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1 Introduction 

1 Introduction 

The global security risk has changed. Recently published studies substantiate a significant 

increase of extreme natural disasters (e.g. floods in Pakistan 2010, forest fires in Russia 

2010) in course of the last decades (STROHMEYER 2010: 1, WORLD BANK 2010). More 

critical than the frequency of the events is the dimension of the expenses caused by 

disasters, in particular loss of lives. In absolute numbers, material damage occurs mainly 

in industrialised countries, whereas fatalities concentrate to more than 90 per cent in 

developing countries (see Figure 1.2 and Figure 1.1) (WORLD BANK 2010), not least due to 

settlement structures (EERI 2010: 3). 

 

Figure 1.1: Number of fatalities by type of event and by region 1970-2010 

 Source: WORLD BANK 2010: 29 

However, disasters cause considerably more damages in poor countries if measured by 

the ratio of the expenses and the gross domestic product (GDP) (cf. the earthquake that 

struck Haiti: 120 per cent, STROHMEYER 2010: 3). Furthermore, technical accidents, such 

as the oil spills in the Gulf of Mexico in 2010 as well terrorist attacks can cause 

incalculable damages. The danger of potential attacks on critical infrastructure such as 

power plants or water supplies brought about a new dimension of civil security. 

Due to globalised and urbanised lifestyles throughout the world, there is a high risk of 

consequential damages apart from direct impacts in the aftermath of the above mentioned 

disasters (e.g. food shortages resulting from the fires in Russia, rise in prices of resources 

and limitation of global mobility, LGR/AFP/REUTERS 2010). 



  

 
 

2 Introduction 

 

Figure 1.2: Areas reflect cumulative damage from disasters scaled by GDP for 1970 to 2008 

 Source: WORLD BANK 2010: 12 

Since global population is rising, human activities are at high risk of increasing rate of 

natural disaster situations (VOIGT ET AL. 2007: 1520). Prognoses about global changes 

undoubtedly show an increasing vulnerability of the global population to extreme natural 

disasters. Rapid urbanisation and development in areas with high exposure to natural 

disasters lead to far greater harm than experienced in the past (ALTAN 2005: 311). Until 

2050, due to rising population and rural exodus, approximately 1.5 billion people – twice 

as much as today – are going to live in storm and earthquake exposed cities (see Figure 

1.3) (WORLD BANK 2010: 20). As a consequence, a high demand for not only 

preparedness, but, in particular, for the advanced emergency response is given. 

 

Figure 1.3: Exposure to earthquakes and cyclones may rise from 2000 until 2050 

 Source: World Bank 2010: 20 
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An example for the delivery of emergency response, in form of rapid mapping products, is 

the severe earthquake (EQ) that struck Haiti on the 12th of January in 2010. The capital, 

Port-au-Prince was substantially affected by the main shock. A series of aftershocks 

followed. The extraordinary event of Haiti is the case study of this thesis. The map below 

(Figure 1.4) shows estimated damage categories for buildings per 250 metre grid cells, 

which were derived by visual interpretation of high resolution satellite images. Space-

borne imagery, down-linked one day after the EQ, and archive data were deployed as 

database. The map was produced by the Centre for Satellite Based Crisis Information 

(ZKI) and is the cooperation partner of the present thesis. 

In the context of national and international response to major disasters ZKI is a service of 

the German Remote Sensing Data Centre (DFD) of the German Aerospace Centre (DLR), 

consisting of a rapid mapping team with 24/7 availability. Its assignment is the timely 

provision of processed and analysed satellite imagery made for rapid mapping products in 

case of natural and environmental disasters, humanitarian relief activities and civil security 

concerns. The „on demand‟ rendered products are available for relief organizations and 

government agencies and free of charge. The extracted information is provided as map 

products or digital geo-data and finally utilised in disaster management operations or relief 

activities (VOIGT ET AL. 2007, STEVENS 2008). 
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Figure 1.4: Satellite-based damage assessment map of Port-au-Prince, Haiti 

 Source: DLR 2010 
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An established source of information in crisis, emergency and natural disaster situations is 

satellite imagery (VOIGT ET AL. 2005: 520). Especially in the context of rapid mapping 

activities space borne imagery is capable to provide timely up-to-date and high-quality 

information. The application of remote sensing and geo-information systems can forward 

an increase in value. This value adding is obtained by registration, processing, 

classification and visual interpretation of raw image data (DONNER 2008: 4). Rapid 

mapping in the aftermath of an EQ consists mainly of data extraction and symbolisation of 

the extracted features. Thus, the focus of this thesis is on optical sensors because radar 

imagery is not suited for a visual interpretation. Furthermore, the effects of speckle and 

double-bounce in radar imagery, especially in urban environments, restrict the application 

for damage assessment of single buildings. 

Concerning visual interpretation there is a wide range of theories how a human interpreter 

is reaching conclusions. These range from aspects of Aristotle‟s apprenticeship and 

cognition research to theories of semiotics (DONNER 2008: 4). The understanding of data 

mining and evaluation appears to be very difficult. Nevertheless, as a central aspect of 

visual interpretation it has to be considered. 

1.1 The Research Challenge 

In the context of the Haiti EQ the aim of this thesis is to develop a team-based method for 

visual damage assessment of optical very high spatial resolution sensors (VHSR) for the 

operational use at ZKI.  

A central aspect is to explore the possibility to improve the assessment of building 

damages, which is still carried out by time consuming human interpretation. This task is 

often performed following disasters, therefore, while on one hand there is a high pressure 

to deliver a result as quickly as possible, on the other hand it is of highest importance to 

ensure a high quality of the assessment (CASTOLDI ET AL. 2010: 124). A validation process 

aims at quantifying the degree of adequacy of a service or product to approved standards 

and user requirements (VEGA EZQUIETA ET AL. 2010: 54). But in time emergent situations 

any time, invested in controlling the quality of the product, is time that is not invested in 

producing information that could be of value for the user. Accordingly, quality control has 

an impact on rapid mapping. For this reason it is important to invest efforts in in-line 

quality control, to keep the product inside quality standards for as long as it is produced. 

The question is how to guarantee quality and reliability for information derived from 

remote sensing data. The challenges concerning the visualization fall in line. Bearing this 

to mind, the research challenges are found in the following questions: 

  



  

 
 

6 Introduction 

(1) Which thematic accuracy can be achieved in a certain timeframe? 

(2) How can subjective decisions, which are based on qualitative surveys, create a 

rational and reproducible result?  

(3) How can procedures be designed, that take (1) and (2) into consideration? 

(4) What are the user requirements and how can they be extracted and represented? 

To fulfil the research challenges the methodology has to ensure different aspects: 

(1) Follow an easy course  

(2) Optimal working settings, which can be reproduced for different events 

(3) Homogenous teams that deliver comparable results 

(4) Homogenous methodology that leads to rational results 

(5) Meet timelines and quality terms  

All the considerations of the thesis will be held under the scenario of a critical situation in 

which products must be delivered in a timely urgent mode. Therefore it is essential to 

design an in-line procedure of data extraction and representation. The methodology shall 

be transferable to different sensor data and also contain an automation of supporting 

information. It is assigned to optimise the current grievances of visual interpretation. Thus, 

the challenge is to extract damaged buildings out of randomly provided data and to 

determine the best data source. The result will be an advanced operating sequence for 

the rapid damage assessment.  

1.2 Objectives  

Aim of this thesis is to investigate the conditions of rapid mapping using earth observation 

data to provide a deeper understanding of the potential of very high resolution optical data 

for damage derivation. Reflections on this overall goal raise a number of questions. Is the 

ground resolution of earth observation data of high relevance for the damage 

assessment? What degree of detail is sufficient to analyse building damages? To figure 

out the reliability of different sensors, which‟s imagery is available within the International 

Charter on Space and Major Disasters, a statistical evaluation has to be conducted.  

The increase in quality for damage assessment products is a central aspect in the current 

discourse of rapid geospatial reporting. A robust, transferable and fast method of data 

extraction and representation signifies the cutting edge of research. While recent 

development activities strive to put forward the operational level of such methods in a 

rapid mapping context, both users and service providers, such as ZKI, are concerned with 

the trustworthiness of products in general, and under aspects of reliability, timeliness and 

effectiveness in particular. The demand in supporting time-consuming and work-intensive 

visual interpretation techniques is undoubtedly rising (cf. LANG ET AL. 2010: 65).  
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As a consequence, a homogenous visual interpretation scheme that follows an 

standardised operating procedure (SOP) is crucial. The base for the SOP is the semi-

automated extraction of a building mask from satellite data. The intention is to increase 

accuracy of damage assessment.  

For the analysis of disaster extents there is a necessity to work with different teams. When 

working in teams, qualitative differences of interpretation results are expected. To get an 

estimate on the variances of visual interpretation a focus group analysis is essential. The 

results obtained of this statistical evaluation are considered in the development of the 

SOP. 

Currently many service providers apply visualisation techniques that symbolise tendencies 

of damage distribution in grid cells (see Figure 1.4). Since the current visualisation 

provides only a small degree of detail for rescue teams, the necessity for developing an 

advanced data representation is given. With regard to that, a semiotic visualisation that is 

informative, graphically clear and easy to understand has to be found (ANDRIENKO & 

ANDRIENKO 2007). In addition, user requirements have to be taken into consideration. 

Summing up, a comprehensive, interdisciplinary approach is presented, which aims on 

raising product quality as far as it is possible within a diploma thesis. This will lead to a 

sophisticated method, which results in consolidated rapid mapping products with more 

reliable content. 

1.3 Thesis Outline 

As was presented, the aim of the thesis is to propose a new approach of a team-based 

analysis method and to investigate the variations of visual interpretation. Based on the 

aforementioned research challenges and objectives, the thesis is divided into seven 

chapters. 

Chapter 1 outlines the setting of the thesis within the framework of satellite-based crisis 

information. Building on this the research challenges and objectives are presented. 

Chapter 2 illustrates the fundamentals of methods and techniques applied in the thesis. 

After an introduction into the study area and the data utilised, the situation in the aftermath 

of the Haiti earthquake is briefly portrayed. This is followed by the fundamentals of remote 

sensing and digital classification procedures before a literature review outlines the state-

of-the-art in building detection utilising remote sensing methods. Subsequently the 

processes dealing with visual image interpretation are explained. Continuing with disaster 

management and its related frameworks concerning earth observation, Chapter 2 closes 
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with sociological aspects of team-based analysis methods that are of specific interest for 

image interpretation. 

Chapter 3 directs to the background of rapid mapping. The general setting of the damage 

assessment in the disaster management cycle follows. Subsequently specific user 

requirements are described. The user needs unconditionally lead to a limitation of 

available data sources. The restrains which result from the user requirements build the 

framework for the usability of different sensors, which were analysed and taken into 

consideration for further analysis and the development of an advanced interpretation 

method. Followed by the portrayal of damage assessment techniques and their restraints 

for operational use, the work of ZKI in the Haiti case is depicted. Finally, the potentials and 

limitations of VHSR optical imagery for damage assessment are further investigated. 

Chapter 4 deals with the development of a team-based procedure for visual image 

interpretation. Initially some basic principles and considerations are discussed, before the 

development of a semi-automated solution for the generation of supporting information is 

explained. The supporting information renders assistance during visual interpretation and, 

consequentially, is the first part of the developed methodology. Afterwards a pre-test study 

is described, as well as the statistical principles deployed for the evaluation of the results 

that were obtained from the focus group analyses. 

Chapter 5 examines the illustration facilities of damage assessment maps of different 

service providers. The variety of visualisation techniques is compared and briefly 

analysed, in order to find an advanced data representation. The optimisation approach 

occurred with due regard of present inaccuracies. The particular focus was on spatial 

relations of data representation, which resulted in deliberations for alternative visualisation 

possibilities.  

Chapter 6 demonstrates and discusses the main results of the analyses conducted. 

Chapter 7 presents the conclusions derived from key findings of the thesis and briefly 

outlines implications for further research. 
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2 Fundamentals and State of the Art 

After a short introduction into the study area, Chapter 2 outlines the basic principles and 

the recent development of commonly applied methods in optical remote sensing. In 

particular the topics and procedures that are relevant for the thesis are considered. In 

addition to the methodological background, a thematic context is also portrayed. 

2.1 Study Area and Data 

Haiti occupies the western part of Hispaniola Island, one of the Greater Antilles islands, 

situated between Puerto Rico and Cuba. The cities of Carrefour and Port-au-Prince are 

the area investigated (see Figure 2.1) by this thesis, because they suffered the highest 

concentration of damages caused by the earthquake in January 2010. In the case of the 

Haiti earthquake the weather conditions enabled the acquisition of very timely satellite-

based optical data, such as WorldView-I and II data (spatial resolution PAN 0.48 m, 

multispectral 1,84 m – spectral resolution: Red, Green, Blue, NIR1) and GeoEye-1 data 

(spatial resolution PAN 0.5 m, multispectral 1,65 m in the bands Red, Green, Blue, NIR) 

(see also Chapter 2.3.1). The images, down-linked on the 13th of January 2010, were 

used for situation mapping and rapid damage assessment (VOIGT ET AL. IN PRESS) and 

also for this study. All four available bands were utilised because currently this is the most 

immediately available information in an emergency situation. An additional street data set, 

digitised by DLR, was utilised to increase the quality of the machine-based classification 

(WALTER 2005: 1, cf. VEGA EZQUIETA ET AL. 2010). 

During the crisis, data of several other optical and also radar sensors and the 

corresponding archive scenes were acquired. Most of them were freely available for the 

disaster mapping community. Even airborne optical imagery such as the joint remote 

sensing mission of World Bank ImageCat and the Rochester Institute of Technology (WB-

ImageCat-RIT) and LIDAR data were made accessible. Furthermore aerial photographs 

(spatial resolution 0.2 m in the bands Red, Green, Blue) were consulted for statistical 

evaluation (see Chapter 3.2). 
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Figure 2.1: Study area Port-au-Prince, Haiti.   Source: Own illustration   © S. Klett 2011 
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2.2 The Earthquake Event 

2.2.1 Earthquakes 

An earthquake is defined as shaking and displacement of the ground due to seismic 

waves. Seismic waves result in an EQ after a sudden release of stored energy in the 

earth´s crust starting from slip-surfaces (PRESS & SIEVER 2003: 684). They can be 

released by tectonic or volcanic activities. At the earth´s surface seismic waves are felt as 

a shaking or displacement of the ground. The released energy in the hypocenter can be 

measured in frequency ranges that define the magnitude of an EQ event (CRED 2009).  

 

Figure 2.2: Seismic waves spread out into all directions from the seismic centre 

 Source: PRESS & SIEVER 2003: 482, modified 

Due to the eastward movement of the Caribbean plate USGS (2010) reported a small 

Tsunami with peak-to-trough wave heights of about 12 cm. The earthquake took place in 

the boundary region of the Caribbean and the North America plate. With a velocity of 

approximately 20 mm per year the plate boundary is stressed by left-lateral strike-slip 

motion and compression with respect to the North America plate. The Septentrional fault 

system in the northern part of the country and the Enriquillo-Plantain Garden fault system 

in southern Haiti are partitioning the island of Hispaniola, provoking motion between two 

major east-west trending strike-slip fault systems (see Figure 2.3). The January 12th main 

shock caused no noteworthy surface displacement of the geomorphologically well-
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expressed main-strand of the Enriquillo-Plantain Garden fault system. Nevertheless it has 

caused several major earthquakes in the last 300 years (USGS 2010). 

 

Figure 2.3: Tectonically setting of the Hispaniola Island. Haiti occupies the western third. The star 
represents the location of the earthquake.  

Source: EBERHARD ET AL. 2010: 2, modified 

On Tuesday January 12th in 2010 at 21h53 GMT, 16h53 local time, a severe earthquake 

of magnitude (M) 7.0 on the Richter scale hit Haiti. The main shock´s epicentre was 

located about 15 km to the west of the capital city, Port-au-Prince. The hypocenter at a 

depth of 13 km was accompanied by 59 aftershocks of M 4.5 or greater. The two largest 

aftershocks were listed at M 6.0 and 5.9. The severity of this extraordinary incident 

caused a great number of fatalities and losses. According to official statements in the area 

of the capital and the southern part of Haiti more than 222,000 people were killed, more 

than 300,000 were injured, and millions were displaced. The economic losses also took 

on a dramatic scale. More than 97,000 houses were destroyed and over 188,000 

damaged (USGS 2010). Most substantial damage occurred in Port-au-Prince and 

Carrefour.  

The EQ that shocked Haiti caused an activation of the International Charter „Space and 

Major Disasters‟ (see Chapter 2.7) for the provision of satellite data. The event is listed as 

Charter Call ID 288. The provision of a value adding analysis component was enabled 

within the framework of the GMES Emergency Response Core Service (ERCS) „Services 

and Applications for Emergency Response“ (SAFER) activation number 24. The request 

for information on the disaster occurrence was initiated by the French Civil Protection, the 

United Nations Stabilisation Mission in Haiti (MINUSTAH), Public Safety of Canada and 
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the American Earthquake Hazards Programme of USGS and alerted the international 

humanitarian aid community. To illustrate the importance of the emergency response and 

the extraordinary severity of the event, the actual situation is briefly portrayed.  

2.2.2 Actual Situation 

As a consequence of the EQ that struck Haiti, there was an increased vulnerability for 

significant damages from other hazards or humanitarian crises. These were in this special 

context tremendous storm damage, violence, exposure to cholera, or political instability to 

name but a few. Further obstructive problems result from the amount of debris, which 

exceeded available resources for removal (OCHA 2010, ALERTNET 2011). Heavy machines 

and other equipment for clearing work of the devastation was very limited (EERI 2010: 1). 

One year after the event Haiti still is in the transition phase of the disaster management 

cycle (see Figure 3.2) 

 

Figure 2.4: Complete destruction of a concrete building in Haiti 

 Source: EERI 2010: 23 

All in all the number of affected people was estimated to be about 3.7 million (RELIEFWEB 

N.D. referring to OFDA/CRED International Disaster Database). Figure 2.5 shows an 

estimate of the movement of the displaced. These internally displaced persons (IDP) are 

facing economic as well as societal challenges.  



  

 
 

14 Fundamentals and State of the Art 

 

Figure 2.5: Population movement out of Port-au-Prince as of 24 January 2010.  

 Source: OCHA 2010 

The government of Haiti assessed the economic damage, caused by the EQ, at 

approximately 7.8 billion US Dollar, which exceeds 120 % of Haiti‟s 2009 GDP (EERI 

2010: 1). ALERTNET estimates the damages and losses even higher, up to 14 billion US 

Dollar (ALERTNET 2011). EERI (2010: 3) sums up the unpleasant state of the affairs: “The 

harrowing loss of life during the 2010 earthquake is directly attributable to the exceptional 

vulnerability of the Haitian building inventory. Large well-engineered structures were 

largely immune to damage as were single story shacks using indigenous materials. Worse 

hit were multifamily dwellings formed from concrete. Such vulnerabilities are not unique to 

Haiti, or even to Hispaniola, but are common in many developing nations.” As a result of 

the cascading crises, about 150,000 people left the country. Considerably more are still 

living in tent encampments carving out a miserable existence. 
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Figure 2.6: IDP camp in Port-au-Prince. 

 Source: EERI 2010: 9 

In July 2010 more than 1.5 million people were still living in 1,200 makeshift shacks and 

tent camps. Only a fraction of the rubble was removed by then. A main problem was the 

provision of funds. Even though donors promised 5.3 billion US Dollars the delivery was 

delayed (OCHA 2010), due to political instability and violent protests (ALERTNET 2011). 

