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Abstract 19	

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease; the 20	

identification of novel targets and development of effective treatment 21	

strategies are urgently needed to improve patient outcomes. Remodeling of 22	

the pancreatic stroma occurs during PDAC development, which drives 23	

disease progression and impairs responses to therapy. The actomyosin 24	

regulatory ROCK1 and ROCK2 kinases govern cell motility and contractility, 25	

and have been suggested to be potential targets for cancer therapy, 26	

particularly to reduce the metastatic spread of tumor cells. However, ROCK 27	

inhibitors are not currently used for cancer patient treatment, largely due to 28	

the overwhelming challenge faced in the development of anti-metastatic 29	

drugs, and a lack of clarity as to the cancer types most likely to benefit from 30	

ROCK inhibitor therapy. In two recent publications, we discovered that 31	

ROCK1 and ROCK2 expression were increased in PDAC, and that increased 32	

ROCK activity was associated with reduced survival and PDAC progression 33	

by enabling extracellular matrix (ECM) remodeling and invasive growth of 34	

pancreatic cancer cells. We also used intravital imaging to optimize ROCK 35	

inhibition using the pharmacological ROCK inhibitor fasudil (HA-1077), and 36	

demonstrated that short-term ROCK targeting, or ‘priming’, improved 37	

chemotherapy efficacy, disrupted cancer cell collective movement, and 38	

impaired metastasis. This body of work strongly indicates that the use of 39	

ROCK inhibitors in pancreatic cancer therapy as ‘priming’ agents warrants 40	

further consideration, and provides insights as to how transient mechanical 41	

manipulation, or fine-tuning the ECM, rather than chronic stromal ablation 42	
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might be beneficial for improving chemotherapeutic efficacy in the treatment 43	

of this deadly disease.  44	

 45	

Introduction 46	

Despite there being a number of new therapeutics that have been 47	

developed for pancreatic cancer patient therapy, survival remains the lowest 48	

of all solid cancers, with 5-year survival rate being less than 7% and a median 49	

survival of 6 months 1. Despite pre-clinical efforts to develop new therapeutics 50	

2, patient survival has not significantly improved over the last 4 decades, 51	

which highlights not only the need to identify new targets, but also to develop 52	

innovative treatment strategies to improve the outcomes of patients suffering 53	

from this disease. In addition, development of diagnostic tools, for example 54	

based on detection of cancer-derived exosomes 3, to enable early detection of 55	

pancreatic cancer remains a critical challenge for this disease. Pancreatic 56	

ductal adenocarcinoma (PDAC) is characterized by extensive remodeling of 57	

the pancreatic stroma, with increased deposition and crosslinking of 58	

extracellular matrix (ECM) components and poor vascularization compared to 59	

normal pancreas4, 5. Alterations of the biochemical and mechanical properties 60	

of the ECM are known to influence cancer progression, invasion and 61	

responses to chemotherapy	 6-9, however, recent studies assessing the 62	

efficacy of ECM-based pancreatic cancer therapies, for example via inhibition 63	

of Sonic Hedgehog signaling pathway, targeting of lysyl oxidase activity or 64	

inhibition of hyaluronic acid (HA), have yielded conflicting results	4, 10-16. 65	

Rho-associated protein kinases 1 and 2 (ROCK1 and ROCK2) are 66	

master regulators of the actomyosin cytoskeleton and govern force 67	
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generation, cell invasion, proliferation and contractility 17-19. Numerous studies 68	

have established that ROCK inhibition disrupts tumor progression and 69	

metastasis in cell based and in vivo models of various solid cancers 20-23. 70	

However, to date no compounds have progressed into the clinic for cancer 71	

therapy for several reasons. The development of anti-metastatic 72	

chemotherapeutics for clinical use is very challenging due to the need to 73	

detect a reduction in metastasis in patients over sustained periods (likely 74	

years) as a positive outcome 24, in contrast to chemotherapeutics that induce 75	

acute positive responses, such as tumor regression, which can be monitored 76	

in a clinical trial in a defined and relatively brief time period 24. Furthermore, 77	

the absence of correlations between defined genetic alterations, such as 78	

ROCK1 or ROCK2 mutations, with ROCK inhibitor sensitivity means that 79	

there is no simple genetic test for convenient patient stratification. As a result, 80	

