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Abstract: 

The German Space Operations Center (GSOC) performs collision avoidance for 11 LEO and 2 

GEO satellites. Risk detection and maneuver decisions strongly depend on the computed probability 

of collision that is driven by the anticipated orbit precision of chaser and target. While the orbits of 

operational satellite are well known this is usually not the case for space debris. Therefore, an 

improved collision assessment requires refined orbit determination of the chaser object. 

This paper describes the achievable orbit precision for a small object based on radar 

measurements. The Tracking and Imaging Radar (TIRA) of Fraunhofer FHR in Wachtberg, 

Germany, was used to track the Canadian nanosatellite CanX-2 over a period of five days. CanX-2 

is a triple CubeSat of the size 10x10x34 cm carrying a dual frequency GPS receiver. A reference 

trajectory is established by precise orbit determination (POD) from GPS measurements. Radar 

tracking measurements and derived orbital information are evaluated by comparison against the 

reference orbit. Statistics of the orbit determination and orbit prediction precision using different 

radar measurement data arc lengths is presented leading to a better understanding of the prediction 

uncertainty of critical close approaches between an active satellite and a small object. 
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1 Introduction 

 

The growing number of space objects in the region near the Earth causes more and more concerns 

about the safety of LEO space missions. The so-called Kessler syndrome describes a scenario where 

the density of objects in LEO is high enough to induce a cascade of collisions between these objects. 

After the collision between Iridium 33 and Cosmos 2251 in 2009, many experts consider the 

cascade as started, implying that the usability of the LEO region could be lost within the next 20 

years. These future prospects could be avoided if at least five big pieces of space debris are removed 

per year beginning in the near future. Besides the active removal of space debris, collision 

mitigation strategies have to be applied for active satellite missions. 

 

The German Space Operations Center (GSOC) has been implementing a collision avoidance system 

since 2008 [1], [2]. Bi-daily automated conjunction monitoring is carried out based on the 

USSTRATCOM catalogue of Two Line Elements (TLE), but the decisions on collision avoidance 

maneuvers are only based on the Conjunction Summary Messages (CSM) released by the Joint 

Space Operations Centre (JSpOC) in USA [3], [4]. Although JSpOC has direct access to the 

tracking data of the Space Surveillance Network (SSN), not all space objects are tracked with the 
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same frequency and precision. Information about a critical close approach can sometimes have a 

degraded precision, particularly when combined with the lack of knowledge about the performed or 

planned maneuvers of an active satellite. 

 

The safe approach and rendezvous, in the case of debris removal, or the reliable estimation of the 

collision risk, in the case of a critical close approach, both require the orbit of the space debris to be 

known as precisely as possible. The precise estimation of the orbital elements of the space debris 

object, or a refinement with respect to the publicly available TLE catalogue, can be achieved using 

measurements from a dedicated radar tracking campaign. 

 

This study investigates the precision with which the orbit of a small object can be determined and 

propagated based on radar tracking measurements. The Tracking and Imaging Radar (TIRA) of 

Fraunhofer FHR in Wachtberg, Germany, was used to track the Canadian nanosatellite CanX-2 over 

a period of five days. The first part of the paper discusses the orbit of the CubeSat CanX-2 and the 

timeline of the radar tracking and GPS operations during the 5-days campaign. 

 

Next, the calculation and validation of the reference trajectory is discussed. Precise orbit 

determination (POD) is performed based on dual frequency GPS carrier phase and pseudorange 

measurements. The degraded POD accuracy for the periods outside GPS receiver operations is 

quantified by means of a similar analysis with TerraSAR-X precise orbits. The estimated accuracy 

of the CanX-2 reference orbit is below the one meter level and below the ten meter level during the 

GPS outages of up to 36 hours. 

 

Furthermore, the statistics of the achievable orbit determination precision using different radar 

tracking measurement data arc lengths are presented. The accuracy of an orbit prediction over a 

period of up to 3 days is analyzed as well. In both cases, orbit determination and propagation, the 

orbit ephemeris is compared with the POD reference trajectory. For example, for radar tracking 

scenarios comprising of 6 station passes within a 36 hour period, a remarkable orbit determination 

accuracy of 10 m in the radial direction (1D, RMS), 100 m (RMS) in the along-track direction and 

an accuracy of less than 15 m (RMS) in the cross-track direction is computed from comparison to 

the reference orbit. After 3 days of orbit propagation a corresponding maximum position error of 

only 170 m (3D, RMS) is found. Of course, both orbit determination and propagation accuracies are 

significantly degraded in case of shorter observation arcs and less tracking passes. 

