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Using Ultrasound Images of the Forearm
to Predict Finger Positions

Claudio Castellini, Member, IEEE, Georg Passig, and Emanuel Zarka

Abstract—Medical ultrasound imaging is a well-known tech-
nique to gather live views of the interior of the human body. It
is totally safe, it provides high spatial and temporal resolution,
and it is nowadays available at any hospital. This suggests that it
could be used as a human–computer interface. In this paper, we
use ultrasound images of the human forearm to predict the finger
positions, including thumb adduction and thumb rotation. Our
experimental results show that there is a clear linear relationship
between the features we extract from the images, and finger
positions, expressed as angles at the metacarpo-phalangeal joints.
The method is uniformly valid for all subjects considered. The
unavoidable movements of the ultrasound probe with respect to
the skin and of the skin with respect to the inner musculoskeletal
structure are compensated for using the optical flow. Typical
applications of this system range from teleoperated fine manipu-
lation to finger stiffness estimation to ergonomy. If successfully
applied to transradial amputees, it could be also used to recon-
struct the imaginary limb, paving the way to, e.g., fine control of
hand prostheses, treatment of neuropathic/phantom limb pain and
visualization of the imaginary limb as a tool for the neuroscientist.

Index Terms—Learning and adaptive systems, rehabilitation, ul-
trasound imaging.

I. INTRODUCTION

D EVELOPED soon after the second World War as a diag-
nostic device, ultrasound imaging, also known as medical

ultrasonography (US) is a noninvasive technique to visualize
structures inside the human body. (A comprehensive reference
to medical ultrasound is the classical textbook [1].) The general
principle is that of wave reflection/refraction: in modern ultra-
sound medical devices, an array of piezoelectric transducers is
used to generate a focused wave of ultrasound in the range of
2–20 MHz which penetrates the body part of interest; partial
reflection of the wave at the interfaces between tissues with dif-
ferent acoustic impedance (density) is then gathered and con-
verted, in the so-called B-mode, to a gray-scale 2-D image.
High-gray-valued ridges in the image denote therefore tissue in-
terfaces. Modern US machines can achieve sub-millimeter spa-
tial resolution and/or real-time temporal resolution, penetrating
several centimeters below the subject’s skin. The technique is
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easy to set up and it has no known side effects, to the extent that
one of its best known applications is the imaging of the fetus
with prebirth diagnostic purposes. Additionally, although ultra-
sound machines are not cheap, they are nowadays found essen-
tially in any hospital, making the technique easily available.
Such an accurate, safe, and widespread technique is likely

to have an immediate application as a human–computer in-
terface. In particular, here we focus on one such use, namely,
determining finger positions using features extracted from US
images of the human forearm. For a long time, US imaging
has successfully been used as a diagnostic tool for hand mus-
culoskeletal disorders such as, e.g., synovitis and rheumatoid
arthritis [2]–[4], so US images should contain enough in-
formation to reconstruct the position, velocity and/or force
exerted by the fingers. If this happens to be the case, a system
enforcing this idea would have potential applications in, e.g.,
ergonomy and precise teleoperation and manipulation when
operated by intact subjects, and could be a breakthrough if used
by amputees, letting them control hand prostheses to a so-far
unknown degree of precision. (Of course this claim is subject
to many assumptions—see Section IV for more about it.)
The feeling that the idea is viable stems, as a start, from plain

observation of the US imaging of the human wrist as the fingers
move. Consider the movie “fingers.avi” included in the supple-
mental material. The movie is recorded from a healthy subject
using a standard portable US machine (see Section II-A2 for
more details). The transducer lies on the ventral side of the right
wrist orthogonal to the axis of the forearm (see also Fig. 2, right
panel). As the subject’s fingers move, a clear relationship be-
tween the changes in the image and the hand configuration is
apparent; although not elementary, the changes appear repeat-
able and related to the flexion of single fingers, even in the case
of the thumb adduction and rotation. Flexion of the pinkie finger
for example, results in a “hole” opening and closing near the
left-upper corner of the image. Comparison with an anatomical
representation of the very same section (see Fig. 1) suggests that
we are looking at the motion of one of the tendons of the M.
Flexor Digitorum Superficialis.

