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Comparison of Methods
Analyzing Bifurcation and
Hunting of Complex Rail
Vehicle Models
The stability assessment is an important task in the mechanical design of railway
vehicles. For a detailed model of a railway passenger coach, the hunting behavior
depending on the running speed, on wheel-rail contact conditions, and on different model
configurations is analyzed using two different methods: The path-following method based
on a direct computation of limit cycles enables an automatic computation. However, due
to the direct computation, which exploits the periodicity of the solution, this method is re-
stricted to strictly periodic behavior. In the brute-force method, an initial disturbance
limited to a certain time interval is applied to the model. This method allows the analysis
of the behavior independently from the type of the solution, but requires manual interven-
tion. The comparison of the results obtained with both methods shows a good agreement
and thereby the reliability of the results and the methods. [DOI: 10.1115/1.4006825]

1 Introduction and Motivation

Investigations of hunting or instability of railway vehicles pos-
sessing wheelsets with conventional solid axles is an important
topic of railway vehicle dynamics. The term hunting denotes a
self-excited, sustained lateral and yaw motion of wheelsets and
bogies, occasionally interconnected also with large carbody
motion. The lowest speed, at which the bogie hunting appears, is
called critical speed. The determination of the critical speed is an
important task in the development and design process of railway
vehicles.

If the vehicle runs faster than the critical speed, motions excited
by disturbances may not always die out, but lead to permanent
hunting motions of the vehicle. Although these motions can be
stable in the mathematical sense, this behavior is called “unstable
running.” Since large hunting motions can lead to high lateral
wheel-rail forces and thereby to risk of track shift, this behavior
must be avoided in regular operation. In other words, the critical
speed is limiting the operational running speed of the railway
vehicle.

Theoretical investigations of railway vehicle stability started
with studies founded on linearized models once the safety risk due
to occurrence of hunting was recognized during the mid-twentieth
century. At a later date, the models used have been enhanced con-
sidering the nonlinearities in the wheel-rail contact and other ele-
ments of the system vehicle-track. Moelle and Gasch [1] and True
et al. [2–6] can be mentioned if only in a representative manner.
True and his co-workers investigated various aspects of nonlinear
railway vehicle stability analysis under application of the
continuation-based bifurcation analysis (path-following method)
developed by Kaas-Petersen [7].

From many other papers related to bifurcation of railway
vehicles, we can mention the works by Stichel [8], Molatefi et al.
[9] and Hoffmann [10], who investigated the stability of freight
wagons on straight tracks, or stability analyses on curves by Zboin-
ski and Dusza [11–13], respectively. Investigations of the influence

of track elasticity on bifurcation and critical speed have been car-
ried out by Kaiser and Popp [14] and by Zhai and Wang [15].

The publications dealing with nonlinear stability assessment of
railway vehicles often investigate simplified models; either a sin-
gle wheelset [16–18], or a half-vehicle model [1–7,9,19,20],
respectively. A 2-axle wagon is used in papers [8,10–13]. The
modeling of wheel-rail contact is sometimes simplified; e.g. the
profile shape is reduced to a cone with a nonlinear stiffness repre-
senting the flange contact [2,5,7,16–21]. Published studies often
use only theoretical, design profile shapes of wheels and rails
[1,4,6,9,10,12–14,22]. Bifurcation analyses dealing with worn
shapes of wheel and/or rail profile are rare [8,11].

The investigated systems vehicle-track often represents only a
few degrees of freedom (DOF). The system used by Zboinski and
Dusza [11–13] possesses 18 DOF, Wickens [23] applies a 21
DOF-system; Kim and Seok [24] investigate a 31 DOF-system.
The bifurcation analysis is seldom carried out for models with
large number of DOF, using a nonlinear wheel-rail contact model
and real design as well as worn profile shapes as it is presented by
one of the authors in Refs. [25–27]. Considering a complex multi-
body vehicle/track model including variations of wheel-rail con-
tact geometries and friction conditions in railway service, the
actual behavior of a railway vehicle at the stability limit can vary
significantly depending on the nonlinear properties of the actual
wheel-rail contact conditions as presented in Refs. [25,27].

