatment with anti-CD40 (Fig. 6¢). We
observed that in the absence of anti-CD40, the proportion of
B220* B cells in the CTCF/1 B cell co-cultures is reduced by 53%
when compared with CTCF* B cell co-cultures, again reinfor-
cing the idea that CTCF is important for B-cell proliferation
(Fig. 6¢, lef}l) (42.2% + 8.5% in CTCFV+ cells versus 22.4% + 6.9%
in CTCF cells). However, in the presence of anti-CD40, this
reduction is attenuated to 77% (37.7% % 10% in CTCF cells
versus 49% + 14.1% in CTCF* control cells; P=0.2) (Fig. 6c,
right). Cell-cycle analysis expectedly revealed that CTCF/f! cultures
contained a lower proportion of cycling B cells than CTCFV +
B cells (35.7% * 7.3% versus 21% * 4.8%) (Fig. 6d, left). In contrast,
after treatment with anti-CD40, the proportion of S/G2 cells was
reduced to a much milder extent (28.5 versus 37%, P>0.05)
(Fig. 6d, right). These results indicate that signalling through the
CDA40 receptor and downregulation of Blimp-1 partially rescue the
cell-cycle impairment associated with CTCF deficiency.

Discussion
The establishment of the GC reaction and the shift to PC
differentiation involve complex transcriptional programs and the
coordinated expression of gene networks. While the function of
master transcriptional regulators in these events, such as Bcl-6
and Blimp-1 is firmly established, the impact of chromatin
structure changes at the GC to PC transition is poorly under-
stood. CTCF is believed to play general transcriptional regulatory
functions by establishing long-range DNA interactions between
distal enhancers and promoters (reviewed in ref. 20). We have
shown here that CTCF is absolutely required for the GC reaction
through the transcriptional regulation of genes required for B cell
proliferation, and that this effect is at least partially due to the
inhibition of Blimp-1, which programs GC B cells for their entry
into PC differentiation.

We report here that the sensitivity of in vitro activated B cells
to CTCF loss is highly dependent on the activation pathway.
This is an unexpected finding, given that all three scenarios of

Figure 4 | CTCF transcriptionally regulates B cell signalling and cell cycle. RNA-seq analysis was performed in triplicates from hCD2 " sorted B cells
from CTCF and CTCF" * mice after 48 h stimulation in the presence of CD3/CD28 T or LPS/IL4. Differentially expressed genes (adjusted P<0.05)
were subject to further analysis. (a) Number of differentially transcribed genes between CTCF/fl and CTCF!/ + B cells stimulated LPS/IL4 (50 differentially
expressed genes) or CD3/CD28 stimulation (2,229 differentially expressed genes) conditions. Red: upregulated genes; green: downregulated genes.
Adjusted P<0.05. See Supplementary Data 1 and Supplementary Data 2 for complete list of genes. (b) Heatmap analysis of the 20% most differentially
expressed genes between CTCFVf and CTCF/ + B cells after CD3/CD28 T stimulation. Z-scores values are represented. Clustering was performed using
the average linkage method based on Pearson correlation distance. Each column represents an independent replicate. (¢) Overlap between genes
differentially expressed in GC reaction (wild-type GC B cells versus wild-type-resting B cells, grey circle) and genes differentially expressed upon

CTCF depletion in CD3/CD28 T-stimulated B cells (CTCF/f versus CTCFV+ hCD2+ sorted B cells, red circle). (d) Two-dimension expression plot.

X axis, log2 fold values of significantly changed genes upon CTCF deficiency (CTCF! versus CTCF/ +, CD3/CD28-stimulated B cells). Y axis, log2 fold
values of significantly changed genes in GC versus resting B cells. Percentage of genes in each quadrant is shown. (e) KEGG pathway enrichment analysis
of genes differentially expressed in CTCFV versus CTCFV+ CD3/CD28-stimulated B cells. (f) Log fold change (LogFC) representation of the genes
included in the KEGG pathways analysed in (e). Black, GC versus resting B cells fold change. Orange, CTCFf versus CTCFV+ CD3/CD28 T-stimulated