 

Finally, subsets of the radar tracking data are selected that cover a limited observation time and 

limited number of station passes. Multiple tracking scenarios with identical characteristic can be 

constructed. Mean position errors are computed for groups of identical tracking cases. Thereby, 

orbit precision is evaluated on a statistical basis, exceeding the analysis of individual cases. 

 

             
Figure 1. UTIAS/SFL CanX-2 (left), FHR Tracking and Imaging Radar (right) 



 

The outcome of this paper is a better understanding of the prediction uncertainty of a critical close 

approach between an active satellite and a small object, as well as an understanding of the necessary 

effort required to refine the orbit of a space debris object for safe space debris removal. 

 

2. The CanX-2 Measurement Campaign 

 

CanX-2 is a triple CubeSat with dimensions 10 x 10 x 34 cm. It was built under the Canadian 

Advanced Nanospace eXperiment (CanX) program and is operated by the University of Toronto 

Institute for Aerospace Studies, Space Flight Laboratory (UTIAS/SFL) [5], [6], [7] and [8]. CanX-2 

was launched in April 2008 and is orbiting the Earth in a Sun-synchronous polar orbit with a 635km 

altitude and a 9:30 am descending node. Although CanX-2 has a cold gas propulsion subsystem 

capable of affecting small changes to its orbital dynamics, the subsystem was not activated 

throughout the campaign and, thereby, orbit manoeuvres were not taken into account. Due to the 

nanosatellite’s power, data storage volume and downlink downlink constraints the GPS receiver 

was only operated for approximately 90 minutes twice daily. The GPS on-time was coordinated 

with the visibility of CanX-2 for TIRA. Timely synchronization or even simultaneity of 

observations ensures radar measurement evaluation at times of most precise GPS position 

information. 

 

The Tracking and Imaging Radar (TIRA) consists of a 34-meter parabolic antenna system with a 

narrowband, fully coherent mono-pulse tracking radar at L-band (1.333 GHz) as well as a wideband 

Ku-band imaging radar. For the tracking campaign of CanX-2 TIRA provided ranging, Doppler and 

angular measurements with a data rate of ~1.5 Hz [9]. 

 

TIRA’s location at 50.6° northern latitude and the sun-synchronous dusk-dawn orbit of CanX-2 lead 

to a regular visibility pattern of 2 to 3 station passes in the morning and evening of each day. 

Operation time constraints were incorporated into radar tracking planning. Out of the morning 

group of station passes the two passes with the highest elevation were selected for radar tracking, as 

well as 1 or 2 station passes in the evening of every second day. This observation schedule resulted 

in a total of 14 station passes to be tracked as illustrated in Fig. 2.  

 

 
Figure 2. Timeline of the Radar Tracking and GPS Operations 



 

TIRA successfully detected and tracked CanX-2 on each planned station pass. Of course, the 

maximum elevation varies from pass to pass, with the highest maximum elevation of 85.9° and 

lowest maximum elevation of 13.2°, both in the morning of March 02. Acquisition and loss of 

signal mainly occurred at very low elevations around 5°. Sometimes tracking acquisition took a 

while longer, accompanied by higher elevation of the first observation data from these passes. The 

performed radar tracking can still be described as horizon-to-horizon with uninterrupted 

measurements from the first to the last observation. 

The timeline of GPS receiver operation is also shown in Fig 2. Two blocks of GPS measurements 

intended to be taken in the evening of February 28 and in the morning of February 29 are missing. 

The GPS data collection lasted one day longer than the radar tracking campaign which allows an 

assessment of the orbit determination accuracy over a certain propagation time. 

 

3. Precise Orbit Determination from GPS Measurements 

 

The precise orbit generated with CanX-2’s GPS data is used as a reference for the radar 

measurement results. CanX-2 carries a NovAtel OEM4-G2L dual frequency GPS receiver, which 

provides L1 C/A tracking and semi-codeless L2 P(Y) tracking. Beside GPS navigation fixes the 

receiver delivers raw pseudorange and carrier phase measurements. To allow for precise orbit 

determination on ground the GPS raw observations are part of the downlink telemetry alongside the 

nanosatellite’s attitude information. 

