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Abstract A planar solid oxide fuel cell (SOFC) operated with hydrogen at T=1123 K was equipped 

with an optically transparent anode flow field to apply species concentration measurements by 1D laser 

Raman scattering. The flow channels had a cross section of 3 mm × 4 mm and a length of 40 mm. The 

beam from a pulsed high-power frequency-doubled Nd:YAG laser (λ=532 nm) was directed through 

one channel and the Raman scattered light from different molecular species was imaged onto an 

intensified CCD camera. The main goal of the study was an assessment of the potential of this 

experimental configuration for a quantitative determination of local gas concentrations. The paper 

describes the configuration of the optically accessible SOFC, the laser system and optical setup for 1D 

Raman spectroscopy as well as the challenges associated with the measurements. Important aspects like 

laser pulse shaping, signal background and signal quality are addressed. Examples of measured species 

concentration profiles are presented. 

 

1. Introduction 

 

Solid oxide fuel cells (SOFC) are highly efficient converters of chemical energy from fuels into 

electrical energy considered for a future environmentally friendly energy supply. High electrical 

performance and long lifetime are key requirements that must be fulfilled for a successful introduction 

into the market. Inhomogeneous distributions of electrochemical and thermal properties such as local 
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power density and local temperature can detrimentally affect both efficiency and long-term durability 

through thermo-mechanical stress and degradation phenomena induced by locally varying operating 

conditions [1]. The application of advanced diagnostic methods for monitoring cell characteristics of 

solid oxide fuel cells under real operating conditions can provide detailed information about the spatial 

distribution of cell properties in order to increase the fundamental understanding and to optimize the 

operational behavior. 

 

Electrochemical diagnostics (polarization curves, electrochemical impedance spectra) is playing a 

major role in fuel cell investigations. To study inhomogeneous cell properties during operation, we have 

previously extended traditional methods and have developed spatially resolved diagnostic techniques 

such as segmented cell technology that allows for the in situ determination of local current density and 

voltage, local impedance data, and temperature distribution as well as local gas concentrations [2,3,4]. 

The obtained data can be used for mathematical modeling and model validation and for predicting 

physical, electrochemical and fluid mechanical properties [5].  

 

To complement the existing diagnostic techniques, advanced laser measurement techniques can be 

adopted. They allow a spatially and temporally resolved in-situ determination of gas-phase properties 

such as composition, temperature and flow velocity [6]. In this work, we develop and demonstrate a 

diagnostic method based on gas-phase Raman laser scattering. Gas-phase Raman spectroscopy in the 

flow channel of an SOFC has recently been reported by Saunders and Davy [7]. Their optically 

accessible SOFC and Raman setup was quite different from the one described here. For example, their 

reformer channel was significantly larger, they used a broadband XeCl excimer laser (λ=308 nm) and 

their setup did not allow for a 1D measurement along the flow direction. Solid-state Raman 

spectroscopy has been applied for studying SOFC processes ex-situ [8-11] but these studies were 

mainly devoted to the measurement of local temperature and mapping out of phase stability of solid 

electrode surfaces by monitoring the temporal variation of the oxidation state of materials. Tunable 

diode laser absorption spectroscopy in the near-infrared has been applied to analyze water vapor and 

methane concentrations in a solid oxide fuel cell [12]. A combination of ex situ Fourier Transform 

Infrared Spectroscopy (FTIR), in situ Raman spectroscopy and Electrochemical Impedance 

Spectroscopy (EIS) measurements was used to study carbon formation and deposition on anode surface 

[13] as well as sulfur poisoning mechanisms, CO oxidation and NiO redox kinetics [14]. 

  

Spontaneous Raman scattering is widely used in chemical analysis and related areas for species 

measurements [15]. Due to the inherently small scattering cross section, Raman spectroscopy of 

gaseous species requires powerful lasers for excitation as well as efficient detection schemes. Meier et 

al. [16] and Stricker [17] have been extensively employing laser Raman scattering for species and 

temperature measurements in flames using pulsed high-power lasers. Since spontaneous Raman 
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scattering is a non-resonant process, it allows for the simultaneous detection of multiple molecular 

species, which can be distinguished by their different Raman shifts (vibrational energy quant in case of 

vibrational Raman scattering). In a 1D configuration, spatial measurement resolution can be achieved 

for multi-species Raman measurements in the direction along the laser beam by employing a detection 

scheme with a spectrograph in combination with a CCD camera [17]. Such a setup was employed in the 

current investigation where a narrow high-power laser beam (λ=532 nm) was directed through one of 

the anode flow channels of the SOFC in flow direction and the scattered light was detected at 90°. This 

enabled the detection of the species concentration profiles along the flow direction. In the current 

investigation, the SOFC was fuelled with hydrogen. Thus, the only major species present during the 

operation were H2 and H2O (and N2 after the occurrence of a leak). The corresponding Raman signals 

could be well separated and yielded sufficient signal-to-noise ratio for a quantitative evaluation after 

averaging single-shot Raman spectra. 