A. Overview of the Methodology and Results

In this paper, we show a positive result along this line. Six
healthy human subjects were instructed to mimick with their
right hand the movements performed by an animated human
hand model on a computer screen. The hand configuration and
US images of the corresponding wrist would be gathered and
synchronized during the experiment, using a dataglove and the
above mentioned US machine. The movements consisted of re-
peated flexion of the fingers plus adduction and rotation of the
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Fig. 1. Comparison of a typical US image of the human wrist (left) and a pictorial representation of its anatomy (right, representing section “A” in the middle
panel, both figures reproduced from [26]). Annotations on the left panel highlight the ulna (1), the radius (2), and theM. Pronator Quadratus (3) on the ultrasound
image. Above the area of the Quadratus, circular sections of the flexor tendons are clearly visible.

thumb, in several different configurations. Offline, local spatial
features were extracted from each frame. The features encode a
linear approximation of the gray-level distribution around a set
of interest points. The points are chosen to belong to a uniformly
spaced grid, irrespective of any anatomical detail of the subject.
Regression analysis reveals that these features are almost per-

fectly correlated (in the sense of the standard Pearson correla-
tion) to finger positions, leading to a prediction error of as little
as about 1% of the position range. The correlation is higher
where the sections of anatomically relevant muscles appear; for
example, pinkie movement is highly correlated with features ex-
tracted near the section of the F.D.Superficialis, i.e., from the
upper-left corner of the images seen in the movie—where the
“hole” grows and shrinks. A regression matrix can be esti-
mated via, e.g., least-squares, so that , where rep-
resents the position of the fingers (six angles measured at the
metacarpo-phalangeal joints) and encodes the visual features
extracted from the US frames. In order for the approach to work
fine, the transducer must be as still as possible with respect to
the skin and skeleton of the subject; unwanted motion is com-
pensated for by evaluating the optical flow at key frames and
using it to shift the position of the interest points in order for
the extracted features to always represent the same information.
This method is shown to significantly prevent drift errors during
the experiment and improve the prediction accuracy.
The paper is organized as follows. After reviewing the related

work, we describe the experimental setup and the processing
techniques employed (Section II); we then show the experi-
mental results (Section III) and lastly, conclusions and future
work are presented (Section IV).

B. Related Work

Extensive work on the use of live ultrasound imaging to
control a one-degree-of-freedom hand prosthesis appears since
2006 in a series of joint Chinese/British studies by, among
others, Zheng [5]–[7]. The authors focus on the large extensor
muscle of the forearm, M. Extensor Carpi Radialis, and show
high correlation between the wrist extension angle (detected
with a goniometer) and the change in size of the projection
of the muscle itself in the image. This is a computationally
easy visual feature (unsurprisingly, the authors claim it can be
evaluated in real-time) which happens to be linearly related to
a particular movement. The technique of determining muscle

contraction using ultrasound imaging is therein named son-
omyography, a term that we will not use here as we do not
necessarily target muscle contraction only.
As far as we know this method has not yet been applied to

the whole hand/finger system, and the authors have never con-
sidered more than one feature at the same time. This restricted
focus is probably motivated by the diversity and complexity of
the changes in US images as joint positions change: the single
identified feature is related to a precise anatomical change, a re-
lation which would be quite hard to assess in the general case. It
is likely that a more general treatment in that case would require
a detailed model of the kinematics of the human forearm, plus a
detailed model of the changes in the projected US image as the
hand joints move—a task which seems overtly complex.
As opposed to that, in this work we take a more image-pro-

cessing-/machine-learning-oriented approach: we employ a uni-
formly-spaced set of visual features from each image, extract
uniform features from each point and then use data gathered
from a dataglove to relate joint positions and images, without
the need of a detailed anatomical model. The approach is there-
fore dramatically extended, and since the relationship between
image features and joint positions turns out to be linear, we can
keep the computational burden within such limits that it can be
used online.
The only attempt so far at modelling finger positions appears

in [8], where significant differences among optical flow compu-
tations for finger flexion movements are reported, but not ana-
lyzed in detail. Optical flow [9] does not really seem the best
feature choice in this case, since it is a derivative operator, hard
to compute and prone to accumulating integral errors when ap-
plied to position recognition.
This paper can be seen as the follow-up to [10], in which the

same approach was applied to the limited case of one human
subject in extremely controlled conditions (namely, taking care
that no probe/skin/skeleton relative movement would happen).