splenic B cells fold change.
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B cell activation analysed here (that is, in vivo GC B cells, LPS/IL4
activation or CD3/CD28 T-dependent activation) share a big
proportion of transcriptome changes, and that all three involve an
intense proliferation rate. However, our data are reminiscent of
the finding that a proliferation defect in CTCF-deficient T cells
can be bypassed with phorbol ester and ionomycin stimulation,

which circumvents TCR signalling®®. Here we show that LPS/IL4-
stimulated B cells seem refractory to the loss of CTCF whereas
in vivo and in in vitro T co-cultures, the B-cell activation
programme is clearly impaired. This finding is supported by the
higher resemblance between GC and T-co-cultures transcri-
ptomes. Therefore our data show that LPS/IL4 activation, one of
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the most frequently used protocols for B cell activation in vitro,
falls short of recapitulating features of the in vivo GC reaction as
compared to in vitro T-cell-mediated activation. Although
beyond the scope of this work, further molecular character-
ization of these activation programs is a fascinating topic for
further investigation.

The insensitivity of LPS/IL4-stimulated B cells to CTCF loss was
molecularly supported by the finding that only 50 genes showed
altered transcriptional levels in CTCF-deficient B cells, as opposed
to >2,000 genes significantly altered in B cells stimulated by
T cells. Of note, the amount of remaining CTCF protein was
comparable under both conditions and roughly 15% of normal
levels (within CD2% sorted cells). Although we cannot discrimi-
nate whether this reflects a small proportion of cells that retain
unrecombined floxed alleles or a small proportion of CTCF protein
in many cells due to slow protein turnover, our data clearly show
that T-stimulated B cells sense this suboptimal presence of CTCF,
whereas LPS/IL4-stimulated cells do not. We speculate that the
strong signalling triggered by cytokines bypasses the need for CTCF
whereas in the context of T-cell-mediated activation in vitro or
in vivo, where the activation thresholds may become limiting,
CTCEF turns into a critical transcriptional regulator. In this regard,
residual amounts of CTCF in LPS/IL4 cells might be enough to
provide minimal architectural requirements for B-cell proliferation
and survival in the presence of cytokines. In sharp contrast, the
complete absence of GC B cells in immunized CTCF-deficient
mice, suggests that in vivo the absence of CTCF promotes either a
more profound block in proliferation or additional functional
defects. This is an important issue that deserves further analysis
with suitable mouse models.

While numerous studies have approached the DNA-binding
profile of CTCEF in different cell types and tissues, the function of
CTCEF in global transcriptional regulation has only rarely been
addressed. Strikingly, ChIP-seq analyses show that about 84% of
all CTCF-binding sites found in LPS/IL4-stimulated B cells are
shared with naive B cells (Supplementary Fig. 6) our unpublished
analysis from ref. 39. In addition, establishing a functional
correlation between a CTCF DNA-binding site and its targets for
transcriptional regulation is remarkably complex*. Thus, our
approach has directly focused on the functional impact of CTCF
deficiency by measuring the transcriptional shifts in GC B cells
and showed that CTCF is required for the transcriptional
regulation of more than 2,000 genes either directly or indirectly.

Importantly, the vast majority of CTCF-regulated genes are
part of the GC transcriptome, indicating that CTCF plays a
pivotal function in the initiation and/or maintenance of the GC
transcriptional programme. While it is likely that CTCF is
required for GC initiation, the delay of CTCF depletion—
dependent on AID expression—in our model is not suitable to
specifically ascertain that point. In contrast, our data strongly

support the view that CTCF is required for the maintenance of
the GC transcriptional programme and that it does so by
repressing the transition to PC differentiation. First, CTCF
deletion promotes a delay in cell proliferation, one of the
hallmarks of B cells exiting the GC programme. Second, we found
abnormally high levels of Blimp-1, the master regulator of PC
differentiation, in CTCF-deficient cells. Given that we only find a
mild decrease in Bcl-6 levels under these conditions, we believe
that this effect is secondary to Blimp-1 upregulation, and not vice
versa. Third, numerous other genes of the PC differentiation
programme are upregulated upon CTCF deficiency. Fourth, we
detected increased levels of IgM secretion in CTCF-deficient
cultures. Finally, restoring Blimp-1 levels by anti-CD40 treatment
partially rescues the proliferation rate of CTCF-deficient cells,
again suggesting that the proliferation defect is secondary to the
premature trigger of PC differentiation. Thus, our data reveal a
key function of CTCF in orchestrating transcriptional changes
required for the GC programme and for preventing premature
PC differentiation through Blimp-1 inhibition.