 

The work described in this paper demonstrates our experimental approach for a better understanding of 

the processes within the anode flow channel. The main focus lies on the description of the optical cell, 

the electrochemical test bench and the Raman measurement setup as well as the discussion of the 

performance of the system. First results of in situ measurements of anode gas concentrations measured 

simultaneously in one dimension along the flow channel are reported. 

 

2. Challenges in operating an optically accessible SOFC  

 

A number of challenges are encountered in operating an optically accessible SOFC at about 1123 K and 

performing gas-phase Raman spectroscopy in it. Requirement for laser-based techniques is optical 

access both for the laser beam itself and the laser-induced optical signals. This is not trivial in case of 

the complex geometry and high operating temperatures (800-1000 °C) of SOFCs, which are usually 

based on opaque ceramic materials. Therefore, an important step towards the applicability of laser 

diagnostics lies in the construction of SOFCs with optical access which are able to operate under 

technically relevant conditions. In the work described here, an optically transparent anode flow field for 

a planar SOFC cell is applied which allows for the investigation of the concentrations of relevant 

gaseous species within the anode flow channel. The SOFC and the test rig have been designed for the 

application of one-dimensional laser Raman spectroscopy. With respect to the SOFC, a construction 

enabling a leak-tight operation of the cell and coping with fouling of the quartz glass surfaces are 

issues. The experimental setup is described in more detail in the following section 3.1.  

 

As for the 1D Raman measurement setup, the collimation of a high-power laser beam to a long and 

narrow beam waist (over 40 mm length) without damaging the glass or generating an optical 

breakdown (plasma) presents a trade-off between signal strength and damage. It is also difficult to 
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maintain the alignment of the laser beam during the heat-up phase of the fuel cell setup. Signal 

background arising from Rayleigh scattering and laser stray light from surfaces must be efficiently 

reduced by proper beam alignment and optical filters. Another source of signal background is laser-

induced luminescence from quartz glass that interferes with the Raman signals. For the conversion of 

the Raman signals to species mole fractions, calibration measurements are necessary which should be 

performed under the same optical boundary conditions as the measurements in the operating fuel cell. 

Great care has to be taken to maintain the boundary conditions (like optical alignment or window 

transmissivity) during the measurements. These aspects were addressed in the present work. 

          

3. Experimental setup 

 

3.1 SOFC test station 

 

A SOFC test station from FuelCon, Magdeburg, Barleben, Germany (Type Evaluator C100-HT) 

including a customized furnace with a maximum temperature of 1100 °C was equipped with ports 

(10x50 mm2) for the laser beam and a quartz glass window (150 mm diameter) for the detection of the 

Raman signals. Fig. 1 shows a photograph of the opened furnace during laser test operation. The 

furnace confines a cylindrical volume of 300 mm diameter in which the SOFC cell was placed. For the 

installation of the cell and laser alignment, the upper part of the furnace could be opened. A sketch of 

the experimental arrangement in Fig. 2 illustrates the experimental setup with a view from side and top.  

 

The setup for the cell compartment is based on a non-standard ceramic housing. A schematic drawing 

of the cell housing is shown in Fig. 3. The cell was placed in upright position between an anode (quartz) 

and a cathode (alumina) flow field in an alumina housing and sealed by gold rings. The pressure for 

sealing was applied via a ceramic wedge with a weight (2 kg) on its top. For contacting, platinum nets 

were used on both the anode and the cathode side. Fig. 4 shows a photograph of the SOFC setup taken 

through the observation window of the furnace during operation at high temperature. Planar electrolyte-

supported cells (ESC) were used for the measurements. Cells with a size of 50x50 mm2 were obtained 

from H.C. Starck Ceramics (Selb, Germany). They consisted of a Ni/GDC anode (40 µm), a TZ3Y 

electrolyte (100 µm) and a 8YSZ/LSM-LSM cathode (40 µm).  ESCs have advantages for this type of 

test setup since it is possible to seal both gas manifolds with gold rings and the 100 µm thick, leak tight 

electrolyte enables a good electrochemistry.  