Therefore the rebuilding process has also been hampered. However, the aid operation 

saved innumerable lives by the provision of water, shelter, sanitation and food aid. 

Disregarding all this, criticism came with regard to a the lack of coordination among the 

plethora of charities (ALERTNET 2011), as well as too many different map products (see 

Chapter 5), most based on remote sensing data. To overcome extraordinary crisis events 

like that portrayed above, the application of earth observation (EO) data is crucial for 

information generation. Remotely sensed imagery is a powerful source to derive timely 

information for decision support in the aftermath of a disaster (SHANKAR ET AL. 2010: 21). 

The following section deals with the fundamentals of remote sensing and commonly used 

sensors for emergency response. 

2.3 Fundamentals of Remote Sensing 

According to LILLESAND AND KIEFER (2008: 1), remote sensing is defined as the scientific 

acquisition, storage, processing and interpretation of information about the earth´s surface 

and objects on it without direct physical contact. Air- or space-borne sensors receive and 

record emitted signals or electromagnetic emission from certain devices involved in an 

investigation (ALBERTZ 2009: 1f). Fundamentally one has to distinguish between passive 

and active systems. Optical sensors belong to the passive systems and capture reflected 
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solar radiance. Active remote sensing systems transmit electromagnetic waves and 

measure the reflected signal of the illuminated surface. Microwave systems, like radar or 

laser scanners, belong to these (ALBERTZ 2009: 1f). 

With respect to their emitted or received wavelengths, active and passive systems differ. 

Most optical sensors register a spectrum in the range of visible and near infrared light 

(0.4-1 µm). There are also specific investigations utilising shortwave infrared and thermal 

infrared (SWIR: 1-7 µm; TIR: 7 µm – 1 mm). Wavelength ranges surpassing these are 

used by microwave systems (up to approximately 1 m) (ALBERTZ 2009: 11). Figure 2.7 

illustrates the electromagnetic spectrum and sensor scopes. 

 

Figure 2.7: Spectral characteristics of energy sources, atmospheric transmittance and common 
remote sensing systems.  

Source: ALBERTZ 2009: 11, modified 

Objects studied on the earth´s surface, differ from each other in reflectance 

characteristics. The attributes of different wavelengths of the electromagnetic spectrum of 

a certain surface are called its spectral reflectance curve (cf. LILLESAND & KIEFER 2008: 

13f). The reflection properties depend mainly on physical and chemical characteristics of 

the respective surface and the existing geometrical relations (ALBERTZ 2009: 17). These 

differences clarify the demarcation and perception of objects in the various wavelength 

ranges (LILLESAND & KIEFER 2008: 15). 

Single sensors, which are also named bands, are sensitive to a certain wavelength range. 

The number of bands and the covered wavelength range are called spectral resolution. 
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Systems that record different spectral ranges at the same time are labelled multispectral 

(ALBERTZ 2009: 9).  

Digital remote sensing data is provided in a raster format and consists, after processing, 

of quadratic pixels (picture x elements). The edge length of a pixel is the measure for the 

geometric resolution. It indicates the perceptibility of objects: the smaller the objects, the 

higher the resolution (LILLESAND & KIEFER 2008: 33, ALBERTZ 2009: 84). At this point the 

importance of the resolution for the respective analysis must be underlined. Depending on 

the research interest one has to choose a sensor whose resolution is sufficient to 

contribute to the analysis of the object of study (see Chapter 3.2.). 

The position of a single pixel is fixed in a Cartesian coordinate system. Every single 

picture element renders one modicum per band. This data is expressed as a grey-scale 

value, the digital number. Its scale is defined by the bit-depth and depends on the data 

storage (8-12 bit). Finally, the bit-depth reveals the radiometric resolution (LILLESAND & 

KIEFER 2008: 31ff., ALBERTZ 2009: 93f).  

The temporal resolution is defined as the shortest possible interval within which a space-

borne sensor can record the same section of the earth´s surface (LÖFFLER ET AL. 2005: 

86). 

2.3.1 High Resolution Sensors – Principles and State of the Art 

This study, as mentioned in the title, is based on VHSR (also called high spatial 

resolution, HSR, cf. TAUBENBÖCK ET AL. 2010) remote sensing data of the sub-meter 

domain. In this the highest resolution in the panchromatic band is crucial. For the analysis 

optical multispectral imagery of the GeoEye-1 and WorldView-I/II satellites were deployed. 

The current standard for optical VHSR data is a ground sampling distance (GSD) of 

1 m x 1 m or below (cf. NEUBERT 2006: 7), where GSD refers to the size of the pixels 

expressed in ground units (LILLESAND & KIEFER 2008: 312). The actual highest spatial 

resolution of space borne systems for non-military use is 0.5 m. Presently the smallest 

pixel size of 0.46 m x 0.46 m of the WorldView-I sensor is, due to US law, resampled by 

the operator Digital Globe Corp. to 0.5 m x 0.5 m for commercial use. Table 2.1 shows 

basic characteristics of selected VHSR sensors of the metric and sub-metric domain 

primarily used in this study (DIGITAL GLOBE. CORP, n.d.). 
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Table 2.1: Basic characteristics of most commonly used current VHSR sensors. (GSD = ground 
sampling distance; ms = multi-spectral; pan = panchromatic; IFOV= instantaneous field 
of view; # bands = number of bands) 

Source: HAGENLOCHER 2010: 24, modified 

Sensor GSD [ms] GSD [pan] IFOV [km] Dynamic range [bits] # bands [ms] 

GeoEye-1 1.65 m 0.41 m 15.2 x 15.2 11 bits per pixel 4 bands 

IKONOS 4.0 m 1.0 m 10 x 10 11 bits per pixel 4 bands 

Quickbird 2.4 m 0.6 m 16.5 x 16.5 11 bits per pixel 4 bands 

Worldview-2 1.84 m 0.46 m 16.4 x 16.4 11 bits per pixel 8 bands 

 

With the tremendous progress of spatial resolution new challenges also arise. Objects, for 

instance, frequently do not appear homogeneous, because of increased richness of detail. 

As a result one sees decreased contrast between image objects and spectral confusion 

as well as shading. Moreover, complex object boundaries lead to misclassifications 

(NEUBERT 2006: 14f). Figure 2.8 shows examples of the afore mentioned problems.  

 

Figure 2.8: Problems with VHSR satellite data a) Lacking spectral discernment (similarity between 
roofs and streets), b) spectral variability of a single image object (different degrees of 
ripeness in a grain field), c) interfering image objects (cars on street).  

Source: NEUBERT 2006: 15 

Fortunately, this progress was accompanied by methodological advancements such as 

pan-sharpening (cf. EHLERS & KLONUS 2004). This image fusion technique uses arithmetic 

operations to transform multi-spectral data onto the same pixel size as the panchromatic 

band (LÖFFLER ET AL. 2005: 105f, ALBERTZ 2009:120, EHLERS 2010). More processing 

techniques, that improve the analysis of raw image data, are explained in section 2.3.2. 
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2.3.2 Digital Image Processing 

Before the analysis of earth observation data takes place, preprocessing is necessary 

(see also Chapter 3). The scope of the preprocessing depends on the geometric and 

radiometric premises of the respective imagery. By the application of geometric 

transformations, such as geocoding, datasets are rectified and fitted into a geodetic 

coordinate system (ALBERTZ 2009: 99). The orthorectification process adjusts distortions 

caused by missing information on altitude with the aid of an appropriate digital elevation 

model (DEM). Radiometric corrections, associated with image restoration, encompass 

atmospheric correction via noise reduction. The image enhancement includes contrast 

enhancement and is actualised with digital filtering. The afore-mentioned techniques serve 

primarily to improve visual interpretation (LILLESAND & KIEFER 2008: 499ff.). 

In this study, the analyzed data serves as the input for the delineation of building contours. 

For this purpose the relevant information has to be extracted from the optical imagery 

through specific interpretation and classification methods. The most common respective 

procedures are introduced below. 

2.4 Digital Classification Procedures 

The cutting edge of research are machine-based classifiers. Digital classification 

algorithms recognize and analyze the image content by machine vision (ALBERTZ 2009: 

154). Digital classification methods are based on the statistical comparison of spectral 

values of single pixels. In this way the „spectral fingerprint“ (LÖFFLER ET AL. 2005: 193) of 

surface objects can be investigated.  

2.4.1 Pixel-based Image Analysis 

Various classification algorithms aggregate similar defined pixels into thematic classes. 

This occurs through multispectral classification in the levels of the spectral bands. In doing 

so a multidimensional feature space is defined in which the classification of discriminative 

objects takes place by the aggregation of feature spaces of similar spectral pixels 

(ALBERTZ 2009: 155f). Consequently, a successful classification is based on correctly 

measured values, a suitable band combination, the spectral discrimination of each class 

as well as expert knowledge (LÖFFLER ET AL. 2005: 198). Figure 2.9 shows a theoretical 

schema of a multidimensional feature space; objects in the scatter diagram usually cross 

borders (cf. Figure 4.5).  
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Figure 2.9: Three-dimensional feature space for multi-spectral classification  

 Source: ALBERTZ 2009: 156, modified. 

There are several digital classification techniques which can be applied. Pixel-based 

procedures consider the spectral characteristics of only one image point. They are 

differentiated into unsupervised and supervised methods. As a standalone process, 

unsupervised methods apply statistics such as cluster analysis. In contrast, supervised 

methods need training sites that have to be provided by the user. Machine-based 

algorithms combine spectrally similar pixels into a predefined class (LILLESAND & KIEFER 

2008: 545 ff.). Further parameters that also support the classification are spectral pattern 

recognition, texture-based and principal component approaches (TOMOWSKI ET AL. 2010). 

In VHSR data one can see „salt-and-pepper-effect“ phenomenon. Especially in 

heterogeneous regions, such as urbanized areas, there is an enormous spectral diversity 

on a small scale (cf. Figure 2.8). If one considers an image object, important semiotic 

information is undocumented, due to the „salt-and-pepper-effect“. This results in error 

classifications (BAATZ & SCHÄPE 2000: 12ff.). Consequently, this could be considered as 

the limiting factor of pixel-based procedures and, because of this, extended classification 

algorithms are increasingly applied. Object based image analysis (OBIA) can be ranked 

among these (cf. LANG 2008, WURM ET AL. 2009, TAUBENBÖCK ET AL. 2010). In addition to 

spectral criteria form parameters and topology are considered. The results achieved better 

approximate human perception.  

2.4.2 Object-based Image Analysis 

State-of-the-art algorithms for the machine-based interpretation of VHSR images apply 

OBIA, because pixel-based approaches create artefacts during classification (YANO & 

YAMAZAKI 2004: 4). Another advantage of OBIA in the pre- and post-disaster image 
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comparison over conventional pixel-based approaches is the omission of training site 

determination, which is very time consuming. Recent developments, such as the architect 

solution guarantee an easy implementation of master rule-sets on different images.  

Object-based image analysis usually follows three major procedures. The first step is 

image segmentation (BAATZ & SCHÄPE 2000). Secondly there is the detection of image 

objects, which is usually done by a fuzzy classification algorithm (BENZ ET AL. 2004, 

SUMER & TURKER 2008, CHINI ET AL. 2009, TAUBENBÖCK ET AL. 2010). Lastly the post-

processing of the extracted objects follows (LI ET AL. 2005: 642). Thresholds of spectral 

and relational attributes are common features described in literature to separate objects 

belonging to different classes. A range of thresholds describes a fuzzy logic, which 

defines vague borders between different classes. The fuzzy logic based thresholds are 

determined on screen by the user.  

When applying OBIA, first and foremost the image segmentation module is initiated. 

Neighbouring pixels are aggregated to homogenous segments according to their shape, 

area and spectral values (BAATZ & SCHÄPE 2000). There are multiple segmentation 

methods available. Because thresholds in the grey-value histograms are prominent in the 

generation of object boundaries, multi-resolution segmentation was chosen in this thesis. 

The image segmentation starts with a region-growing algorithm. The neighbourhood of the 

seed pixel is investigated. If there is accordance with the predefined homogeneity criteria, 

unification into a thematic segment is performed. Taking into account different object sizes 

in the real world, it is advisable to work at different segmentation levels. These levels are 

iteratively and hierarchically structured (cf. DEFINIENS 2008: 31, TAUBENBÖCK 2008: 39ff.). 

A lower level contains, for instance, small heterogeneous segments for the classification 

of building roofs, whereas higher levels are qualified for larger homogenous segments 

such as forests or water bodies. This procedure is called a bottom-up segmentation 

concept (TAUBENBÖCK ET AL. 2010: 120) 

The classification module results from the following parameters: spectral value, shape, 

size, texture and neighbourhood (LILLESAND & KIEFER 2008: 581ff., ALBERTZ 2009: 161). 

The thematic classification of segments follows the principles of a hierarchical object 

network, which is based on the transmission of the corresponding properties to lower 

levels (BENZ ET AL. 2004: 240, TAUBENBÖCK 2008: 43f, TAUBENBÖCK 2010: 118f). In this 

context the classification module is a top-down classification (cf. TAUBENBÖCK ET AL. 2010: 

121f). Figure 2.10 displays the bi-modular design of a hierarchical, multi-level, top-down 

classification approach. 
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Figure 2.10: Modular framework for an object-oriented urban land-cover classification.  

Source: TAUBENBÖCK ET AL. 2010: 121 

In contrast to pixel-based classification techniques, the possibility to use fuzzy 

classification attributes is a major advantage of OBIA. The „Fuzzy Logic‟ delineates 

imprecise class borders that most closely correspond to real objects. Therefore pixels can 

hold partial degrees of membership in several classes (NAGA JYOTHI ET AL. 2008: 709).  

Another possibility to distinguish classes is the use of vegetation indices. They assess 

whether the object being observed contains live green vegetation or not (ALBERTZ 2009: 

221). The ratio of significant bands indicates high reflection of green vegetation as well as 

its high absorption in the red spectral range. The „Normalized Difference Vegetation Index‟ 

(NDVI) (ROUSE ET AL. 1973) was used for the presented thesis. It is defined by the ratio: 

      
       

       
 

The NDVI adopts normalised values in the range from -1 to +1. Higher NDVI values 

indicate a high density of vital vegetation (HILDEBRANDT 1996: 55). 

ALBERTZ (2009), LILLESAND AND KIEFER (2008) and HILDEBRANDT (1996) presented further 

detailed descriptions of the theoretical principles of remote sensing. OBIA and 

classification usually result in thematic maps. To make a point about the quality of the 

classification results, an accuracy assessment has to be performed. 
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2.4.3 Object-based Accuracy Assessment 

LILLESAND AND KIEFER (2008: 568) emphasize that: “[...] a classification is not complete 

until its accuracy is assessed”. In case of object-based accuracy assessment both 

thematic and geometrical accuracy is needed (SCHÖPFER ET AL. 2006: 2).The thematic 

accuracy specifies the correspondence of image objects between the classification and 

the real world. The geometrical or spatial accuracy describes how well a classified object 

matches its reference object´s position.  

To evaluate thematic accuracy a site specific assessment can be considered. Samples of 

the classified image are compared with exactly the same locations on the reference data 

set. The degree of accuracy is defined by the ratio of agreement and all spot tests. Levels 

of 85 % and more are recognised as the critical benchmark (CONGALTON & GREEN 2009: 

55f). The standard method to present the overall accuracy, meaning correctly classified 

objects, is a confusion matrix. Agreements and misclassifications for each class are 

recorded in a table. Individual class accuracy is expressed by the producer´s and user´s 

accuracy. The first is computed by the total number of correctly classified samples divided 

by the total number of references of the respective category. The latter mirrors the total 

number of references divided by the total number of classified samples of the 

corresponding category (LILLESAND & KIEFER 2008: 572f). A further indicator to measure 

the quality of classification results is the Kappa coefficient (K). The Kappa statistic 

describes the ”difference between the actual agreement between the reference data and a 

machine-based classifier and the chance agreement between the reference data and a 

random classifier” (LILLESAND & KIEFER 2008: 573f) (see also Chapter 6.2.2). 

The spatial accuracy measures the conformity of the boundaries of the classified object 

and its respective reference object. According to ALBRECHT ET AL. (2010: 2) a lot of 

uncertainties remain in OBIA. Therefore the spatial accuracy is hard to assess and 

adequate methodologies are still in the process of development. A mean tolerance value 

can be set as limited amount of variation. SCHÖPFER ET AL. (2006) presented the Object 

Fate Analysis. It examines the topological correspondence of the afore-mentioned objects. 

Since this concept is still in a preliminary state, another possibility could be the analysis 

based on the mean perimeter area ratio (MPAR) (LANG & BLASCHKE 2007: 246).  

      
         

    
 

The MPAR of randomly selected objects could be compared with manually digitised 

objects (ESCH ET AL. 2008: 466). These are considered to be true, even if there remains 

uncertainty in the production of the reference objects (LANG ET AL. 2010: 67). The 

difference between the reference objects and the ones delineated is a measure of the 
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quality. The higher the difference, the lower the spatial accuracy. For earthquake damage 

assessment, a statement on the geometric accuracy could be made concerning contours 

of buildings. An overview of established methods for building detection in satellite imagery 

is given below. 

2.5 Building Detection using Remote Sensing Methods 

As a result of the Haiti EQ thousands of houses were destroyed or damaged. The key 

task of damage assessment in the aftermath of an EQ is to determine the number of 

damaged houses. Thus, a high demand for the detection of single buildings is given. 

Urban landscapes, especially emerging megacities in developing countries, are facing 

rapid spatial and socio-demographic changes (THIEL & ESCH 2008). If there are data sets 

available at all, they are often generalized or outdated (MEINEL ET AL. 2001, ALBERTZ 2007, 

VOIGT ET AL. 2007, TAUBENBÖCK 2008). Hence, the extraction of desired information is the 

main task in the application of EO data (LI ET AL. 2005: 641). 

Multisensoral Remote Sensing is a valuable tool for building detection, which has proven 

to be a reliable information source (KAMPOURAKI & WOOD 2006, MEINEL ET AL. 2007, 

NETZBAND ET AL. 2007, SUMER & TURKER 2008, BRUNNER ET AL. 2010, TAUBENBÖCK ET AL. 

2010). In addition to spectral analysis of different parts of the electromagnetic spectrum, 

such as VIS/NIR or TIR (VOIGT ET AL. 2007) and the microwave spectrum (THIEL ET AL. 

2008, BRUNNER ET AL. 2010, GAMBA ET AL. 2010, STRAMONDO ET AL. 2010), there are many 

methodological approaches such as texture analysis (TOMOWSKI ET AL. 2010) as well as 

object-oriented classification approaches (ZHOU ET AL. 2009, TAUBENBÖCK ET AL. 2010). 

Land use and land cover classification are established methods, as well as the 

determination of building density and statistical derivations (MEINEL & HEROLD 2006). But 

also small-scale information on settlement structures and environmental conditions can be 

gained from remote sensing data. Furthermore there is the possibility to derive risk maps 

(MITCHELL 1999, MEINEL ET AL. 2007, TAUBENBÖCK 2008). The analysis of remote sensing 

data and derived GIS data is able to provide valuable planning basics and information 

technology for disaster management, mainly in terms of decision support. 