Methods

Mice and immunizations. Conditional CTCF-deficient mice were obtained by
breeding CTCFY! mice®! with AID-CRE*/ TG(ref. 42). For experiments shown in
Fig. 1 CTCE"; AID-CRETY'+, CTCPV +; AID-CRETY'+, CTCF+/+;
AID-CRET®* and CTCF*/™; AID-CRE*/™ mice were obtained after breeding
CTCF"*; AID-CRET®+ to CTCFV+ mice. For the rest of the experiments in this
work, CTCFV; AID-CRETS/+, CTCRY +; AID-CRET®* littermates were used,
obtained by CTCFY+ AID-CRET™* to CTCF'# breeding. All animals had
previously bred to C57/BL6 background. All animal procedures were conducted in
accordance with EU Directive 2010/63/UE, enforced in Spanish law under Real
Decreto 53/2013. The procedures have been reviewed by the Institutional Animal
Care and Use Committee (IACUC) of Centro Nacional de Investigaciones
Cardiovasculares, and approved by Consejeria de Medio Ambiente,
Administracién Local y Ordenacion del Territorio of Comunidad de Madrid
(Ref: PROEX 341/14). T-dependent immunizations were performed by intravenous
injection of 10% SRBCs resuspended in 100 pl of sterile PBS. Immunization
response was analysed in spleen 7 days after injection. Mice were housed in specific
pathogen-free conditions. Male and female mice between 7-13 weeks were used for
the experiments. Number of animals per group to detect biologically significant
effect sizes was calculated using appropriate statistical sample size formula and
indicated in the biometrical planning section of the animal license submitted to the
Consejeria de Medio Ambiente, Administracion Local y Ordenacion del Territorio
of Comunidad de Madrid (Ref: PROEX 341/14). Blinding and randomization was
not applicable to the animal studies.

Cell cultures. For LPS/IL4 cultures, primary B cells were purified by immuno-
magnetic depletion using anti-CD43 beads (Miltenyi Biotec) and cultured at a final
concentration of 1.2 x 10° cells per ml in complete RPMI supplemented with 10%
FBS, 50 uM of 2-BMercaptoethanol (Gibco), 20 mM Hepes (Gibco), 10 ngml ~ Lof
IL4 (PeproTech) and 25 pg ml ~ ! lipopolysaccharide (LPS, Sigma-Aldrich). In the
T-B-cell co-culture, CD43 " cells were added at a ratio 1:1 to CD43 ~ B cells in the
presence of plastic-bound anti-CD3 (Tonbo, 5pgml~!) and soluble anti-CD28
(BioXcell, 2 pgml ~ 1y for T-cell stimulation. When indicated, cells were treated
with anti-mouse CD40 (BD Pharmigen, 1 pgml ~1).

