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Abstract. In this paper a trilateral Multi-Master-Single-Slave-System with con-
trol authority allocation between two human operators is proposed. The authority
coefficient permits to slide the dominant role between the operators. They can
simultaneously execute a task in a collaborative way or a trainee might hapti-
cally only observe the task, while an expert is in full control. The master devices
are connected with each other and the slave robot peer to peerwithout a central
processing unit in a equitable way. The system design is general in that it al-
lows delayed communication and different coupling causalities between masters
and slave, which can be located far from each other. The Time Domain Passivity
Control Approach guarantees passivity of the network in thepresence of com-
munication delays. The methods presented are sustained with simulations and
experiments using different authority coefficients.

1 INTRODUCTION

Bilateral Teleoperation, where a human operator controls aremote robotic manipulator
through a master device originates in the 1940’s. The human thereby gained access to
distant evironments or to environments behind a barrier, like the human body in mini-
mally invasive surgery. That can also be performed over longdistances as demonstrated
in 2002 with the ZEUS robotic system [1]. Even though the operating surgeon was in
New York, while the patient was in Strassbourg, there was still a surgeon located with
the patient in case of an emergency. In the future the local surgeon could also be inte-
grated into the teleoperation system with a local master console, enhancing the bilateral
system to a trilateral system. Analogous to surgery, potential applications for trilateral
systems can be found in deep see or in space, where a specialist on the ground can assist
an astronout operating a robot outside a space station.
A trilateral system could either be used in a collaborative way where a local professional
gets temporary support by a distanced specialist or as a training system where a trainee
learns from a mentor ([2–5]). In the beginning of such a training the trainee can observe
the mentor’s action haptically without influence on the slave robot. Corresponding to
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the increase of experience the authority should be shared between the human operators
(see Fig. 1) providing the trainee with progressively higher control. This procedure is
in this paper solved by the variation of an authority factor.
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Fig. 1. Trilateral teleoperation including authority allocationand time delay

In [2] a system with authority allocation and a unilaterallycontrolled slave is proposed.
Visual feedback of the slave’s position was provided and time delay in the operators’
haptic channel was considered. This system was enhanced to apeer-to-peer system in
[3] with threee equally privileged peers (slave and master devices) in a four channel con-
trol architecture (4CH). However the effect of time delay was neglected here. In bilat-
eral systems the time delay as the general challenge in remote control has been tackled
with several energy based techniques i.e. the Time Domain Passivity Control Approach
(TDPA, [6–8]), Raisbeck’s passivity criterion [9] and the wave variables technique [10]
which is closely related to the scattering formulation [11]. BesidesH∞-control [2], wave
variables [4] have been utilised in multi-agent-systems tohandle the effects of time de-
lay. Llewellyn’s absolute stability criterion which is less conservative than Raisbeck’s
passivity criterion can not be extended to a trilateral system. Furthermore those two ap-
proaches require models of the system’s complex mechanicaldevices. The first trilateral
peer-to-peer system respecting time delay is presented in this work whereby the TDPA
is applied because of its two major advantages, i.e. the consideration of the ideal case
assuming the time delay to be zero (Tdelay = 0) in the design process and the ability to
handle non-linearities and unmodeled effects [12].
The focus in this paper is placed (a) on the mechanism to distribute the authority, (b)
on how to guarantee passivity in case one or more of the agentsare remotely located
from the others and (c) how this structure can be generalized. In section 2.1, the signal
flow architecture will be discussed with focus on the authority allocation (AA). The
network representation and the principles of analogy are introduced in section 2.2. The
activity analysis of the authority allocation is provided in section 3. Based on this the
peer-to-peer TDPA is designed and the passivity proof accomplished. Experiments are
presented in section 4. Conclusions and future research will be discussed in section 5.

2 SYSTEM DESCRIPTION

2.1 SIGNAL FLOW DIAGRAM

Figure 2 shows the signal flow diagram of the proposed peer-to-peer telepresence sys-
tem. In the depicted position force architecture (PF) velocity (v) and force (F) signals



are exchanged between the haptic devices (Master1, Master2) and the robot (Slave)
through the communication channels represented by time delay elementse−Tis. The PI-
controllers (PI-Ctrl, virtual damper and spring) are corresponding to the PF architecture
located on the slave’s side of the communication channels (respectively for the opera-
tors’ channel on the trainee’s side). The factorsβME andβTR, corresponding to mentor
and trainee respectively, determine the allocation of authority between the operators
through scaling of the delayed forces from the PI-controllers. Those forces correspond
to the influence of an agent on the addressed device. The relationship between the two
authority variablesβT R andβME is given by:

βT R = 1−βME with βTR/ME ∈ {0...1} (1)

indicating that a reduction of the mentor’s authorityβME leads to a correlated increase
of the trainee’s authorityβT R. ReducingβME from 1 to 0 progressively assigns con-
sequently higher influence on the system to the trainee. In contrast to [3] the slave’s
feedback signals (F12, F13) remain unaffected byβME/T R since the slave’s position
(represented by the feedbacked force) as the main concern should always be presented
correctly to the master devices.