The stability assessment in railway rolling stock industry
requires the possibility to apply the stability analysis on large,
complex vehicle models under realistic operating conditions. This
results in a large number of computations considering various
wheel-rail conditions [27]. The present article deals with an appli-
cation of bifurcation analysis for the stability assessment of a
complex railway vehicle model developed in the rolling stock
industry. Two methods of bifurcation analysis are presented and
their performance compared.

This article is structured as follows. The next section shows the
nonlinearities of the system vehicle-track and their impact on the
dynamic behavior of this system. Section 3 presents the methods
used for bifurcation analysis of railway vehicles and explains
more in detail both methods compared. The vehicle, wheel-rail
contact conditions used and the results of comparisons are pre-
sented in Secs. 4, and 5 presents the conclusions of comparisons.
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2 Nonlinear Behavior of the Vehicle-Track System

The dynamic behavior of a railway vehicle is strongly influ-
enced by nonlinear effects. The most influential nonlinearities are
related to the wheel-rail contact, which is nonlinear in several
aspects: The first nonlinearity is the relation between the lateral
displacement of the wheelset in the track and the difference of the
rolling radii of the wheels. This relation strongly influences the
frequency of the hunting motion. The second nonlinearity is the
relation between the creepage in the wheel-rail contact and the
tangential forces, which are responsible for the guidance of the ve-
hicle. This nonlinear relation results from the saturation character-
istics, since the tangential forces cannot exceed the maximal
friction force occurring for the case of sliding.

Although the nonlinear effects of the wheel-rail contact can
usually be considered as the most influential, other nonlinear
effects can be caused by certain elements used in the suspension
of the vehicle. Examples are:

(1) Hydraulic dampers with blow-off valves limiting the
damper force, e.g., used for the yaw damping

(2) Rubber bushings with nonlinear characteristics
(3) Bump stops, i.e., elements with clearance
(4) Suspension components with friction or friction yaw damp-

ing, respectively
(5) Geometrical nonlinearities, e.g., anti-roll device with

inclined links

The behavior of a nonlinear system can be characterized by its
attractors. In the case of a railway vehicle, only one attractor is de-
sirable, namely the centered stationary running of the vehicle. All
other attractors including permanent hunting motions must be
considered to be potentially dangerous and thereby have to be
avoided in regular operation. A generic scheme of the nonlinear
behavior of a wheelset is displayed in Fig. 1, showing the maxi-
mum lateral displacement depending on the running speed.

The nonlinear behavior displayed in Fig. 1 already occurs for a
single wheelset, which can be considered as a self-excited oscilla-
tor. However, real railway vehicles are far more complex: Even
the simplest vehicle has two wheelsets, which of course interact
with each other via the suspensions and the carbody. A railway
passenger coach or a locomotive usually possesses four wheelsets,
articulated vehicles like motorized units can have ten or even
more wheelsets. Obviously, the analysis of a system consisting of
several coupled self-excited subsystems and nonlinear coupling
elements is challenging. It will also turn out that this structure of
the system has an impact on the type of the occurring attractors.
Furthermore, as already mentioned, elements used for the suspen-
sion can have nonlinear characteristics. The analysis of such a sys-

tem becomes even more complicated due to the high number of
parameters, which can be varied. Such parameters are, e.g., the
profiles of the wheels and the rails, which have a strong influence
on the rolling radii difference, the friction coefficient occurring in
the wheel-rail contact, or parameters of the suspension compo-
nents. The following section presents methods used for bifurcation
analysis of railway vehicles.

3 Bifurcation Analysis Methods

The stability of a dynamical system is often investigated by lin-
earizing the system equations with respect to a reference state and
evaluating the eigenvalues of the linearized system. However,
Fig. 1 shows that the lowest running speed vcrit, at which limit
cycle oscillations can occur, is lower than the running speed
vcrit;lin, at which the reference state loses its stability. Therefore,
this stability assessment is not useful in this case.