Figure 5 | CTCF deficiency recapitulates key features of plasma cells. (a) FACS cell-cycle analysis of hCD2 % cells from CTCF/ + (n=4) and CTCF/fl
(n=5) mice after 48 h of stimulation with CD3/CD28 and T cells. Numbers indicate percentages + s.d. Quantification of G1and S/G2 phase proportions is
shown on the right. p(G1) = 0.0242; p(S/G2) = 0.0221, two-tailed Student's t-test. (b) Two-dimension expression plot. X axis, log2 fold values of
significantly changed genes upon CTCF deficiency (CTCFI/f! versus CTCF+, CD3/CD28-stimulated B cells). Y axis, log2 fold values of significantly
changed genes in PC versus GC B cells (data extracted from ref. 33. Coloured dots highlight genes of the PC differentiation programme. (¢) Quantification
of significantly changed cell-cycle-related genes. Log fold change (LogFC) in PC versus GC B cells (purple) and in CTCF/fl versus CTCF/+ CD3/CD28
T-stimulated B cells (orange). (d) RNA-seq analysis of CTCF expression in GC B cells and PC (data extracted from ref. 33). (e) gRT-PCR analysis of Blimp-1
(Prdm1) and Bcl-6 expression in CD3/CD28 T-stimulated CTCF + (n=12) and CTCF/fl (n=9) hCD2* cells. P(Blimp-1)< 0.0007; P(Bcl-6) = 0.0331.
(f) CTCF binding at the Prdm1 locus in spleen B cells stimulated with LPS/IL4 (data from ref. 34). (g) CTCF ChIP-gPCR on Peaks A-C of the Prdm1 (Blimp-
1 locus in spleen B cells stimulated with CD3/CD28 and T cells for 48 h (n=3). Data show per cent of input. IgG ChlIP is shown as negative control. H19
Peaks 1-3 are shown as positive control for CTCF ChIP. Error bars indicate s.d. (h) RNA-seq analysis of Blimp-1 (Prmd1) targets in hCD2 " cells from
CTCFfl/ + (n=3) and CTCFfl/fl (n=3) mice stimulated with CD3/CD28 and T cells for 48 h. (i) Blimp-1 binding at Myc, Cdknlb, Rb1 and Ciita locus in
plasmablasts (data from ref. 9) (j) ELISA quantification of IgM secretion from CD3/CD28 T-stimulated CTCFV + (n=3) and CTCF/fl (n=3) cells for 72h
(P=0.0151). (CTCF/+, white; CTCFﬂ/ﬂ,‘ black). Statistical analysis was done with two-tailed unpaired Student's t-test.
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Figure 6 | CD4O signalling rescues Blimp-1 expression levels and cell proliferation in CTCF-deficient cells. CTCFV + (n=4) and CTCF/fl (n=5)
splenic B cells stimulated with CD3/CD28 T cells were treated with anti-CD40 antibody (4 anti-CD40), and compared to cells left untreated

(— anti-CD40). (a) Representation of the experimental approach. (b) Analysis of Blimp-1 (Prdm1) mRNA by qRT-PCR in hCD2+ CTCF/ + or CTCFI/fl cells
after 48 h without or with anti-CD40 treatment. ***P =0.0001, *P =0.0159. (c) Histograms show the percentage of B220* B cells in cTCcFV+ and
CTCF/fl B-T CD3/CD28 co-cultures after 48 h of anti-CD40 treatment. Lower bar graph shows quantification of B220 proportion at 24 and 48 h after
CD40 treatment. **P=0.0063, *P=0.023. (d) Histograms show the percentage of cycling (S + G2/M) cells in CTCF + and CTCFf B-T CD3/CD28
co-cultures after 48 h of anti-CD40 treatment. Lower bar graph shows quantification of cycling cells at 24 and 48 h after CD40 treatment. **P=0.0083,
*P=0.0126. Mean values £ s.d. are shown. Statistical analysis was done with two-tailed unpaired Student's t-test.

Flow cytometry. Single-cell suspensions were obtained from spleen after
erythrocyte lysis, and stained with fluorophore-conjugated anti-mouse or human
antibodies (BD Pharmigen or Invitrogen) to detect B220 (RA3-6B2, 1/200), Fas
(Jo2, 1/400), GL7 (1/200), hCD2 (S5.5, 1/200), immunoglobulin A (IgA) (1/200),
immunoglobulin G1 (IgG1, A85-1, 1/400), CD19 (ID3, 1/400), CD25 (1/100)
immunoglobulin M (IgM) (1/200), immunoglobulin D (IgD, 11-26, 1/200), CD21
(7Gs6, 1/200), CD23 (B3B4, 1/200) and CD93 (AA4.1, 1/200). Cell-cycle analysis
was performed with Hoechst33342 staining of alive B cells for 60 min. Samples
were acquired on LSRFortessa or FACSCanto instruments (BD Biosciences)

and analysed with Flow]Jo software. For preparative flow cytometry FACSAria
(BD Biosciences) or SY3200 (Sony) sorters were used.

