AMIRIS – An Agent-Based Simulation Model to Analyse Support Schemes for the Integration of Renewable Energies

1st IATEM Workshop, 4th of September 2012 Matthias Reeg

Project Consortium

DLR – German Aerospace Center, Institute of Technical Thermodynamics, Department of System Analysis and Technology Assessment (Project Coordinator)

CIRIUS - Stuttgart Research Center on Interdisciplinary Risk and Innovation Studies

IZES - Institute for FutureEnergySystems

Thomas Kast Simulation Solutions

Funded by: German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Thomas Kast Simulation · Solutions

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Energy Economic Background

- Electricity generation from renewable energy resources (RES) in Germany has now reached a relevant magnitude for the energy sector: 20 % in 2011¹
- Reorganization of institutional, technical and financial aspects is needed to achieve political goals
 - GHG emissions: 80%
 RES share: 80% in electricity production
 by 2050
- In this process of transformation
 - > a huge variety of actors from different social arenas is involved, which
 - > are connected via complex interdependencies and
 - > react very differently to changes in the **energy policy framework**

¹BMU (2012): Erneuerbare Energien in Zahlen

EEG 2012 Amendment – Market Premium

- German Renewable Energy Source Act (EEG) provides feed-in-tariffs (FIT) and buy-off of electricity by the transmission system operator (TSO) for the RES power plant operator (PPO) since 2000.
- After successful market introduction of RES, market integration is seen as next big step.
- Since 2012: Direct marketing of RES is supported by the optional 'market premium' (MP)

 \rightarrow Criticism that market premium will only cause find-fall profits

AMIRIS - Our agent-based modelling (ABM) Approach

► AMIRIS as a sound scientific policy device for the energy transition

We use advantages of ABM to model agents with:

- Autonomous behavior
- Own goals
- Adaptation of strategies
- Cooperation
- Imperfect knowledge
- Heterogeneity
- Prototyped market orientated behavior

We conduct sound actor analysis based on theoretical assumptions derived from sociological neo-institutionalism with:

- Document analysis
- Semi-structured interviews
- Expert workshops

We build an ABM as policy analysis and design tool to:

- Analyse impact on agents as result of changes in policy design (micro-economic effects)
- Analyse interdependencies and interactions of agents
- Analyse impacts on overall system (macro-economic effects)

AMIRIS Model Structure

Actor Analysis I - Intermediaries

1. Differentiation for first static simulation runs (no competition):

	Prototype	Capital resources (million €)	Market premium	Tariff	Forecast quality
(1)	Big national utility	100	2012	FIT+X	Good
(2)	International utility	15	2012	FIT+X	Good
(3)	Big municipal utility	15	2012	FIT+X	Medium
(4)	Municipal utility "Pioneer"	15	2012	FIT+X	Good
(5)	Small municipal utility	7	2012	FIT+X	Bad
(6)	Green electricity trader for households	7	2012	FIT+X	Good
(7)	Green electricity trader for business/industry	7	2012	FIT+X	Good
(8)	Green electricity trader for local marketing	1	-	FIT+X	Medium
(9)	Functional intermediary as spin-off from a big utility	3	2012	FIT+X	Good
(10)	Functional intermediary as start-up	0,1	2012	FIT+X	Medium

2. Further differentiation for dynamic simulation runs (with competition):

- Searching cost for contract partners
- Multiple marketing strategies: market premium, green electricity privilege, local direct marketing, bidding on reserve and balancing energy market

Intermediary Agents – Cost Structure

	Fixed costs					Variable costs			
1.	Office rent		133	€/a*m²	1.	EEX Trading fee	0,0075	€/MWh	
2.	Office space factor:				3.	Specific labour costs (staff)	0,052	€/MWh	
	Number of employees	(E) < 5	42	m²∕E		Supervised volume / employee	1.250.000	MWh/E	
		5 - 10	36	m²/E					
		10 - 20	35	m²/E	4.	Forecasting costs:		€/MW	
		20 - 50	26	m²/E		Small portfolio	500-1500	MW>€/MW:	15
		> 50	25	m²/E		Medium portfolio	1500-3000	MW>€/MW:	10
3.	EEX access		25.000	€/a		Big portfolio	3000-5000	MW>€/MW:	5
4.	IT-/ Office equipment		10.000	€/a*E	5.	Forecasting quality:			
5.	Labour costs:					Good	Number of purchased forecasts:		3
	Trader		130.000	€/a*E		Medium	Number of purchased forecasts:		2
	C	Other staff	65.000	€/a*E		Bad	Number of purchased forecasts:		1