An alternative is the application of the quasi-linearization. The
basic idea of this method is to approximate the motion of the sys-
tem by a periodic function with only one frequency. If the system
contains a nonlinear element described by the nonlinear function
f ðxÞ, this function is approximated by the linear expression k � x.
Since the motion of the entire system is described by a periodic
function with only one periodicity, the input x can be expressed
by x ¼ x̂ sinðxtþ bÞ, where x̂ indicates an amplitude, which has
to be chosen for the approximation. Then, the coefficient k is
determined by an integral over a full period 0 � / � 2p of the
input x:

k ¼ 1

px̂

ð2p

0

f ðx̂ sin /Þ sin /d/ (1)

In railway dynamics, this method is used for the linearization of
the rolling radii function DrðyÞ depending on the lateral shift y of
the wheelset, see, e.g., Ref. [28]. The resulting linear coefficient is
known as the equivalent conicity. Usually, this is the only nonli-
nearity, which is treated that way, i.e., in most cases this method
is not applied to the nonlinear relation between the creepage and
the tangential forces or on other nonlinear components of the ve-
hicle. The advantage is that the stability can be evaluated by the
consideration of the eigenvalues of the linearized system. The dis-
advantage is that this method provides a comparatively rough
approximation of the actual system behavior.

The method quasi-linearization, which uses a periodic function
with only one frequency, can be extended by using a Fourier se-
ries for the approximation of the periodic motion. This leads to
the Galerkin-Urabe method, which had been applied to railway
vehicles and integrated into the software package MEDYNA by
Moelle [29]. The time history of each DOF is approximated with
a Fourier series, whereas the coefficients are determined by a min-
imization algorithm. The main disadvantage is the high order of
the minimization problem requiring a high computational effort:
If the system has nDOF degrees of freedom and k harmonic waves
are taken into account, the order is nDOF � ð2k þ 1Þ. For a system
having 20 DOFs, which is not a very high number, and for taking
5 harmonic waves into account, the algorithm has to solve a mini-
mization problem of 220 variables.

Computations of bifurcation diagrams using commercial simu-
lation tool are usually carried out applying numerical simulations
called a brute-force method. The procedure can be a “ramping,”
which is simulation starting from a limit cycle at a high speed and
reducing the speed very slowly until the oscillations stops [3]. An
application example of a similar method is described by Stichel
[8]. A run over an initial lateral disturbance is simulated at a rather
high speed. The simulation continues on an undisturbed track until
the oscillation of the vehicle has reached constant amplitude. The
vehicle speed is then reduced and a new simulation is started with
initial values from the previous simulation. This is repeated until
the oscillating solution disappears.Fig. 1 Bifurcation diagram for a generic wheelset
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Another variant of the brute-force method is a set of numerical
simulations, in which the limit cycle oscillations occur as a result
of initial conditions or lateral excitation in the initial section of
track and the simulation continues on an ideal track. In all var-
iants, it has to be checked for each result, whether all transient
processes have died out and the attractor is reached. This method
requires rather intensive manual work. It allows the determination
of the dominating attractor with largest amplitudes. However,
doubts about coexisting solutions, which were possibly not identi-
fied by this method, remain.

A more exact solution is provided by the path following method
(continuation). A software tool PATH for the continuation-based
bifurcation analysis has been developed at the Technical Univer-
sity of Denmark [7] and recently implemented into a commercial
multibody simulation tool SIMPACK by Schupp [22].

While the path-following method has been used mostly with
rather limited models and with non-commercial simulation com-
puter codes, the rather straight forward method using a set of nu-
merical simulations (brute-force method) is applicable in any
multi-body simulation code including commercial tools. Both of-
ten referenced methods were compared by an example of a large
nonlinear model of a railway vehicle using the simulation tool SIM-

PACK. The following subsections describe the compared methods
more in detail.

3.1 Brute-Force Method. The application of the brute-force
method requires nothing more than the existence of the solution of
the equations of motion given by:

_zðtÞ ¼ fðzðtÞ; tÞ (2)

The basic idea is to apply a disturbance to excite the system. After
the excitation has vanished, the system behavior moves towards
the attractor. However, finding attractors requires interventions: It
requires some experience to choose a disturbance, which will
make the system reach the region of attraction of the wanted
attractor, and also to choose a suitable interval of the integration
process to make the transient motions die out. Whether the attrac-
tor is reached has to be checked visually from the diagrams.