 

A precise orbit was determined with the Reduced Dynamics Orbit Determination (RDOD) Software 

using GPS pseudorange and carrier phase measurements as input. The software was developed by 

the GNSS group at the German Space Operations Centre (GSOC) as part of the GPS High Precision 

Orbit Determination Software Tools (GHOST) [12]. The least squares residuals, given in Fig. 3, are 

a measure for how well the computed orbit fits the GPS measurements. The indicated accuracy of 

the estimated orbit is at the meter level for times of GPS operation. A long data gap exists from Feb. 

28, 10:10 UTC to Feb. 29, 20:27 UTC. To quantify the degradation of orbit determination (OD) 

during the gap a similar analysis was made with TerraSAR-X precise orbit determination. 

TerraSAR-X is equipped with a single frequency MosaicGNSS receiver and a dual frequency 

Integrated Geodetic and Occultation Receiver (IGOR). The most precise OD product, the science 

orbit, is computed with continuous raw observations from the IGOR receiver with estimated 

position accuracy below 10 cm [9]. 

 

 
Figure 3. GPS observation residuals after RDOD 



 
Figure 4. TerraSAR-X along-track error due to similar GPS data gaps 

 

A subset of GPS data from TerraSAR-X is created adopting the CanX-2 receiver on-times from the 

measurement campaign. The edited dataset contains comparable GPS outages and is processed in 

the identical way using the RDOD software. The position solution computed from two IGOR 

measurement blocks before and after a long data gap of 34 hours is compared against the science 

orbit. The position error in the radial and cross-track directions stays below 1 m during the entire 

observation arc. This is not the case for the along-track component, which has a maximum deviation 

from the science orbit of around 8 m at the centre of the simulated large data gap, see Fig 4. The 

along-track error quickly rises outside the observation arc.  

 

To summaries the findings of the similarity analysis, the length of a data gap is a critical parameter 

for the growth of position error primarily in the along-track component. For the example of the 

TerraSAR-X orbit, precision degrades by less than 1 m for short GPS data gaps of 12 hours and less 

than 10 m for GPS outages of 36 hours. 

 

Multiday observation arcs may further deteriorate the OD solution, especially during long 

measurement gaps. A comparison of RDOD solutions obtained from CanX-2 GPS measurements of 

different observation arc lengths is an area for future work. As a consequence, the reference orbit is 

established from the full arc solution but relies on a 2 day short arc solution during the long data 

gap. 

 

The estimated reference orbit accuracy is 1 m each for the radial and cross-track components and 5 

m for the along-track component. During the GPS outage on the 28th and 29th of February orbit 

precision is difficult to estimate. Still, reference position information with meter level accuracy is 

well suited for the following radar tracking assessment. 

 

4 Calibration of the TIRA Tracking Radar 

 

CanX-2 is a triple CubeSat of the size 10cm x 10cm x 34cm [8]. Due to the non-spherical shape its 

radar cross section (RCS) becomes dependent on the aspect angle w.r.t. the radar, i.e its RCS will 

fluctuate during the measurements. For successful radar tracking of such small objects with the 

TIRA tracking radar [1] proper choice of the radar transmit power and acquisition threshold is 

necessary. The transmit power is set to a value such that the received echo power never exceeds the 

specified maximum input power of the receiver's low noise amplifier (LNA) under the assumption 

that the object reaches its maximum RCS. In the case of CanX-2 the expected echo power will stay 

far below the allowed value for all relevant passes, hence the radar transmitter can be operated with 

its maximum available output power. 

 

The acquisition threshold is determined by the objects minimum RCS and lies above the radar's 

detection threshold. Its suitable adjustment minimizes the risk that unwanted, smaller objects which 

are also crossing the radar beam may disturb the target acquisition and the tracking phase or even 

cause a switch-over of the tracking loops to a false target. 