 

In order to provide optical access to the anode of the cell the anode flow field was entirely consisting of 

polished quartz glass (Suprasil 2 grade B) and hence transparent in the spectral range of interest. A cut-

out along a gas channel was introduced in the Pt contact mesh in order to ensure visibility to the anode 

layer for the Raman spectroscopy. The complex flow field with 9 narrow channels (2×2 mm2 in the first 
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setup, 3×4 mm2 in the setup reported here) and a length of 40 mm has been fabricated using a thermal 

bonding technique for glass material (Hellma, Müllheim, Germany). Fig. 5 shows a photograph of the 

transparent flow field for the anode.  The SOFC cell could be supplied by different fuel gases (H2, N2, 

H2O, CH4, CO, CO2) and air; a system software (FuelWork) managed all test parameters, provided data 

logging and controlled a multistage alarm system with sensors for hydrogen and CO. The gases for cell 

operation were supplied by tubes made of Inconel. 

 

3.2    Background on laser Raman scattering 

 

Spontaneous Raman scattering is based on the interaction between light and polarizable molecules. In 

the case of vibrational Raman scattering, which is considered here, the wavelength of the scattered light 

is shifted compared to the exciting laser wavelength by an amount that corresponds to the vibrational 

energy quantum of the molecule. Thus, different molecular species within a probe can be distinguished 

by analyzing the spectral composition of the scattered light. Furthermore, the species number density 

can be deduced from the intensity of the Raman-scattered light at the corresponding wavelength. The 

scattered intensity is proportional to the number density, the scattering cross section, the laser intensity, 

the size of the measurement volume, and depends on the detection arrangement and efficiency [6]. If 

the Raman-scattered radiation from each species i within the probe is detected and analyzed, all species 

number densities ni are known and the sum of them yields the total number density n=Σni. With the 

knowledge of the pressure p, the temperature T is then given by the ideal gas law, T=p/(n·k), where k is 

the Boltzmann constant. The goal of a Raman measurement for analyzing a gas composition lies in the 

simultaneous determination of all species number densities which then yields the corresponding mole 

fractions Xi and the temperature T [6, 19]. 

 

The Raman scattering cross sections are small and in order to achieve sufficient signal intensities, a 

high-power laser and an efficient detection system are needed. However, even excellent equipment 

enables only the detection of the major species with mole fractions larger than X≈0.005. The biggest 

challenge of applying laser Raman scattering in reacting flows is to obtain a sufficient signal-to-noise 

(S/N) ratio. In order to reduce signal background from ambient light and detector noise, it is common in 

Raman measurements of reactive flows to use pulsed high power lasers and limit the detection gate to 

the pulse duration of the laser. However, due to the short pulse durations of these lasers of typically 

τ≈10 ns, small laser beam diameters generate high power densities that easily lead to optical breakdown 

(plasma generation) or damage of optical elements in the beam path. Therefore, these systems are 

mostly equipped with pulse stretchers. For the quantitative evaluation of the Raman signals, calibration 

measurements in flows of well-defined composition and temperature are needed.  
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3.3  Laser Raman setup  

 

The optical setup is shown schematically in Fig. 6. The laser system consisted of three double-pulse 

Nd:YAG lasers (Spectra-Physics PIV 400), which generated a beam consisting of six frequency-

doubled pulses (λ = 532 nm). After passing through a pulse stretcher, the combined pulse had a duration 

of τ≈350 ns and a pulse energy of Ep≈1.2 J. This laser system is usually employed for Raman 

measurements in flames and is described in more detail in the literature [20, 21]. The laser beam had to 

be shaped to pass through the 40 mm long anode gas channel, cross section 3×4 mm2, of the SOFC 

without damaging the transparent flow field section and without generating considerable amounts of 

stray light or luminescent emissions in the quartz glass. Therefore, the laser beam was focused by a 

spherical lens (f=3 m) in a way that the beam had a waist of approximately 2 mm in the transparent flow 

field. To avoid damage of the flow field section, the laser pulse energy was reduced to Ep≈0.1 J by 

means of a combination of a λ/2 wave plate and a Glan polarizer (see Fig. 6). The laser pulse energy 

was monitored in front of and behind the furnace. This enabled a control of the alignment and 

transmission of the setup and a good estimation of the laser energy in the channel of the flow field.  