Small-scale information on settlement structures and environmental conditions can be 

gained from remote sensed data. Determination of site density from satellite imagery 

alone is an established procedure. In a next step, statistical data such as population 

density, can be linked to the location of built up areas and the distribution of residents can 

be estimated (MEINEL 2007: 1f). This information complements the global population 

distribution dataset of LandScan™. Since the resolution of this data is too coarse 

(1 x 1 km) the need for a more detailed estimation is given. It is concluded that VHSR 
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satellite imagery is most qualified to close this gap. Meanwhile, the surface roughness and 

the building height can be derived from microwave data. With the automatic building 

detection, settlement structural indices can be deduced (MEINEL & HEROLD 2007). As it 

can be seen in the upper right section of the satellite image shown in Figure 2.1, bigger 

buildings indicate industrial areas, whereas smaller buildings represent residential areas. 

Also the buildings geometry, size, hierarchical relationships and their neighbourhoods can 

be taken into consideration (PILZ & STROBL 2002, MEINEL & HEROLD 2007) for EQ damage 

assessment, e.g. debris around collapsed houses. 

For the detection of houses affected by EQ it is necessary to utilize pan-sharpened VHSR 

data like GeoEye-1, WorldView, Quickbird or at least IKONOS imagery (LI ET AL. 2005: 

642, KERLE & WIDARTONO 2008: 15, JOYCE ET AL: 2009: 201). TAUBENBÖCK ET AL. (2010: 

119) stated, that: “reliable detection of objects representing small individual buildings 

requires a spatial resolution of less than the dimension of the object itself. This data 

quality can only be provided by HSR sensors [...] with a spatial resolution higher than 

1 m”. 

Techniques for object recognition affected by EQ differ in the literature. The most common 

ones are outlined below. OK (2008) applied a mean-shift segmentation algorithm for the 

detection of buildings. Features, which do not belong to a building class, were removed. 

This follows a vector-valued canny edge detection of the segmented colour image. 

Unconnected edges were bridged by using morphological operators and converted to 

vector polygons via a boundary tracing algorithm. For the derivation of building regions LI 

ET AL. (2005: 647) also use an edge detection algorithm. The analysis was made in the 

urban residential area of Toronto, Ontario, with very structured and also isolated houses. 

Even in this „ideal‟ case scenario there were a lot of corrupted objects. The filtering in the 

post-processing brought about easily recognisable building outlines, but the shape of the 

final objects does not match the original contours, which is indispensable for a pre-/post- 

disaster comparison. GAMBA ET AL. (2007) also used an edge detection algorithm for the 

extraction of object boundaries in the segmentation process. 

SUMER AND TURKER (2008) introduced an adaptive fuzzy genetic approach for the 

extraction of buildings from high resolution satellite data. The aim is to improve the feature 

extraction routine. This is done by a coding of image processing operators into genes. A 

predetermined number of genes is outlined as a chromosome – a set of image 

processors. The authors collected sample data for building and non-building areas which 

were categorized by the Fisher Linear Discriminant module, a classification algorithm. In 

doing so the training data is sorted by an optimal discriminating hyper-plane between the 

different image objects. The implementation of a mutation operation allows superseding 
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single genes randomly until the best-fitting chromosome is found. The mutation is thought 

of as an adaptive fuzzy component. With approximately 91 per cent, the building detection 

rate of this methodology is among the highest, but very time-consuming and elaborate 

and therefore not suitable for rapid mapping. 

The major research deficit might be found within the operational delineation of single 

building damages resulting from earthquakes, since thus far the analyses were 

concentrated mostly on single case studies (TURKER & SAN 2004, GAMBA ET AL. 2007, OK 

2008, SUMER & TURKER 2008, CHINI ET AL. 2009). Other studies use additional GIS-data 

(GAMBA ET AL. 2007, AYDÖNER ET AL. 2009) or LIDAR data (HOMMEL 2009), which is often 

not available in a devastating emergency like the Haiti event. TIEDE ET AL. (2010a) use 

shadow indices but this machine-based technique still has a high error-proneness (VOIGT 

ET AL. IN PRESS, LANG ET AL. 2010). Further limitations in machine-based analysis for 

supporting information in the rapid damage assessment will be outlined in Section 3.3.2. 

Thus, there is a demand for a transferable and universal methodology in the sense of 

practicability for different VHSR datasets. As it was shown, automated processes are 

whether time consuming or rather unreliable. Accordingly, the key-task is to render 

assistance to the manual interpretation. As discussed in Chapter 3, the visual 

interpretation of EO data is still the most reliable method for damage assessment, due to 

high complexity of disaster situations. 

2.6 Visual Interpretation of Remote Sensing Data 

Visual interpretation, often also called manual interpretation, of remote sensing data can 

be defined by the sense perception of raw data or image content and by inference from 

logical processes (DONNER 2008: 4, ALBERTZ 2009: 123). Deduction and conclusion signify 

the most important component in a problem solving procedure that is guided by 

assignment rules. In the interpretation of image features as an object of importance these 

rules are labelled as interpretation schemes (DONNER 2008: 4ff.). During the inspection of 

images the interpreter recognises content-related and functional nexus. These nexus are 

then linked to relevant data or sensory perception. Finally, the interpretation itself 

construes functional relations between relevant objects. The aim of the interpretation is 

the description and declaration of spatial differentiation through the aid of single elements 

and their relationships among themselves (DONNER 2008: 125ff., ALBERTZ 2009: 133). 

Foreknowledge is a central aspect of the visual interpretation (DONNER 2008: 127, 

ALBERTZ 2009: 133). Human vision utilises experiences from real life for the interpretation 

of images. In this regard two levels need to be distinguished. The first level relates to the 

recognition of objects, the second one to the interpretation that is based on the afore 
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mentioned experiences (ALBERTZ 2009: 123). ALBERTZ underlines the importance of 

foreknowledge for answering the question „what is existing where?“. The answer implies 

conclusions that develop from a deliberate thought process. An indispensable premise of 

this process is foreknowledge and experience, that increases with recognition and 

interpretation during iteration (ALBERTZ 2009: 133). Figure 2.11 provides a simplified 

sequence of the iteration process for visual interpretation. 

 

Figure 2.11: Iteration process of visual interpretations  

 Source: ALBERTZ 2009: 133, modified 

Ambiguity is the foremost complication relating to visual interpretation of remote sensing 

data. In the context of earthquake damage assessment, the difficulty is to distinguish 

between construction sites, real building damages, partially damaged buildings and still 

intact ones. NIESYTO (2006: 272) stated that context-dependent knowledge influences the 

image interpretation in a substantial manner. Accordingly, the analysis results from 

different interpreters may vary to a certain degree. Intentions and reflections of 

interpreters can be influenced by instructions and standardized procedures (NIESYTO 

2006: 274, COLLIER 2010: 54). The result will be a more reliable and consistent, when 

recognising that selection and interpretation patterns follow impact-based reflections 

(NIESYTO 2006: 274). According to BELL (2010: 21) “reliability refers to the degree of 

consistency shown by one or more coders in classifying content according to defined 

values on specific variables. Reliability can be demonstrated by assessing the correlation 

between judgments of the same sample of relevant items made by different coders [...]“. 

One can conclude that consistency in an visual interpretation is an indicator for quality of 

the achieved results. 

In an optimal setting the interpreters are highly qualified to apply data evaluation 

techniques in a systematic and reflected manner (NIESYTO 2006: 279). This speeds up the 

analysis due to important contextual knowledge (COLLIER 2010: 57). However, coherence 

compulsion can lead to over-interpretation. 
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A more detailed and specific description of processes related to visual image 

interpretation is provided in Chapter 4. 

2.7 Earth Observation and Disaster Management 

This section highlights selected aspects related to EO and disaster management, that are 

of specific interest for data provision and value adding. However, the complex relations 

and hierarchies are not subject of the thesis and thus cannot be presented in detail. 

As presented in section 2.3.1 remote sensed imagery and image analysis techniques 

have improved substantially. Since ground resolution has reached the sub-meter domain, 

space borne data is a powerful tool to support disaster and crisis management (LI ET AL. 

2005: 641), particularly rapid mapping damage assessment (VOIGT ET AL. 2007: 1520). 

With the International Charter on Space and Major Disasters a network was established 

which focuses on the international satellite-based disaster response. Communication, 

inter-operability and cooperation bring synergy effects for data provision and product 

delivery in an adequate spatiotemporal manner (THE INTERNATIONAL CHARTER 2007). This 

is realised by a consolidation of different satellite systems that enables data sharing. 

In 1999, the Charter was established at the UNISPACE III conference which was 

organized by the United Nations (UN) and took place in Vienna. The principal agreements 

signed by the European Space Agency (ESA) and the Centre National d´Études Spatiales 

(CNES) of France were regarding space data acquisition and delivery to those affected by 

natural or man-made disasters through authorized users (STEVENS 2008: 64). 

An increase in accessible space-based data, especially for developing countries, for the 

support of emergency situations arose lately. This is a result in part from the foundation of 

the Charter for improving the availability of space-based technologies for disaster 

management. Along with the initiation of the Charter, of which the United Nations Office 

for Outer Space Affairs (UNOOSA) is the cooperative body, the awareness of the needs 

of developing countries rose. Hence the Committee on the Peaceful Uses of Outer Space 

(COPUOS) launched the United Nations Platform for Space-based Information for 

Disaster Management (UN-SPIDER). This program established a global coordinating 

platform that supports a rising number of international initiatives operating in the 

humanitarian community. The main goal is the incorporation of geospatial solutions in 

their daily work (STEVENS 2008: 57f). 

At the World Conference on Disaster Reduction, which took place in January 2005 in 

Kobe/Japan, the potential of space technology to support disaster preparedness was 

admitted. To pursue the strategy of promoting the use, the application and affordability of 

recent disaster related information until 2015, the so-called Hyogo framework was 
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developed. The Secretariat of the International Strategy for Disaster Reduction (ISDR) is 

therefore in charge of dissemination of relevant information and communications among 

different users (STEVENS 2008: 59). 

„To what extent image-based information can aid in an emergency situation depends 

primarily on the disaster type“ (KERLE & WIDARTONO 2008: 16). Being aware of this, 

UNOOSA organized a series of workshops for improving capacity and advancing 

knowledge. In addition, further issues such as data access, availability and information 

extraction as well as national, regional and global coordination were addressed. At the 

national level governmental institutions are responsible, whereas at the regional level 

different interested parties need to work together (STEVENS 2008: 60). At the European 

regional level the European Commission and ESA designed the Global Monitoring for 

Environment and Security (GMES) initiative (STEVENS 2008: 66). At the global level a 

coordinating entity, the UN-SPIDER program, was established. Its main task is the “one-

stop shop for knowledge and information sharing (best practices) and also [...] a platform 

for fostering alliances” (STEVENS 2008: 60f) in the humanitarian community. In order to 

improve the access to maps, satellite imagery and geographical information, the so-called 

RESPOND alliance, which consists of international organisations, was founded (RESPOND 

2008). Between 2004 and 2010, their work focussed on all phases of the disaster cycle 

(see Figure 3.2). To ensure high quality products, training and support services were 

organised (STEVENS 2008: 68). 

A further step to professionalising and harmonising the international humanitarian aid 

community was the implementation of the SAFER project. It is reinforcing the European 

capacity to respond to disasters like the Haiti EQ in the framework of the GMES ERCS. 

The main goal of SAFER is the provision of rapid mapping capacities in response to 

emergency situations. Since 2008 a full scale delivery service was established. The 

service covers response to real events as well as to simulated events during specific 

exercises. The prompt response time is the preeminent performance criterion (cf. Chapter 

3). In addition to UN agencies there is also an international network of civil protection 

authorities in the SAFER consortium as well as scientific partners and service providers. 

With the establishment of a full range end-to-end service EO data is finally made available 

for emergency relief teams (STEVENS 2008: 68). In the context of national and 

international response to major disasters the ZKI embodies a service of the German 

Remote Sensing Data Centre (DFD) of DLR. It is assigned the task of providing 

contemporary processed and analyzed satellite imagery necessary for specific rapid 

mapping products in the case of natural and environmental disasters, humanitarian relief 

activities and civil security concerns. The „on demand‟ rendered products are available for 
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relief organizations and government agencies alike free of charge (STEVENS 2008: 68; ZKI 

2010). The extracted information is appropriated in terms of maps or digital geo-data and 

finally utilised in disaster management operations or relief activities (VOIGT ET AL. 2007: 

1521, STEVENS 2008: 68, ZKI 2010). In remote sensing, data extraction is the operation 

that allows the generation of value added information from the interpretation and analysis 

of satellite images (VEGA EZQUIETA ET AL. 2010: 55). The role of the value adding entities 

like ZKI is shown in Figure 2.12.  

 

Figure 2.12: Operational loop of the International Charter on Major Disasters 

 Source: DISASTERSCHARTER.ORG (N.D) 

Another tool for decision support to a wide variety of users is the Global Earth Observation 

System of Systems (GEOSS). Among other issues, it is a global and flexible network of 

content providers that focuses on developing new systems where gaps currently exist, 

e.g. promote common technical standards for combining different data sources into 

coherent data sets. By making it possible to integrate different types of disaster-related 

data and information from diverse sources, GEOSS aims to strengthen analysis and 

decision making for disaster response and risk reduction. A component of GEOSS is the 

Group on Earth Observations (GEO). It proposes to coordinate service providers and 

product developers. The aim is to establish a service permitting disaster-response teams 

to benefit from all available space-based observations through maps of affected areas. 

The maps are accessible via the Disaster Management Clearinghouse the delivery portal 

of GEO. 
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As a consequence of the aforementioned developments, such as distribution and data 

exchange networks, the focus within the Charter has changed. The present discourse is 

dominated by the increase of quality of value added products and its respective validation 

(see also Chapter 4). In this, as a value adding entity, ZKI is researching for methods that 

increase product quality and, in particular, reliability. In the context of visual interpretation 

it is assumed, that team-based analysis has got certain advantages over conventional 

analysis. Hereafter some basic aspects are presented. 

2.8 Fundamentals of Team-based Methods 

Team-based analysis methods can handle large data sets, complex protocols and 

compressed timelines, because they profit from multiple players (MACQUEEN & GUEST 

2008: 3). An integrated team-based analysis avoids dividing tasks and fitting them into a 

hole in the end. The increase in perceptions, approaches as well as mutual learning of 

analytical strategies can lead to synergetic effects, that result in higher reliability of the 

achieved output (ibid.). This effects are intensified by the common purpose and the mutual 

accountability of team members, that build on each other‟s strengths. Spontaneous 

conversations broaden the range of perceptivity, whereas smaller teams reduce vocal 

domination (MACQUEEN & GUEST 2008: 5f). 

Since a certain degree of subjectivity is unavoidable in an interpretation process it should 

become an integrated component (NIESYTO 2006: 274) that is always considered in the 

developed methodology (see Chapter 4). As outlined in Chapter 2.6 context dependent 

knowledge influences the image interpretation in a substantial manner (NIESYTO 2006: 

272). It is believed that gauging and training (NIESYTO 2006: 274) in an understandable 

and credible manner (CAREY & GELAUDE 2008: 228) will guide the analytic work and 

considerations of interpreters (NIESYTO 2006: 274). Hence, to limit variations in the image 

interpretation, instruction and standardized procedures are proven techniques to assure a 

more reliable and consistent outcome, because selection- and interpretation patterns 

follow impact-based reflections (NIESYTO 2006: 274).  

Due to subjectivity documentation is useful. This emphasises the understanding of the 

interpreter (NIESYTO 2006: 274, COLLIER 2010: 59). The transmitted knowledge remains 

fresh and the translation onto the picture and the interpretation is direct (COLLIER 2010: 

59). 

An interpretation scheme or a guideline compels the interpreter to consequent and 

systematic actions. The reduction of misinterpretations supports this fact. Hence, a given 

example scheme lets the interpreter recognise conformities, that influence the quality of 

the result (LÖFFLER ET AL. 2005: 133). Regarding the process of development during 
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iterations (see Chapter 2.6) teams run through a cycle of forming, norming and 

performing.  

In the context of EQ damage assessment the application of team-based analysis methods 

is thought to assist the rapid mapping at ZKI. Accordingly, Chapter 3 deals with the 

analysis of EO data and focuses mainly on the rapid mapping process and damage 

assessment products. 
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3 Rapid Mapping 

The demand for timely and accurate information in emergency situations is rising (LANG ET 

AL. 2010: 65). The increase in the number of natural disasters and emergency situations 

(see Figure 3.1) requires more precise and contemporary geo-information (VOIGT ET AL. 

2007: 1520).  

 

Figure 3.1: Trends in number of reported events 

 Source: UNEP / GRID 2005 

The number of reported crisis events is still rising. Population growth, increasing economic 

value and improved information technologies (UNEP/GRID 2005) increase the need for 

and, at the same time, ease the access to disaster relevant data. Timely high-quality data 

and information are necessary for decision making in disaster management. In the given 

context it is a matter of spatial data and geo-information (KOEHLER 2005: 171). Therefore 

rapid mapping and damage assessment are crucial imperatives especially in situations 

where lives are to be saved and losses are to be minimized. For the provision of rapid 
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mapping products, all kinds of EO data is considered for the extraction of relevant crisis 

information (ZKI n.d.). The available data and its respective image content directly 

influence the quality of rapid mapping products. Information extraction from the provided 

data and its representation are the main tasks in the emergency response. Within the 

SAFER framework, reference mapping is made available to users within just six hours 

after an emergency situation occurs. Assessment maps of the disaster are available within 

eight hours after data reception (GMES n.d.). 

The following citation underlines the essential need of EO-data for timely decision support, 

especially for earthquake events: „Given the magnitude and complexity of transportation 

networks, near-real time field-based assessment is not an option considering the critical 

48 hour period that urban search and rescue teams have to locate survivors, accessibility 

must be quickly and accurately determined in order to reroute response teams and avoid 

life threatening delays“ (EGUCHI ET AL. 2010: 304). Therefore it is of great importance that 

space technology and geo-information is provided in an easily useable and readily 

accessible form to the relief community (VOIGT ET AL. 2005: 531). To assure an 

operational workflow, throughout all phases of an disaster, the disaster management cycle 

was developed (see Figure 3.2).  

 

Figure 3.2: Disaster Management Cycle 

 Source: ZKI (n.d.) 
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Maps rendered after a disaster pursue various goals. Reference maps provide a first 

overview of the affected area and are most important for areas that are not regularly 

mapped or where maps are not accessible. Auxiliary maps are mostly made up of 

thematic information. Disaster extent maps depict disaster related aspects such as 

building damage or the like. Maps that are used as planning basis show information such 

as possible shelter locations (KERLE & WIDARTONO 2008: 16). Any information product, 

such as a reference maps or a damage assessment maps, can support decision making 

during all phases of the cycle (VOIGT ET AL. 2007: 1521). The disaster management cycle 

covers all phases after a crisis event. Each stage needs different information products. 

Service providers like ZKI make valuable contributions especially during the emergency 

relief phase. In terms of rapid mapping the provision of relevant and up-to date 

cartographic products derived from satellite imagery, an operational data flow from 

satellite operators and distribution networks (as outlined in Chapter 2.7, cf. BUEHLER & 

KELLENBERGER 2007) is the base for a fast information sharing between decision makers 

and relief workers (VOIGT ET AL. 2005: 520). The use of GIS for analysing the derived data 

during the initial response provides important visual and spatial information (EGUCHI ET AL. 

2010: 296), and “can support decision making and situation awareness during all phases 

of the disaster and crisis cycle” (VOIGT ET AL. 2007: 1521). This is the case especially in a 

large disaster area (OGAWA ET AL. 2000: 1), such as the Haiti EQ.  

For the rapid mapping of such events it is advisable to use quality management to assure 

a consistent output. Standardised procedures guarantee a hitch-free course of analysis. 