The brute-force method used in the present study consists of a set
of numerical simulations on ideal track, following a single lateral
disturbance with a span of 10 m. The amplitude of the limit cycle or
the absolute maximum displacement in case of quasi-periodic oscil-
lations, respectively, is identified behind the transition, i.e., when the
attractor is reached. A visual control is used to check if the transient
motions died out. The experience shows that a simulation of a few
seconds after the disturbance was usually sufficient. These numeri-
cal simulations were repeated for a set of speeds including those
leading to limit cycle oscillations. At first, a large disturbance with
an amplitude of 8 mm is used to identify the nonlinear critical speed.
Then, a set of simulations with speed variation is repeated applying
a small disturbance with an amplitude of 0.5 mm. If the solution
without oscillations appears for speeds higher than the nonlinear
critical speed, a set of simulations is carried out for each speed with
a disturbance amplitude varying from small to large values.

A point of the unstable branch for the considered speed then
lays between the value of the excitation amplitude leading to a
stationary solution and the next higher amplitude leading to an
oscillating solution.

The main part of the presented results has been calculated using
the described procedure with manually started simulations. A
semi-automatic bifurcation analysis has been developed and tested
using the same procedure as described above with the simulations
controlled by a steering code. This procedure allows an automatic
calculation of bifurcation diagrams; however, due to many varia-
tions of possible shapes of bifurcation diagrams, manual adjust-
ments are often required, too.

3.2 Path-Following Method. Using the path-following
method, a difficulty related to the finding of an attractor is to

determine whether the attractor is reached and all transient
motions have died out. The version of PATH used by Schupp [22]
solves this problem by using a direct calculation, which exploits
the periodicity of the limit cycle.

Generally, the dynamics of the system is described by an initial
value problem given by:

_zðtÞ ¼ fðzðtÞ; tÞ; zðt ¼ t0Þ ¼ z0 ) z ¼ zðz0; tÞ (3)

The first expressions are the equations of motion; z0 is the initial
state. Therefore, the current state z of the system depends on the
current time t and the initial state z0.

If the system performs periodic motions, its state at the begin-
ning of a period is equal to the state after the period. If the dura-
tion of the period is T, this condition can be formulated by
zðtÞ ¼ zðtþ TÞ. By applying this condition and setting
zðt ¼ 0Þ ¼ z0, the initial value problem is transformed into a
boundary condition problem: A residuum function

rðz0; TÞ ¼ zðz0;TÞ � z0 ) rðz0; TÞ ¼ 0 (4)

depending on the initial state, z0 and the period T is defined. By
setting the residuum function to 0 and solving this system of equa-
tions, z0 and T are obtained. The advantages of this direct calcula-
tion are the determination of the periodic attractor with defined
accuracy and the avoidance of any transient effects. However,
since this method exploits the periodicity of the solution, it can
only be applied to periodic solutions. Other cases like quasi-
periodic or chaotic motions cannot be handled.

Although the dynamical system can maintain its structure, its
description has to be adapted for the direct calculation of the limit
cycles. A railway vehicle moves along the track and covers an
increasing distance, so that the longitudinal displacement sðtÞ of
the wheelsets, the bogie frames and the carbody increases perma-
nently. Therefore, this motion cannot be periodic. To describe
fluctuations of the longitudinal motion, this motion is expressed
by a superposition of a reference motion with the constant running
speed v0 and a relative motion ~sðtÞ, which is the actual degree of
freedom:

sðtÞ ¼ s0 þ v0tþ ~sðtÞ ) _sðtÞ ¼ v0 þ _~sðtÞ ) €sðtÞ ¼ €~sðtÞ (5)

Using this description, the motion ~sðtÞ can be periodic. In a similar
way, the rolling motion of the wheelsets, which also increases, is
formulated.

The equations of motion can depend on several parameters. In
the case of a railway vehicle, an important parameter is the run-

ning speed v0. For a given value v
ðiÞ
0 of the running speed, the ini-

tial state z
ðiÞ
0 and the period duration TðiÞ fulfill the condition

rðvðiÞ0 ; z
ðiÞ
0 ; T

ðiÞÞ ¼ 0. Based on the known solution z
ðiÞ
0 and TðiÞ, the

path-following method can determine the solutions z
ðiþ1Þ
0 and

Tðiþ1Þ for a new value v
ðiþ1Þ
0 . The program PATH predicts initial

guesses for z
ðiþ1Þ
0 and Tðiþ1Þ and automatically adapts the step-

length Dv
ðiþ1Þ
0 ¼ v

ðiþ1Þ
0 � v

ðiÞ
0 for the variation of the parameter.