RNA sequencing. For RNA-seq analysis hCD2 ™ B cells were sorted from pooled
CTCEY or CTCFY * cultures after 48 h stimulation of CD3/CD28 or LPS/IL4
cultures (2-3 mice per sample) and RNA was isolated using the Qiagen RNeasy kit
(Cat 74104). RNA from sorted Peyer’s patch CD19 T Fas T GL7 * cells and
CD19 T Fas-GL7- cells were used as GC and resting B-cell controls, respectively.
For RNA-seq library preparation, 500 ng of total RNA were processed using the
TruSeq RNA sample preparation kit v2 (Illumina RS-122-2001) following
manufacturer’s instructions. In brief, poly A+ RNA was purified using poly-T
oligo-attached magnetic beads with two rounds of purification followed by
fragmentation and first and second cDNA strand synthesis. Next, cDNA 3’ ends
were adenylated and the adaptors were ligated followed by PCR library
amplification. Finally, the size of the libraries was checked using the Agilent 2100
Bioanalyzer DNA 1000 chip and their concentration was determined using the
Qubit fluorometer (Life Technologies). Libraries were sequenced on a HiSeq2500

10

(Illumina) to generate 60 x single reads. FastQ files for each sample were
obtained using CASAVA v1.8 software (Illumina). RNA-seq experiments

were performed in the Genomics Unit of the CNIC. Sequencing reads were
pre-processed with a pipeline that included FastQC*3 and Cutadapt** filtering and
trimming. The resulting reads were mapped using the mouse transcriptome
(GRCm38, release 76; aug2014 archive) and quantified using RSEM v1.17 (ref. 45).
Data were then processed with a differential expression analysis pipeline that
used Bioconductor package EdgeR (ref. 46) for normalization and differential
expression testing. Pathway enrichment analysis was done with the Ingenuity
Pathways Analysis software (Qiagen) and with GO enrichment analysis tool
(Gene Ontology Consortium).

Immunofluorescence. Spleens were fixed with paraformaldehyde 4% for 2h at
room temperature, incubated in 30% sucrose overnight at 4 °C, embedded in
Tissue Tek O.C.T. (Sakura Finetek) and frozen at —-80 °C. Sections of 10 um
thickness were prepared. The following antibodies were used: rat anti-B220
(Miltenyi, 1/100), chicken anti-rat Alexa Fluor 488 (Molecular Probes, 1/500),
PNA-Alexa Fluor 647 (Life technologies, 1/100). Nuclei were counterstained with
DAPI and slides were mounted with ProLong Gold (Life technologies). Images
were acquired on a Leica SP5 confocal laser-scanning microscope.

Immunoblotting. hCD2 ™ B cells sorted from LPS/IL4 or CD3/CD28 cultures
were incubated on ice for 20 min in RIPA lysis buffer in the presence of protease
inhibitors (Roche) and lysates were cleared by centrifugation. Total protein was
size-fractionated on SDS-PAGE 8% acrylamide-bisacrylamide gels and transferred
to Protan nitrocellulose membrane (Whatman) in transfer buffer (0.19M glycine,
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25mM Tris base and 0.01% SDS) containing 20% methanol (90 min at 0.4A).
Membranes were probed with anti-mouse-CTCF (1/2,500, Bethyl laboratories) and
anti-mouse-tubulin (1/5,000, Sigma-Aldrich). Then, membranes were incubated
with HRP-conjugated anti-rabbit (1/10,000, DAKO) and anti-mouse (1/10,000,
DAKO) antibodies, respectively, and developed with Amesham ECL Western
Blotting Detection Reagent (GE Healthcare Life Sciences). Quantification of band
intensities was performed with Image] software.