ROCK inhibition has not been adopted as a cancer chemotherapy. In this 81	

commentary, we describe our recent findings 25, 26 demonstrating that ROCK 82	

activity promotes pancreatic cancer invasive growth via ECM remodeling. We 83	

also highlight how transient ROCK inhibition, or mechanical ‘priming’ with the 84	

pharmacological inhibitor fasudil affects tumor tissue tension, which in turn 85	

improves chemotherapy efficacy in primary and secondary tumor sites, while 86	

also disrupting collective movement of metastatic cancer cells 26. Lastly, we 87	

discuss potential translation of our findings into the clinic for pancreatic cancer 88	

therapy, where balancing cellular contractility via transient ROCK inhibition, 89	

rather than long-term ablation of the matrix, enables re-establishment of the 90	

normal mechanical features of the stroma.  91	

 92	
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ROCK activity promotes PDAC progression. 93	

Genomic analyses have previously shown that the ROCK1 gene is 94	

amplified in 15% of pancreatic patient tumors 27, however the role of ROCK-95	

mediated actomyosin contractility in PDAC had not been clearly established. 96	

To address this, we assessed ROCK expression in a patient tissue microarray 97	

(78 samples from patients with pancreatic cancers and 5 healthy human 98	

pancreas) and in human TCGA datasets, and determined that ROCK1 and 99	

ROCK2 expression increase with tumor stage and grade 25. In line with this, 100	

genomic alterations or mRNA amplification of ROCK1 and/or ROCK2 were 101	

found to be positively correlated with poorer survival, suggesting that ROCK 102	

signaling promotes pancreatic cancer progression 25.  103	

To further understand how ROCK influences the fate and behavior of 104	

pancreatic cancer cells, Cre-recombinase was expressed from the pancreatic 105	

epithelial selective Pdx1 promoter to induce pancreas-targeted recombination 106	

of  LOX-STOP-LOX (LSL)-KrasG12D/+and LSL-Trp53R172H/+ (KPC) alleles in 107	

mice, which spontaneously develop PDAC that closely resembles human 108	

pancreatic cancer 28, 29. In addition, KPC mice were crossed with LSL-109	

ROCK2:ER mice 30 to conditionally activate ROCK2 during PDAC 110	

progression. This model closely recapitulates the genomic features of human 111	

PDAC, where an initiating KrasG12D mutation is found in almost 90% of patient 112	

tumors, while the p53R175H mutation is found in 50-75% of patient tumors	 31. 113	

Consistent with the observed increased ROCK2 protein levels in advanced 114	

PDAC stages,  as well as the correlation between increased ROCK1 and 115	

ROCK2 mRNA expression, along with a potentially activating truncation 116	

mutation (I383F-frameshift deletion; TCGA-HZ-8005-01), with poor survival 117	
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from the TCGA human dataset, conditional ROCK2 activation was associated 118	

with reduced PDAC mouse survival. Conditional ROCK2 activation in non 119	

metastatic PDAC cells isolated from genetically modified mice promoted 120	

pancreatic cancer cell invasion into 3D collagen matrices (see schematic 121	

representation of ROCK inhibition at the cellular level, Fig. 1A) 25. 122	

Interestingly, analyses of cell-ECM interactions using Second Harmonic 123	

Generation (SHG) imaging, a label free imaging technique used to detect non-124	

centrosymmetric entities such as crosslinked collagen fibers, or tannic acid-125	

glutaraldehyde fixation of collagen fibers for transmission electron 126	

microscopy, revealed that ROCK activation induced extensive remodeling of 127	

the collagen matrix surrounding invading cancer cells 25.  128	

While ROCK is well known to induce force generation via its action on 129	

actomyosin structures 19, ROCK signaling also induces gene transcription 32. 130	

To identify ROCK induced gene expression changes, we performed RNA 131	

sequencing and identified 285 genes that were consistently and significantly 132	

found to be changed greater than twofold relative to control cells. 133	

Interestingly, conditional ROCK activation increased expression of 134	

metalloproteinases (MMP) Mmp10 and Mmp13, which was associated with 135	

increased release of these MMPs into the surrounding environment (see 136	

schematic representation of ROCK inhibition at the cellular level, Fig. 1A). 137	

These results indicated that ROCK mediates collagen remodeling by 138	

pancreatic cancer cells via transcription, synthesis and release of MMPs, in 139	

line with previous observations in melanoma cells 33, and in pancreatic cancer 140	

cells in which dasatinib-induced reduction of KPC cell migration was 141	

correlated with reduced production of MMP2 and MMP9 34. We also 142	
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determined that ROCK-mediated remodeling of the surrounding matrix 143	

facilitated invasive growth of pancreatic cancer cells (see schematic 144	

representation of ROCK inhibition at the cellular and whole-body levels, Fig. 145	