2.2 NETWORK MODELLING

In this chapter the signal flow of the telepresence system will be transferred into net-
work representation. This electrical modeling provides several useful tools which have
been developed for circuit analysis. Concerning the energybased stability analysis the
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Fig. 2. Signal flow diagram of trilateral PF architecture with authority allocation (βTR,βME ) and
time delay (e−Tis)



power conjugation of the network port signals presents the main advantage of this rep-
resentation. Because of the analogy between the potentialsforce (F) and voltage and the
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flows velocity (v) and current the signal flow subsystems can be replaced by so-called
network ports. The TDPA utilises passivity observers (PO) which compute the energies
at the portsi of a network subsystem in order to analyse the system’s activity behaviour:

Ei(t) =
∫ t

0
Pi(τ)dτ,

wherePi(t) is the power computed as:

Pi(t) = vi(t)Fi(t).

As depicted in Fig. 4vi is the velocity flowing through a porti across which the forceFi

is applied. The following convention regarding the signs ofthe port signals is assumed:
If the integrated dual productEi(t) of a current entering the network and a positive
voltage defined at the first terminal of the port w.r.t. the second one, is positive, the
network is passive. Else, if it is negative, it is active. That means that energy flowing
into the network results in positive energy. Regarding the sign of the powerPi(t), the
direction of flow can be computed as:

Pi,in,NP(t) =

{

Pi(t), if Pi(t)> 0
0, if Pi(t)≤ 0

(2)

Pi,out,NP(t) =

{

0, if Pi(t)> 0
−Pi(t), if Pi(t)≤ 0.

(3)



The powerPi,in,NP(t) flows into a regareded network subsystem at porti on the side of
the network subsystemNP. WhereasPi,out,NP(t) stands for the power flowing out of a
network subsystem at porti on the side ofNP. NP are here the network subsystems
terminating the 3-port such thatNP can be ”M” for Mentor, ”T ” for Trainee or ”S”
for Slave. The energyEi(t) and the powerPi(t) are positive defined and monotone
(see eq. (2) and (3)). The passivity controllers (PC) dissipate the amount of energy
undesirably generated in an observed network. The subsystem terminated by the devices
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Fig. 4. 1-port network with porti, velocityvi and forceFi

Master1, Master2 and theSlave robot can be identified as a 3-Port (see Fig. 3), which
can be split up in a modular way into three communication channel networks (CC)
and three control unit networks (CU). The CUs include the authority allocation (eq.
(1)), force distribution and the PI-controllersj (ZPI j (s) =Kp/s+Kv). Depending on the
control architecture, different control unit and communication channel blocks can be
inserted. In Fig. 5, the CC for a position force (PF) architecture is depicted examplifying
the communication between mentor and trainee. The force transmission over the PF
communication channel to the mentor can be represented as a voltage source whereas
the velocity transmission to the trainee corresponds to a current source [14]. For the
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Fig. 5. Network representation of communication channel CC for PF architecture

study case, i.e. the PF architecture, the network blocks of the mentor and trainee control
units are illustrated in Fig. 6. The controllers are represented by an impedanceZPI j .

2.3 AUTHORITY ALLOCATION

The next element which needs to be represented in the electrical scheme is the authority
allocation (AA) governed by the coefficientsβT R andβME , as defined in (1). Since the
velocities of each device (masters and slave) are not scaledby the authority coefficient
(v3 = v5, v7 = v8) the AA can be modeled as a dependent force source (see Fig. 7(b))
whose value is given by:

Fβ 1 = F5−F3 = (1−βTR)F5. (4)



The forceFβ 1 corresponds to the force which is substracted fromF5 through the scaling
of the AA.
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2.4 FORCE DISTRIBUTION

The force distribution can be understood by checking the interconnection of the CU’s.
Taking for instance the trainee side (see Fig. 6(b)) the port9 attached to the device
master2 is the result of a series interconnection of port 8 of the authority allocationAA2

and port 21 next to the CC between trainee and slave.
Thus, the resulting force is given by the sum of each interconnected network. For the
case ofmaster1, Fig. 6(a), the sum is given byF2 =F3+F12. To verify that the interfaces
between the blocks surrounding the force distribution block satisfy the port requirement,
it has to be shown that the in- and outflowing velocities at each port are identical. This
requirement is fulfilled as can be seen by looking at Fig. 8:v2 = v3 = v12.

