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Introduction 
Partly automated vehicles like shown in the HAVEit project [6] can be seen as a bridge 
towards self-driving vehicles as known from Google [5] or BMW [3]. Partly automated 
vehicles still take over control in lateral and longitudinal direction but additionally involve 
the driver. This is an advantage compared to fully automated vehicles in case the 
automation fails and the driver has to take over. As the BASt pointed out in its last report 
[1] this is a main reason while partly automated vehicles would get a licence in Germany in 
contrast to fully automated vehicles. Since the human is embedded in the control loop 
cooperation is a cornerstone of partly automated vehicles. Cooperation works if both the 
human and the machine follow same intentions. A discrepancy in their intentions leads to 
conflicts in the human machine interaction as described in [2]. Clearly, conflicts are 
decreasing the acceptance and the stability of the system. Therefore it is essential firstly to 
detect conflicts and secondly to develop strategies to solve them. This is the part where 
driver intention modelling becomes mandatory. Knowing driver’s intention means knowing 
the potential for a conflict. Moreover it allows to adapt automation behaviour to the driver 
and thus to reduce the conflict potential. Driver intention modelling is therefore closely 
linked to adaptive systems. 
 
In [2] an adaptive system a driver intention model is already prototypically implemented as 
an instrument of conflict prevention. The idea is to detect the potential of a conflict by 
driver’s activity. More precisely if the activity is high than the system shifts temporarily 
control to the driver by executing a transition from the automation level “Partly Automated” 
to “Driver Only”. In other words driver’s activity is interpreted as a driver’s disagreement 
with the automation behaviour. In contrast to an overriding the automation takes over 
control if the activity goes down again as an indicator that the driver agrees with the 
automation. The explicit research question now is, if the driver intention model has to be 
adaptive to any driver or is a model based on an average driver sufficient as long as the 
transparency of the system behaviour is guaranteed. Therefore two usability studies were 
carried out. Results are discussed in section 2.3. The next section will describe briefly the 
two implemented driver intention models. 
 
Driver intention modelling 
The involvement of the driver in “Partly automated” is characterized by strong but not fully 
autonomous control of the automation in lateral direction. Thus the driver has to steer a 
little bit in curves, as in [2] explained. Therefore a general requirement for both models is 
the ability to distinguish between steering and a requested transition. 
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Input variables 

The input variables are split into the lateral and longitudinal direction. The longitudinal 
direction considers the moment on the brake pedal and on the acceleration throttle. The 
variables of the lateral direction are the steering moment and the gripforce. Empirical 
research done before showed that for small lateral acceleration the moment on the brake 
pedal and on the acceleration throttle are the most important variables because the driver 
shows his activity only through this two variables. There is hardly any steering activity. In 
the situation of a high lateral acceleration (like in curves) the longitudinal variables become 
less important and the steering moment and gripforce together become more important. 
The gripforce plays an important role as a global variable. Without the gripforce changes in 
the automation level in straight and curvy road segments become less intuitive.  

Non-adaptive approach 

Figure 2-1 (left) shows the concept of the non-adaptive approach. The algorithm receives 
the measured values as described in section 2.2.1 and chooses based on logical rules the 
desired automation level. Logical rules are based on "AND" and "OR" compositions. It 
depends on the current automation level which logical function is considered. If the current 
automation level is “Driver Only”, the "AND" function is used, otherwise the "OR" function. 
If the driver is in the automation level ”Partly Automated” the driver has to show more 
activity only on one of the four measured values to change to the automation level “Driver 
Only”. On the other hand if the driver is in the automation level “Driver Only” the driver has 
to show less activity in all measured values simultaneously to change to the automation 
level ”Partly Automated”. The saved characteristic values, which are compared to the 
measured values to decide about the automation level, are constant values. They are 
calculated for an average driver. Therefore the approach is not adaptive.  
 

 

Adaptive approach 

The adaptive approach is more sophisticated. The approach uses the machine learning 
method fuzzy logic [4]. The background for using this method is because human thinking 
can be better described with speech rather than with numbers and formulas. That makes it 
easier to understand and more transparent for humans compared to neuronal networks. 
 