1A, B). These findings highlight the ability of cancer cells to adapt to the 146	

mechanical environment and to remodel the ECM to support their aberrant 147	

growth. These cell-based observations were further extended in KPC mice, 148	

where ROCK inhibition with fasudil significantly prolonged survival, and 149	

reduced collagen remodeling (see schematic representation of ROCK 150	

inhibition at the cellular and whole-body levels Fig. 1A, B) 25. Together, these 151	

results shed light on novel roles of ROCK in driving pancreatic cancer 152	

progression, suggesting that targeting ROCK might be beneficial for the 153	

clinical management of the disease.    154	

 155	

Transient ROCK inhibition with fasudil disrupts pancreatic cancer. 156	

Although ROCK-driven cell contractility and stromal remodeling are 157	

known to play crucial roles in cancer progression 7, 19, 35, ROCK inhibitors and 158	

ECM-based therapies have yet to be translated to the clinic. In our recent 159	

publication, we assessed the efficacy of fasudil to impair PDAC progression 160	

and to influence cell responses to chemotherapy	 26. Fasudil is a ROCK 161	

inhibitor currently used clinically as a monotherapy for the treatment of 162	

cerebral vasospasm 36, and Fasudil has also been shown to inhibit, in a less 163	

potent manner than for ROCK, other kinases such as PKA, PKC and MLCK	164	

37. Meta-analysis of post-marketing surveillance data (>3,000 patients) has 165	

demonstrated the safety of fasudil for clinical use in humans 38, which 166	

prompted us to assess the repurposing of fasudil for the treatment of 167	
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pancreatic cancer. We combined mouse and stratified patient-derived models 168	

of pancreatic cancer with biosensor FLIM-FRET intravital imaging to monitor 169	

the effect of ROCK inhibition in real-time and in live tissues 39-42. Using an 170	

early, transient ‘priming’ regimen, where fasudil was administered for 3 days 171	

prior to chemotherapy, in line with its treatment regimen in patients with stable 172	

angina 43, we demonstrated that short-term ROCK inhibition with fasudil 173	

synchronized pancreatic cancer cell cycle progression, and rendered them 174	

more sensitive to subsequent treatment with anti-microtubule drugs and 175	

standard-of-care chemotherapy, both in primary tumors and metastatic sites  176	

(see schematic representation of ROCK inhibition at the whole-body level, 177	

Fig. 1B) 26. We also observed that ‘priming’ with fasudil in the adjuvant setting 178	

disturbed coordinated cancer cell movement and impaired metastatic 179	

colonization in the liver (see schematic representation of ROCK inhibition at 180	

the whole-body level, Fig. 1B).  181	

 182	

Assessment of the effect of ‘priming’ on key metastatic events revealed 183	

that ROCK inhibition rendered circulating tumor cells more sensitive to shear 184	

stress to which they are subjected in the blood circulation and in turn impaired 185	

their ability to extravasate and colonize host tissues (see schematic 186	

representation of ROCK inhibition at the whole-body level, Fig. 1B), consistent 187	

with previous studies 44, 45. Additionally, analysis of collective cell movement, 188	

or streaming, upon ‘priming’ suggested that transient ROCK inhibition 189	

impaired coordinated cell migration and 3D cell movement of the metastatic 190	

emboli in the liver (see schematic representation of ROCK inhibition at the 191	

whole-body level, Fig. 1B) 26, possibly due to disrupted durotaxis - where cell 192	
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movement is directed by stiffness gradients - in the metastatic niche 46. The 193	