II. EXPERIMENT DESCRIPTION

A. Data Gathering Setup

1) Hand Motion: An 18-sensor right-handed Cyberglove
(Cyberglove Systems , see also Fig. 2, left panel) is used to
gather the finger positions. The Cyberglove is a light fabric,

1http://www.cyberglovesystems.com
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Fig. 2. Data capturing devices: (left to right) the Cyberglove; the location of its sensors (sensors 16, 12, 8, 4, 0, and 3 are used); the ultrasound transducer placed
onto the subject’s wrist. Moisture due to ultrasound conductive gel is clearly visible.

rather elastic glove, onto which 18 strain gauges are sewn;
the sewing sheaths are chosen carefully by the manufacturer,
so that the gauges exhibit a resistance which is proportionally
related to the angles between pairs of hand joints of interest.
The device can then return 18 8-bit values, proportional to
these angles, for an average resolution of less than one degree,
depending on the size of the subject’s hand, a careful wearing
of the glove and the rotation range of the considered joint.
(For practical reasons, the subject must wear a cotton glove
below the Cyberglove; we verified that this would not limit the
precision of the device.)
We consider six hand motions, namely flexion/extension of

the five fingers and thumb adduction/abduction. Thumb flexion/
extension is roughly equivalent to thumb rotation, indeed a very
important motion, characteristic of the high primates and para-
mount for most activities of daily living. The choice of these six
motions is also motivated by the fact that they are enforced by
the most advanced hand prosthesis of the world at the time of
writing, namely the Vincent Hand (Vincent Systems GmbH ).
The above motions are captured by considering the five

metacarpo-phalangeal glove sensors, placed where the proximal
phalanxes of the fingers meet the palm, plus the thumb/index
abduction sensor for the thumb abduction/adduction. For each
subject we performed a simple calibration consisting of asking
to stretch/bend the subject’s joints to extreme positions, there-
fore recording each motion’s extreme values. We then used
these extreme values to normalize the sensor values between
0 and 1, so that 0 corresponds to the relaxed stance and 1 to
the maximum voluntary contraction. (Values are nevertheless
sometimes outside this range since nothing prevents the sub-
jects to go beyond the limits while performing the required
movements.)
According to the placement of the sensors on the Cyberglove

(see Fig. 2, central panel), we choose sensors 16, 12, 8, 4, and 0
for the pinkie, ring, middle, index, and thumb flexion/extension,
and sensor 3 for the thumb rotation. A careful hardware calibra-
tion enables us to obtain a resolution of 7–7.5 bits over the con-
sidered ranges, actually way below one degree in all cases. Ap-
proximate angle ranges and resolutions are reported in Table I.
The glove values are captured at 88 Hz, the maximum rate

allowed by the serial port communication on the setup machine
under Windows XP.
2) Ultrasound Imaging: US images are gathered using a

General Electric Logiq-e portable ultrasound machine (see web-

2http://www.handprothese.de/vincent-hand

TABLE I
APPROXIMATE RANGES (IN DEGREES AND IN CYBERGLOVE UNITS) AND
RESOLUTIONS (IN DEGREES) OF THE SIX CONSIDERED FINGER MOTIONS

site ) equipped with a 12L-RS linear transducer; the ultrasound
“B”-mode is selected, resulting in a gray-valued image repre-
senting a section of what lies directly under the transducer. After
an initial round of examinations, we chose the following set-
tings: ultrasound frequency of 12MHz, minimal onboard image
preprocessing (i.e., noise rejection/edge enhancement), focus
point at a depth of about 1.3 cm, minimum depth of field (“focus
number” set at 1). This results in a frame rate of 28 Hz. These
settings match those already used in [10].
The transducer is lightly but firmly fixed on the subject’s

wrist using a commercially available vise; this gives to the setup
some flexibility, accounting for smaller and larger forearms. The
transducer lies near the distal radioulnar articulation at the level
of theM. Pronator Quadratus as depicted in Fig. 2, right panel.
The output image (consider Fig. 1 again) is therefore a section
of the wrist along the transverse plane, containing the ulna and
radius, the M. Pronator Quadratus itself, and the tendons re-
lated to almost all flexor muscles.
Images generated by the US machine are captured from the

VGA video output using a commercial VGA frame grabber,
then sent via Ethernet to a standard PC.

