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ABSTRACT 
 
This paper presents a quasi-unsupervised methodology to 
detect endmembers within an hyperspectral scene and to 
derive a pixel-wise classification on its basis. The 
endmember detection step takes as input an overcomplete 
spectral library, and detects the materials within a scene by 
analyzing derivative features under the sparsity assumption. 
The purest pixels for each detected material are then fed to a 
classifier based on synergetics theory, which is able to 
produce accurate classification maps on the basis of a 
restricted training dataset. As the classifier projects the 
image onto a subspace composed by the classes of interest 
found in the first step, a focused dimensionality reduction is 
performed in which every dimension is semantically 
meaningful. 
 

Index Terms— Hyperspectral image classification, 
sparsity, spectral unmixing, synergetics, endmember 
detection.  
 

1. INTRODUCTION 
 

Hyperspectral data are characterized by very rich spectral 
information, which makes them apt to detecting targets of 
interest, but are affected by several specific drawbacks, 
caused by their high dimensionality and moderate spatial 
resolution. Firstly, the very high dimensionality of these data 
introduces a series of problems, summarized by the principle 
known as curse of dimensionality. As in most cases not all 
the bands are useful for a given application, a preliminary 
step of band selection can be performed. Alternatively (or in 
addition), the data are often projected on a lower-
dimensionality space to aid data exploration and improve 
computation performances. This is usually a step preceding 
other operations such as classification and target detection 
[1]. Some of the most widely used dimension reduction 
techniques in remote sensing are based on principal 
component analysis (PCA) [2]. If the user desires to 
differentiate different classes of interest, however, such 
approaches may not be optimal, as in general the dimensions 
in the subspaces do not convey any semantics, and therefore 
may not match the user's needs. Another main drawback of 

hyperspectral sensors is their limited spatial resolution with 
respect to panchromatic or multispectral sensors, which 
causes the spectra associated with the image elements to be 
usually composed by a mixture of several materials on 
ground. Spectral unmixing algorithms try to quantify the 
fractions of pure spectra (or endmembers) within a mixed 
pixel. Nevertheless, such algorithms rely on the assumption 
that it is possible to identify a pure pixel for all the classes of 
interest within the image, which is not always the case. 

This paper introduces two novel techniques in 
hyperspectral image processing which try to overcome the 
described problems by means that could be thought as 
opposite to each other. On the one hand, a semi-automated 
process using sparse approximation and derivative features 
is presented, which identifies the classes of interest within an 
image by using an external overcomplete spectral library. On 
the other hand, a classification approach for hyperspectral 
data based on synergetics theory analyzes the image within a 
user-defined subspace, which helps at focusing on the 
relevant information for a given classification task. The 
output of the first algorithm can be used to build a subspace 
for the second, thus achieving a semi-automatic 
classification of the data, carried out in a “semantic” 
subspace, i.e. a subspace in which each dimension is related 
to a class of interest.  
 

2. ENDMEMBER DETECTION USING SPARSE 
APPROXIMATION AND DERIVATIVE METHODS 

 
The identification of classes of interest in a hyperspectral 

image is a non-trivial issue affecting most hyperspectral 
analysis algorithms, including the synergetics-based 
classification described in section 3. With the aim of 
providing an accurate classification map with ideally no 
supervision, we introduce a semi-automated selection of the 
materials present within an image based on sparse 
approximation and derivative spectroscopy. 

We consider to have available a spectral library 
containing in situ measured spectra of targets. As the 
number of entries in the spectral dictionary is higher than the 
dimensionality of the image, the spectral library is 
overcomplete and the estimated coefficient vector for each 
image element is highly sparse. Under this condition, we 
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determine the best combination of endmembers using a 
sparse approximation method [3], drastically reducing the 
dimensionality of the spectral library by considering only 
relevant entries. As the algorithm works with external 
spectral libraries, no expensive learning or endmember 
selection steps are needed. Being that the library elements 
are highly correlated, it is difficult to correctly detect them 
in an image. Such coherence, as well as the dependence of 
the scene from the illumination conditions, is decreased by 
analyzing the spectra derivatives, both in the spectral library 
and in the image. The use of derivative spectroscopy for 
resolving the fine structures of overlapping spectral features 
is well known, as absorption features are sharpened while 
broad features are suppressed in the process [4]. Assuming 
that any mixed pixel consists of linearly mixed materials, the 
absorption features exhibited by the pure spectra will be 
discernible in the mixed spectra. 

The proposed algorithm was tested on a 500 x 500 urban 
scene acquired over the city of Munich, Germany by the 
hyperspectral HyMAP sensor, with 125 bands and a spatial 
resolution of 4m. The spectral library employed contains 
160 spectra identifying the same number of materials [5].  
An abundance map for red bricks produced with the 
proposed method and a comparison with the result obtained 
using the original spectra are reported in Fig. 1. 
 

3. HYPERSPECTRAL IMAGE CLASSIFICATION 
BASED ON SYNERGETICS 

 
This section introduces a classification methodology for 

hyperspectral data based on synergetics theory, in which the 
subspace on which the data are projected is defined by the 
user. Synergetics is a two decade old theory describing the 
spontaneous formation of patterns and structures in a system 
through self-organization [6]. Applications based on 
synergetics have been derived in the pattern matching and 
image classification domains [7,8], but they have often been 
limited by the dependency of such systems on scaling, 
rotation and shifting of the images [6]. These drawbacks can 
be discarded in applications to hyperspectral data performed 
in the spectral domain, as each image element is analyzed 
separately, and is represented as a data point projected in a 
subspace composed by a set of user-defined prototype 
vectors, belonging to some classes of interest. The pixel may 
then be represented as a particle on a potential surface, built 
as a manifold in this subspace. After resolving the dynamics 
of its movement on the surface, the pixel is attracted by one 
of several possible final states, with each one being 
associated with a user-defined class, and hence classified 
(Fig. 2).  Such approach could be considered similar to 
Orthogonal Subspace Projection [9], but an important 
difference is that synergetics theory ensures that a solution 
always exists for each image element and that it is unique. 