Trapezoid estimation: A central point of fuzzy logic is to calculate the shape of the fuzzy 
sets. In this case the edges (a, b, c, d) of trapezoids have to be computed. For the 
approach three fuzzy sets/trapezoids are used (small, middle, high). The calculation 
structure is shown below. In the first step the sets will be separated sharply. Therefore the 

Figure 2-1: Left: Design of the non-adaptive approach. Right: Visual display with an example sequence of 
a transition. The number of bars depends on the current activity and shows the likelihood for a transition 



0Driver intention modelling 

minimum, maximum and the mean value of the dataset will be extracted. A partition 
parameter is chosen to create the three sharp sets depending on the values Δ𝑚𝑖𝑛,
Δ𝑚𝑖𝑑 and Δ𝑚𝑎𝑥. Additionally, for each sharp set a histogram is build. The interval 
containing the most values represents the trapezoid values for the membership value one. 
The next step calculates the trapezoid values of the overlap with the membership value 
zero. These values will be calculated depending on Δ𝑚𝑖𝑛, Δ𝑚𝑖𝑑, Δ𝑚𝑎𝑥 and the fuzzy 
factor, the parameter to tune the overlap. 
 

 

 
Rules. Important aspects for the calculation are the compositions of the fuzzy rules. In 
Table 2-1 four characteristic rules for computing the transition are shown. As mentioned 
before for curvy road segments the values of gripforce and steering moment were logical 
combined as an "AND" function because the driver shows two activities on curvy road 
segments. The rules were built in dependency to the current automation level and the road 
segments (straight, curve). This separation ensures the transition to be more intuitive. 
 
 
Composition                  

Gripforce Steering 
moment 

Acceleration 
throttle 

Brake 
pedal 

Output 

"AND" Small Small - - Partly Automated 
"AND" Small Middle - - Neutral 
"AND" Middle High - - Driver Only 
"AND" High High - - Driver Only 

 
Driver adaptation. Driver adaptation is achieved by offline learning. Figure 2-3 shows the 
structure of the offline training. Thereby the left side of the figure illustrates the separation 
of the linguistic variable lateral acceleration into "small" and "high". After this separation 
the learning process starts in which the mentioned linguistic variables are collected for 90 
seconds for a period with small and a period with high lateral acceleration each. These two 
data sets are delivered to the function “Estimator” (see Figure 2-2) to calculate the 
parameters a, b, c and d of the trapezoids for each set "small", "middle" and "high" of the 
four linguistic variables. Now the training is finished and the driver specific values are 
saved as sets. 
 
Situation adaptation. After calculating and saving the driver specific data it is required to 
adapt the driver specific data to different road segments (straight, curve). Firstly, the fuzzy 
sets are adapted by a linear interpolation between the two recorded sets (small, high). The 
idea is that the linguistic variables increase linear with the lateral acceleration. Secondly, 

Figure 2-2: Function “Estimator” – function to calculate the adaptive fuzzy sets for the input variables 

Table 2-1: Four rules of 35 which take effect in the automation grade "Partly Automated" in curves  



the fuzzy rules change depending on the road segment. In Figure 2-3 the final structure of 
the adaptive approach is summarized and combines the previous concepts.  

 

 
Usability study: Results and Discussion 

Study design 

For the usability study an inner city circuit was used to validate the driver intention models 
from the previous section. The circuit includes different curves (radius of 30 m, 60 m and 
90 m), straight road segments and especially forks to cover the most possible situations in 
a lane following scenario. The usability study was carried out in a fixed base simulator at 
DLR. Additionally, a sidestick was used instead of a steering wheel, acceleration throttle 
and brake pedal because of a precise grip force sensor. This made sure that no noise due 
to imprecise sensors impaired the validation of the models. Moreover the study design 
included a longer phase of simulator training to get the driver used to the sidestick as seen 
in Figure 2-4. This was followed by a naive training of the automation levels to ensure that 
drivers understand driving with a vehicle with two different automation levels. All together 
this guaranteed a correct validation of the models and their performance. 

 
 
In the usability study a between-subject design was realized. Group A used the prototype 
with the adaptive model, called prototype “Adap” in the following. Group B used the non-
adaptive model, called prototype “Non-Adap” in the following. Within group A six subjects 
participated (five male, one female, age range 22- 27, average age 25). In group B seven 
subjects participated (six male, one female, age range, 21-46, average age 29).  

Comparison 

Transitions. Subjects were first asked to rate the transitions between the two automations 
levels “Driver Only” and “Partly Automated”. Since transitions are depending on the driver 
intention model this gives a clear feedback about the implemented model. As in Table 2-2 
shown the adaptive prototype showed better performance. Most of the subjects felt the 
transitions to be accurate. Furthermore, subjects described the transitions as quite reliable, 
quite controllable and quite comprehensible in the median. The ratings are also very dense 
about the median and positive. For the non-adaptive prototype subject ratings show a 
larger spread and contain some outliers to the negative.  

30 min 
Training 

10 min 
"Driver Only" 

10 min                
"Partly Autom." 