B. Experimental Protocol

1) Subject Pool and Stimulus: Six subjects, all able-bodied,
22–39 years old, joined the experiment. Each subject would sit
in front of a large PC screen, wear the glove and then lie her/his
hand and part of the forearm relaxed on an orthopaedic support.
The chair, the screen, the support, and the glove were adjusted
prior to the experiment in order to obtain maximum comfort.
The US transducer was then fixed just above and onto the wrist,
tightly but comfortably. Standard ultrasound gel was applied
between the transducer’s head and the skin to allow the correct
functionality of the US machine. The subjects were given no
knowledge of what the experiment was about; they were simply

3http://www.gehealthcare.com/euen/ultrasound/products/portable/logiq-e
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Fig. 3. The experimental setup: the subject would mimic the hand-model
movements, as seen on the computer screen; meanwhile, the glove and
ultrasound machine would gather hand motions and US images.

instructed to perform with the right hand what the hand model
on the screen would do, trying to mimic both the movement
and its speed. The model is controlled using exactly the same
six motion values at a real-time rate of 25 Hz. Fig. 3 shows the
situation.
The stimulus (that is, what the hand model would actually

do) consists of a sequence of basic movements, either single- or
multi-finger. Single-finger movements are: pinkie, ring, middle,
index, and thumb full flexion and back, and thumb full adduc-
tion and back. Multi-finger movements are: (a) simultaneous
flexion of the pinkie and ring, (b) simultaneous flexion of the
middle and index, (c) simultaneous flexion of the pinkie, ring,
middle, and index, and (d) like (c) but also adducting the thumb,
as in a typical “flat grasp,” used to grasp credit cards or DVDs.
Each movement is performed at three different speeds (1, 3, and
5 s for full flexion and back) and repeated two times (single-
finger movements) or three times (multi-finger movements); in
between movements, 1.5 s of rest are allowed. All in all, there
are 72 movements (36 single- and 36 multi-finger ones); appro-
priate labels are applied to all samples in order to understand
what movement and what speed is associated to each US frame
and hand position. Each experiment lasted about 6 min (3 min
single-, 3 min multi-finger movements); no fatigue or discom-
fort were reported by any of the subjects.
2) Synchronization and Preprocessing: Data synchroniza-

tion is enforced on a Windows PC equipped with a multi-core
processor, by gathering data from each device (i.e., the hand
model, the glove, and the US machine) asynchronously and ac-
curately time stamping each received datum. Time stamping is
enforced by the HRT library [11], giving an experimentally-de-
termined precision of 1.9 on the machine used. Linear inter-
polation is used to find the glove motion and stimulus values
best corresponding to the time at which each image is received
on the PC. All data are then low-pass filtered with a Butterworth
fifth-order filter, cutoff frequency at 1 Hz. This relatively strong
filtering was chosen after an initial round of experiments, and
found to yield the best results. Actually, since visual features are
linearly related to position features [10] and position features are

linearly related to finger joint angles (due to the linearity of the
cyberglove), the bandwidth of both signals is directly limited by
the speed of the movements (we have verified this for a relevant
number of sample signals). As per the stimulus, movements are
performed in cycles lasting 1, 3, 5 s, therefore the signal band-
width is uniformly limited below 2 Hz, so that 1 Hz seems to be
a reasonable value to cut off all high-frequency noise without
introducing too much delay in the real-time prediction.
3) Image Grabbing and Validation: As the US machine we

employed has no way of streaming images directly to a PC, im-
ages are grabbed from an external VGA connector using a com-
mercial frame grabber as stated above. The US machine gener-
ates images at a rate which depends on the chosen B-mode set-
tings; in our case, that was 28 Hz. These images are streamed
through the VGA port at a resolution of 1024 768 at 60 Hz, as
is customary. The frame grabber grabs the images at an unsyn-
chronized rate of about 56 Hz (the precise rate cannot be fixed
a priori as it depends on on-board software compression which
cannot be disabled) and streams them in turn through an Eth-
ernet connection.
Since the image stream is asynchronous, images must be

checked for validity before being used as they are received
by the system; i.e., one must verify that frame is a
complete, different frame with respect to frame . This is done
by checking the difference between two consecutively grabbed
frames, evaluated as the sum of absolute differences of the gray
levels. Three clearly increasing, repeatable noise levels were
identified and associated to the following.
a) Framegrabber noise: the same ultrasound image is
grabbed twice by the framegrabber. The frame is consid-
ered invalid and discarded, except in case c (see below).

b) Ultrasound noise plus framegrabber noise an update of
the ultrasound image occurred; the frame has changed on
the US since the last grab. The frame is considered valid.

c) Tearing due to the unsynchronized grabbing the top half
of the image has been updated (type b above) whereas the
bottom half has not (type a); the frame is then discarded
and the next frame of type a is then scheduled for usage.