 

The scattered light from the laser beam was collected at 90° by an achromatic lens (f=160 mm) and 

relayed to the entrance slit of a spectrograph (Acton Research SpectraPro 300i, f=300 mm, 490 

lines/mm, f/4, dispersion ~6 nm/mm). The magnification of the detection optics was 0.4. The entrance 

slit had a length of 14 mm and the width was set to 0.5 mm. A holographic notch filter in front of the 

spectrograph blocked the Rayleigh scattered light and the stray light at 532 nm. The spectrally dispersed 

image of the light distribution in the entrance slit was captured by an intensified CCD camera 

(Princeton Instruments PI-Max, 1340×1300 pixels, 26.8 mm × 26 mm chip size) equipped with a fiber-

coupled image intensifier (Gen III, GaAs photocathode). By applying an on-chip accumulation of the 

pixel intensities of several single exposures it was possible to lower the effect of readout noise. The raw 

data acquired by the 1D Raman system consisted of image files with a spatial resolution in the vertical 

and a spectral resolution in the horizontal direction. The imaged volume had a length of 35 mm and was 

divided  by pixel binning into 35 superpixels in the spatial direction, corresponding to 35 measurement 

volumes each with a length of 1 mm and diameter of ~2 mm (according to the diameter of the laser 

beam in the observed section). The 35 spectra from these volumes were recorded simultaneously. In the 

spectral dimension, five adjacent pixels were binned to 268 superpixels with a spectral resolution of 

about 0.6 nm. 

 

In order to reduce stray light and luminescence detection from the quartz surface of the channel, only 

the core region of the laser beam was imaged through the entrance slit and the periphery was clipped by 

the entrance slit (vignetting). Since the laser beam was not exactly parallel along the detected region, 
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the transmitted part varies along the imaged line. The corresponding variation in detection efficiency 

was measured before the final measurements by recording the Raman signal from pure hydrogen in the 

flow channel. 

 

The quantitative data evaluation of these images was based on the comparison of the Raman signals 

from the fuel cell with signals from the calibration measurement. The pre-processing of the data 

included several image processing steps (spectral shift correction, background subtraction, intensity 

normalizations to laser pulse energy and intensifier gain, correction for vignetting). The species-specific 

Raman bands were integrated over a spectral range (also termed Raman channels). Due to the given 

spectral resolution, Raman bands from different species can spectrally overlap. This crosstalk was 

measured in the calibration measurements and incorporated into the data evaluation routine. After the 

pre-processing and crosstalk corrections, the intensities of the different Raman channels are converted 

to absolute number densities (or mole fractions).  

 

3.4    Raman calibration measurements  

 

In combustion experiments the calibration of the Raman system is performed in cold and electrically 

heated gas flows and laminar flames of known temperature and gas composition. Because the Raman 

cross sections and the shapes of the Raman bands as well as the overlap between adjacent Raman bands 

are temperature dependent, calibration measurements for flame investigations must be performed at 

temperatures covering a wide range. The post-processing procedure turning Raman signals into 

concentrations is usually based on a matrix inversion method [22]. In the current experiment the effort 

was less because the temperature of the anode flow was the same as that of the furnace and was 

continuously measured during operation by thermocouples. The only species present in the flow 

channel were H2 and H2O, because only hydrogen was used as fuel. The crosstalk between these species 

was so small that it could be neglected. The signal from hydrogen was calibrated by passing pure H2 

through the channel with the fuel cell at open cell voltage. Calibration for water was not performed 

because it was difficult to fill the flow channel with a defined concentration of H2O. However, with 

only H2 and H2O present, their mole fractions had to add up to 1 so that an individual calibration for 

H2O was not necessary.  

 

4. Results 

 

4.1  Initial optical signal characterization 

 

Initial laser measurements revealed a broadband background signal that could be attributed to laser-

induced luminescence of the quartz flow field. In order to determine the spectral composition and 
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intensity distribution of this luminescence under the current experimental conditions, a glass block with 

the dimension 10 mm × 10 mm × 40 mm, made of the same quartz material as the transparent flow 

field, was installed in the measurement location and irradiated with the laser light. Figure 7 shows the 

spectrum recorded at 300 K. The spectral region around the laser wavelength that was blocked by the 

notch filter is indicated by the hatched area. The luminescence exhibited distinct spectral signatures 

with the strongest emissions close to the laser wavelength and rapidly decreasing intensities at longer 

wavelengths. The wavelength positions of the Raman bands of some relevant species are also indicated. 