Figure 3.3 shows the generic rapid mapping workflow of ZKI during crisis situations. 

Immediately after the event mobilization is initiated. Satellite tasking as well as the archive 

search then proceed. Relief organizations and governmental agencies receive first 

information products based on archive images regarding the crisis event during the first 

six hours after the activation.  

The post-disaster images are used to delineate the affected areas and estimate the 

damages caused by the disaster (ZKI n.d.). Preprocessing usually is limited due to time 

constraints. Time consuming processes like atmospheric correction are applied only if 

essential for (machine-based) analysis, because, for EQ damage assessment, the focus 

is mainly on visual interpretation. Other preprocessing tasks are e.g. projection to a 

coordinate system, data fusion or image enhancement, as described in Section 2.3.2. In 

the analysis phase state-of-the-art processing chains and algorithms support visual 

interpretation for the requested information extraction (VOIGT ET AL. 2007: 1521ff., ZKI, 

n.d.). Finally, the results are transferred into the map products, for example damage 

assessment maps.  
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Figure 3.3: Rapid Mapping workflow of ZKI 

 Source: ZKI (n.d.) 

The information is spread in the internet via Reliefweb, AlertNet, the USGS Hazard Data 

Distribution System or the GEO Portal of GEOSS and the website of ZKI, where all 

products are freely available. These platforms are effective tools for making disaster 

relevant information available. On personal request of certain entities data is also 

distributed via e-mail or ftp-servers The most significant constraint in the chain is the link 

to the user. Only if map products suit the need of the user, are timely, accurate, and can 

be readily accessed, there is potential aid in the emergency response (KERLE & 

WIDARTONO 2008: 16). The information products have to reflect the individual and variable 

needs of the users, which are presented hereafter in detail. 

3.1 User Requirements for Map Products 

Training and consulting of decision makers and relief workers, NGO´s and relief agencies 

is a crucial task for efficient flow of information, since understanding of space-based 

information products can support fast and direct mission planning and decision making 

(VOIGT ET AL. 2005: 530). In addition, compliance with flexible but clear standards helps to 

face disaster situations well prepared. KERLE AND WIDARTONO (2008: 21f) report from the 

Indonesia Earthquake in 2008 that there were only one-fits-all damage maps available. 

They regret while there were great efforts and good intentions, user needs were 

neglected. As a result the utility of the maps was below value. A good communication with 

the users is an advantage and avoids „map disasters“ (cf. Chapter 5). The current 

discourse tends to a standardised but flexible product portfolio. This is thought of keeping 
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products resource effective. The main disadvantage is, that there will be a greater choice 

of maps and simultaneously leads to higher expenses. 

Coordination of time-critical decision needs is based on availability of relevant data. To 

guarantee hitch-free support of processes and workflows, user requirements have to be 

considered (KOEHLER 2005: 176f) Therefore the fulfilment of their needs is a crucial task. 

It is a key factor that determines and ensures a well-addressed and tailored product and 

therefore a good usability (VEGA EZQUIETA ET AL. 2010: 57). 

The implementation of services providing disaster relevant data and information enables 

unified information flows. A chain of effective consequential actions requires optimal 

availability and usability of spatial data, unification of data and information management, 

as well as the development of application-oriented prototypes and standards. These are 

for example the analysis of working processes and the specific user requirements such as 

digital maps or print versions (KOEHLER 2005: 177). 

The products of the value adders within SAFER are utilised by a large group of registered 

users. The Public User Board of SAFER, as a part of the entire user group, prepared a 

document in which user requirements are listed in detail. According to this there are two 

types of map products needed in the emergency response in the aftermath of an EQ: 

overview maps and detailed maps. The maps should contain the disaster extent, affected 

areas, the condition of the infrastructure, the population, gathering areas and distribution 

points for food aid or the like (Safer 2010: 1). Further demands elaborated by the Project 

User Board are shown in Table 3.1. The table provides an overview of specific products 

as well as their respective content and delivery time. 

Table 3.1: User requirements for earthquake emergency response within the SAFER framework 

Source: SAFER 2010: 3 

Product Content Delivery Time Scale Frequency 

Potentially affected 
populated places 

Identify potentially affected 
populated places  

8 hours 
Detailed: 

 1:5,000 
 – 

 1:25,000 
 

Overview: 

 1:25,000  
– 

 1:500,000 

Daily updates 

in emerging 

priority areas 

Potentially overall 
affected area 

Accessibility analysis 8 – 24 hours 

Damage 
Assessment 

Affected infrastructures, 
damaged buildings, 
population living in the area 

24 – 48 hours 

Monitoring 
Emerging new affected 
areas 

8 – 24 hours 
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The time window of a few hours for information delivery restrains the eligible sensors. 

However, for the production of detailed maps not all EO data is suitable. To figure out 

which sensors and resolutions are most qualified for a damage assessment a survey was 

conducted (see Chapter 3.2). The following statistical evaluation was carried out to focus 

on the most valuable sensors and limit the variety in order to assure accuracy/reliability. 

3.2 Usability of Different Sensors and Resolutions for EQ 

Emergency Response/ damage assessment 

KERLE AND WIDARTONO (2008: 22) hold the opinion that limitations of rapid mapping in the 

aftermath of an EQ are shown in a detailed house-by-house assessment. As a logical 

consequence the richness of detail in the EO data has to be very high. Otherwise it is 

impossible to detect small variances. In the context of EQ emergency response these 

variances could be possible damages. Damaged or collapsed houses show, in 

comparison to intact buildings, different characteristics. Among others these are very 

small-scaled shadow areas, debris and fuzzy contours. Hence, the buildings are not 

crisply separated from their surroundings or are slightly distorted. In conformity with VOIGT 

ET AL. (IN PRESS: 8) the structure and the contours show major changes. Figure 3.4 shows 

the mentioned phenomena. 

 

Figure 3.4: Pre- and post-disaster comparison of a collapsed building in Carrefour 

Source: Own illustration. Data: Digital Globe Corp. (World View II 13.12.2009/ 

03.02.2010) 

To appraise the dependency of sensor resolution and damage recognition, a statistical 

evaluation, regarding the sensors available within the Charter, was carried out. For this 

study a visual comparison and analysis of pan-sharpened pre- and post-disaster data was 

performed. Since there was no ground truth data available, the post disaster needs 

assessment (PDNA) from UNOSAT/WB/JRC was taken for validation.  
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The number of visually detected houses of the categories „severe damage‟ and „collapsed‟ 

in the focus area was recorded. Additionally, houses categorised by UNOSAT/WB/JRC of 

the same categories were also counted (see Chapter 3.3) and subsequently set in 

relation. The investigation was conducted on a central part of Port-au-Prince for the aerial 

and GeoEye-1 imagery, without any time limit. Due to cloud cover in the WorldView scene 

another subset, located in Carrefour, was chosen. The lower percentage of recognition of 

the WorldView-Imagery results probably from the lower ground resolution, especially in 

the multispectral bands (see Table 2.1). For QuickBird data (Pan 0.61 m, MS 2.4 m) a 

further decline in recognition is expected, but analysis is possible (JOYCE ET AL. 2009: 

201). For this evaluation also Spot-5 and RapidEye imagery was consulted. Nevertheless 

their ground resolution is barely sufficient for the assessment of single house damages 

and is therefore not further considered in this study. At this point it is important to note that 

DLR provided rapid damage assessment within eight hours, based on GeoEye-1 data. 

Whereas UNOSAT/WB/JRC made the PDNA in a timeframe of four weeks based on 

ImageCat-RIT data. Table 3.2 summarises both investigated subsets. The columns 

„Buildings (all)‟ and „Damaged‟ belong to UNOSAT/WB/JRC reference data of the chosen 

subset. The last column, „Percentage of recognition‟ shows the result of the visual 

interpretation. Although there is no comparability, given the damage assessment of ZKI 

was evaluated. The count of DLR in this Table shows collapsed buildings only and is seen 

as a benchmark for rapid damage assessment and further analysis (see Chapter 4.2).  

Table 3.2: Sensor dependent damage recognition in comparison to UNOSAT/WB/JRC  

Source: Own survey 

Sensor Buildings (all) Damaged Percentage of recognition 

ImageCat-RIT 2066 538 95.4 % 

GeoEye-1 2066 538 87.7 % 

WorldView 1883 259 72.6 % 

DLR (GeoEye-1) 2066 538 10.2 % 

 

To consider the results of Table 3.2, it is stated that the better the spatial resolution of the 

data source, the higher the percentage of recognition. Thus, the percentage of damage 

recognition logically depends on the ground resolution of the data. As was shown aerial 

photographs are most qualified for a high detection rate of damaged buildings. This result 

is confirmed, for example, by LEMOINE (2010: 33). Since airborne photography is rarely 

available immediately after the event, the high potential of the investigated space borne 
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sensors for the damage assessment should not be underestimated. Based on the results 

obtained from this evaluation, the developed methodology (see Chapter 4) considers the 

sensors GeoEye-1 and WorldView-II. 

3.3 Damage Assessment 

Damage assessment is a central aspect of the emergency response to evaluate the 

efforts needed and to mitigate the effects of a disaster. As outlined above the 

interpretation of remote sensed imagery can be an effective tool for the detection of 

spatial distribution of damage in a EQ disaster situation (OGAWA ET AL. 2000: 1). The 

European Macroseismic Scale (EMS) is a well established scheme for the classification of 

EQ damages (GRÜNTHAL 1998: 15ff.). Figure 3.5 shows the recommendation of the EMS 

for categorising damages into five classes. Due to general limitations of satellite imagery it 

is not possible to fulfil requirements for this classification scheme (see Chapter 3.3.2). 

Time constraints also limit the possibilities to distinguish between the grades 1 to 3 (see 

also Chapter 4). Therefore it is advisable to redefine the classes into damaged vs. 

undamaged, notwithstanding an extra category for total collapse. For example OGAWA ET 

AL. (2000: 2ff.) categorised into 3 classes: collapsed, fallen roof tiles and no damage. 
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Figure 3.5: Classification of damage to masonry buildings according to the EMS 

 Source: GRÜNTHAL 1998: 15 

Damage assessment pursues different goals. The key task is to determine the locations 

for prioritised relief efforts. Damage assessment maps that are provided in a rapid manner 

are usually of rather coarse character due to time constraints and available data. 

However, continuous updates are made to show latest information and refined damage 

assessments (VOIGT ET AL. IN PRESS: 6).  

To derive information from EO data, in a first step preprocessing is performed. (ZKI N.D.). 

This is followed by the archive search as well as the production and analysis of auxiliary 

data, such as street data and supporting information. After the production of reference 

maps the manual interpretation proceeds. The generation of damage assessment maps 

during a disaster situation follows two major characteristics. On one hand they are directly 

derived from remote sensing data, on the other hand by multi-temporal comparison of 
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post-crisis and archive information (if the respective archive data is available). In a first 

step the focus is on the damage type, its extent and the situation-related restraints of key 

infrastructures like transportation networks (GMES 2010). The following analysis focuses 

on the estimation of affected people and more detailed damage assessment. Damages to 

buildings and infrastructure are then of specific interest in urban environments (EGUCHI ET 

AL. 2010). The final result of the operating sequence (as shown in Figure 3.6) is a 

thematic cartographic product, that finally is delivered to public authorities or rescue teams 

such as the Technisches Hilfswerk (THW) (THW n.d.). 

 

Figure 3.6: Damage assessment workflow referring to VOIGT ET AL. IN PRESS: 11 

 Source: Own illustration   © S. Klett  

In respect to emergency response, advanced technologies such as remote sensing and 

GIS have an advantage over conventional ground-based techniques (EGUCHI ET AL. 2010) 

as outlined above. As a result of the great variety of unstructured information the damage 

assessment entails a lot of effort in terms of time and manpower (ALTAN 2005: 312). Most 

studies delving into earthquake damage assessment use pre- and post-disaster imagery. 

Common problems are, for example, the documentation, visualisation and analysing of 

the building damage. Furthermore the documentation of damage effects is mostly sketchy 

and can only be carried out focused on a limited area of the disaster (ALTAN 2005: 312). 

Most research describes case studies for extracting single house damage. Others are 

only interested in general damage areas and use medium resolution imagery (CHINI ET AL. 

2009, EGUCHI ET AL. 2010).  
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Damage assessment techniques for the extraction of single house damages after an 

earthquake differ in the literature. Some authors use manual digitizing (TURKER & SAN 

2004), other studies tend to apply machine-based solutions (TURKER & CETINKAYA 2005, 

YAMAZAKI & KOUCH 2006, TURKER & SUMER 2008, TIEDE ET AL. 2010a). Mostly auxiliary 

data such as LIDAR (HOMMEL 2009) or GIS data (GAMBA ET AL. 2007, AYDÖNER & MAKTAV 

2009) is used. Furthermore there are many change detection approaches based on 

synthetic aperture radar (SAR). Most of them lack archive information with the same 

acquisition parameters as the post event images, especially for the high resolution modes 

(VOIGT ET AL. IN PRESS: 7). Since the present thesis deals with optical data, further 

descriptions of SAR-based techniques were reviewed but not further considered here (cf. 

MATSUOKA & YAMAZAKI 2004, STRAMONDO ET AL. 2006, GAMBA ET AL. 2007, AYDÖNER AND 

MAKTAV 2009, TAHAYT ET AL. 2009, BRUNNER ET AL. 2010). Hereafter some methods used 

for damage detection, based on optical data, are listed and structured into applied indices 

groups.  

A wide spread method for assessing damaged houses is a change detection of pre- and 

post-disaster imagery. Shadow edges are identified and linked in the two images. The 

main indicator for damage is the absence of a corresponding shadow in the post-event 

image (VU ET AL. 2003, TURKER & SAN 2004, AL-KHUDHAIRY 2005, TURKER & SUMER 2008, 

TIEDE ET AL. 2010a). The main problem of these methodologies is the high degree of 

uncertainty of the results. Calling the available EO data to mind, shadow formation is 

unreliable in respect to differences in seasonal, sensor and solar conditions at acquisition 

times. This can cause false signals or overlap real changes. Hence, there is a high 

probability of geometric shifts of shadow objects in an emergency situation. Shadow-

based damage assessments could be used as supporting information, if computing is fast 

enough. Finally one has to note that tendencies are shown, but no absolute values of 

detected damages (TIEDE ET AL. 2010a: 4) (see also Chapter 4). 

To assess damages with a change detection method, some authors used image matching 

and subtracting (GUO ET AL. 2009: 3303, VOIGT ET AL. 2007: 1525). The main disadvantage 

is the need for a precise radiometric correction and accurate geometric registration of the 

image sets, which are very time consuming. Furthermore, the output allows no intuitive 

reading, since results appear abstractly (VOIGT ET AL. 2007: 1525). In case of an 

emergency the respective archive scenes may not be available, which results in limited 

operational usability. Due to varying looking angles of the sensors the matching and 

subtracting method is likely to cause biases (AL-KHUDHAIRY ET AL. 2005: 834), especially if 

there is a long time-span between the two acquisitions (VOIGT ET AL. IN PRESS: 7). 
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The consideration of elevation data promises a high detection rate of partially damaged 

and collapsed buildings. The most precise results might be achieved with LIDAR datasets 

(HOMMEL 2009). Unfortunately they are very expensive and there are no area-covering 

archives. After an EQ these kind of data are rarely available. The same problems pertain 

to other change detection procedures based on elevation data, for example stereoscopic 

photo interpretation or three-dimensional modelling (SHINOZUKA 2000). By interpreting 

aerial photographs OGAWA ET AL. (2000) identified severely damaged and collapsed 

buildings. When comparing single photo and stereoscopic photo interpretations, the 

second technique resulted in higher accuracy. In common with matching and subtracting, 

the methods for damage assessment based on object elevation face two problems: either 

the archive data is not available or computing efforts are very time consuming. As one can 

see the methods lack practical suitability in the emergency response. 

Another approach is machine-based debris detection, based on high reflection values of 

the post-disaster image (YANO & YAMAZAKI 2004: 5). As shown in Figure 3.4 and Figure 

3.5 houses affected by an EQ produce debris in their direct neighbourhood. However, 

errors are found for segments of which the grey values and shape look like, but actually 

are not debris. 

The above portrayed standard change detection methods are not always suitable for 

VHSR data. For example, even in „optimal‟ case scenarios there are a lot of corrupted 

objects. Filtering in the post-processing brought about easy to understand building 

outlines, but the shape of the final objects do not match the original contours (LI ET AL. 

2005: 647). This procedures are therefore not suitable for the depicted approach because 

of the multi-temporal analysis. In addition, the elaborated processing requires a long time. 

Since machine-based solutions are still not yet fully developed for rapid emergency 

response (LANG ET AL. 2010: 65), in that they provide reliable results only in single case 

studies, the ZKI currently is working with a visual interpretation technique for damage 

estimation. It is currently the most practicable method for the emergency response (AL-

KHUDHAIRY ET AL. 2005: 836, VOIGT ET AL. 2007: 1525, VOIGT ET AL. IN PRESS: 8), and was 

also used for the Haiti event. 

3.3.1 The Case of Haiti 

This particular disaster was unusual insofar as a large number of multisource data 

became quickly available (LEMOINE 2010: 33). Although the Charter was activated and 

damage maps were produced from different entities, knowledge from the field was 

scarcely incorporated in the process. Nevertheless the crisis mapping service of ZKI 

created maps that contain specific information (e.g. affected houses). 
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Data reception, selection and preprocessing of the satellite imagery and aerial images 

(VOIGT ET AL. IN PRESS: 10) provided by the International Charter were time consuming, 

but in the end resulted in valuable accuracy despite the limitations of purely image-based 

damage maps (see Section 3.3.2). The analysis of the affected areas in Haiti 

encompassed, in cooperation with SERTIT, a building damage assessment, logistical 

information, critical infrastructure, gathering areas, population density, land cover and land 

use and water resources (VOIGT ET AL. IN PRESS: 11). 

After an initial survey of the emergency, a multi-temporal visual building damage 

assessment was initiated, followed by a more detailed one (VOIGT ET AL. IN PRESS: 12). 

DLR produced initial damage assessment maps based on 250 m grids (see Figure 3.7).  

 

Figure 3.7: Detailed damage assessment map of Port-au-Prince.  

 Source: DLR (2010) 

The editing on a layer file in a multi-user GIS environment occurred by 25 interpreters 

(oral communication: DR. TOBIAS SCHNEIDERHAN, 2010). In these grids an average 

damage level was estimated during the analysis (ibid.). As one can clearly see there was 

no house by house damage assessment. Consequently also no absolute numbers were 

provided, only tendencies of the damage grade of the respective grid cell. The damage 

classes, as presented in Figure 3.5, were redefined (no damage, sparse damage, severe 

damage, vast damage), „in order to account for general limitations of satellite information 
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content“ (VOIGT ET AL. IN PRESS: 12). Totally destroyed buildings were marked separately. 

The main advantages of such qualitative damage categories are the better interpretability, 

the higher reliability and the shorter time period needed for the analysis (VOIGT ET AL. IN 

PRESS: 13). However, biases occur when the number of damages is set in relation to the 

built up area. If a grid cell contains only one single building that is collapsed, it is assigned 

to the same damage level as a grid cell containing 50 buildings, of which all are collapsed 

(ibid). As a result many service providers confided that deviations from ground-based 

assessment are possible (see also Chapter 5). Also KERLE AND WIDARTONO (2008: 22) 

stated as far back as 2008, that significant damage might not be shown. This could be 

observed de novo in the case of Haiti (cf. Chapter 3.2). In an extraordinary situation like 

the Haiti EQ, fatigue is the consequence of the stress situation and continuous load. The 

lack of concentration intensifies existing limitations of remote sensing which are 

mentioned below. 