At the end, only the valid frames are retained. Inspection of
the length of the recorded sequence has proved the effectiveness
of the approach. Additionally, each frame is cropped to the por-
tion of interest; that is, irrelevant information such as, e.g., the
windows border, menus, etc., are discarded.

C. Data Processing and Analysis

1) Choice of the Image Features: Visual inspection of the
US images while moving the fingers reveals that image defor-
mations are highly localized according to anatomy and the posi-
tion of the transducer. For instance, flexion of the pinkie finger
appears as a local modification at the upper-left corner of the
image, as that is the location where one would expect the sec-
tion of the related tendon to appear. The choice of features is
therefore that of local features—numbers extracted from a re-
gion of interest (ROI) centered around one of interest points

, .
Potentially, there are interest points in each and every image

area where finger-related modifications appear. In this case, one
must first identify the areas of interest for each finger and for



792 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 20, NO. 6, NOVEMBER 2012

Fig. 4. (Left) A graphical representation of the three features extracted from each interest point. (right) Three ROIs located near the zones of the image
where most changes are seen for pinkie flexion and thumb adduction (1,3) and where almost no movement is observed (2). The features are represented as nor-
malized vectors where and are the vector components. Consider also the movie “features.avi,” included in the supplemental material.

each subject, then estimate a potentially different shape for each
ROI. We rather employed a simpler alternative: we chose a uni-
formly-spaced grid of interest points, and a circular area around
each point. The center coordinates of each ROI, and the radius
, are chosen such that there is minimum overlapping among
pairs of ROIs. Formally

Each ROI is the local axial section of a very complex 3-D ob-
ject, namely the complete musculoskeletal structure of the wrist,
which is made of soft tissue structures, adjacent and shifting
along each other as muscles and tendons move. A full model of
the motion seen in each ROI would require modelling carefully
this 3-D motion and its view from across. This is clearly an ex-
tremely hard task, and anyway not in the focus of this work. We
rather make some abstract considerations.
Firstly, local changesmanifest themselves as alterations in the

gray values inside the ROI, in particular as rotations, enlarge-
ments/shrinkings, shifts, combinations of these, and even less
evident deformations due to the details of the musculoskeletal
structure entering and exiting the section. This hints at some
form of approximation of the gray value contents of the ROI;
that is, for each we extract a feature vector where

is the image gray level found at pixel and, with a
slight abuse of notation, is the set of gray values found
in the th ROI.
Secondly, image changes seem related by visual inspection

to positions of the fingers (and not, e.g., to velocities); this is
intuitively sensible since all changes in the body structure due
to voluntary contractions must be reversible when contraction
is released. This hints at the use of temporal zeroth-order fea-
tures, rather than first-order features such as, e.g., the optical
flow (see, e.g., [9]), also since in this framework, this technique
would mostly detect movement components in the - and -di-
rection of the image plane, but not along the axis perpendicular
to the section, which would be the main movement direction of
muscles and tendons. As a differential measure, it can yield in-
formation on absolute position after integration, but indeed will
be prone to integration errors (i.e., a random offset every time
the fingers go back to the resting position).
For all these reasons, the features used here are, for each ROI,

the local linear approximation of its gray-value contents. More
in detail , where

for all . Intuitively, denotes the mean image
gradient along the direction (rows of the image), is the same
value along the (columns) direction, and is an offset. Fig. 4
(left panel) graphically represents the coefficients. In order to
extract these features (and for all other image-related computa-
tions and evaluations) we used the HALCON v10.0 library by
MVTec.
2) A Toy Example: In order to test the effectiveness of the

chosen features, they are first applied to a toy example. Namely,
flexion of the pinkie and adduction of the thumb are selected
as two very different movements, and repeatedly performed by
one of the experimenters, in controlled conditions. Two corre-
sponding ROIs are then selected, near the regions of the im-
ages in which most changes appear during either movement;
a third ROI is chosen where almost no movement is noticed.
Fig. 4 (right panel) shows a graphical representation of the
and evaluated at the three ROIs, superimposed to a typical
US image. The features are represented as rotating normalized
vectors where and are the vector components.
Visual inspection of the three points, changing as the related