As a preparatory step for setting this threshold an absolute calibration is conducted by tracking a 

spherical object with a well-known and constant RCS. Within the CanX-2 measurement campaign 

the calibration sphere TEMPSAT 1 was used having a RCS of -9.14 dBsm w.r.t. a radar transmit 

wavelength λ = 22.5 cm. After computing the mean measured RCS around the closest point of 

approach (CPA) where the signal-to-noise ratio reaches its maximum, the RCS calibration factor is 

calculated as follows: 

 [ ]., dBRCSRCSk meastruecalRCS −=  (1) 

 

To obtain at least a coarse estimate of the minimum expectable RCS within a pass of CanX-2 we 

take into account its cuboid shape and assume that the RCS becomes minimal when the front edge 

of CanX-2 is oriented towards the radar so that edge-scattering becomes the prevailing contributor 

to the RCS. A pure corner-scattering is excluded here as the probability of its occurrence over a 

longer time period is considered to be low, and sporadic receive echoes with low amplitude are 

omitted by the radar processor. Now, the RCS approximation for a straight plate edge of length L 

[10] 
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can be applied, resulting in a minimum RCS of -14:3 dBsm for L = 0.34 m (long edge of CanX-2). 

In connection with Eq. (1) we finally get the acquisition threshold 

 calRCSTIRAthres kRCSRCS ,min, −= . (3) 

 

Involving calRCSk , = -7.5 dB from the calibration measurements, Eq. (3) provides a threshold value of 

-6.8 dBsm. 

 

5. Performance of the Radar Tracking Campaign 

 

During the campaign all of the 14 planned tracking measurements could be realized and provided 

usable observation data. With the exception of one pass the acquisition of CanX-2 always succeeded 

for an antenna elevation AntEle > 5° which is higher than the nominal start value min,AntEle > 1.5° for 

TIRA. This increased acquisition elevation is mainly caused by the low RCS of CanX-2 in 

combination with refraction effects at low elevations. 

 

The first acquisition attempt within the second pass of CanX-2 on Feb 27
th

, 2012 required a more 

detailed analysis: At the predicted rise time an object was acquired and tracked for several seconds 

that did not match CanX-2 (a later re-acquisition attempt at higher antenna elevation was 

successful). This case was caused by the presence of additional objects exceeding the threshold 

within the radar's field of view, a situation which typically occurs for example in the Launch and 

Early Orbit Phase of a mission shortly after the separation of the payload(s) from the upper rocket 

stage. Since CanX-2 was part of a multi-payload launch comprising ten satellites an orbit analysis of 

these objects indicates that the orbit of the Indian Cartosat 2A satellite had a minimum separation 

from CanX-2 in range and angle within the acquisition window. 

 



Fig. 5 illustrates this angular separation ∆Φ  which is approximately calculated from the antenna 

pointing (Azimuth, Elevation) for both objects based on the mean orbital parameters taken from 

their TLE: 

 ( )( ) 2
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It is clearly to be seen in Fig. 5 that, assuming CanX-2 is within the main lobe of the TIRA's antenna 

pattern, Cartosat 2A will indeed stay outside the main lobe but will cross the first side lobe at the 

beginning of acquisition (t < 25 s). 

 

The attenuation of the first side lobe of TIRA's antenna pattern is about 17.5 dB [11] w.r.t. the main 

lobe which is sufficiently high for most of TIRA's tracking tasks. But Cartosat 2A with an estimated 

RCS of +7 dBsm, i.e. more than 20 dB higher than the RCS of CanX-2 computed according to Eq.  

2, induces a side lobe receive power considerably above the receive power of CanX-2 in the main 

lobe. This triggers the so-called side lobe tracking which continues until the track is lost due to the 

growing differences between the predicted and measured angular positions. Side lobe tracking can't 

be avoided in principle when using one single receive antenna as it is impossible to distinguish 

between a “strong” target in the side lobe and a “weak” target in the antenna's main lobe. Currently, 

this problem can only be handled by manual intervention of the radar operator. 

 

A first assessment of the collected radar measurements is a simple comparison of radar positions 

against the GPS reference orbit. Range and elevation measurements are therefore corrected for 

tropospheric refraction using the Hopfield troposphere model. The deviation of all range, azimuth 

and elevation measurements gathered on a representative station pass is plotted in Fig. 6, alongside 

the received signal amplitude. It can be seen that the range outliers are few and are time-correlated 

with a low signal to noise level. The range measurements contain outliers of up to 10 km on 6 of the 

total 14 station passes. Doppler measurements are largely biased on all radar passes. For times of 

stable object tracking the estimated 1-σ single measurement point accuracy is ~10 m in range, 

~100´´ for angular observations and ~200 cm/s for Doppler measurements. 