3.3.2 Limitations of Remote Sensing for EQ Damage Assessment 

As outlined in section 2.3.1 there are several limitation problems with VHSR satellite data 

(see also Figure 6.3). A closer look at the more specific problems for the damage 

assessment is presented here. KERLE AND WIDARTONO (2008:14) point out that the 

damage mapping which is initiated after a Charter activation „[…] is carried out on a best-

effort basis, typically without feedback from the field, constrained by the available or 

affordable data, […] and with very limited time. Therefore, focus on especially affected 

areas at the expense of comprehensive coverage is frequent“. This generalized statement 

needs to be more specifically detailed.  

The value adding entity usually produces maps in foreign countries far away from the 

disaster spot. Typically there is no feedback from the field. Yet, the information content of 

satellite imagery is limited. „By purpose the provided maps show no absolute values of 

detected damages but only tendencies. Absolute figures are very much depending on the 

resolution of the available imagery, and even on aerial images not all damages are visible 

from the bird’s eye view“ (TIEDE ET AL. 2010a: 4). Minor cracks or damage in walls are 

indistinguishable from undamaged states by reason of the (near-) nadir view of the sensor 

(OGAWA ET AL. 2000: 1, EGUCHI ET AL. 2010: 304, LEMOINE 2010: 33) (see Figure 3.9). 

Completely crushed houses are also hard to identify, if the roof remains undamaged 

(VOIGT ET AL. IN PRESS: 13). Furthermore it is difficult to identify damage, if a single storey 

of a multi-storey building has collapsed (OGAWA ET AL. 2000: 6), because the contours of 

the building do not alter and it therefore appears undamaged to the interpreter. The 

detection rate of partially damaged houses is below forty per cent (OGAWA ET AL. 2000: 7). 

See Figure 3.9 and Figure 3.10 as illustrative examples. Also dense urban areas cause 
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difficulties. The differences in height create occluded areas in the shadow of trees or 

multi-storey buildings hiding potentially damaged houses (AL-KHUDHAIRY ET AL. 2005: 

829). 

 

Figure 3.8: Still intact roofs of a settlement in Port-au-prince hide crushed sidewalls from the 
interpreter 

Source: GRÜNEWALD ET AL. 2010: 1 

 

Figure 3.9: Comparison of an aerial photograph and a ground photograph of the EQ in Kobe/Japan 
in 1995 (this building was not identified to be “collapsed” by the interpreters although the 
first storey was completely crushed) 

Source: OGAWA ET AL. 2000: 6 
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Figure 3.10: Examples of middle storey collapse resulting from the EQ in Kobe/Japan in 1995  

Source: OGAWA ET AL. 2000: 7 

Concerning data availability there are other challenges. On one hand, crisis management 

has to rely on whatever geo-information is available (VOIGT ET AL. 2007: 152f). On the 

other hand, due to the rising availability of EO data, the humanitarian action community 

receives an immense overflow of disaster relevant data, more than it can possibly handle 

(EGUCHI ET AL. 2010: 314). Data sighting takes a lot of time, therefore the focus should be 

only on VHSR sensors (see Chapter 3.2). Also if timely VHSR data is available, a long 

time-span between the acquisition of the images complicates the damage detection. New 

buildings might have constructed (VOIGT ET AL. IN PRESS: 8) or old ones been demolished. 

Also buildings under construction can lead to misinterpretation (OK 2008: 5, VEGA 

EZQUIETA ET AL. 2010: 60). That is because, among other reasons, the spectral resolution 

with only four image bands of the presently used sensors is comparably limited 

(TAUBENBÖCK ET AL. 2010a: 119). The WorldView-II sensor, for instance, has got 8 bands, 

but only four are delivered in case of emergencies. 

Another substantial limitation is the available time. As described by VOIGT ET AL. (IN 

PRESS) the qualitative representation is well suited for a timely damage assessment. Many 

service providers produced initial maps based on grids. Consequently, a comprehensive 

house by house analysis is neglected and significant damage not detected. This leads to 

the question how useful maps can be, which are produced in a very short time, whereby 

the reliability cannot be rated (KERLE & WIDARTONO 2008: 22).  
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Fundamentally, a damage assessment under previously unpredictable conditions is 

difficult. The chapters ahead clearly demonstrate the need for an optimised and 

standardised method for rapid damage assessment. Being aware of not knowing the 

specific sensor for data provision in advance, a robust and transferable procedure is 

advisable. As a result one can note the need for the development of a methodologically 

sound damage extraction process. 
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4 A Team-based Method for Damage Assessment 

As discussed in Chapter 3 there are many different approaches for satellite based EQ 

damage assessment. Since the machine based interpretation is considered as an 

objective analysis approach there may be advantages over subjective visual 

interpretation. But, as Figure 4.1 shows, there still remains a high degree of uncertainty. 

This specific map was produced with a machine-based damage assessment. The authors 

call this kind of representation „damage indicator map“ (TIEDE ET. AL. 2010a: 3), because it 

is based on shadow indices and there are only tendencies of the distribution shown (in 

this case by purpose). At length, working with the machine-based approach is still 

regarded with a high uncertainty due to the dependence on shadow indices only. As TIEDE 

ET AL. (2010a) stated, the machine-based vision is incapable to distinguish between the 

shadow of houses and those of construction works, what causes false-alarms. Another 

limit is seen in the hampered differentiation of shadows casted by vegetation and 

buildings, if the NIR information is not provided, as it was in this case. Also seasonal 

variations of the vegetation can cause false-alarms. The most weighty factor for limitation 

of automated multi-temporal interpretation, though, results from the different viewing 

angles in the pre- and post-disaster images. 

Accordingly, the machine-based analysis is under the given conditions relatively 

unreliable. “It has to be stated, that the aim of such a machine-based approach is not to 

replace the manual interpretation. It rather helps users and manual interpreters to get a 

Figure 4.1: Comparison of machine-based and manual interpretation 

 Source: TIEDE ET AL. 2010a 
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faster impression of the spatial distribution of damages in emergency situations” (TIEDE ET 

AL. 2010a: 4). This statement is reinforced by LANG ET AL. (2010: 63) and also other 

studies, not dealing with EQ damage assessment (e.g. KRANZ ET AL. 2010: 189). Because 

of this reason most rapid mapping providers use visual interpretation for damage 

assessment even in the frame of crisis situations. Unfortunately, each individual has 

specific knowledge and experiences that influence the interpretation results (see Chapter 

2.6). Additionally there are case specific influences of environmental conditions and 

human interactions.  

Aim of this chapter is to propose the new approach for a team-based analysis method 

based on an investigation of the variations of visual interpretation. To get an impression of 

the variations a guideline for team-based damage detection was developed and tested 

with a supervised group of students. An additional group of experts, performing a single 

interpreter analysis, was analysed to get insights of the variations of educated personnel. 

A statistical analysis was carried out using the same subset of the GeoEye-1 image as the 

survey conducted in Section 3.2. The analysis (see Chapters 4.2 and 6.2.3) considered 

more than one geographic location to avoid convenience sampling (CAREY & GELAUDE 

2008: 228). 

In the case of emergencies, at ZKI data handling and processing currently follow the 

guidelines of a SOP. Therefore the actual core business of value adding in the emergency 

response context, (1) damage assessment or data extraction and (2) map production or 

data representation, should follow basic rules, too. The question is, how to guarantee 

quality and reliability for information derived from remote sensing data (CASTOLDI 2010: 

124). Regarding the second point, the challenges concerning the visualisation fall in line 

(see Chapter 5). The product design encompasses both parts. However, these are two 

different aspects that can be rated. For data extraction it is the quality of the information, 

for the representation it is the usability (cf. VEGA EZQUIETA ET AL. 2010: 53). This chapter 

will cover the extraction process, whereas Chapter 5 deals with representation of the data. 

Having in mind the close relation of data extraction and representation for the in-line 

production, some intersecting considerations are mentioned here. 

A recommendation for information generation that was presented at the 2nd International 

Workshop On Validation Of Geo-Information Products For Crisis Management (VALgEO) 

calls for a quality index on the maps. The „reliability or assumed range of accuracy should 

be explicitly stated on the product“ (LANG ET AL. 2010: 72). VOIGT ET AL. (IN PRESS: 19) 

claim even interpretation keys and legends should be standardized, also for manual 

extracted information content. The benefit would be a higher comparability and 

compatibility at a global scale. Moreover there would be a high potential for rating quality 
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and reliability in a fast and transparent manner. But: in timely urgent situations there is 

almost no chance to evaluate both reliability and accuracy. The common quantitative 

external validation is not suitable as a quality control (VEGA EZQUIETA ET AL. 2010: 55). To 

assure the quality of the product an alternative warranty must be applied. As a result the 

right balance between the amount of extracted information, its reliability and time required 

has to be found. Quality control usually consumes a lot of time, but for all that, the 

emphasis is on the information generation (ibid). „This means that, any time invested in 

controlling the quality of the product is a time that is not invested in producing something 

more that could be useful for the user. This means that any quality control has an impact 

on rush production. For this reason it is important to invest efforts in in-line quality control, 

an assessment of the design of the product, to keep the product inside quality standards 

for as long as it is produced“ (VEGA EZQUIETA ET AL. 2010: 53). Presently, at ZKI the 

information generation consumes about 80 per cent of the available time and the quality 

control about 20 per cent, and follows an standardised operating sequence. The SOP is a 

predefined process that ensures quality in the information extraction. Before the data is 

delivered a product quality control considering a checklist is applied. 

Having this in mind, the development of a specific extraction procedure is a very 

sophisticated process. The product design has a strong influence on the final quality of the 

product regarding usability and accuracy (VEGA EZQUIETA ET AL. 2010: 55). One has to 

know in advance which outputs are desired and which techniques are best to apply for 

preserving proper results. Furthermore the medium capabilities should be considered (cf. 

VEGA EZQUIETA ET AL. 2010: 53), otherwise it would not be a sound methodology. The 

proposed method will establish a minimum set of standards for information delineation 

from satellite data. Consequently it is designed in a manner that ascertains a higher 

reliability through the implementation of increased quality. This leads to an improved 

usability of the product, if representation follows close upon. The final user of the 

proposed method (ZKI) expects a process fast enough to quickly cover large areas, and at 

the same time, enough detail to provide useful information and reliable enough to take 

decisions based on it (cf. VEGA EZQUIETA ET AL. 2010: 55). 

Presently ZKI is working with a visual interpretation for the damage assessment as 

outlined in Chapter 3 (cf. VOIGT ET AL. 2010 IN PRESS). As was described, the most reliable 

results are achieved with this method of image content analysis. „In visual interpretation, 

cognitive processes run simultaneously and only if we are not sure about the identification 

of features, we start reflecting on the single components of object recognition“ (LANG ET 

AL. 2010: 66). In case of an EQ there are a lot of unstructured features and components 

that underline the high demand on supporting information (cf. LANG ET AL. 2010: 65). This 
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is why the author assumes that the delineation of building outlines from the pre-disaster 

image will provide a visual assistance for object recognition, that improves more rapid 

interpretation. The process of developing a new team-based method for visual 

interpretation, based on ZKI operational standard, is introduced below. The method will 

make use of additional supporting information. 

4.1 Supporting Information 

The supporting information renders assistance to the visual interpretation to quicken the 

process. Since it makes use of archive data it can be generated immediately, once the 

affected area is determined. For use at ZKI it needs to be operational, robust and 

transferable. Only a basic technical knowledge of eCognition is necessary for the 

handling. For that reason the eCognition architect solution was chosen. To support the 

team-based analysis of the EO data for damage assessment (described in Section 4.2) a 

building footprint has to be derived. 

For the initial generation of the supporting information different tasks were performed 

according to the operating sequence (see Figure 3.6). The preprocessing of all datasets 

consisted of rectification, pan-sharpening, filtering and contrast enhancement (cf. VOIGT 

ET AL. 2007). Pan-sharpening was made in the ERDAS Imagine 2010 environment using 

the resolution merge tool for creating contrast-rich, good-looking outputs. When using this 

tool there is some loss of spectral fidelity, but it is not necessary for emergent visual 

interpretation. This was followed by a look-up-table stretch to reduce the effects of 

outshining. The (co-) registration in the ArcGIS environment was applied to the pre- and 

post-disaster images (for the multi-temporal analysis) and to the street data. The 

additional thematic layer (auxiliary data), the road network, was used to improve the 

accuracy of the classification results. The extraction of the road network in case of a 

disaster is a standard procedure at ZKI for the generation of overview maps, therefore the 

data basis is available in every activation. In most cases the dataset is aligned with that of 

Open Street Map (OSM), depending on the coverage, consistency and accuracy of the 

OSM data set. Before the analysis in the remote sensing environment, a buffering in 

ArcGIS 9.3 was carried out, in accordance with the road types and its functionality. A 

dissolve operation followed. The main advantage is the better discrimination between 

objects belonging to the road class and the building class respectively, since the spectral 

diversity of image objects belonging to these classes is too similar.  

In case of an earthquake disaster the specific satellite sensor is not known in advance, 

therefore transferability broadens the range of application. Presently there are only a few 

studies dealing with transferability of rule-sets onto other images. But in order to assure 



  

 
 

54 A Team-based Method for Damage Assessment 

an operational support it is essential (LANG ET AL. 2010: 67). The eCognition architect 

solution assures the fast adjustment to other images and localities as well as an easy 

intelligibility for varying users. According to the results obtained in Chapter 3.2, the ready-

to-use solution was tested on two different VHSR-sensors of the sub-meter domain 

(GeoEye-1 and WorldView-II) at representative subsets. 

By using the eCognition architect module different tasks such as object detection, 

classification or exporting results can be configured as actions. A set of actions is 

transferred into a ready-to-use solution for performing image analysis tasks. Rule-sets, 

that are prepared in the manner described, are called action libraries (DEFINIENS 2009: 

200). In action libraries, there exists the possibility to create dynamic variables that are 

interactively controlled by the user and communicate with the rule-set. This happens 

through the implementation of widgets. Widgets are user interface components to adjust 

action parameters (DEFINIENS 2009: 200). A schematic depiction is given in Figure 4.2. 

 

Figure 4.2: Communication between action and rule-set.  

 Source: DEFINIENS 2009: 200 

In the eCognition architect environment standard fuzzy classifications are not suitable for 

transferrable master rule-sets. The fixed thresholds implemented in fuzzy master rule-sets 

are not adjustable. Therefore root-variables were generated, that access on the widgets 

through implemented sliders. In that way the specific thresholds are defined, according to 

the input data. The interactive adaption onto the particular satellite image preserves the 

master rule-set while the thresholds are adjusted. This enables a similar high classification 

accuracy for both tested sensors, if the thresholds are defined properly. The thresholds, 

that were determined in the present data are shown in Appendix 2. In a further step 

additional variables were generated that use arithmetic expressions to create 

dependencies to the root-variables. Thus, ranges in the spectral values of single classes 
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are implemented, whereby a fuzzy classification is simulated. Furthermore text-variables 

have been created that access the Extensible Markup Language (xml) codes of 

eCognition. These variables enable the interactive generation of new projects, definition of 

desired export formats as well as output-path and output-names. Finally icons were 

produced that symbolize the specific process of the respective action in the graphical user 

interface (GUI) of the architect solution (see Figure 4.3). 

 

Figure 4.3: GUI of the eCognition architect action library 

 Source: Own illustration  © S. Klett 

Based on an object-oriented hierarchical classification approach with different 

segmentation levels (cf. TAUBENBÖCK ET AL. 2010a) a master rule-set was developed, 

which enables an easy and fast transfer to other areas (cf. TIEDE ET AL. 2010b). The best 

results for the delineation of a building footprint were obtained by applying a combination 

of a hierarchical multi-resolution (TAUBENBÖCK ET AL. 2010) and spectral-difference 

segmentation (ESCH ET AL. 2008). On three levels (see Figure 4.4) the satellite data is 

differentiated into areas covering vegetation, shadow, sealed ground, streets, water 

bodies and built-up areas from VHSR optical data (in particular WorldView-II and GeoEye-

1). The class „sealed ground‟ serves the situation of camps. The shadow class is divided 

into „shadow‟ and „shadow_vegetation‟. The former could provide additional information in 

large areas of destruction, e.g. the number of collapsed houses via counting the 
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respective shadows. The number of classes is comparatively low, in respect to the faster 

performance of the automated process (AL-KHUDHAIRY ET AL. 2005: 6). This is thought to 

be more practicable, because the high complexity of analysis tasks „in a complex situation 

such as an earthquake with virtually all kinds of destroyed man-made or natural features 

is (still) too high to fully grasp the potential set of target classes automatically” (LANG ET 

AL. 2010: 65). The classification of streets follows on a separated map. The utilisation of 

the thematic layer created artefacts, because of the hierarchy, so that the „copy map‟ 

algorithm became necessary. In a later step of the process tree, the results are unified. 

 

Figure 4.4: Scale parameters (SP) used for hierarchical classification of image objects on a subset 
of the GeoEye-1 image. Figure a) shows the segmentation level vegetation, SP: 10; b) 
shows the level shadow, SP: 20; c) shows the level built-up areas, SP: 80 

  Source: Own illustration 

All derived objects of the compact master rule-set are based on five fuzzy spectral values, 

determined with the feature space plot (see Figure 4.5). The respective values for each 

class can easily be adapted to different sensors by visual on screen inspection of spectral 

thresholds (TIEDE ET AL. 2010b: 3). However, the main focus was on relational attributes, 

such as length/width ratios, geometrical features or neighbourhoods and texture 

attributes, to assure fast transferability (cf. LANG ET AL. 2010: 67). A subset showing the 

result of the object based image analysis can be seen in Figure 6.2. 
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Figure 4.5: Spectral thresholds of selected classes in the modified GUI of the eCognition feature 
space plot showing the parameters mean Brightness and NDVI. Dots show samples 
used for the determination of optimal feature space class distinction. 

Source: Own illustration 

The intention of using the supporting information, the extracted building footprint, is to 

render assistance to the experts performing the visual damage assessment in an on-

screen GIS-environment (see Chapter 4.2). The advantage of the proposed methodology 

is to recognize shifted buildings, and beyond that, a more accurate number of collapsed 

houses. The application of the supporting information is described below. 

4.2 Developing a Team-based Method 

Concerning visual interpretation the team-based analysis has a high potential to improve 

analysis, because of “the ability for multiple views of precisely the same phenomena” 

(COLLIER 2010: 54). The different readings of various interpreters can be compared and 

linked. Through the implementation of a mapping guideline, team analysis has a high 

competency to speed up the analysis of large quantities of images (ibid.). Team-based 

analysis is also expected to produce more reliable outputs and ensuring the quality of 

data, or in this specific context, damage extraction.  

The development of the team-based method is based on the results of the investigation of 

variances in visual interpretation. OGAWA ET AL. (2000: 2ff.) evaluated visual interpretation 
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differences in the damage assessment accuracy based on aerial photographs of the Kobe 

earthquake in 1995. The difference was evaluated through ground survey data. The 

investigated interpreters were six civil engineers, but in this small group the rate of 

damage detection varied from 40-70 per cent, containing a great deal of individual 

deviance. The most accordance in the interpretation results was found in the class 

collapsed (see also Chapter 3.3).  