motions are performed, reveals that the chosen features are well
related to the finger positions (as recorded by the glove). Con-
sider the movie “features.avi” included in the supplemental ma-
terial; as one can see, ROI 1 (represented in red in the movie),
clearly correlates with the flexion of the pinkie finger; ROI 3 (in
green in the movie) correlates with the thumb position; and ROI
2 (in magenta in the movie) shows no apparent correlation with
either movement.
This toy example confirms strong local correlation between

finger positions and features extracted from each ROI, and
proves in hindsight that the choice of local features is a good
choice. In fact, an initial experiment revealed that high “cor-
relation zones” exist between finger motions and features, as
one can see from Fig. 5, showing the correlation coefficients
between each ROIs and the six degrees of motion. (For the
purpose of illustration, the correlation coefficients of the three
features , , and have been averaged out for each feature
point.) As one can see, specific areas of high correlation for the
first four degrees of motion exist (flexion of the pinkie, ring,
middle, and index finger) with highest correlation coefficients
of about 0.7. In contrast to this, for the movements of the thumb,
no feature points show very high correlation (for instance, the
highest correlation coefficient for thumb adduction is about
0.4), but in such a case we can still hope that the combination

4http://www.mvtec.com/halcon
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Fig. 5. Correlation between image features (average of for each ROI) and finger motions. Each colored rectangle matches the position of a ROI in the
image, and the color denotes the correlation existing between the features evaluated at the related ROI and the finger motion of the subfigure title.

of all local features is effective to predict the thumb position.
(See Section III for a full analysis.)
After an initial round of experiments, it was verified that the

optimal setting is to have ROIs, resulting in
visual features; the space between pairs of ROIs was chosen

to be 50 pixels and the radius of each ROI, 20 pixels. As we have
verified, the computation of all these features is extremely fast
and can be done in cinema-like real-time, that is, 25 Hz, on the
machine we used. As well, and somewhat surprisingly, we have
verified that the number and distribution of the ROIs, and their
radiuses, are not crucial to the prediction accuracy, as long as the
related values are chosen reasonably, that is, in order for them
to duly cover the surface of the US image and not to overlap too
much.
3) Linear Regression: In [10], we showed that a linear rela-

tionship exists between the above-described gray level approx-
imations and the finger positions (angles at the hand joints). So,
for each frame an image feature vector is associated
to a finger position vector . Least-squares regression is
applied to each dimension of the output space in order to obtain
linear coefficients for the input space values. In other words,

for each degree of motion with , we evaluate
with such that

This procedure ends up in a 6 645matrix , which can further
on be used to estimate new image feature vectors: . We
employ the Matlab standard linear regression function.
In order to have an idea of the generality of this procedure,

i.e., of how applicable this procedure is to features extracted
from so-far-unseen images, we perform a form of cross-vali-
dation. For each subject, the collected data are first randomly
permuted; then a subset of the data set (training set) is chosen
to perform the estimation of ; the prediction error is evaluated
on the rest of the data set (testing set). Different training set sizes
are chosen, namely containing of the whole data set, where

; it is expected that the prediction error would
rise as increases. No sample normalization is performed. This
training/prediction cycle is repeated for 20 times, each time with
a different permutation, then mean and standard deviation of
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the obtained error rate are reported. As an error measure, we
evaluate the square-root mean-square error normalized over the
range of the target values (NRMSE).
4) Compensation of Transducer Motion: As is intuitively

clear—and so it turned out after an initial round of experi-
ments—the features are highly sensitive to the
values inside the ROI: even a small shift in can sensibly
alter the features-to-position map and make , as previously
evaluated, much less effective. Small movements of the sub-
ject’s forearm with respect to the transducer are inevitable, due
to the gel, the normal motion of human limbs and fatigue. We
compensate for this by evaluating the optical flow between
reference frames and then using it as a map to locally shift the
center of each ROI.
We consider as reference frames the images taken in the

resting stance. During one session, composed of 72 move-
ments, rest is reached 73 times. Related frames are identified by
comparison with the stimulus plus a visually-determined time
shift. The first resting frame is taken as reference; then for each
further resting posture, the frame in the middle is considered
for comparison. Optical flow is then evaluated and the feature
points are shifted accordingly to the optical flow vector values.
One problem with the probe motion compensation is that, due

to the shift of the feature points, some of themmove out of scope
during the session. In that case, these feature points transfer
wrong information and are therefore not considered when esti-
mating . Hence, the algorithm has to be applied twice: the first
time to evaluate all the features that transfer correct information
through out the whole session, and the second time to extract the
feature values from these feature points. This also means that
when applying the probe motion compensation, some informa-
tion is lost. In other words, the marginal feature points (on av-
erage 45 feature points; 135 features) are not taken into account
when estimating . The motion compensation can be switched
on and off, enabling a full analysis of its effectiveness.