observed reduction of coordinated PDAC cell spread that we observed upon 194	

ROCK inhibition was also in line with previous work highlighting how the Rho-195	

ROCK-LIMK pathway leads tumor cell invasion by driving path generation 47. 196	

ROCK inhibition was also found to reduce the ability of metastatic cells to 197	

remodel the host ECM and to create a favorable environment to support their 198	

growth in a distant site (see schematic representation of ROCK inhibition at 199	

the whole-body level Fig. 1B), as recently demonstrated in pancreatic cancer 200	

and melanoma 48-50. Assessment of the effects of ‘priming’ with fasudil on the 201	

stroma demonstrated that transient ROCK inhibition reduced ECM remodeling 202	

and tissue stiffness, thereby altering integrin signaling and depriving cancer 203	

cells of mechanical cues provided by the matrix 26. In addition, decompression 204	

of the tumor tissue upon ‘priming’ with fasudil was accompanied by relaxation 205	

and increased permeability of the tumor vasculature, as assessed by the 206	

imaging of quantum dots diffusing from blood vessels and into tumor tissue 207	

(see schematic representation of ROCK inhibition at the whole-body level Fig. 208	

1B and Movie 1) 26. This is in line with the current clinical use of fasudil for the 209	

treatment of cerebral vasospasm 36, 43 and with recent work demonstrating 210	

that ROCK regulates vascular patency, or obstruction 51. Our findings 211	

therefore demonstrate that fasudil has a dual effect on both the ECM and the 212	

intratumoral vasculature, which together increased drug delivery and 213	

improved cancer cell responses to chemotherapy. This aligns with recent 214	

stromal-based strategies in metastatic colorectal cancer, where the 215	

combination of anti-VEGF therapy and anti-hyaluronic acid treatment 216	

significantly improved chemotherapy efficacy and prolonged survival 217	
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compared to anti-VEGF therapy alone 52. Our work also indicates that rather 218	

than chronic treatment, which has a greater potential for adverse effects and 219	

toxicity 11, 14, acute fasudil treatment to induce transient mechanical ‘priming’ 220	

was sufficient to re-equilibrate the pancreatic tumor stroma and to impair 221	

PDAC progression. Together, our findings demonstrate that ‘priming’ with 222	

fasudil might be beneficial both in the neo-adjuvant and adjuvant settings, 223	

which strongly suggests that further clinical assessment of fasudil in 224	

combination with standard-of-care chemotherapy, such as Gemcitabine and 225	

Abraxane, is warranted to improve PDAC patient outcomes.  226	

 227	

Balancing cell contractility: a new approach to treat pancreatic cancer. 228	

While numerous studies have demonstrated that extensive 229	

transformation of the pancreatic stroma occurs during cancer development 5, 230	

53, previous work assessing ECM-based therapies have yielded conflicting 231	

data regarding the efficacy of stromal therapies in pancreatic cancer. As such, 232	

while pharmacological inhibition of the Hedgehog (Hh) signaling pathway 4, 233	

hyaluronic acid (HA) deposition 13, 15 or lysyl oxidase (LOX) activity 12 resulted 234	

in impaired tumor growth and increased survival in mouse models of 235	

pancreatic cancer, genetic ablation of Hh signaling 14 or myofibroblasts 11 236	

resulted in decreased survival. Importantly, ablation of fibrosis triggered 237	

adverse effects on the pancreatic stroma, such as profound alterations of the 238	

immune microenvironment, which in turn promoted cancer progression 11, 14. 239	

Identification of new ECM targets and development of innovative therapeutic 240	

regimens to ‘fine-tune’ and manipulate the pancreatic stroma are therefore 241	

needed to improve pancreatic cancer patient outcomes. We believe that this 242	
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balance is key to future development of stromal targeting strategies for this 243	

disease.  244	

Our two recent publications 25, 26 establish ROCK as a key regulator of 245	

matrix remodeling in pancreatic cancer, both via generation of contractile 246	

force, and regulation of MMP synthesis and release into the surrounding 247	

matrix (see schematic representation of ROCK inhibition at the cellular level, 248	

Fig. 1A). These findings align with recent work in pancreatic cancer 249	

demonstrating that the JAK/ROCK/STAT3 signaling pathway governs cancer 250	

cellular tension and promotes tumor progression via remodeling of the 251	

surrounding matrix in close proximity to the tumor 53. Our observations also 252	

highlight the intricate effects of ROCK-induced remodeling of the ECM. While 253	

prolonged exposure to fasudil significantly increased mechanical constraints 254	

and reduced tumor growth in the KPC model, potentially via reduced release 255	

of MMPs into the environment, transient ‘priming’ with fasudil led to reduced 256	