To reassess this study within a team-based survey a cross-sectional research design for 

qualitative methods was developed. This signifies a primary data collection method 

(CAREY & GELAUDE 2008: 227f) with an experimental project design (MACQUEEN ET AL. 

1998: 232). The survey consists of a statistical content analysis approach, because this 

kind of analysis is seen as efficient and reliable (NAMEY ET AL. 2008: 138). Two focal 

groups were selected in respect to the maximum variations method. This entails a wide 

range in perspectives and selection of persons (CAREY & GELAUDE 2008: 233). The design 

of the data collection instrument focused on a group guideline for two reasons: (1) 

enabling the evaluation with multivariate statistics, (2) performing a pre-test. For the 

developed method the author preferred guidelines instead of standards. The main 

advantage is that a guideline consists of more flexible recommendations than of absolute 

rules. These recommendations may be modified in the development process of the teams, 

on condition that needed. Essential ideas or insights related to the specific situation can 

be expressed by the teams. The preliminary guideline (see Appendix 1), or training 

manual, contained an intents list as well as example pictures that acted as interpretation 

guides to ensure understanding of the instructions (CAREY & GELAUDE 2008: 235ff.) and 

promote a structured analysis (COLLIER 2010: 54). In regard to on-screen visual 

interpretation, the team size has to be limited (MACQUEEN & GUEST 2008: 5f) to two 

persons. Accordingly, groups of two share two screens for digitizing building damages. 

The intention is to analyse the area under investigation twice in a short time with the 

assistance of the aforementioned building footprint (Chapter 4.1). Short breaks with 

moderated discussions ensure consistency, because possible questions and concerns 

can be expressed (see also VEGA EZQUIETA ET AL. 2010). Hence, edits agreed upon can 

be made by the teams, if needed (CAREY & GELAUDE 2008: 253). Since the interpretation 

will be consistent among different interpreters, no further quality control is required (cf. 

VEGA EZQUIETA ET AL. 2010: 55f). The damage assessment was achieved by assigning 

one point per damaged building identified, instead of giving an overall qualitative degree 

of damage level per grid based on the analyst‟s interpretation, which is rather unreliable. 

For the study, the focus was on the quantitative aspect (how much will be recognized), 

and not on an qualitative (which class does the building belong to). For consistency 
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assurance the focus groups received gauging via an instruction and a training manual. A 

grid divided the focus area, a subset of the satellite image, into 100 m x 100 m cells, that 

helped facilitate the interior orientation and avoided redundant editing. The teams were 

given one hour time to analyse a central part of Port-au-Prince. The study area covered 

an area of one square kilometre. Under normal conditions it would take considerably more 

time to analyse a region of that size in detail, but to simulate an realistic stressful situation 

time was limited. To get familiar with the task, visual examples of each damage class 

were distributed to all image interpreters. Afterwards the teams had to write down their 

own comments on how to recognise damaged buildings by means of predefined examples 

in the study area. This was done in the Google Earth environment, using aerial 

photography. Afterwards the symbology of the provided data was visually adjusted and 

hierarchically ordered, in order to perform a multi-temporal damage assessment in the 

ArcGIS environment. By using the swipe tool the interpreters could compare the pre- and 

post-disaster images ad-hoc. The interpretation started in the upper left grid cell, 

continuing sequentially. For each recognised damage a point was set. In the case of 

uncertainty, whether damage existed or not, the layer „building_footprint‟ was activated. 

This helped to identify changes in the former outlines of the respective house. The 

analysis was carried out on a scale of 1:1,000. During the editing there were expected 

diverging ratings inside each team, therefore differences were documented. The final 

result of the interpretation was then delivered to the author.  

 

Figure 4.6: Multi-temporal analysis using the swipe tool: on the left the post-disaster image is 
shown, on the right the pre-disaster image 

Source: Own illustration 
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To get an estimate of the advantages of team-based analysis an identical survey was 

carried out with another focus group, consisting of ten individual interpreters. The results 

of both groups, the ten teams of two interpreters and the ten single interpreters, were then 

compared. 

The transformation into a raster surface became necessary because the edited point 

features were scattering within the contours of a building identified to be damaged. For the 

presentation of the reference group analysis a density tool of the ArcGIS environment was 

used. It distributes a measured quantity of an input point layer throughout the area under 

investigation to produce a continuous surface. Density surfaces show where point 

features are concentrated. In this context the surface indicates graphically the accordance 

of recognized damage buildings in a raster of ten meters. The Kernel Density Estimation 

(KDE) „calculates a magnitude per unit area from point or polyline features using a kernel 

function to fit a smoothly tapered surface to each point“ (ESRI 2009). In other words, KDE 

is a procedure that smoothly fits a curved surface over each point. The value is highest at 

the location of the point and diminishes with increasing distance, reaching zero at the 

search radius distance from the point. Only a circular neighbourhood is possible. The 

volume under the surface equals the input field value for the point. The density of each 

output raster cell is calculated by adding the values of all kernel surfaces where they 

overlay the raster cell centre. Accordingly, the KDE shows the density of point features in 

each output raster cell. 

In statistics it is common sense that statistical occurrences have a certain probability (P). 

P is considered to be explained by samples. In the thesis the samples are spot-tests, 

presented by the interpretation results. For the analysis of the results a T-distribution was 

chosen, because it is especially suited for random samplings with number smaller than 30 

[(n) < 30]. For a plurality of degrees of freedom the T-distribution approximates the normal 

distribution (BAHRENBERG ET AL. 2010: 118ff.). For the representation in a graph the 

probability density function was deployed. It is used as a tool to calculate P of a 

continuous random variable to be between two real numbers a and b. It is seen as a 

measure of theoretical distribution (BAHRENBERG ET AL. 2010: 133). To make a statement 

on the normal distribution in the continuous case of damage estimation the probability 

density function was utilised. With the aid of this function it is possible to state the 

probability of a random variable although there are infinite possibilities in the integral of a 

and b (BAHRENBERG ET AL. 2010: 94). a is then 0 and b the total number of damages. 

The expected value (E [   ]) of the survey is the observed modal value of the ascertained 

spot tests. The variance (σ
2
) of the random variable   measures the scatter of all values 
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relative to the expected value. In the process the squares of the deviation are weighted 

according to their probability (P) (BAHRENBERG ET AL. 2010: 118ff.). For the transformation 

of the spatial distribution into a chart a trend interpolator was used. The trend surface 

method is an approximate and global interpolator. Its procedure minimizes the difference 

between the interpolated value of a data point and its original value. As a type of 

regression model it approximates a mathematically defined surface through all data points 

(HEYWOOD ET AL. 2006: 198). The second order polynomial, which was used for 

representation of the trend surface in Figure 6.7, fits the greatest trend of variation in the 

data. 

The study produced quantitative data with a qualitative assertion. This can be seen in the 

evaluation (Chapter 6.2.3) as well as in the result variation. The results were analysed and 

evaluated for further development of the team-based method.  

In real emergencies, unlike the pre-test study, the extracted data or the interpreted image 

content has to be visualised. This is the interface between the producers and the users of 

the value added products. Hereafter the representation in maps is the centre of attention.  
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5 Visualisation of Damaged Buildings 

Following Chapter 4 the semiotic representation of the extracted data is the next step in 

the damage assessment workflow. Thereby, as presented in Chapter 3, it is of great 

importance that space technology and geo-information is provided in a easy to use and 

ready to access information solution to the relief community (VOIGT ET AL. 2005: 531). For 

the representation of information in emergency situations it is necessary to take the 

specific constraints into consideration which consist primarily of time pressure and stress 

factor (ANDRIENKO & ANDRIENKO 2007: 890). Furthermore, at a global scale, harmonization 

of data representation needs cultural sensitivity (COLLIER 2010: 54f).  

Depending on their information content, the maps are needed by different users and at 

different times. Ideally they are produced with a specific user group in mind. Especially 

maps prepared in the first few days after an event, however, are typically prepared far 

away from, and without a direct communication link to, the disaster area. This leads to the 

risk that maps are prepared without awareness of the specific information needs of the 

users in the affected country (KERLE & WIDARTONO 2008: 16f). 

The Haiti EQ was unusual insofar as a large number of multisource data became quickly 

available (VOIGT ET AL. IN PRESS). Thereby, the humanitarian action community faced an 

immense overflow of satellite images and corresponding maps. Although the International 

Charter on Space and Major Disasters was activated and damage maps were produced, 

knowledge from the field was scarcely incorporated in this process as the situation in the 

field is complex and the crisis teams in the field are fully concentrated on the urgent 

rescue work. The different service providers applied various methods for the visualisation 

of damage assessment maps. According to VOIGT ET AL. (IN PRESS: 15f), in the case of the 

Haiti EQ this resulted in a „mapping disaster“, as a high diversity in the representation of 

the similar features was observed. As a consequence, the variance in representation of 

information delayed relief efforts (cf. SHANKAR ET AL. 2010: 21) (see Section 5.1).  

To pick upon the statement of KERLE AND WIDARTONO (2008: 16f) (see Section 3.3.2) the 

next step from best effort practice to a more structured and standardized basis is 

necessary (VOIGT ET AL. IN PRESS: 18). In the international discourse presently there is a 

debate about the need of harmonising the analysis and visualisation approaches in order 

to reduce the variability of information representation and increase accuracy as well as 

ease interpretation by users (cf. VOIGT ET AL. IN PRESS: 15ff.). As mentioned in Chapter 4 

recent recommendations comprise quality indices on the maps, interpretation keys and 
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legends. The main advantages would not only be higher comparability but also better 

rating quality and reliability in a fast and transparent manner. 

To achieve homogeneity in map design many aspects have to be considered, for example 

the data represented, scale, symbology and the further. The product usability and the end-

user skills are of paramount importance in the design (VEGA EZQUIETA ET AL. 2010: 56). 

However, the design starts with the extraction of data (cf. Chapter 4). Different add-on 

methods of its representation lead to different perceptions of the final map content (VEGA 

EZQUIETA ET AL. 2010: 56). To counteract this problem ANDRIENKO AND ANDRIENKO (2007: 

893) propose a generic knowledge base containing map specifications about how to 

represent the desired features. The meta-information could contain statements on the 

quality and reliability of information (ANDRIENKO & ANDRIENKO 2007: 896), in the manner 

described by LANG ET AL. (2010: 72). 

LANG ET AL. (2010: 73) rated the map shown in Figure 5.2a with medium quality and 

reliability, because its content is derived from satellite imagery alone. Certainly, the input 

data is of high quality (GeoEye-1, pan-sharpened) and well registration (range of Google 

Earth or better), nevertheless there is no validation against other independent products. 

Also no field based accuracy or user feedback is incorporated. "This approach could give 

a quick indication for the usability of a mapping product, when decisions are due” (LANG 

ET AL. 2010: 73). According to this quality level system in the emergency response there is 

little chance to produce assessment maps that surpass medium quality and reliability, 

since possibilities for validation are limited (see also Chapter 4). The rating and validation 

of rapid mapping products is an emerging field that deserves attention. However, it is not 

subject of this thesis, thus it is not covered.  

In the given context the visualisation of damaged houses has to be semiotically easy to 

grasp, to ensure a fast and correct recognition of the meaning conveyed by the 

information (ANDRIENKO & ANDRIENKO 2007: 989f). To “give everybody the right 

information at the right time and in the right way” (ANDRIENKO & ANDRIENKO 2007: 890) the 

information load on the recipient should be reduced. Relevant data should be adequately 

aggregated and generalised, irrelevant information excluded. The final map product is 

more „effective if a smaller number of graphical objects is used“ (ANDRIENKO & ANDRIENKO 

2007: 892). DONNER (2008: 131f) refers to visual variables, which allow to make numerical 

proportions sensually perceivable. This means, that numerical data is made intuitive 

perceptible. Out of this reason the representation should look familiar to the user to ease 

understanding and utilisation (ANDRIENKO & ANDRIENKO 2007: 893). Furthermore the 

perception of the different users would be less different. An appropriate level of detail, that 
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could also be obtained by aggregation (ANDRIENKO & ANDRIENKO 2007: 897), can support 

the hitch-free utilisation of rapid mapping products. 

Since the data extraction and its visualisation are inextricably linked with each other the 

proposed method (Chapter 4) also requires an adequate visualisation. Below there are 

shown selected illustration facilities of the Haiti EQ. These were taken as an inspiration 

because of simple standards that are already manifested.  

5.1 Illustration Facilities 

Following the Haiti EQ on January 12th 2010, a large number of maps was produced by 

different entities. Most of them were derived from Remote Sensing data, due to difficult 

social and political conditions (SHANKAR ET AL. 2010: 21). RELIEFWEB (n.d.) lists some 600 

maps for the Haiti event, SHANKAR ET AL. (2010: 21) put the number of maps at even more 

than 2000. Many of them were produced in the first few days after the EQ as an act of 

emergency response (see Figure 5.1).  

 

Figure 5.1: Timeline of damage assessment maps in response to the Haiti EQ 

 Source: Own illustration; Database: RELIEFWEB n.d. 

As mentioned in Chapter 3.3.1 the qualitative representation of damage products causes 

biases. Therefore damage assessment products of selected service providers were 

analysed and compared. The intention was to find an adequate measure that presents the 

density of collapsed houses (see also Chapter 5.2). The great heterogeneity of the 

illustration methods hampered map interpretation by the users. The investigated damage 

assessment representations were produced by e-geos, JRC, MapAction, SERTIT, 
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UNOSAT and Z_GIS. The service providers used different presentation methods on 

scales ranging from 1:7,500 up to 1:55,000. Almost all maps are of high cartographic 

standard, optimized for large scale printing (DIN-A3). They reflect an overall increasing 

specialisation of different response organisations, each providing assistance according to 

its specific expertise and (satellite) resources, generating map products related to specific 

aspects of the disaster. Below selected damage assessment maps are shown (Figure 5.2, 

for larger copies see Appendix 3). To pick up the statement from ANDRIENKO AND 

ANDRIENKO (2007: 890) that „information should be presented in a way that promotes its 

rapid perception, proper understanding, and effective use“ the potentials (strengths and 

weaknesses) of the maps are discussed, with respect to data representation.  

Among other organisations, Z_GIS used a kernel density estimator (KDE) for the 

representation of the automated analysis of the spatial distribution of damages (Figure 

5.2a). The scale of this map is 1:20,000. The KDE is a very complex presentation method 

that is not easy to grasp. The main disadvantage of the kernel density visualisation is that 

areas, marked as damage areas, do not feature damages. This is due to border effects of 

the calculation. Examples can be seen in the stadium area (centre) or in the forestland 

(see also Figure 4.1). The map provides a good overview of the tendencies, where 

damages might have occurred. 

Another illustration facility is the interpolated building damage surface deployed by 

UNOSAT. The data is produced by visual interpretation of single house damages, based 

on aerial photos (Figure 5.2f). The scale of 1:10,500 is adequate for the representation of 

single houses and the representation of damages is semiotically easy to understand. Yet, 

the interpolation process caused biases, as can clearly be seen, for instance, in the 

harbour area. Since the map is no rapid mapping product, this is recognised to be the 

main reason of the advanced visualisation. 

Another map, published by SERTIT, used a building damage density surface visualisation, 

too (Figure 5.2d). The scale is 1:7,500. A bias is caused by the interpolation, which can be 

seen around the stadium and harbour areas. On one hand it provides a good estimate of 

the spatial distribution of the damages for the user. On the other hand it is a very complex 

visualisation, based on 100 meter radius circles, which represents the tendencies of 

damage occurrences. 

JRC chose a grid-based presentation of the visual interpretation results (Figure 5.2b). The 

scale is 1:55,000 and therefore an overview map. The quantitative assertion, in grids of 

200 m x 200 m, is based on a house-to-house analysis. Since only necessary information 

is presented, the visualisation seems to be of rather coarse character, however, as a 
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consequence it is easy to grasp. Nevertheless there remains a high level of inadequacy in 

grid based data representation (see Chapter 3.3.1). 

The map provided by DLR (see Figure 3.7) also applied grid-based representation for the 

detailed damage assessment with a scale of 1:5,000. The grid symbolises artificial 

boundaries, that do not allow an intuitive reading of the delivered information. The 

qualitative presentation of categories such as „moderate damage‟ or „sparse damage‟ 

correspond an subjective estimation, which is relatively unreliable since it cannot be 

reproduced. Moreover, this kind of categories is hard to rate in order to make assertions 

about the reliability of the maps. 

Another means of illustrating the damage analysis is the generalised representation in city 

blocks (Figure 5.2g), as deployed by e-geos. A combined optical and interferometric 

analysis was performed for the information extraction. The scale of the map is 1:25,000. 

An interferometric coherence, derived from a radar image, serves as map background. 

This complex illustration is difficult to interpret for users not common with radar imagery, 

thus not advisable. The damage assessment was made on city block basis. The blocks 

are represented as squares that are hard to understand. The map is obviously 

overloaded, especially in the city centre, because also blocks with no visible damage are 

symbolised. Finally the blocks delineated out of optical imagery, do not have any quality 

measure. 

MapAction represented visual interpretation results in a block-based damage assessment 

(Figure 5.2h). The scale is 1:35,000. Due to internal quality checks the map was not 

published until 25th of January, which means a long delay. The relative block-based 

representation caused biases in interpretation, for example around the Presidential Palace 

and the harbour area. The red colour indicates extensive damages, whereas the total 

number is not pointed out. In total, the damages do not exceed a dozen, in the harbour 

area it is only one single damage. Nevertheless, the easy perception is supported by the 

block borders, that are related to the street network. 

SERTIT used a combination of block-based and single damage visualisation (Figure 

5.2c). The scale of the map is 1:7,500. Although this representation is very detailed the 

relative damage is expressed on the basis of damages per square kilometre. This is a 

very complex assertion. At a first glance half of the city seems to be damaged. For this 

reason it is difficult to recognise where the major damages are located. Also non visible 

damages are highlighted, for instance around the cemetery and the stadium in the lower 

centre. This conveys the impression of an overloaded map. 
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UNOSAT produced a comprehensive building damage assessment map based on visual 

interpretation of single houses (Figure 5.2e). The scale of this map is 1:25,000. The 

comprehensive damage assessment is a very time consuming analysis, and consequently 

no rapid mapping product. Despite all this, the advantage of this representation is the 

richness of detail and high comprehensibility. 
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Figure 5.2: Damage assessment maps of Port-au-Prince/Carrefour produced by different service 
providers (see appendix 3 for larger copies): a) KDE of damages / Z_GIS, b) Grid-
based damage assessment / JRC, c) Combined block-based and single building 
damage / SERTIT, d) Damage density surface / SERTIT, e) Single building damages / 
UNOSAT, f) Interpolated building damage surface / UNOSAT, g) Block-based damage 
assessment / e-geos, h) Block-based damage assessment / MapAction 

Source: Own illustration  Maps: GMES n.d. (map a), RELIEFWEB n.d. (maps b - h) 
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5.2 Spatial Relations of Data Representation 

The qualitative information in the representation of damages and their spatial relations 

create biases. The spatial representation of point data (here: building damage) is mostly 

done with an estimator, such as interpolation or density methods. Yet, the interpolation 

process estimates values at unsampled sites in between areas of existing observations 

(HEYWOOD ET AL. 2006: 194). The interpretation of the real damage distribution by the 

user is hampered, since the qualitative representation is not able to map absolute 

numbers. Accordingly, the main problem of interpolated representations is the uncertainty 

for the users caused by distortions in the approximation process. 