3 PASSIVE TRILATERAL CONTROL

To examine the influence of the CU on the TDPA design the energybehaviour of force
distribution and authority allocation has to be studied.
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3.1 ENERGY ANALYSIS OF SUBSYSTEMS

As easily can be analysed in Fig. 8 the force distribution is alossless element, since
it is designed as a series connection containing no network elements. It follows from
the definition of the authority allocation (4) that e.g.AA1 (see Fig. 7(b)) purely injects
or dissipates energy depending on the direction of energy flow. AA1 affects in trainee
direction the powerP3,in,M and in mentor direction the powerP5,in,T (v5 = v3):

P5,out,T (t) = P3,in,M(t)+PAA1,M

P3,out,M(t) = P5,in,T (t)+PAA1,T .

WherePAA1,NP(t) is the positive defined power flowing towards trainee (NP = M) and
mentor (NP = T ) respectively. The corresponding energiesAS,NP (the energy is injected
by network subsystem S from the direction ofNP) can be computed as:

AAA1,M(t) =
∫ t

0
Pact

AA1,M(τ)dτ with (5)

Pact
AA1,M(t) =

{

−(P3,in,M(t)−P5,out,T (t)), if P3,in,M(t)−P5,out,T (t)≤ 0
0, if P3,in,M(t)−P5,out,T (t)> 0.

(6)

The powerPact
AA1,M

(t) accounts in contrast toPAA1,M(t) only power generated byAA1

(for the case of the authority allocationPact
AAi,M

(t) equalsPAAi,M(t)). The positive defined
absolut energy dissipationDAA1,M(t) of a subsystem can be evaluated analogously:

DAA1,M(t) =
∫ t

0
Pdis

AA1,M(τ)dτ with (7)

Pdis
AA1,M(t) =

{

P3,in,M(t)−P5,out,T (t), if P3,in,M(t)−P5,out,T (t)> 0
0, if P3,in,M(t)−P5,out,T (t)≤ 0.

(8)

The powerPdis
AA1,M

(t) accounts analogously toPact
AA1,M

(t) only power dissipated byAA1.
AA1 shows active behaviour in direction of the trainee since theat port 5 outflowing
power is always higher than the at port 3 inflowing one. Thus e.g. DAA1,M(t), DAA2,T (t)
and alsoAAA1,T (t) andAAA2,M(t) are always zero. In contrast energy is e.g. byAA1 in
direction of the mentor and byAA2 in direction of the trainee (DAA1,M(t), DAA2,T (t))
partly dissipated. The activated energy must not be dissipated by the TDPA to serve the
functionality of the authority allocation.



3.2 PLACEMENT OF PASSIVITY OBSERVERS AND CONTROLLERS

For the proposed peer-to-peer system three passivity observer (PO) and passivity con-
troller (PC, [6]) placements have been studied. Each of those placements focuses mainly
the passivation of the communication channels. The handling of the 3-port as a black-
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Fig. 9. PO/PC system and control units for PF architecture

box surrounded by POs and PCs corresponding to the TDPA controlled 2-Port in the
bilateral system is not possible, since the generated and dissipated energy in the system
has to be differentiated by its direction of flow [7].
Channel-PO/PC: One possible placement corresponds to the standard bilateral PO/PC
system which encloses only the communication channel. Thusin the channel-PO/PC
placement one PO/PC system is applied on each of the three CCsin the trilateral sys-
tem. In contrast to the approach proposed in the following this placement can also be
implemented using the wave variables technique.
Track-PO/PC: As already suggested in [13] a bilateral network (track) surrounded by
the PO/PC system can include an I-controller (the integral component acts on the posi-