The strongest disturbance is expected for CO2 which is, however, not present in the current 

measurements. At an elevated temperature of 1123 K the signal intensity of the luminescence emission 

has significantly dropped (see Fig. 8). For the CO2 Raman channel, the interference still poses a 

problem, however, for the other species the interferences are manageable. The signal background from 

these emissions was scaled and subtracted from the Raman spectra obtained from measurements during 

fuel cell operation. 

 

Fig. 9 displays Raman spectra of room air measured within the flow channel. Each of the 35 spectra 

corresponds to one segment of 1 mm length along the imaged length along the laser. Here, 200 single 

laser shot signals were accumulated and corrected for background. The different detection efficiencies 

along the spatial direction were not corrected for in this image. The strongest line at λ ≈ 608 nm 

represents N2, the line at λ ≈ 582 nm O2. Also seen is the Raman signal from H2O at λ ≈ 662 nm from 

the humidity of the air. The air composition and temperature within the flow channel was constant and 

the different signal intensities seen in the Raman spectra are caused by a varying sensitivity of the 

camera chip and the fact that a part of the Raman-scattered light is clipped by the entrance slit of the 

spectrograph.  

 

4.2    Initial SOFC operation 

 

Operation of a solid oxide fuel cell requires a specific start-up protocol which was chosen as follows. A 

fresh SOFC was heated to approximately 1123 K under supply of 0.25 standard liter per minute (slpm) 

of forming gas (5% H2 in N2) to the anode and 0.25 slpm of air to the cathode. After the cell was heated 

up to the target temperature the anode was reduced, that is, nickel oxide (NiO) present in the anode after 

cell manufacturing was converted to Ni, the active electrocatalyst. This was achieved by gradually 

increasing the fuel flow of hydrogen to the anode to 1.25 slpm and the air flow to the cathode to 1.25 

slpm. The forming gas was reduced to 0 slpm. The reduction process lasted about 1 h and yielded an 

open circuit voltage (OCV) of 1.209 V. Subsequently, a polarization curve was recorded by increasing 

the current load on the cell until the cell voltage reached a lower limit of 0.6 V. The results are shown in 

Fig. 10. At a voltage of 0.7 V the power density of the cell reached 340 mW/cm². For this cell type the 
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value is quite high indicating that the cell setup was gas-tight. At a lower fuel gas flow of 0.112 slpm 

the cell still produced a power density of 219 mW/cm². 

 

The system was kept at high temperature for the period of the measurements of 15 days. The ceramic 

parts of the furnace were red hot at this temperature and excluded a close inspection of the quartz cell 

by eye (see Figure 4). During the course of the measurement period, the optical transmission of the 

transparent part of the cell housing and also that of the observation window of the furnace degraded due 

to a greyish deposit whose origin could not unambiguously be identified. The corresponding reduction 

in transmission reduced the signal intensity and was taken into account in the data reduction routine.  

 

4.3    Raman laser diagnostics under SOFC operation 

 

In-situ Raman laser diagnostics was carried out during SOFC operation under a range of different 

conditions. Here we present exemplary results for 1123 K, dry H2 as anode gas (1.25 slpm) and air at 

the cathode (1.25 slpm) for different currents between 0 and 7 A (corresponding to current densities of 

0 – 437.5 mA/cm2). For each operating point, the Raman signals from 3000 laser shots were 

accumulated on-chip (corresponding to about 5 minutes measuring time) and corrected for background, 

vignetting, varying detection efficiency and laser pulse energy. Fig. 11 shows Raman spectra recorded 

at 312.5 mA/cm2. The 35 spectra cover a length of 35 mm along the channel. The H2O Raman band 

appears at λ ≈ 660 nm and the H2 Raman band at λ ≈ 683 nm. The H2 signal decreases along the fuel 

flow direction (from back to front in the figure) while the H2O signal increases. Thus, the anodic fuel 

cell reaction, 

H2 + O2– ⇄ H2O + 2 e–   , 

could be successfully monitored in situ with high spatial resolution (1 mm) at realistic operating 

conditions. 