qPCR. RNA was extracted from hCD2 " B cells from CTCF/fl or CTCF/ + mice
after 48 h of stimulation with LPS/IL4 or CD3/CD28 and T cells using the Qiagen
RNeasy kit and treated with DNAse. cDNA was synthesized using random
hexamers (Roche) and SuperScript II reverse transcriptase. cDNA was quantified
by SYBR green assay (Applied Biosystems) and normalized to GAPDH expression
in triplicates. The following primers were used: mouse-GAPDH (forward) 5'-TGA
AGC AGG CAT CTG AGG G-3/, (reverse) 5'-CGA AGG TGG AAG AGT GGG
AG-3'; mouse-PRDMI1 (forward) 5'-GCA AAG AGG TTA TTG GCG T-3,
(reverse) 5’-TGT AGA CTT CAC CGA TGA GG-3'; mouse-Bcl-6 (forward)
5/-ATG TAC CTG CAG ATG GAG CAT G-3'; mouse-Bcl-6 (reverse) 5'- ATC
AGC ATC CGG CTG TTC A-3'; mouse-CTCF (forward) 5'- CAC CTG GGT CCT
AAC AGA ACA GA-3'; mouse-CTCF (reverse) 5'- AGT ATG AGA GCG AAT
GTG TCG TTT-3'.

Genomic DNA was isolated from hCD2 + B cells from CTCFVfl or CTCFY +
mice after 48 h of stimulation with LPS/IL4 or CD3/CD28 and T cells. The
following primers were used: CTCF deletion (forward) 5'- GGGCATCA-
GATCTCATTAAGGA -3'; CTCF deletion (reverse) 5'- ACTCCATCTCTAGC-
CTCTCTATT-3'.

ChIP-gPCR. ChIP was performed according to the Diagenode protocol

(iDeal ChIP-seq Kit for Transcription Factors C01010055). In brief, cells were
crosslinked in 1% formaldehyde (Sigma) for 10 min at 37 °C and sonicated with
three rounds of 25 cycles 30s ON/30s OFF using a Bioruptor (Diagenode).
Sonicated chromatin was incubated overnight at 4 °C either with anti-CTCF
antibody (Diagenode) or an IgG control. DNA was quantified by qPCR using
SYBR green (Applied Biosystems) in triplicates. The following primers were used:
Prdm1-PeakA (forward) 5-GGGGTTGTAGGTCCACCTGT-3’; Prdm1-PeakA
(reverse) 5'- CTGGCACAAGAGCAAGCTAA -3'; Prdm1-PeakB (forward)

5'- ACTGGAGGGCCGAGTGTC -3’; Prdm1-PeakB (reverse) 5- GGGAGGGG-
GAAGAGTAGTCA -3'; Prdm1-PeakC (forward) 5'- GACACCAAGAGGGA-
CCAGAG-3'; Prdm1-PeakC (reverse) 5'-AACTTCCCCGAAGGCTAGAG -3';
H19-Peakl (forward) 5'- GTCACTCAGGCATAGCATTC-3'; H19-Peakl (reverse)
5'- GTCTGCCGAGCAATATGTAG-3'; H19-Peak2 (forward) 5-CAGTTGTGT-
TTCTGGAGGG -3'; H19-Peak2 (reverse) 5'-TAGGAGTATGCTGCCACC -3';
H19-Peak3 (forward) 5'-TCTTTAGGTTTGGCGCAATCGA -3'; H19-Peak3
(reverse) 5'- GACGTCTGCTGAATCAGTTGTG-3'.

ELISA. Total IgM levels in supernatant cultures were measured using a Mouse
ELISA Quantification Set (Bethyl Laboratories) according to manufacturer’s
instructions. In brief, supernatant from CTCFf and CTCF¥+ cultured in
presence of T cells (CD3/CD28 T-stimulated cells) was collected after 72h of
stimulation. ELISA plates were coated with goat anti-mouse IgM (1/100, Bethy)
and total IgM in supernatants was detected with HRP anti-mouse IgM (1/150,000,
Bethyl). Optical densities were determined at 405 nm with a Benchmark Plus
Microplate Reader (Bio-Rad). Absorbance from culture medium (culture medium
without cells was used as negative control) was subtracted and concentrations were
calculated by the interpolation of calibration curves.

Statistics. Statistical analyses were performed with GraphPad Prism (version 6.01
for Windows, GraphPad Software, San Diego, CA, USA) using two-tailed
Student’s t-test for all parameters conforming to normal distributions (according to
Shapiro-Wilk normality test). Variance similarity was assessed with F test. 32 test
was used for Venn diagram statistis. P<0.05 was considered statistically
significant. Error bars in figures represent s.d.

Data availability. The RNA-seq data in this study have been deposited in the
National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) under accession codes GSE98086 and GSE98507.
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