As typical synergetics-based systems have the drawback 
of a rigid training step, we modify it to allow the selection of 

user-defined training areas, used to weight the prototype 
vectors through attention parameters: if n samples are 
available for any given class, n independent classifications 
are obtained on the basis of a single training sample per 
class, with the rest of the training set employed to shape the 
potential surface of Fig. 2 in order to minimize false alarms 
for each single classification. A final classification map is 
produced through majority vote of the independent 
classifiers. As the majority vote improves final results only if 
the single classifiers are accurate enough, the proposed 
technique yields better results when employed on natural 
scenes (e.g. vegetation or mineralogy applications), as it is 
not able to capture relevant intra-class variations. 

Fig. 3 shows a sample classification based on synergetics, 
performed on the AVIRIS Salinas dataset, composed of 512 
x 217 samples with 192 spectral bands, with the water 
absorption bands removed as in [10]. The overall 
classification accuracy (OA), obtained on the basis of only 
20 training samples per class, is OA=85.41 %, while the 
average accuracy per class (AA) is AA=89.81 %. These 
results are comparable to the ones obtained through Neural 
Networks with a larger training set in [10] (OA= 87.55%, 
AA= 88.04%).  
 

4. COMBINING BOTH METHODS: 
EXPERIMENTAL RESULTS 

 
The methods presented in Sections 2 and 3 can be 

effectively combined to derive a semi-automated 
endmember detection and classification procedure. We 
analyze a subset of the AVIRIS Cuprite dataset, composed 
of 200 x 300 samples with 184 spectral bands (water 
absorption bands removed). The data are represented as 
reflectance values, in order to allow a direct comparison 
with the Aster spectral library 2.0 [5]. The library, 
containing 813 spectra belonging to natural and man-made 
materials, has been used as input to estimate the content of 
the scene. All spectra in the library and all image elements 
are first normalized, so that their Euclidean norm is equal to 
1. Derivatives features are then extracted from both the 
laboratory spectra and from the image, and used as input for 
the endmember detection algorithm. The method found 23 
materials in the scene, most of which belonging to minerals 
widely acknowledged to be present in the area.  In a second 
step, the 10 purest pixels for each class have been selected 
and fed to a synergetics-based classifier, as briefly described 
in previous section, resulting in 10 independent 
classifications, which have been then combined in a single 
one on the basis of a simple majority vote. 

Results in Fig. 5 show the detected areas for some 
materials: the map agrees with the general interpretation of 
the area, as far as the location of alunite and kaolinite sites is 
concerned [11]. The site is also known to contain jarosite 
and muscovite: the latter justifies the presence of aluminium, 
as it is mostly composed of this metal. 



 
 

 
Figure 1. Red brick abundance estimation. From top 
down: HyMAP test image (RGB composition), 
estimation using derivative spectra, and estimation using 
standard spectra. 

 
Figure 2. Principle of synergetics-based classification. An 
object is represented as a linear combination of two test 
vectors. It is then projected onto a potential surface, and 
classified as it is attracted by one of the possible final 
states, which are associated to classes of interest.  

 

 
Figure 3. From left to right: sample band from the 
Salinas dataset, available ground truth, and 
classification results based on synergetics. 

 

 
Figure 4. Sample band from a subset of the AVIRIS 
Cupirite dataset, with the area analyzed in Fig. 5 
marked in red. 



 

 
Figure 5. Classification based on synergetics for the area 
in Fig. 4 for some endmembers, automatically selected 
from the spectral library [5] by unmixing based on 
sparse approximation without any prior knowledge as 
input. 

 
5. CONCLUSIONS 

 
In this paper we presented two analysis algorithms for 

hyperspectral data, which could be employed together in an 
effective and quasi-unsupervised workflow for classification 
purposes, also at sub-pixel level. 

An automatic endmember detection algorithm is 
presented to identify the materials within an image. 
Derivative spectroscopy is used to highlight absorption 
features in the image, and to achieve illumination 
independence to some degree. Subsequently sparse 
approximation is chosen as a robust estimation method, if 
overcomplete dictionaries are employed. This approach can 
be used to find the relevant classes to be used by the 
synergetics-based classifier, and can represent a good 
alternative for detailed studies on material detection, as well 
as for creating mixed pixel maps, whenever a high number 
of materials is involved. 

A focused dimensionality reduction is then achieved 
through the introduced classification methodology based on 
synergetics theory, which represents the data in a “semantic” 
vectorial space. Such user-defined subspace uses a basis 
derived from the classes of interest chosen by the previous 
algorithm, which are selected as prototype vectors. The 
results obtained are comparable to state of the art 
classification methodologies, and could be easily improved 
by taking into account the spatial distribution of the data, 
through the application of morphological filtering or 

segmentation. The high degree of automatism of the 
proposed technique justifies its practical use in applications 
to natural scenes, for which the homogeneity of the materials 
causes both the endmember extraction algorithm and the 
classifier to produce more accurate results.   
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