 

 
Figure 5. Angular separation of CanX-2 and Cartosat 2A during the acquisition phase 



 
Figure 6. TIRA measurements from the second station pass of February 28 

 

6. Orbit Determination from Radar Tracking Data 

 

The orbit determination software ODEM (Orbit Determination for Extended Maneuvers) is used to 

generate a batch least squares fit solution for all OD cases. Initial position and velocity values are 

found from interpolation of the GPS reference orbit. Single measurement points with significant 

deviations from the initial orbit in the first OD iteration step, or from the improved orbit in 

subsequent iteration steps, are excluded from the OD computation. For this purpose, the 

measurement editing level can be set in ODEM. To deal with outliers in the process of orbit 

determination, a large editing level is set in the first iteration step when rough state estimates are 

available, and a more restrictive editing level is set in all following iteration steps when OD has 

already converged to the final solution. The following software settings are used: 

 

• dynamic modeling   spherical harmonic geopotential of order and degree 60  

third body attraction by sun and moon 

solar radiation pressure, atmospheric drag 

• measurement noise   10 m in range, 100´´ for azimuth and elevation 

• measurement editing level  10000 times the measurement noise for initial step,  

5 times the measurement noise for subsequent steps 

• maximum number of iterations 15 

• additional estimation parameters  drag coefficient, constant measurement bias 

• ephemeris generation   first obs. to last obs.+ 72 h, 30 s sampling interval 

 



 
Figure 7. Operational OD from all TIRA observation data vs. GPS reference orbit 

 

The position differences between an OD solution incorporating all radar tracking data and the GPS 

reference orbit is shown in Fig. 7. In general, the position deviations are approximately 1 to 2 orders 

of magnitude larger than the estimated accuracy of the GPS reference orbit. 

 

The along-track component shows a characteristic curve shape. One reason is probably the different 

orbit models applied in the ODEM and RDOD software. Unlike GPS processing, which is based on 

a reduced dynamic orbital motion model with empirical accelerations estimation every 8 hours, a 

purely dynamic motion model is applied in ODEM. Alongside the state vector a constant 

atmospheric drag coefficient and a constant solar radiation pressure coefficient are additionally 

estimated. Effectively, less flexibility is given to the orbital model to adjust to an observation arc 

spanning several days. Since the typical radar tracking duration for collision avoidance support does 

not exceed 24 h [1] and the following OD analysis will focus on observations arcs of up to 48 h, 

these concerns are not taken into account.  

Processing both observation data within the same OD software and with identical orbital model will 

reveal the additional error introduced by varying OD processes and is subject to future work. 

 

5. Statistical Analysis Methodology 

 

Out of all tracking data provided by FHR smaller data sets are selected to construct tracking 

scenarios for collision avoidance support. Normally, less than 48 hours are left to collect 

observations and compute refined orbital information of the secondary object. For a single sensor, 

the number of available station passes typically ranges from 5-10 within 48 hours. Based on the full 

data set of 14 station passes multiple cases with comparable tracking duration and identical number 

of station passes can be selected. Beyond comparing single orbit determination (OD) cases with the 

reference orbit it is therefore possible to derive statistical quantities on the achievable orbit 

determination accuracy. Mean position errors are computed for the time of the observation arc and 

for propagation times of up to 72 hours. The obtained error statistics may be used to improve 

tracking planning effectiveness and secure realistic collision risk assessment. 

 



Table 1. Number of OD cases for different tracking scenarios, “M xor E” indicated by *. 

 0 h* 12 h 24 h* 24 h 36 h 48 h* 48 h 

2 passes 6 14 16 0 10 15 0 

3 passes 0 11 16 12 27 37 28 

4 passes 0 2 4 16 25 39 74 

5 passes 0 0 0 7 9 18 82 

6 passes 0 0 0 1 1 3 44 

7 passes 0 0 0 0 0 0 11 

8 passes 0 0 0 0 0 0 1 

 

The selection of 2-8 station passes from the full data set results in a total number of 529 orbit 

determination cases with a principal tracking duration of 48 h. The term principle tracking durations 

reflects the presence of two groups of station passes every day for polar orbiting satellites. The 

principle tracking duration is always a multiple of 12 hours as the groups of station passes on the 

ascending and descending arc are separated by half of the Earth rotation time. The real tracking 

duration may last up to 6 hours longer or shorter than the value of the principle tracking duration. 