 

Gas-phase concentrations are proportional to the area under the Raman signals. Therefore, relative 

concentrations were determined from the Raman spectra shown in Fig. 11. Resulting concentration 

profiles along the length of the channel are shown in Fig. 12 for various current densities. At open 

circuit voltage (OCV) without any electrochemical reaction the relative concentrations of H2 and H2O 

are constant along the flow channel. The apparent slight decrease of the H2 profile is most likely due to 

uncertainties related to the signal correction procedure. Under load (1-7 A) the hydrogen concentrations 

decrease and the steam concentrations increase along the channel length as is expected with ongoing 

electrochemical reactions. 

 

The quality of the Raman signals is sufficient for a quantitative data analysis. However, during the 

measurement period a leakage in the sealing of the cell appeared which was noticed through the 
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appearance of N2 signals in the Raman spectra. This leakage resulted in the uncontrolled chemical 

oxidation of hydrogen to steam even at OCV conditions so that a quantitative evaluation of the obtained 

Raman signals was no longer possible. 

 

5.  Discussion 

   

With respect to the Raman measurements, the optical arrangement with the laser beam passing through 

the channel and signal detection at 90° enabled the observation of the concentration profiles along the 

channel without moving parts of the setup to change the measurement location. This geometry is 

different from the one applied in a previous setup [7] and proved to be convenient in our experiment. 

The difficulties related to this setup are the generation of a long narrow laser beam waist and the 

avoidance of an optical breakdown and/or damage of the transparent flow by too high laser fluence. In 

the current setup, the laser pulse energy was reduced to 0.1 J in order to be clearly below the damage 

threshold. This corresponds to an average laser power of approximately 286 kW over the 350 ns long 

pulse duration which is still orders of magnitude larger than the power of CW lasers. A further 

stretching of the laser pulse would allow to couple more laser pulse energy into the cell and to increase 

the signal level. It is noted that the pulse duration of a “standard” flashlamp-pumped Nd:YAG is in the 

order of 10 ns. Applying a similar laser power from such a laser, the pulse energy must be reduced to 

Ep≈0.003 J which is certainly too low for Raman spectroscopy in this application. Care must also be 

taken to avoid significant generation of laser-induced luminescence from the quartz glass. Due to the 

small cross section of the channel and the inhomogeneous laser beam profile, exposure of the channel 

walls to the laser radiation cannot be completely avoided. The analysis of the luminescence signal 

showed that the problems are less pronounced at elevated temperatures compared to room temperature, 

but that they might require a more comprehensive background correction for the detection of the CO2 

Raman band. Aside from this difficulty, the Raman scattering technique can also be applied using fuels 

other than hydrogen in this configuration, e.g. methane. In that case, the calibration would include CH4, 

CO, and CO2 passing through the channel with the fuel cell at open cell voltage. The crosstalk 

corrections would be similar to those applied in flame investigations.  

 

In the current setup the signal-to-noise ratio was sufficient for quantitative measurements. However, 

due to the leakage through a crevice in the assembled cell the results presented here could not be given 

in mole fractions. At this stage, single shot Raman measurements are hardly quantifiable because they 

do not yield sufficient signal-to-noise ratio. However, the temporal changes within the SOFC are slow 

enabling an accumulation of Raman signals over several minutes. Also, a spatial resolution of 1 mm as 

applied here seems unnecessary and a further binning of pixels would lead to a better signal quality. 
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Quantitative results of gas concentration measurement by in situ Raman spectroscopy within an 

operating SOFC can only be achieved when the cell is properly sealed against the surrounding gas 

atmosphere. This sealing represents a major challenge in the SOFC setup used. A proper sealing which 

is realized by gold rings, however, requires sufficient pressure which can only be applied in horizontal 

direction in the cell setup used. This means that all parts must ideally fit during the cell assembly 

process. In order to assure improved sealing conditions, constructional modifications of the cell 

compartment and a modified sealing are under development for the future investigations. When 

achieving a properly operating SOFC Raman measurements will be performed by applying various 

operating conditions including complex fuel gas compositions, such as different reformate 

compositions, and temperature and flow rate variations. The obtained data will be particularly useful for 

validating detailed models of reforming and fuel cell processes using a physically-based modelling 

framework developed by Bessler et al. [23]. 

   

Summary and Conclusions 

 

A novel experimental approach was presented for the analysis of chemical species conversion within a 

solid oxide fuel cell (SOFC) flow channel, based on gas-phase laser diagnostics. The complete anode 

flow field was made out of fused silica enabling access for optical measurement techniques. The 

transparent SOFC was installed into a test bench with window equipped furnace allowing in-situ optical 

access at temperatures up to 1273 K and SOFC operation under various fuel compositions. For the 

measurement of species concentration profiles, one-dimensional laser Raman scattering was applied. 