III. EXPERIMENTAL RESULTS

A. Regression Accuracy

Consider first Fig. 6, showing the NRMSE obtained by linear
regression on each finger position, according to the size of the
training set and for each subject. It is apparent from the figure
that linear regression is highly effective in all cases. When the
training set size is one-half of the total data set ( in the
figure), the NRMSE ranges from 1.08% (middle finger, sub-
ject 3) to 2.65% (pinkie finger, subject 1). As expected, as the
training set size is reduced, the NRMSE increases to a maximal
value of 9.67% (pinkie finger, subject 1 again) when . The
increase looks superlinear. Notice that there is no “best” finger
overall. Fig. 7 shows comparisons between typical real and pre-
dicted finger positions.

B. Probe Motion Compensation

Consider now Fig. 8, showing the effect of the probe motion
compensation mechanism on the NRMSE. We choose here to
show some of the worst cases of Fig. 6, that is Subjects 1 and
2 when , and then to repeat the experiment with an even
smaller training set size, namely .

Fig. 6. Per subject accuracy of linear regression. Mean values obtained over
20 random permutations of the training set.

As is apparent, the use of probe motion compensation is
highly effective, reducing the NRMSE by a statistically sig-
nificant amount, especially in the cases when the error is high.
For example, considering the pinkie flexion when , the
NRMSE of subject 1 drops from 35.82% 9.94% to 13.54%
3.76%; for subject 2 the drop is from 30.82% 7.26% to

13.65% 4.22%. Student’s t-test yields in both cases.

C. Implementation

The above described system has been demonstrated using
a three dimensional, 22 DoFs graphical model of a human
hand, both to show the stimulus to the subject and to show the
prediction. The model bone structure is configured using the
six estimated finger positions and a simple nonlinear coupling
among the internal DoFs; it is then rendered using the free
utility Blender (The Blender Foundation ). The six values are
streamed to the model by the prediction system using a local
host-based UDP stream at 25 Hz.
The whole sequence of movements was administered to a

single, intact subject while the system would gather synchro-
nized joint angles and US images. Subsequently, the matrix
was estimated and then used to predict the hand configura-

tion from the images alone. The result is visible in the movie
“demo.avi,” included in the supplemental material. At the end
of the demo the subject reported a remarkable feeling of owner-
ship of the model, while no fatigue or discomfort was detected.
Notice that, in this case, the probe is not placed on the wrist but
on the ventral side of the forearm, at a medial distance between
the wrist and the elbow. (See the Section IV for more details on
the probe positioning.)

5http://www.blender.org
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Fig. 7. Typical example comparisons between true and predicted finger positions. Notice the higher errors (for instance for Subject 1 around samples)
as is increased.

Fig. 8. Effect of the motion compensation on typically high errors. Error bars denote the mean and standard deviation NRMSE obtained on the 20 permutations.

IV. CONCLUSION

A. Discussion

The experimental results shown above clearly indicate that
US imaging of the human wrist can be effectively used as a
means to reconstruct the hand posture, up to a remarkable pre-
cision. This is the main finding of this work. More precisely:
it is no surprise that the information required to reconstruct the
hand configuration is in the images, since US is a widespread
tool for medical diagnosis of hand conditions (and, in fact, for a

number of other conditions). What remained to be demonstrated
is that the information can be effectively extracted and used to
this aim.We claim that the answer to this question if affirmative.
A further, more surprising outcome of this experiment is that,

if the type of features we use is chosen, then there is a linear
relationship between them and the hand posture (finger joint
angles). This result was already published in [10], but here we
show that it holds uniformly for all subjects considered; it holds
when subsampling is applied; and the relationship is robust with
respect to relative motion between the subject’s forearm and the
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US transducer—in that case we demonstrate the usefulness of a
simple compensation technique based upon optical flow compu-
tation. (Of course, too much motion will disrupt the approach.)
In our opinion, this is not trivial at all even though the features