- 1. At end of each year: intermediary agents carry out balance check and calculate EBIT per employee.
- 2. According to EBIT the tariff is adjusted if necessary:
 € 100,000-300,000: bonus remains the same
 € 300,000-500,000: bonus is risen by 25 %
 > € 500,000: bonus is risen by 50 %
 € 50,000 100,000: bonus is lowered by 25 %
 < € 50,000: bonus is lowered by 50 %

Actor Analysis II - Power Plant Operators

1. Differentiation by av. feed-in-remuneration, size of plant, technology and resource used:

Class 1: co-generation 5-20 MW fed with old wood and forest residues; class 2: innovative technologies (e.g. wood gasification); class 3: biogas 50-1000 kW fed with liquid manure and renewable crop materials; class 4: biogas > 5 MW fed with bio-waste

- 2. Further differentiation for dynamic simulation runs (with competition):
 - Owner structure: private persons, farmers, funds, project developers, municipal utilities and big utilities.
 - Characterized by: expectations of return on investment, readiness to assume risk, 1st, 2nd and 3rd mover.

Model Parametrisation

Jan 2012	Drototuno	Wind	Wind (offshore)	DV/	Biomass		
	Ргототуре	(onshore)		PV	solid	biogas	
(1)	Big national utility	5 %	35 %	-	20 %	30 %	
(2)	International utility	40 %	-	-	35 %	-	
(3)	Big municipal utility	1 %	-	0 %	5 %	5 %	
(4)	Municipal utility "Pionier"	10 %	-	0 %	0 %	5 %	
(5)	Small municipal utility	1 %	55 %	-	-	-	
(6)	Green electricity trader for households	1 %	-	0 %	0 %	-	
(7)	Green electricity trader for business/industry	2 %	-	0 %	15 %	50 %	
(8)	Green electricity trader for local marketing	-	-	-	-	-	
(9)	Functional intermediary as start-up	10 %	10 %	0 %	0 %	-	
(10)	Functional intermediary as spin-off from a big utility	30 %	-	100 %	25 %	10 %	
	Total initial capacity in direct marketing	12.050 (MW)	48 (MW)	58 (MW)	933 (933 (MW)	
	Total share of installed capacity in direct marketing	40 %	24 %	1%	19	%	

Following increase of direct marketed capacity until 2015 is assumed:

First Results I: Impact on Wind PPOs (static simulation run)

- Additional specific earnings in €/MWh by class compared to pure FIT-system run:
 1-3: about 5,1 €/MWh // 4: 4,2 €/MWh
- For example:
 - 1 MW turbine with 1500 full load hours earns about 7500 €/a extra.
- Investment for remote control²: old wind turbines: > 1000€ / turbine new wind turbine: < 1000€ / turbine
- Sufficient for extra investment in more demand orientated feed-in (e.g. storage)?

² Rostankoswki et al. (2012): Kurzgutachten: Anpassungsbedarf bei den Parametern des gleitenden Marktprämienmodells in Hinblick auf die aktuelle energiewirtschaftliche Entwicklung

First Results II: Impact on Intermediaries (static simulation run)

- Intermediaries 2 und 10 seem to profit the most from introduction of MP
- This is mainly due to fixed direct marketing shares at start of simulation
- No intermediary can pay higher bonus than these two (7,5 €/MWh in 2013, see next slide)

 \rightarrow hint leading to the conclusion that these two will be able to defend their position.

- Compared to others, intermediary 10 also seems to profit from balance energy payments
- Results have to be interpreted with caution as revenues are <u>highly</u> <u>dependent</u> on balance energy payments

First Results III: Bonuses Paid by Intermediaries

Conclusions

- New approach for sound policy advice which takes stakeholders perspective into account.
- New tool to "test" support schemes and market designs.
- Whether MP only produces wind-fall-profits depends on the question if actors will invest extra earnings on equipment for remote control and more demand oriented feed-in → so far they are not forced to do so!
- MP has definitely created a market for direct marketing, but height of support is questionable.

Outlook

- Future work will deal with more dynamic sampling of the model.
- Implementation and analysis of different market-designs for time periods when high shares of RES are integrated into the energy system.

Thank you very much for your attention...

...Questions?

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

German Aerospace Center

Institute of Technical Thermodynamics | Systems Analysis and Technology Assessment Pfaffenwaldring 38-40 | 70569 Stuttgart | Germany

Dipl. Ing. Matthias Reeg

Telephone 0711/6862-282 | Telefax 0711/6862-747 | <u>matthias.reeg@dlr.de</u> www.DLR.de