ECM crosslinking and relaxation of tumor tissue. This aligns with the 257	

emerging concept that the pancreatic stroma can both promote and restrain 258	

disease progression 8, 16. Importantly, our work provides pre-clinical evidence 259	

that fine-tuning the ECM via transient ROCK inhibition using our ‘priming’ 260	

approach might provide new avenues for the treatment of pancreatic cancer. 261	

Potential hypotensive effects of ROCK inhibition with fasudil might be 262	

expected given its use for cerebral vasospasm, however the actions on the 263	

vasculature that we observe also have the potential beneficial effect of 264	

increasing drug delivery. Consistent with recently published work from the 265	

Weaver lab, we report no significant change in patient survival associated with 266	

bulk tumor stroma 26, 53, however our study demonstrates a graded response 267	
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to the ‘priming’ strategy in patient-derived xenografts that had been stratified 268	

based on their ECM signature 26. Where in tumors with high ECM content, 269	

‘priming’ with fasudil greatly improved cancer cell responses to chemotherapy, 270	

delayed metastasis and approximately doubled survival compared to 271	

chemotherapy alone, this had a modest effect in tumors with low ECM content 272	

26. This observation suggested that initial collagen content could be used as a 273	

surrogate biomarker alone, or because of the dual effects of fasudil ‘priming’ 274	

on the ECM and the intratumoral vasculature, in combination with tumor 275	

vasculature markers, such as CD31 (cluster of differentiation 31), to identify 276	

patients most likely to benefit from transient ROCK inhibition prior to 277	

chemotherapy (see schematic representation companion biomarker strategy, 278	

Fig. 1C). Additionally, non-invasive PET-reporters of fibrotic tissue are being 279	

developed for diagnosis of pulmonary fibrosis, which could be repurposed in 280	

this context	54. We propose that the repurposing of a low-cost, off-patent drug 281	

such as fasudil as a ‘priming’ agent might be beneficial for pancreatic cancer 282	

therapy. In addition, novel ROCK inhibitors such as AT13148, KD025 or 283	

CCT129254, currently in the clinical testing pipeline as anti-fibrotic agents, or 284	

in phase I clinical trial for the treatment of solid tumors (AT13148, 285	

NCT01585701 55) could also have similar applications 56-59. Remodeling of the 286	

stroma has also been reported to occur in other solid cancers and to influence 287	

disease progression 7, 48, 60, 61	62	63. Therefore, we envisage that fine-tuning the 288	

ECM via ROCK inhibition prior to standard-of-care therapies might lead to 289	

substantial therapeutic benefits in additional diseases.  290	
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 488	

Figure and movie legends 489	

Figure 1 Schematic of the roles of ROCK and ROCK inhibition in 490	

pancreatic cancer: from cell-to-global effects to translation to patients. 491	

A. ROCK inhibition at the cellular level impairs ECM remodeling via 492	

decreased MMP release and impaired contractility. B. ROCK inhibition at the 493	

whole body, global level. Schematic representation of the effects of ROCK 494	

inhibition in primary tumor tissue (left hand panel), on circulating tumor cells 495	

(CTC, middle panel) and at secondary sites (right hand panel). Adapted from 496	

(Vennin et al., Science Translational Medicine 2017)	26. Reprinted with 497	

permission from AAAS. C. Combination of ECM and vasculature markers as 498	

companion biomarkers for priming strategy. Left hand panel: Schematic 499	

representation of in-house automated Second Harmonic Generation (SHG) 500	

analysis of the ECM in the ICGC human TMA cohort, with examples of SHG 501	

signals in cores (triplicates) from patients with high, medium, or low SHG 502	

signal. Right hand panel: representative images of quantum dots and CD31 503	

(cluster of differentiation 31) staining in tumors with high and low vascularity. 504	

Adapted from (Vennin et al., Science Translational Medicine 2017) 26. 505	

Reprinted with permission from AAAS. 506	

 507	

Movie 1: Intravital imaging of quantum dots circulating in tumor associated 508	

blood vessels and diffusing into the surrounding tumor tissue. Red: Quantum 509	

Dot, Blue: Collagen fibers (SHG signal). 510	