The pulse train from 3 double pulse Nd:YAG lasers was extended in a pulse stretcher to a total duration 

of approximately 350 ns and focussed into one of the 3×4 mm2 wide flow channels. The pulse energy 

was reduced to Ep≈0.1 J in order to prevent optical breakdown or damage of the transparent cell 

component. The relatively long pulse duration was necessary to introduce sufficient laser energy into 

the flow channel. The setup enabled the detection of the species concentration profiles along a line of 

35 mm length within the 40 mm long flow channel. 

 

A number of initial experiments were performed in order to characterize and validate the measurement 

technique. This included identification of background signals and calibration measurements. When the 

flow channel was filled with cold air, the Raman bands of N2, O2 and residual H2O were well resolved. 

The technique was then successfully applied for in-situ diagnostics of a SOFC operating under standard 

conditions of 1123 K and dry hydrogen. Under these conditions the Raman bands of H2 and H2O were 

detected and yielded sufficient signal-to-noise ratio for a quantitative evaluation after an accumulation 

of 3000 laser shots. The profiles were recorded with a spatial resolution of 1 mm along the channel 

length and exhibited clearly the expected behaviour, i.e. a decrease of H2 and increase of H2O 
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concentration along the flow direction. However, due to a leakage of the cell the concentrations could 

not be quantified. 

 

The results demonstrated the feasibility of measuring species concentration profiles by laser Raman 

spectroscopy in this arrangement. In the next step, an improved cell setup will be used to perform 

quantitative species measurements at various operating conditions. As Raman scattering allows the 

simultaneous detection and distinction of different gas-phase species, this technique will be particularly 

useful for investigating internal reforming conditions where CH4, H2, H2O, CO, CO2 and N2 are present 

simultaneously.   
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Photograph of the furnace with opened cover and laser beam (λ=532 nm) traveling from the 

bottom right into the furnace. The Raman scattered light is collected perpendicularly to the laser 

beam through the opening on the left side. The photo also illustrates the huge amount of laser stray 

light from surfaces. 

Fig. 2: Sketch of the experimental arrangement illustrating the experimental setup: side view (left), 

top view (right) 
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Fig. 4: Photo of the SOFC cell compartment through the observation window for the detection of the 

Raman scattered radiation. The furnace is at T≈1123 K. The central part is the transparent flow field 

consisting of quartz glass and surrounded by ceramic parts. The green line indicates the laser beam. 

Fig. 3: View of cell test assembly with gas flow fields. The flow field for the anode gas (right) is 

transparent consisting of quartz glass, the flow field for the cathode gas (left) consists of alumina. 

The cell itself (middle) is placed between the two flow fields. 
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Fig. 5: Transparent anode flow field consisting of quartz glass with 9 gas channels  (3x4 mm2) 

Fig. 6: Schematic of the experimental setup     
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Fig. 7: Spectrum of the luminescence from quartz (Suprasil® 2 Grade B) at T=300 K after 

illumination with pulsed laser radiation at λ=532 nm. Note that the intensity scale is changed at 

λ≈585 nm. The hatched area was masked by the notch filter in front of the spectrograph. The 

vertical arrows indicate the positions of the Raman bands of different species.   

Fig. 8: Spectrum of the luminescence from quartz at T=1123 K after illumination with pulsed laser 

radiation at λ=532 nm. The signal intensity is scaled to the level of Fig. 7. 
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Fig. 9: Raman spectra of room air measured within the flow channel. Each of the 35 spectra 

corresponds to one segment of 1 mm length along the imaged length along the laser. 200 laser shots 

were accumulated. 

Fig. 10: Polarization curve of solid oxide fuel cell (16 cm2 active cell area) operated at 1123 K 
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Fig. 11: Raman spectra recorded during operation of the SOFC with hydrogen. The 35 spectra 

cover a length of 35 mm and have been averaged over 3000 laser shots. The H2O Raman band 

appears at λ≈660 nm and the H2 Raman band at λ≈683 nm. 
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Fig. 12: In-situ measurements of H2 (upper diagram) and H2O (lower diagram) concentrations 
along the anode flow channel during operation of the SOFC at 1123 K at different cell currents. 
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