 

No case could be constructed with more than 8 station passes within 48 hours. Statistical analysis is 

performed over groups of comparable OD cases and therefore for various OD scenarios. The 

scenarios differ in the principal tracking duration. The station passes on the ascending and 

descending orbital arcs are combined (combination of morning and evening passes for sun-dusk 

orbit respectively). For OD cases having a principal tracking duration of 0 h, meaning all 

observations are taken on station passes from subsequent orbits, only morning passes or evening 

passes are involved. By definition an arbitrary selection of station passes within a principal tracking 

duration of 12 h and 36 h will always be a combination of morning and evening passes. The 24 h 

and 48 h OD scenarios may be an exclusive combination of morning or evening passes, or may be a 

mixture of passes at both times of day. The two types of combinations are analyzed separately for 

the 24 h and 48 h scenarios. Mixed combinations are labeled “M and E” and scenarios that are 

exclusively based on morning or evening passes are labeled “M xor E”.  

 

The number OD cases per OD scenario group is given in Tab. 1. Large variations in the statistical 

basis can be seen among the scenarios. A larger number of combinations exit for longer tracking 

durations and a balanced ratio of passes that are included and excluded from a specific OD case. 

The last station pass of each OD case defines the maximum time the propagated OD solution can be 

compared against GPS reference orbit that ends at 2012/03/03 08:00 UTC. The total numbers of OD 

cases that can be evaluated after various propagation times are listed in Tab. 2. 

 

Table 2. Number of evaluable OD cases for different propagation times 

Time Interval Observation 24h Propagation 48h Propagation 72h Propagation 

# OD Cases 529 404 310 57 

 

6. Analysis Results 

 

A convergent solution is obtained in all 529 cases of orbit determination from radar tracking data. 

Sometimes, a significant number of measurement points are rejected because of range outliers. 29 

OD cases have therefore been reprocessed with a higher editing level in the second iteration step. 

Comparison with the GPS reference orbit confirmed lower position errors. 

 

For all OD cases of the same tracking scenario a mean value of the root mean square errors during 

observation arc is computed. The radial, along-track and cross-track components of these mean 

position errors are depicted in Fig. 8. The largest position error is always attributable to the along- 



 
Figure 8: Mean position errors for observation arc. Blue reflects the radial, green the along-

track and red the cross-track component. “M xor E” combinations indicated by *. 

 

track component, except for the tracking scenario that is based on two stations passes stemming 

from the same group of morning or evening passes (principle tracking duration 0 h). For these 

tracking scenarios cross-track errors predominate. 

 

Tracking scenarios that include mixed combinations of morning and evening passes, mixed 

combinations of passes from the ascending and descending orbital arcs respectively, lead to much 

lower position errors than similar scenarios that are exclusively based on station passes of only one 

group. Mixed combinations imply observations taken from opposite sides of the orbit. The more 

diverse tracking geometry facilitates a better OD and hence a higher accuracy. The same holds true 

for all OD cases with principal tracking durations having an uneven multiple of 12 hours. 

 

The standard deviation of the mean position error is computed for each tracking scenario. Low 

standard deviations indicate a comparable error level for all OD cases found in a specific tracking 

scenario. As a measure of 3D position error homogeneity the coefficient of variation (CV i.e. the 

ratio of the standard deviation and the mean value) is listed in Tab. 3 (number of OD cases > 2). The 

highest CV is 0.52 and is connected to a relative small number of OD cases. The lowest variation of 

position error is 7% and is present in the two tracking scenarios with the highest number of analyzed 

OD cases. Most frequent values range from 0.1 to 0.2 and prove the significance of the derived 

mean position errors. 

 

Table 3: Coefficients of variation 3D RMS error of observation arc, “M xor E” indicated by *. 