 

Figure 5.3: Distorted data representation caused by interpolation (here: KDE): red and yellow dots 
are damaged buildings, green points represent undamaged buildings. This effect is 
additionally enforced in densely populated areas 

 Source: Own illustration inspired by ZKI 

The distortion depends mainly on the chosen type of representation and the used method 

of generalisation. Hence, the relation of the total area and damaged buildings depends 

mainly on the type of area that is chosen. In the calculation of zonal statistics the output 

raster size has a direct impact on the final qualitative representation if it is used in relation 

to damages. Consequently, the beholder will conclude differently where high damage 

areas are located and how high the real damage is (VEGA EZQUIETA ET AL. 2010: 57). The 

perception, therefore, varies in dependency to the representation (see Figure 5.4). For 

spatial aggregation the damage pattern is not represented adequately and the highly 

affected areas are not appropriately delimitated (Figure 5.4 – Figure 2). For spatial 

interpolation an overestimation of damages occurs, due to spatial influence onto the 

neighbourhood. Areas without damage occurrence are labelled incorrectly because of 

their spatial proximity (Figure 5.4 - Figure 3). If the feature, which is used for interpolation, 
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diversifies on small-scale, the opposed values (here: conditions (1) no damage and (2) 

damaged in juxtaposition with each other) are extenuated, because they are not constant 

(cf. HEYWOOD ET AL. 2006: 194). An exact or an abrupt interpolation method is better 

suited because values do not alter and the appearance is of a stepped character 

(HEYWOOD ET AL. 2006: 194 ff.). Furthermore the question is, whether there is a spatial 

cohesion of damages (dependency to the basic structure of a building) and, consequently, 

whether the interpolation is an appropriate method to represent the occurrence of single 

building damages. 

 

Figure 5.4: Illustration facilities and comparison of block-based damage estimation for the same 
data source 

Source: VEGA EZQUIETA ET AL. 2010: 58 
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In contrast to the qualitative representation, a quantitative measure is reproducing a result 

closer to reality. VOIGT ET AL. (IN PRESS: 14) propose to introduce a measure that 

represents the total number of damaged buildings within a grid square. The author 

assumes the block-based damage representation to be closer to reality, and, moreover, to 

support a apposite understanding (see Figure 6.10). As mentioned above, in case of a 

disaster the street network is digitised by DLR. The network and the city blocks structure 

the area under investigation into smaller units (TAUBENBÖCK ET AL. 2010b: 87) and 

therefore build a reference level for the spatial distribution of damages. Accordingly, 

semiotically easy to understand borders would be readily accessible, regarding the 

building block as a meaningful unit of representation (cf. VEGA EZQUIETA ET AL. 56). 

Since detail maps contain specific information on points of interest an interactive portable 

document file (PDF) could be an advanced medium for delivery (see Figure 6.9). This 

solution enables the user pointed request for information. The interactive PDF contains 

layers, for example single damages and block based representations, that can be 

individually switched on and off, as liked. Measuring tools, map coordinates and also 

attributes to single features can be interrogated. The printing, as a consequence, is 

focused easily on the actual needed information. Hence, an overload of the product is 

avoided, but at the same time the detail richness preserved. The Adobe Reader is an 

open standard for document exchange, that is freely available, but on most computers 

already installed. Currently map products at ZKI are distributed via download on the 

website, just the same could be done for the PDF. The export size of the file depends on 

the delivered attributes, that can be specified by the producer, and is done in ArcGIS.  

To seize the idea of VOIGT ET AL. (IN PRESS) and to provide a realistic representation a new 

block-based visualisation approach was carried out. By using a choropleth map the 

qualitative assertion still remained. If this representation is extended into the third 

dimension the quantitative aspect is also considered. A point in polygon analysis 

transferred the attributes of the visual interpretation results (point features for damaged 

houses) into the attribute table of the building blocks. Under consideration of the total 

damage number as the „z’ value the blocks were extruded. The technical implementation 

ensued in the ArcScene environment. By using the Animation Manager a new track was 

created. The animation of the scene was rendered with 30 frames per second and gives a 

panoramic view of Port-au-Prince.  
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6 Results and Discussion 

Aim of the thesis was the development of a team-based method for visual damage 

assessment. This chapter presents the result of the analyses conducted in this study. 

According to the structure of the thesis they are subdivided with respect to the thematic 

affiliation. The first section shows the results for the rapid mapping. The subsequent one 

portrays the findings for the team-based damage assessment. The last section describes 

the results of the illustration facilities. Brief discussions and recommendations reflect the 

results obtained and show potentials and shortages of the applied methods, which were 

developed in particular for the operational use at the ZKI.  

6.1 Rapid Mapping 

The short timeframe restrains data acquisition, sophisticated preprocessing and extraction 

methods (both manual and automated interpretation). In case of EQ disasters a rapid 

mapping product could still be of high importance to relief agencies even with a lower 

absolute accuracy. The fulfillment of the user needs, as a consequence, has highest 

priority and is the first step to support decision making in emergency relief. Elaborating on 

user requirements is a key factor that determines and ensures a well-addressed and 

tailored product and therefore a good usability. The questionnaire, that was developed to 

get deeper insights into user requirements, unfortunately, remained unanswered. The 

tremendous EQ event that stroke Japan in 2011 hampered answering, because those 

polled (THW) were busy in field operations for emergency relief. However, the 

requirements prepared by the User Board are a framework of high expertise, which needs 

to be incorporated in the product design by all means. 

Due to general limitations of EO data it is not possible to identify the de facto number of 

damages. For the information extraction in case of disasters it is advisable to use data of 

highest resolution. The present study results have shown a significant approximation of 

recognised damages on the real damage count the higher the resolution of the utilised 

sensor. The high potential of VHSR optical satellite imagery for damage assessment is 

not yet exhausted, if advanced analysis methods are applied and further developed. 

The differentiation of three damage classes for single buildings is the most reasonable 

and practicable possibility. In conclusion it is not possible to separate the different levels 

of partial damage of the EMS in a short time. Therefore the classes „no damage‟, 

„damaged‟ and „collapsed‟ should be implemented. The transfer of this distinction to other 

localities creates new challenges, due to varying settlement structures all over the world. 
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To name an example, it is hard to delimitate a single house, e.g. ribbon building in 

Munich, Berlin or other metropolitan areas.  

The spectral resolution with only four image bands of the presently used sensors is 

comparably limited. This equally applies to the spatial resolution. Cutting edge sensors are 

to close the gap in the rapid damage assessment. The higher spatial resolution of future 

satellite missions such as GeoEye-2 (Pan 0.25 m) is almost as high as those of aerial 

images used in the thesis. This will lead to an increased detail richness, and therefore to a 

higher number of damage detection, as was shown in the analyses. Additionally, hyper-

spectral missions are expected to deliver better results for building damage detection. 

Small scale changes in the materials will be better distinguishable, since the 

electromagnetic spectrum is detected continuously. Unfortunately, the present spatial 

resolutions (5 m) of these systems are not suitable for damage assessments. If these 

considerations are thought ahead, the use of sensor merging techniques could improve 

the analysis task. By using the advantages of different systems the development of 

computationally efficient algorithms and procedures could enhance final quality of the 

extracted information. Consequently, the products of the value adders will be more 

reliable (even if a certain degree of uncertainty remains). Therefore reliability or the 

assumed range of accuracy should be explicitly stated on the product to ease usability 

and interpretation by the users. 

Under the given conditions, which were presented in the thesis, satellite based damage 

assessment of EQ damages remains difficult. The spatial resolution is still too coarse to 

assess the total extent of damaged buildings, in particular in shantytowns. Further 

research for solutions to face such difficulties is needed. Therefore, improved and faster 

procedures for the quantitative EQ damage assessment from EO data need to be 

developed. The plurality of urban structures, especially in developing and transition 

countries, causes further problems. In all probability, planned urban spaces are expected 

to receive higher damage recognition rates because of their regular housing structures 

and standardised roofing characteristics. Also the better availability of thematic data such 

as road or LIDAR datasets and archive images is widespread and can, as a result, ease 

the analysis. Recent developments in the international emergency response promise a 

more structured and coordinated way of collaboration of rapid space-based mapping and 

assessment of extreme disaster events. 

6.2 Team-based Method 

From a remote sensing point of view the Haiti region is a difficult context, especially the 

urban morphology. The spectral homogeneity of the image objects is considered as the 
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main limitation both for the machine based analysis (supporting information) and the 

manual interpretation. As was presented the visual interpretation is still the most reliable 

source for the delineation of desired crisis relevant information. The combination of visual 

interpretation and supporting information resulted in a higher degree of damage 

recognition. 

6.2.1 Classification 

The main advantages of OBIA classification over pixel-based approaches are (1) the 

elimination of artefacts that result from the high spatial resolution and (2) the results 

achieved are more adequate to human perception. Both aspects are essential for the 

support of visual interpretation. 

The object-based classification method for the extraction of a building footprint evolved in 

this study was realised in the eCognition Developer 8 environment. The aim was a 

delineation of a building footprint for the operational use. By developing a robust master 

rule-set the transferability on different sensors was ensured.  

To support the damage assessment the exact and actual land cover mapping of urban 

areas is essential (see Figure 6.1). The presented methodology allows different 

applications in terms of rapid mapping like the determination of open spaces for camps. 

The registration of settlement structures according to form-parameters and building 

density enabled the definition of population density to some extent and additionally sign 

out the focal areas for disaster response activities.  
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Figure 6.1: OBIA classification of Carrefour using the architect solution  

 Source: Own illustration  ©S. Klett 
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The eCognition architect solution is an easy applicable and adjustable method for the 

operational use in case of disasters. The ready-to-use solution assures the fast 

adjustment to other images and localities. Besides that, an easy applicability for varying 

users is provided. Since it uses archive information the processing can be launched 

immediately. After the production of overview maps, when the actual damage assessment 

starts, the supporting information is available. To speed up the process a server 

processing is recommended. The main disadvantage of the developed architect solution is 

that an initial step is left out. Before applying the solution, a subset has to be segmented 

with the purpose of on-screen determination of adequate thresholds. 

The rather few classes do not restrict the usability of the supporting information. Due to a 

great variety in building forms and spectral ranges, in some areas it was impossible to 

extract single buildings and retain fast processing at the same time. The aggregation of 

buildings, back yards and also some street elements was necessary. However, in the 

analysis the human perception is able to grasp object boundaries easily and associates 

them with real objects. Instead of increasing the number of classes further effort should 

concentrate on a segmentation optimisation, to avoid over-segmentation. This can be 

seen in Figure 6.2. Since there are a lot of noise objects in the classification of optical 

imagery a post-processing could be of advantage, e.g. a simple generalization of building 

outlines. 

 

Figure 6.2: Classification example of a GeoEye-1 subset in Carrefour, Haiti (blue: streets; green: 
vegetation; light-blue: sealed soil; orange: built up areas). The house in the centre of 
the image shows an example of over-segmentation 

Source: Own illustration 
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Table 6.1 shows selected thresholds that were used for the generation of the supporting 

information with the architect solution. Since the scenes were too large for the processing 

on a single computer the tiling and stitching algorithm was applied for a server processing. 

Although the master rule-set was developed for the operational use with relatively slim 

algorithms, a small scale parameter was needed. For the separation of objects belonging 

to vegetation and other features this SP was essential. This results in a high 

computational cost because the number of created image objects is very high. The 

recommended solution is the computation on a multi-core blade server.  

Table 6.1: Selected thresholds used for object-based classification 

Source: Own compilation 

Class Feature GeoEye-1 WorldView-II 

Street Street data thematic layer thematic layer 

Vegetation NDVI 0.6 0.25 

Shadow 

Brightness (mean) 125 220 

NDVI 0.55 0.25 

Area <= 650 <= 650 

rel. Border to shadow >= 0.25 >= 0.25 

Built-up 

Brightness (mean) 685 705 

NDVI 0.55 0.25 

rel. Border to shadow >= 0.009 >= 0.009 

Water 
NDVI <= -0.2 <= -0.2 

Area >= 1000 Pxl >= 1000 Pxl 

sealed ground Area > 800 Pxl > 800 Pxl 

 

In some areas, in which spectral contrast between houses and ground is very low, the 

object boundaries are floating. Even if there is still a slight under-segmentation for areas in 

between backyards and dusty roofs according to spectral similarity to bare ground, the 

advantages are the high degree of automation, the more detailed damage assessment 

and the saving of time. Areas with complex building geometries, especially patch-work 

roofs, and high spectral differences tend to over-segmentation. The distinction between 

roofs and streets is a prominent problem. This was solved to the greatest possible extent 

by using the street data as a thematic layer. The most common problems that occurred 

while analysing the images are shown in Figure 6.3.  
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Figure 6.3: Illustrative examples of common problems for OBIA in the Haiti case: a) similar spectral 
values of roofs belonging to different houses b) shading of roof-parts belonging to the 
same dwelling c) low differences in spectral reflectance between buildings and streets 
d) spectral similarity of roofs and backyards 

Source: Own illustration 

A further step in the analysis could be the segmentation optimisation. Because of the 

logically related attributes the method was made transferable to a large extent, since 

building geometries and construction standards differ worldwide. Further investigations 

are needed to estimate the degree of correctness in other parts of the world. 

Nevertheless, the extracted features within the supporting information method resulted for 

both sensors in an almost equal high degree of accuracy, as presented below.  

6.2.2 Accuracy Assessment 

For the accuracy assessment of OBIA the thematic and the spatial accuracy were 

investigated. The validation of the classification results, based on the architect solution, 

occurred in a region of Port-au-Prince. The thematic accuracy assessment of the 

classification results was carried out by a visual inspection of 200 randomly distributed 

sample pixels (at least 20 samples per class). The overall accuracy, obtained by applying 

an error matrix, was 84.3 per cent for the GeoEye-1 image and 82.7 per cent for the 

WorldView-II data (see Table 6.2 and Table 6.3). These values were regarded as 

sufficient for the support of the team-based analysis.  
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Table 6.2: Thematic accuracy of GeoEye-1 data classification 

Source: Own compilation 

Class Producers accuracy Users accuracy Kappa Index 
Overall 

accuracy 

Street 98.25 % 98.13 % 0.9623 

84.32 % 

Vegetation 92.13 % 94.76 % 0.9161 

Shadow 75.67 % 100 % 1 

Built-up 100 % 50.3 % 0.5024 

Sealed ground 89.42 % 81.80 % 0.7973 

Water 95 % 92.56 % 0.934 

 

Table 6.3: Thematic accuracy of WorldView-II data classification 

Source: Own compilation 

Class Producers accuracy Users accuracy Kappa Index 
Overall 

accuracy 

Street 100 % 97.83 % 0.9623 

82.73 % 

Vegetation 94,72 % 95.63 % 0.9165 

Shadow 81,86 % 92.46 % 0.901 

Built-up 92.34 % 63.21 % 0.6102 

Sealed ground 77.81 % 80.50 % 0.7831 

Water 97.53 % 95.17 0.9247 

 

The best results were achieved for the classes street and vegetation. This can be 

ascribed to the utilisation of the street dataset for the street class. For the vegetation class 

the usage of the NDVI assured a high accuracy. A slight but constant over-segmentation 

of the satellite images was observed for the delineation of the „built-up‟ class. This over-

segmentation was found, in particular, in the fragmentation of roofs due to spectral 
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reflectance variability. The most common reasons were sun facing and shaded gable 

roofs (see Figure 6.3) as well as patch-work roofs (see Figure 6.4). Also roof-top terraces 

and chimneys were a frequent cause. 

 

Figure 6.4: Over-segmentation due to patch-work roofs and chimneys 

 Source: Own illustration 

To face this problem the usage of advanced segmentation algorithms could be used. 

Examples of those algorithms were developed by DRAGUT ET AL. (2010) and TAUBENBÖCK 

ET AL. (2010a). The latter was tested but considered to be not useful for the emergency 

response, due to a processing time of several hours for one satellite scene.  

The spatial accuracy considered the size and shape of the classified features. The 

reference objects, which were manually digitised, were considered to be true, although a 

certain degree of uncertainty remains in the production of reference objects. Accordingly, 

the spatial accuracy remains hard to measure. For the accuracy assessment the same 

objects as for the thematic accuracy were analysed. The water class was excluded due to 

the size of the Caribbean sea in the image. The merge algorithm produced a single, large-

sized object. Further uncertainties in the OBIA remained, as can be seen in Figure 6.5. 

The MPAR value of the classified objects was constantly higher than the value of the 

reference objects, due to pixel-based fuzzy contours. The generalisation of the manual 

digitised reference objects eliminated this effect. The shown object has got an MPAR 

difference of 0.2 and was recognised as well fitting. Therefore the mean tolerance of 0.2 

as limited amount of variation was set.  



  

 
 

81 Results and Discussion 

 

Figure 6.5: Comparison of MPAR values. The green polygon represents the classified object 
(MPAR 0.56), the red polygon the reference data (MPAR 0.36). 

Source: Own illustration 

Based on the presumption, that the classification represented image objects close to 

reality, the MPAR was considered to judge accuracy. The classes „street‟ and „vegetation‟ 

were well represented because the thematic layer and the NDVI created well matching 

borders of the objects. The class „built-up‟ was represented rather poorly because of high 

differences in the texture (grey value transition probability) and constant over-

segmentation. The class „shadow‟ showed constant high MPAR values, that almost all 

exceeded the mean tolerance, although they were properly fitting the reference objects. 

Further investigations have shown that the uncertainty increases, because the MPAR 

value varies with the size of the object. If the shape was hold constant, an increase in the 

object caused a decrease in the MPAR. This explained the constant high values for the 

shadow class. As a result, the MPAR is not suited to make an assertion on the spatial 

conformity of classified and reference objects, because the MPAR does not explain the 

spatial fit of classified and reference objects to each other. Thus, no result of the 

assessment on the spatial accuracy was provided. 

According to the findings portrayed above, the transferability limited the accuracy. The 

developed method still has a potential for the support of visual image analysis, although it 

could be optimised. 

6.2.3 Developing a Team-based Method 

As it was shown the specific individual experience and prior knowledge could increase the 

ability to recognise a high number of (partial) damages. The application of team-based 

methods focused on increasing this effect. The possibility to swap ideas on potential 

damage and the twofold covering of the area under investigation did not only quicken the 
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damage assessment, but also delivered more precise results as the following evaluation 

demonstrates.  

The evaluation of variances resulting from visual interpretation were analysed by a focus 

group survey as was presented in Chapter 4.2. Most single interpreters were not able to 

complete the analysis of the given subset, in contrast to the teams, that covered almost 

the entire area. The author had a great foreknowledge of the image content because of 

the comprehensive work on the images, such as classification and sensor evaluation 

(Chapter 3.2). Accordingly, the damage detection of the author was well above average, 

wherefore his analysis was not taken into consideration. The results of the focus groups 

are shown in Figure 6.6. 
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Figure 6.6: Kernel density of interpretation results. Points show reference data.  

 Source: Own illustration  © S. Klett 
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The output raster cell size of KDE is 10 m x 10 m. The maximum count in the red square 

(D 2) is 36 hits. During the analysis of the interpreters a frequently mentioned question 

was: what is a single house? This can be seen, for instance, in cell F 8. The evaluation of 

the focus group results revealed some other general problems. In particular densely built 

up areas cause a high misinterpretation (A 7 and H 3/4). This results mainly from the limits 

of spatial resolution, that hampered the damage detection (F/G 5 and A 7). An 

underestimation was observed for not completely crushed multi-storey houses (2 hits 

only) (F 6/7 and B 7). As a general trend the highest density is found in the upper left, 

where the interpretation started. Evidently, within the time limit of one hour a relaxing 

attention shows the fatigue of the subjects. Regarding the top-down colour gradient there 

is not only a lower density, but also a higher misinterpretation which can be seen in the 

cells A/B 7/8 and C/D 9/10.  