tion) besides the CC. In the track-PO/PC placement of the trilateral system the authority
allocation is added to the TDPA controlled track in additionto the communication chan-
nel and the corresponding controllers (track:AA,CC, PI). Thus at each port of the 3-Port
one impedance PC is sufficient to dissipate the energy generated in the two tracks in di-
rection to the corresponding device. In Fig. 9 the PO/PC system for the track-PO/PC is
depicted. The POs enclose each authority allocation, PI-controller and communication
channel. This is the most general approach since it can be applied for all types of control
architectures. In this approach the activity of the AAs mustbe observed and allowed by
the PC. Stability is guaranteed e.g. by the Routh-Hurwitz criterion under neglection of
the time delay. Furthermore the dissipation of the track subsystems have to be taken
into account since they would obscure the activity of other subsystems. Besides the au-
thority allocation each PI-controllerj and especially its proportional part as a damper
dissipates the energyDPI j ,NP(t) which is calculated analogously to (8). In contrast to the
channel-POPC this activity is dissipated by the PCs which leads to a more conservative
but also more robust system. On the other hand the track-PO/PC enables the conjoint
passivation of two tracks leading to one 3-Port termination. Thus not the whole energy
generated by an active CC in one track has to be dissipated by the corresponding PC if
the CC of the other track is dissipating energy at the same time.

3.3 PASSIVITY PROOF

In this section the mentor’s track-PO/PC system will be examined representatively.PO8

andPO15 observe the positive energy flowing into the tracks.PO7 observes withPO8

the energy injection ofAA2 and with PO6 the disspation ofPI3 in the direction of
the mentor. This holds forPO13, PO14 andPO15, AA3 andPI5 in the same way. The
dissipation ofAA1 is observed byPO5 andPO3. PO3 andPO12 measure the energy
exiting to the mentor. The requirement for passivity of a m-port

EmPort
obs (t) =

∫ t

0
F1(τ)v1(τ)+F2(τ)v2(τ)+

+Fm(τ)vm(τ)dτ +E(0)≥ 0.
(9)

implies that the amount of energy flowing into the system is higher than the one of the
outflowing. The energyE(0) which is stored in the system att = 0 has to be respected.
To prove that the mentor’s track-PO/PC passivates the communication channels, the
energyE2tr,M

x (t) and the energyE2tr,M
obs (t) have to be regarded.E2tr,M

x (t) is the energy
exiting the tracks at port I (see 9(a)) tomaster1 in a passive system. In a active system
the energyE2tr,M

obs (t) exits at Port I after dissipation of energy (generated by thetracks)
through the PC. The passivity of the tracks is secured if the energy compassed by the
PC functionalityE2tr,M

obs (t) is smaller thanE2tr,M
x (t):

E2tr,M
x (t)−E2tr,M

obs (t)> 0. (10)

The delay-free energyE2tr,M
x which guarantees the passivity of the tracks is given by:

E2tr,M
x (t) = E8,in,T (t)+AAA2,T (t)−DAA1,T (t)−DPI3,T (t)+

+E17,in,S(t)+AAA3,T (t)−DPI5,S(t)−E2,out,M(t).



The in section 3.1 presented calculation of energy generation and dissipation serves the
observation of the absolute by a subsystem generated or dissipated energy respectively.
If instead of the in- and outflowing power flows the in- and outflowing energies are
regarded (as in the follwoing for the communication channel) the overall energy be-
haviour is measured. These differing calculation make no difference for theAAi since
these network ports have a constant behaviour in each direction of flow. In contrast for
the PI-controllers an absolute activity calculation (using powers) is necessary since they
are at different instants highly dissipating and generating energy. Regarding the overall
energy behaviour would lead to an energy storage in the PO/PCsystem. The PC would
then react firstly on track activity when the storage is discharged which would result in
instability.
The energyE2tr,M

obs (t) (observing the activity ofCC2, CC4, PI3 andPI5) is given by:

E2tr,M
obs (t) = E8,in,T (t −T2)+AAA2,T (t −T2)−DAA1,T (t)−DPI3,T (t −T2)+

+E17,in,S(t −T3)+AAA3,T (t −T3)−DPI5,S(t −T3)−E2,out,M(t).

The PO/PC system designed by thisE2tr,M
obs (t) leads to the dissipation of the communi-

cation channels’ and the PI-controllers’ activitiesAPI j ,NP(t). To fulfill (10) in terms of
passivity the following inequality must hold:

E(t −T2/3)−E(t)< 0.

Since the in- and outflowing energiesEin, Eout , activitiesAAA and the dissipationsDAA

andDPI are defined to be purely increasing, never decreasing (E(t)> E(t −T2/3)) in-

equality (10) and thus the passivity can be proven. The energy E2tr,M
2diss which has to be

dissipated by the mentor’sPC in the time stepTS results in

E2tr,M
2diss (t) = E8,in,T (t −T2)+AAA2,T (t −T2)−DAA1,T (t)−DPI3,T (t −T2)+

+E17,in,S(t −T3)+AAA3,T (t −T3)−DPI5,S(t −T3)−E2,out,M(t)

−E2tr,M
diss (t −TS)

The energyE2tr,M
diss (t−TS) is taken into account which has been dissipated by the mentor

PC until the current time stepTS. The passivity proof and PO/PC design of trainee and
slave PC is analogous.