 0h* 12h 24h* 24h 36h 48h* 48h 

2 Passes 0.43 0.14 0.24  0.12 0.52  

3 Passes  0.20 0.17 0.14 0.11 0.18 0.12 

4 Passes  - 0.11 0.12 0.18 0.16 0.07 

5 Passes    0.24 0.37 0.21 0.07 

6 Passes    - - 0.33 0.10 

7 Passes       0.22 



All OD solutions from advantageous combinations of morning and evening passes are propagated in 

time. The mean position errors after 24 h, 48 h, and 72 h are plotted in Fig. 10 – 12. For 

comparison, Fig. 9 holds the mean position errors for the observation arc with the same scaling of 

the error axis. The growth of position error which does not linearly depend on propagation time can 

clearly be seen. Errors have barely grown 24 hours after the last observation. They increasingly rise 

after 48 hours and rise more severely after 72 hours. Moreover, orbit precision clearly depends on 

the principal tracking duration. Long time intervals between the first and last observation allow 

precise drag coefficient estimation and therefore more robust and accurate orbit propagation. 

 

 
Figure 9: Mean position errors for observation arc. 

 

 
Figure 10: Mean position errors after 24 hours propagation. 

 

 
Figure 11: Mean position errors after 48 hours propagation. 



 
Figure 12: Mean position errors after 72 hours propagation. 

 

7. Conclusions 

 

In the course of a 5 day long tracking campaign observation data on the nanosatellite CanX-2 were 

successfully gathered by the on-board GPS receiver as well as the Tracking and Imaging Radar of 

FHR. An appropriate reference orbit was computed from the GPS raw measurements. TIRA proved 

to be a suitable sensor for providing positional information on a man-made object in LEO of cm-

size. Meaningful statistics on the orbit precision were derived for different radar tracking scenarios. 

 

The radial position error of a small debris-like object stays below 40 m for a propagation time of 24 

hours, a representative time interval between the end of the radar tracking and a predicted collision 

event. A significant orbit refinement can be achieved compared to the usual TLE accuracy. Radar 

tracking for collision avoidance support is therefore a useful tool to mitigate space debris collision 

risks and reduce the number of avoidance maneuvers. 

 

The following lessons have been learned for the planning of radar tracking campaigns to support 

collision risk assessment by refined orbit determination. 

• Tracking scenarios comprising of a single group of station passes from the same ascending or 

descending orbital arc only, e.g. 2 radar passes from subsequent orbits, result in position errors 

larger than 1 km during the observation arc and even worse for orbit propagation. 

• The principal tracking duration for collision avoidance support should be at least 12 h and 

preferably longer. This conflicts with the typical collision avoidance timeline. Longer 

observation arcs can only be achieved with an early decision for radar tracking. This is 

connected to a lower prediction confidence and subsequently to more frequent tracking requests. 

• Tracking scenarios with a principal tracking duration of 24 h or 48 h should be a mixed 

combinations of station passes from the ascending and descending orbital arc. Mixed 

combinations imply observations are taken from opposite sites of the orbit. The more diverse 

tracking geometry facilitates a better OD accuracy. 



• The orbit precision deteriorates with increasing propagation times. There is a moderate accuracy 

within the first 24 h after radar tracking. This relaxes conflicts with the time before closest 

approach required for maneuver planning and execution. Again longer observation arcs are 

preferred to gain prediction stability. 

 

The orbit precision results are valid for other radar tracking applications, such as orbit determination 

for On-Orbit Servicing and Active Debris Removal. 

 

The analysis was carried out for a single satellite and during relative calm solar activity. The solar 

10.7 cm flux increased from ~100 sfu at the beginning of tracking campaign to ~120 sfu at the 

campaign end. Orbit prediction errors strongly depend on atmospheric drag and therefore on orbital 

height and solar activity. Similar tracking campaigns and analysis should be re-performed for a 

number of satellites within different orbital altitudes and in times of high solar activity. 

 

Future work will focus on a more detailed measurement data evaluation form the CanX-2 tracking 

campaign. Further aspects of the orbit determination process will be analyzed. As mentioned, the 

impact of different orbital models should be assessed. Next, orbit precision can be expressed in 

terms of errors in keplerian elements. And it would be interesting to compare the covariance 

information computed during orbit determination and propagated in time against the real position 

errors. 
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