are themselves first-order approximations of the gray levels in
the ROIs. Indeed, such features encode local structural motion
as seen in a section of the forearm, but it is not clear why this
motion is linearly related to finger position. Actually, in order
to fully understand this phenomenon, a model of the muscu-
loskeletal structure, its motion and the view across a section of
it would be required, but this is not the focus of this paper. No-
tice that our approach is totally blind to anatomy: features are
the same for each ROI, and ROIs are chosen to be uniformly
distributed across the image.
The most interesting consequence of the linearity of this re-

lationship is that the whole system can be implemented online
(ongoing research). The only problematic point seems that of
optical flow calculation, but that is required only whenever a
new reference frame is detected, that is, not in real-time.

B. Future Work

The main problem so far encountered is the forearm/trans-
ducer motion, which eludes the compensation mechanism in
extreme cases; but this problem should be largely solved by
improving the setup—especially, a more apt transducer is re-
quired. For example, the transducer might be steadily fixed on
the forearm via a belt; or it might be worn as a glove (silicone
liner) with single transducers sewn atop, placed according to
optimal muscular activity. We actually have hints that B-mode
sonography might not be required at all, and this would greatly
simplify the design of a new generation of transducers. Research
in this direction is already on the way.
A more interesting point is that of finding features which are

less sensitive to small changes in the US image. So far we use
Least-Squares regression to estimate , but this could be made
more robust by employing some for of regularized regression
such as, e.g., regularized least squares [12], [13]. An orthogonal
direction to be explored is that of allowing for more transducer
motion, therefore probably breaking the linearity of the map,
and then using more involved machine learning methods rooted
in the probabilistic framework (e.g., support vector machines
[14]). A further very desirable characteristic is that of enforcing
online learning, which implies in the linear case the periodic re-
computation of as the map changes, due to, e.g., transducer
motion or new movements enforced by the subject. In that case
a sensible way ahead is represented, e.g., by incremental regu-
larized least squares, an approach which does not depend on the
number of acquired samples (i.e., it does not grow indefinitely),
but only on the dimension of the input space.
Further experiments have revealed that within reasonable

limits, the radius of each ROI does not affect the accuracy of
the system; on the other hand, there is a clear trade-off between
the number of ROIs and the error. Finding a minimum set of
ROIs is of course an interesting path ahead; ROIs could also be
determined by local correlation with single-finger movements,
and then some form of source separation could be used to

enforce composition of these movements into multi-finger
motions.

C. Applications

The application of the results shown in this paper are multi-
farious and potentially quite wide. Ultrasound imaging could be
used as a means of interaction in virtual reality as well as in real
environments, to control a mechanical hand or a model, leading
to very accurate teleoperation, performed without any sensor on
the subject’s hand (such as, e.g., an instrumented glove).
An even more interesting application, though, is in rehabilita-

tion of neuropathic pain patients, mainly upper-limb amputees
and complex regional pain syndrome patients. Neuropathic
pain is felt in the missing or impaired limb and has a so-far
unknown origin; according to neurological studies performed,
among others, by Flor [17], [18] and Maihöfner [19], this kind
of pain is related to the degree of cortical reorganization hap-
pening in the brain as a consequence of the sensorial feedback
loop breakdown implied by such diseases. As first shown by
Ramachandran [20] and confirmed more recently [21], one
promising path ahead is represented by mirror therapy, in
which a mirror is used to give the patient the illusion of a
restored limb, therefore closing back the sensorimotor loop,
albeit in a very incomplete fashion.
During mirror therapy the patient must necessarily perform

with the imaginary limb what (s)he performs with the intact
limb. Apparently this simple exercise can ease the pain and
even, in some cases, awaken the phantom limb. Our system
could then be used to show to a patient the imaginary limb, this
time moving freely and voluntarily. Employed in a virtual re-
ality scenario, or with a real robotic hand, the system could give
the patient an almost perfect illusion and feeling of immersion,
and constitute a better treatment of neuropathic pain.
Of course this idea relies on the assumption that enough

residual activity can be found in the stump/impaired limb.
Hints at a positive answer to this question exist [22]–[25]
although so far only the electromyographic signal has been
studied to this end. Given the enormously richer amount of
information carried by the ultrasound images with respect to
electromyography, we conjecture that this would be the case
with our system, too.
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