4 EXPERIMENTS

In this section experiments analysing the system’s performance in dependence of time
delay and authority allocation will be presented. In the following the track-PO/PC has
been applied in combination with a position force architecture (PF) on rotatory 1DoF
haptic devices (by SensoDrive) which were connected to a QNXsystem. This hard-
ware was chosen for the masters and the slave likewise. For the experiments every
communication channel has been restrained by one unique time delay.The PF control
architecture has been implemented on Matlab/Simulink. Compiling the model by Real-
Time Workshop supported appropriately real-time performance on a QNX machine.



The system has been tuned to go unstable withTi = 10ms (unique PI parameters: damp-
ing BPI = 0.06Nms

rad , stiffnessKPI = 3.5Nm
rad ).

In the first experiment (see figure 10(a), 10(c)) the mentor has the full authority (βME =
1). The mentor guides the slave against a wall (time: 3.5s to 5s) marginally penetrat-
ing it. The position plot shows that the slave follows the mentor very well. The trainee
though resists the movement. During this resistance the trainee’s PC dissipates a high
amount of energy (EPC). The effect of the authority allocation can be recognized look-
ing at plotFi,2Sl (see 10(a)).F18,2Sl is the force sent to the slave from the trainee side.
This force is completely canceled by the AA (βTR = 0) whereas the mentor’s force
F15,2Sl is entirely received by the slave. The passivity proof is accomplished in 10(c)
where it can be seen thatEout is always smaller thanEin.With βME = 0.75 the trainee
is assigned a little control in the second experiment as the forcesFi,2Sl confirm (10(b)).
The position following can be analysed in phases of consistent operator movement and
is satisfactory despite the delay of 50ms. The position diagram in figure 10(b) shows
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Fig. 10. Performance and Passivity Proof of the track-PO/PC system,with channel delay of 50ms
and varying authority allocation in a PF-architecture

that the slave does not stick as much to the mentor as in the first experiment since it is
also influenced by the triainee’s movement. The passivity proof plot (see 10(d)) shows
that the mentor’s PC dissipates too much energy in phases of reconvergence of the three
device.
In figure 11(a) a shared authority situation is displayed. The slave is now exactly posi-



tioned in the middle of the two operators. The operators’ passivity controllers dissipate
about the same amount of energy.
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Fig. 11. Performance and Passivity Proof of the track-PO/PC system,with varying channel delay
and authority allocation in a PF-architecture

In the last experiment the delay was chosen to 200ms per communication channel. The
position following of the devices is still satisfactory (see 11(b)). E.g. from second eight
to nine the operators have the same intention and thus the same position. The slave’s
position is delayed by approximately 0.2s as expected.Regarding the experiments con-
jointly (see 10(a)-11(d)) one can recognize that the amountof dissipated energy (EPC)
increases with the delay since the channel’s activity rises. Furthermore it can be seen
that the PC of the guiding operator (mentor forβME > βTR and vice versa) dissipates
less energy than the one of the trained operator.

5 CONCLUSIONS AND FUTURE RESEARCH

The TDPA has been applied to a trilateral system in a generic way. Choosing the ad-
equate communication channel and control unit moduls different control architectures
can be implemented in the peer-to-peer system. The experiments showed good results
for roundtrip delays up to 200ms. The authority allocation system has been optimized
resulting in satisfying position following of the three peers. The PF and the PP control



architecture (which has not been presented in this paper) are already modeled. Those
control architectures concentrate on the training of trajectories. Presenting the force
sensed by the slave device will in the future improve the perception of the slave’s en-
vironment. Therefore another control unit and communication channel set for the 4Ch
architecture will be developed. The energy behaviour of theintroduced authority al-
location and the PI controller was analysed and respected inthe PO/PC design. The
track-PO/PC controlling two tracks conjointly leads to themost robust approach com-
pared to the straight forward appliance of the bilateral channel-PO/PC. Nevertheless
the track-PO/PC conservativity depends strongly on the choice of PI-controller param-
eters. The applied passivity controllers with impedance causality generate high-frequent
forces. For that reason a technique introducing a virtual mass spring system [8] has al-
ready been integrated. This proceeding will in future worksbe compared to the usage
of admittance PCs [6].
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