10 min 
Prototype  

1 min 
Explanation 

10 min 
Prototype 

Figure 2-3: Left: Structure of the offline training, Right: Procedure after the training 

Figure 2-4: Timing of the usability study 
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The transitions were… Prototype -3 -2 -1 0 1 2 3   

too early Adap      1  21  2     too late Non-Adap    1  3  9      1 

unreliable Adap      1    3  14  6 reliable Non-Adap    1  1  3  4  2  3 

incomprehensible 
Adap          4  11  9 

comprehensible Non-Adap    2      4  5  2 

 
Activity display. The system transparency as one requirement for the non-adaptive 
model mentioned in the introduction is achieved by a visual display, called activity display 
(see Figure 2-1 (right)). Table 2-3 shows the subject ratings of the activity display. The 
activity display improved the understanding, comprehension and the controllability of the 
transitions for both prototypes. Also driving in general was rated to be better with the 
display. Compared to each other the advantage of the display was slightly better for the 
non-adaptive prototype. One reason seemed to be the intuition. A higher number of 
subjects using the adaptive prototype had to look less frequently to the display than 
subjects using the non-adaptive prototype. Furthermore a higher number of subjects 
wouldn’t have needed the display to get along with the automation. These two results point 
out that the adaptive prototype is more intuitive. This is in fact one goal of partly automated 
vehicles and underlines the benefit. 
 

The activity display helped to improve the… Prototype -2 -1 0 1 2 

understanding of the automation Adap   1 1 1 3 
Non-Adap     1 1 5 

comprehension of the automation Adap     1 2 3 
Non-Adap       2 5 

controllability of the automation Adap     2   4 
Non-Adap     1   6 

driving in general Adap   1 1 1 3 
Non-Adap     2 2 3 

 

I had to look frequently to the activity display Adap 2   3 1   
Non-Adap 1   2 2 2 

I wouldn’t have needed the activity display Adap   3 1 1 1 
Non-Adap 4 2   1   

 
Overall evaluation. Table 2-4 shows the overall evaluation of the two prototypes. The 
adaptive prototype shows the greatest values. Especially the learnability, the usability and 
the comfort are evaluated very high. On the other hand, the non-adaptive prototype is 
evaluated more negatively with regard to the before mentioned characteristics. The benefit 
of the adaptive prototype is also shown in the last two characteristics. The adaptive 
prototype is evaluated as more useful and more pleasant. So far the benefit was more 
obvious than the necessity of an adaptive approach. By looking at the overall ratings for 
the non-adaptive prototype the necessity becomes clear. The ratings are only rather good 
with negative outliers whereas as the results for the adaptive prototype are quite good to 
very good with no negative outliers. 
 
 

Table 2-2: Subject rating of the transitions: For both prototypes both directions were rated 
separately but are shown in one table. For “Adap”-prototype additional a distinction between curve 
and straight segments was made, therefore more ratings were available 

Table 2-3: Subject rating of the activity display: -2/2 means totally incorrect/correct, -1/1 
means quite incorrect/correct, 0 is neutral 



 
The prototype was… Prototype -3 -2 -1 0 1 2 3   

bad Adap           4 2 good Non-Adap         3 1 2 

uncomfortable Adap           3 3 comfortable Non-Adap   1 1 1   3 1 

difficult to learn Adap           1 5 easy to learn Non-Adap   1     1 4 1 

difficult to use Adap           1 5 easy to use Non-Adap   1   1 2 2 1 

useless Adap         1 2 3 usefull Non-Adap         4 2 1 

annoying Adap         2 2 2 pleasant Non-Adap     1 2 1 2 1 

 
Conclusion and Perspective 
The paper analysed driver intention models in context of partly automated vehicles and a 
conflict prevention strategy. Therefore two models, a driver and situation adaptive model 
and a model based on an average driver were implemented. Thereby the driver and 
situation adaptation was achieved by using fuzzy logic with adaptive fuzzy sets and rules. 
The fuzzy sets were trained offline during 90 seconds, which is quite short. The benefit 
and necessity of the adaptive intention model compared with the non-adaptive model 
could be shown. Even though the learnability of the non-adaptive model was quite easy for 
nearly all subjects through the activity display. This was not sufficient. The model had to be 
adaptive to obtain very good results. In the next step the conflict detection will be further 
improved. The goal is to extend the conflict detection by classifying the reason for the 
conflict. By knowing the reason for the conflict this allows to adapt the automation 
behaviour on the manoeuvre and/or trajectory level to the driver. This would be another 
strategy of conflict prevention. The advantage would be to reduce the number of 
transitions and thus to increase the acceptance on partly automated vehicles. Therefore 
an observer model will be implemented to learn the driver behaviour.  
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