Regarding the evaluation of the interpretation results, with R² = 0,952 the coefficient of 

determination explains almost the entire variance of Figure 6.7. The background shows 

study results of the reference group analysis. The expected value amounts to 216 and is 

therefore 40.4 per cent of all 535 damaged buildings for all interpretations. The standard 

deviation is 49.78. For the team-based analysis the expected value is 245 which 

corresponds 45.8 per cent recognition. The respective standard deviation is 28.23. In case 

of single interpreter analysis the expected value is 184, the percentage of recognition 

achieves solely 34.4. In this the standard deviation amounts to 47.59. In comparison to 

the benchmark of the grid-based damage estimation of DLR-ZKI of 10.2 per cent 

detection of collapsed houses there is a remarkable difference. Regarding the sensor 

evaluation a damage recognition of 87.7 per cent was achieved by the author, what 

corresponds approximately 472 detected damages. As a result, one has to state that the 

time constraints are the main reason for the limited number of damage recognition, 

because almost half of the damages are overseen in a simulated emergency exercise. 

This also explains the lower detection rate in comparison to the study conducted by 

OGAWA ET AL. (2000), who utilised aerial photography. In addition, there was no time limit 

given. 
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Figure 6.7: Normal distribution probability density function of visual interpretation results. The 
expected value amounts to 216. The variations of the single interpreters range from 
117 to 250, for the team-based analysis from 216 to 301. 

Source: Own illustration 

The (co-) registration was applied on the pre- and post-disaster images and on the street 

data. These steps need much time in the proposed method but still this is essential for the 

multi-temporal analysis. Due to general limitations of EO data, independent of the spatial 

resolution, three classes of damage should be defined: „no damage‟, „damaged‟ and 

„collapsed‟. The distinction into these classes creates quantitative data. The strength of 

the quantitative data is an increase of quality, attributable to more detailed information. 

The weakness is the time consuming analysis because it is very complex and elaborative. 

Despite all this the multi-user approach is very time effective because of the contemporary 

editing in a single multi-user feature class. Hence, there is no post-processing, such as a 

union operation, needed. Briefing, gauging and twice checking as central aspects of a 

qualitative design are the main improvements in contrast to the single interpretation. This 

would also weaken the argument of KERLE AND WIDARTONO (2008) that the reliability of 

rapidly produced maps cannot be rated, because consistency is assured. 

For the implementation in the operational ZKI environment the digitising should be made 

on a layer-file in a multi-user environment that all interpreters can access (see Figure 6.8).  
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Figure 6.8: Multi-user data management for team-based damage assessment 

 Source: Own illustration, inspired by ZKI © S. Klett 

Teams are digitising on two screens, whereas the first screen shows the image data and 

the second the attribute table. One team member should control the mouse and the other 

one handle the keyboard for data entry. Regular breaks should also be used to change 

roles within the teams. Several interpreters stated that during the iteration process (Figure 

2.11) they became more familiar with the task. In conclusion, possible interpreters should 

get training in an emergency exercise, because this method needs some experience to 

get used to it. The exercises will increase individual knowledge on EQ damages and 

therefore increase product quality.  

The proceeding for the information extraction in the proposed manner is about one hour 

per square kilometre. The medium capabilities of the operator (ZKI) amounts to four 

persons in 24/7 service, but in exceptional situations it is considerably more. The overall 

area covered by the damage assessment of DLR in the Haiti case was about 320 square 

kilometres. According to study results this would take 320 hours for a team of two 

interpreters. The maximum count of interpreters engaged in the Haiti case was 25. 

Altogether this is equivalent to 12 teams that could cover all the area performing a house-

by-house damage assessment within approximately 27 hours of constant work. According 
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to Table 3.1 this would also accomplish the user requirements to deliver first damage 

assessment maps within 48 hours. The estimated accuracy, which could be stated on the 

map, is about 50 per cent. This value can be surpassed by appropriate teaching of the 

methodology during emergency exercises. In extraordinary damage extents the scale of 

1:1,000 could be decreased to sacrifice detail in order to quicken the analysis. 

It was discussed, that the final user of the method expects a process fast enough to 

quickly cover large areas, and at the same time, enough detail to provide useful 

information and reliable enough to take decisions based on it. As it was shown, the team-

based method is qualified to fulfil expectations and, additionally, improve product quality. 

Consistency is ensured because a similar result can be achieved in reproduction (see 

Chapter 2.6). The results can be tested in coordination with the end-user and required 

modifications implemented in the guideline for the next events. In conclusion it is 

manifested, that the application of team-based methods improves the rapid mapping 

enormously. A standard operating procedure, as it was presented in this study, accounts 

for the fact that quality assurance is given. 

6.3 Visualisation 

As it was shown there exists a great variety in data representation. An unbiased 

visualisation is considered to ease interpretation and increase usability for the user. As a 

result, in dependency to different scales, different representations should be chosen. The 

colour indication of the damage classes should follow the advice of the 5th rapid mapping 

workshop of SAFER held in Madrid and utilise red, yellow and green for high middle and 

low damage numbers (oral communication: DR. TOBIAS SCHNEIDERHAN, 2011). 

In conclusion to Chapter 5, hereafter some recommendations are made. For detailed 

maps, with a scale smaller than 1:10,000 a representation of single houses should 

favoured the interpolated surfaces, because it is more exact and better to grasp. The 

interpolated surfaces can hardly be interpreted, due to floating transitions. Since the 

survey objects are relatively small, a high scale is needed. However, according to 

settlement structure it is not always suitable, especially in shantytown regions of 

developing countries. In this area a block-based damage visualisation is recommendable, 

on condition that it is adjusted in order to avoid biases. Detail maps also contain specific 

information on points of interest. Considering the medium of delivery an interactive PDF-

file was recognised to be very useful (see Figure 6.9). The solution enables the user 

pointed request for information. The interactive PDF contains layers that can be switched 

on and off, as liked. In addition, measuring, map coordinates and also attributes to single 

features are provided. The printing, as a consequence, is focused easily on the actual 
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information needed. Hence, an overload of the product is avoided, while detail richness is 

preserved. Maps that are designed in this manner apply the most suitable representation 

techniques according to the user requirements. 

 

Figure 6.9: Presentation of single house damages in an interactive PDF 

 Source: Own Illustration © S. Klett 

For overview maps with a scale larger than 1:10,000 other illustration facilities instead of 

the current grid-based visualisation should be considered. Since the data representation is 

artificial, without natural elements that ease comprehensibility, it is advisable to use the 

block-based visualisation (see Figure 6.10). The blocks are determined with aid of street 

data. A point in polygon analysis of the results gained by visual interpretation requires only 

a small computational effort. 
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Figure 6.10: Comparison of grid-based and block-based damage assessment of Carrefour: map 
on the left shows grid-based damage assessment (DLR-ZKI), on the right a block-
based damage assessment is presented (SERTIT) 

  Source: ZKI / RELIEFWEB (n.d.) 

Additionally, for the final representation also supporting information was used. A merge 

operation with the class „built-up‟ was deployed to alleviate biases in interpolated data 

representation. Untilled areas, such as parks or football stadiums are then excluded per 

se. This avoids overloading of the maps, because only needed information is transmitted. 

Figure 6.11 shows a block-based quantitative damage assessment of Carrefour, that also 

utilizes the supporting information. 
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Figure 6.11: Block-based quantitative damage assessment of Carrefour. 

Source: Own illustration © S. Klett 
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A further solution to reduce biases in interpolation is the three-dimensional visualisation 

with extruded blocks in the ArcScene environment. As outlined in Chapter 5.2 the 

limitations of two-dimensional map products cause biases. Therefore the decided 

advantage is the extended transmission of information. The height of the extruded blocks 

symbolises the count of damaged buildings per block. Facing one another the advanced 

three-dimensional rendering represents the absolute number whereas the traditional map 

product withholds this information. To avoid occluded areas in the shadow of highly 

extruded blocks at least two viewing directions are needed (see Figure 6.12). To 

circumvent shading the rendering of a video is the most appropriate solution. An example 

can be found on the compact disc attached to this thesis (Appendix 5). The main 

advantage is the very detailed and close to reality impression transmitted to the beholder. 

A weakness is the extra work which is intensified by occasional bugs. The medium used 

for viewing the video can be a website or a map server because of the size of 

approximately 55 megabytes. This, unfortunately, can cause problems in some parts of 

the world with lacking internet infrastructure. 

 

Figure 6.12: Combined qualitative and quantitative representation of damage numbers utilising 
three-dimensional extrusion of city blocks 

Source: Own illustration  © S. Klett 
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Extensive maps of scales larger than 1:50,000 should keep the grid-based representation, 

which is appropriate for this level of generalisation, even if biases remain and natural 

borders are neglected. Additionally the main streets should be represented. 
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7 Conclusion and Outlook 

The main objective of this thesis was to develop a team-based method for visual damage 

assessment using optical VHSR satellite data in the context of rapid mapping in the 

aftermath of earthquake disasters. To seize the research challenges and main objectives, 

this Chapter initially presents the major conclusions and afterwards outlines further 

research needs and recommendations in the field of rapid damage assessment. 

7.1 Conclusions 

With regard to the main goal the thesis investigated the conditions of rapid mapping to 

provide a deeper understanding of the potential of very high resolution optical data for 

damage derivation. As it was shown the potential of VHSR satellite data is not yet 

exhausted. In this context it was demonstrated that the application of team-based visual 

interpretation is capable of increasing not only product quality but also consistency and 

thus reliability of the extracted information. It is concluded that under the premise of time 

pressure a resolution dependent procedure was developed. The process of development 

revealed the following key findings: 

(1) The method enables the user to define a certain degree of thematic quality within a 

limited timeframe.  

(2) The provided guideline and the respective briefing should be improved during 

emergency exercises and real disaster events. The experiences gained compel 

subjective decisions to create rational and reproducible results.  

(3) With respect to the iteration and learning process within the visual interpretation 

conducted in teamwork, the procedure is designed in a manner that takes (1) and 

(2) into consideration. 

(4) The current user requirements encompass only map content, but disregard its 

respective representation. Accordingly, harmonisation with the users has to be 

intensified as well as the development of application-oriented prototypes and 

standards. Since the content can be delivered, the focus should be in particular on 

data representation. The block-based quantitative representation Figure 6.11, that 

utilises also the supporting information in combination with the interactive PDF 

format is a first step towards meeting future challenges. 

In addition to the key findings it is stated, that from a remote sensing point of view the 

earthquake in Haiti is a difficult context, especially the urban morphology. The spectral 

homogeneity of the image objects is considered as the main limitation for both the 

machine based analysis (supporting information) and the manual interpretation. However, 

an important advantage of the presented approach over conventional classification 
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techniques is the robust design that assures transferability of the OBIA solution. As a 

consequence an area covering application was developed that combines a faster, 

because of teamwork, and more detailed, for the reason of supporting information, 

analysis result. 

The in-line design of data extraction and representation are further aspects that increase 

the value of the team-based method. The application of three-dimensional visualisation 

techniques is capable of not only delivering a qualitative assertion, but also a quantitative 

information. In conclusion, this reduces the current biases in data representation 

enormously.  

Summing up, it may be said that the standardised team-based visual interpretation is a 

powerful tool to improve the quality of information delineation from EO data. The team-

based approach increases product reliability if representation follows close upon. Finally, 

there is a gain not only for the users, moreover for the ones potentially being rescued. 

7.2 Outlook 

The methodology was made transferable to a large extent, since building geometries and 

construction standards differ worldwide. Further investigations are needed to estimate the 

degree of accuracy in other parts of the world. Especially if the maximum size of buildings 

is significantly increasing as is the case for Munich or Berlin. To face expected problems a 

slim and fast performing algorithm for segmentation optimisation needs to be developed. 

Further harmonisation of value adders and users, that also takes into consideration the 

final data representation, allows striving for specific visualisation. A further step should be 

the implementation of mobile solutions for emergency response. Utilisation of handhelds 

and mobile GIS would enable the rescue teams to use routing datasets and location 

based services. Accordingly more targeted actions by the rescue teams would be 

possible. 

DLR presently delivers only printable maps to the users. Currently there is a discussion 

about future data delivery of additional file formats. A direct transmission of the extracted 

digital geo-data is only provided on request of certain entities. In principle it is intended to 

deliver also digital geo-data, but there exists not yet any license agreement to consolidate 

DLR´s copyright. The copyright implies metadata compliant with INSPIRE, ISO and OGC 

standards. The data provision then occurs via web-mapping servers and contain three-

dimensional representation techniques.  

Lastly, an international entity should be embodied which‟s duty is the passing on of 

products that fulfil agreed upon standards and user requirements. An overflow of products 
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could be limited since this entity could screen the maps on best practice solutions. A 

mapping guideline, developed by this entity, should consider different aspects for a 

cultural and case sensitive visualisation, such as scale, complexity and most suitable 

symbology. 
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2 Einführung 

Am Beispiel des Erdbebens von Haiti im Januar 2010 wird mittels einer empirischen 

Untersuchung eine Methodik zur visuellen Interpretation von hochaufgelösten 

Fernerkundungsdaten getestet. Im Folgenden wird eine Einführung in die 

Schadenserkennung sowie eine Anleitung in die Methodik gegeben. Das Ziel ist eine 

schnelle und einfache Erkennung von beschädigten und eingestürzten Gebäuden. Dies 

soll anhand von zweier Teams geschehen, da somit in einem kurzen Zeitraum jedes 

Gebiet doppelt analysiert wird. Die erkannten Schäden sollen durch Punkte digitalisiert 

und als .shp Datei gespeichert werden. Der Zeitaufwand beträgt eine Stunde. Um eine 

realitätsnahe Stresssituation zu simulieren sollten Sie die Zeitvorgabe einhalten. 

Abb.1: Haiti. Quelle: Google Earth. 
 

1. Einlesen der Daten 

Zu Beginn der Auswertung starten Sie bitte ArcGIS. Anschließend öffnen Sie die 

bereitgestellten Daten aus dem Ordner ‚Vergleichsgruppenanalyse„. Dieser enthält neben 

dem Skript folgende Dateien: 

 Collapse 

 Grid 

 Footprint 

 Geoeye_post 

 Geoeye_pre 
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Bringen Sie die Daten per drag&drop in die hier angegebene Reihenfolge. Dies ist wichtig 

für die spätere Analyse. 

 

1.1 Darstellung der Daten 

Um eine optimale Darstellung für die Interpretation zu erhalten ist es notwendig die 

eingelesenen Daten anzupassen. Durch clicken auf das jeweilige Symbol im ‚table of 

contence„ können die Darstellungsweisen angepasst werden. Verwenden Sie die 

folgenden Symbole: 

 

 Collapse: Rotes Dreieck, Größe 14 

 Grid:  Hellgrün (ohne Füllung), Strichstärke 1,5 

 Footprint: Hollow, Strichstärke 1 

 Geoeye_post: Kanalkombination 1-2-3 

 Geoeye_pre: Kanalkombination 3-2-1 

 

2. Schaden erkennen 

Im Vergleich zu intakten Gebäuden weisen eingestürzte bzw. beschädigte Häuser 

unterschiedliche Merkmale auf. Als solche sind unter anderen sehr kleinräumige 

Schattenanteile, Schutt und wenig klare Konturen zu erkennen. Die Gebäude sind also 

nicht scharf von der Umgebung abgetrennt oder leicht verdreht. 

 

Abb. 3: Pre-/Post-disaster Vergleich eines Gebäudes. Quelle: Digital Globe 

(World View II Daten vom 13.12.2009 und 03.02.2010) 
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Abb. 3: Im linken Bild ist ein zerstörtes Haus zu sehen. Im Bild rechts sieht man den Vergleich 

von zerstörter zu intakter Siedlung.  Quelle: Google Earth (13. Januar 2010) 
 

Aufgabe 1: 

Suchen Sie folgende Gebäude mit den dazugehörigen Koordinaten in Google Earth (UTM): 

 Casernes Dessalines:     18.541829°, -72.339752° 

 Palais National:       18.543128°, -72.338825° 

 Administration Générale des Contributions:   18.545073°, -72.340024° 

 Cathédrale Notre-Dame de L'Assomption:   18.549070°, -72.338529° 

Welche typischen Erscheinungsbilder an und um die beschädigten Gebäude erkennen Sie? 

Vergleichen Sie die Bilder mit denen vom 13. Januar 2010 und 26. August 2009  

Tipp: Im Menü unter ‚Ansicht: Historisches Bildmaterial‟ aktivieren. 

 

 

 

 

 

2.1 Vergleich der pre- und post-disaster Bilder 

Öffnen Sie unter View:Toolbars die Menüleiste ‚Effects„. Aktivieren Sie das Swipe-Tool 

und legen Sie als Ziel das Bild ‚geoeye_post„ fest. Nun können Sie mit einem Click den 

Pfeil bewegen und das darunter liegende pre-Bild erscheint. 

 

!!  Achtung: Ein leichter Versatz der beiden Bilder  

resultiert aus den verschiedenen Aufnahmewinkeln !! 
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3. Schaden digitalisieren 

Orientieren Sie sich an den Gridzellen. Beginnen Sie an einer Ecke und untersuchen Sie 

jede einzelne Zelle. Wenn Sie einen Schaden erkennen setzen Sie einen Punkt. Die 

Layer ‚footprint„ dient als visuelle Hilfe zur Erkennung von Schaden. Sollten Sie unsicher 

sein, ob ein Schaden vorliegt, können Sie die Layer aktivieren um beispielsweise 

Drehungen oder Änderungen an der Grundform eines Gebäudes festzustellen. 

Deaktivieren Sie die Layer, wenn Ihnen zu viele Informationen angezeigt werden.  

Ein geeigneter Maßstab für die Analyse liegt bei etwa 1:1.000. 

 

3.1 Editieren des Shapefiles „collapse“ 

Das Shapefile „collapse“ dient der Visualisierung der beschädigten Häuser. Dies 

geschieht mittels der Edit-Funktion. Öffnen Sie unter View:Toolbars die Menüleiste 

‚Editor„. Wählen Sie ‚collapse„ als Ziel aus. Mit dem Sketch-Tool (Bunstift) können Sie die 

beschädigten Häuser mit einem Punkt markieren. Vergessen Sie nicht ihre Ergebnisse zu 

speichern (Editor: Save Edits).  

!!  Achtung: Um keine Gridzelle auszulassen ist es bei der  

Digitalisierung sinnvoll Reihe für Reihe zu betrachten    !! 

 

4. Dokumentation 

Während der Schadensanalyse wird es in Ihrem zweier Team zu 

unterschiedlichen Einschätzungen kommen. Daher ist es von großem Interesse 

weshalb es zu Unterschieden kommt und wie Sie in Ihrem Team damit 

umgegangen sind. Bitte beantworten Sie die folgenden Fragen: 

 

1. Wo kam es zu Abweichungen bei der visuellen Interpretation?  

2. Wie oft kamen Abweichungen vor und wie wurden diese gelöst?  

 

5. Speichern der Ergebnisse 

Erstellen Sie einen Ordner und legen Sie darin die Ergebnisse ab. Dieser sollte alle 6 

Files mit dem Namen collapse.* und ein Textfile mit der Dokumentation beinhalten. Bitte 

schicken Sie diesen Ordner gezippt per Mail an:  

 

Stefan.Klett@dlr.de 

Vielen Dank für Ihre Unterstützung! 
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