4 Comparison of Bifurcation Analysis Methods

4.1 Vehicle Model. Both investigated methods of bifurcation
analysis were applied on a model of a double-decker coach with 2
two-axle bogies developed in the rolling stock industry and used
previously for bifurcation stability analysis by the brute-force
method [28]. The model is displayed in Fig. 2.

The carbody of the vehicle is supported on the bogie frame by
secondary suspension consisting of two air springs and an anti-roll
device with inclined links. Lateral bump stops limit the lateral dis-
placement between carbody and bogie frame. The dynamic
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movements of carbody are damped by a secondary lateral damper
on each bogie and in the vertical direction by orifice damping of
air suspension. Two yaw dampers possess a strongly nonlinear
characteristic due to a blow-off valve, which limits the damper
force. Since the yaw dampers are a key component concerning the
running stability of the vehicle, four variants of characteristics are
studied: A configuration without any yaw dampers (noYD) and
yaw dampers having a blow-off force of Fbo ¼ 6 kN ðYD6Þ,
Fbo ¼ 12 kN ðYD12Þ and Fbo ¼ 18 kN ðYD18Þ. The characteris-
tics are displayed in Fig. 3.

The wheelsets are guided against the bogie frame by axle boxes
with swing arms, which are connected to the bogie frame by
three-dimensional spring-damper elements representing bushings.
Two helical primary springs on both sides of the axle box supports
the bogie frame on the wheelsets. This three-dimensional, nonlin-
ear vehicle model in SIMPACK possesses 72 DOFs.

To approximate certain structural deformations of the bogie
frames and the carbody, these components consist of two bodies
linked with a revolute joint and a stiff rotational spring. For the
bogie frame, the revolute joint enables relative rotational motions
around the lateral axis for an approximate description of twisting
deformations. In the case of the carbody, relative rotations around
the longitudinal axis are possible to approximate torsional
deformations.

The wheelsets are considered as rigid bodies. Each wheelset is
supported by a track element consisting of a rigid body, which can
perform vertical, lateral and roll motions. The track element
moves along the track together with the wheelset and is connected
to the environment by linear springs and dampers with parameters
according to ORE B 176 [30]. Thereby, the low-frequent dynami-
cal behavior of the track is modeled.

The wheelset and the track element are connected by two stand-
ard SIMPACK wheel-rail force elements. These elements use a regu-
larization for the determination of the contact point position on
the profiles of wheel and rail. For the normal contact, a very stiff
spring is used, which has a linear characteristic and sets the force
to zero if no interpenetration of the profiles occurs. The tangential
forces are calculated by the FASTSIM algorithm originally devel-
oped by Kalker. From the regularized analysis of the contact ge-
ometry, an equivalent elliptical contact patch is determined. In the
present case, the friction coefficient is set to l ¼ 0:4.

4.2 Calculation Results. The comparison of bifurcation
analysis methods has been carried out for the vehicle with four
differing yaw damper configurations and two variants of wheel-
rail contact geometry. Both wheel-rail contact geometries (called
06A and 06B) achieve similar high levels of equivalent conicity

and consequently a low critical speed. Although the equivalent
conicity for the wheelset amplitude of 3 mm, which is usually
considered in railway practice, is the same for both pairs of wheel
and rail profiles, they possess significantly different contact condi-
tions leading to opposite signs of the nonlinearity parameter of the
contact geometry defined in Ref. [28].

The results in diagrams obtained with the brute-force method
describe the highest amplitude of the lateral motion for the four
wheelsets, i.e., the wheelset, at which the highest amplitude
occurs, is considered. As mentioned before, the maximum ampli-
tude is determined for the attractor, a periodic one as well as
quasi-periodic one, after all transient motions have died out.
These results are indicated by crosses ð�Þ. In the case of the path-
following method, the lateral amplitudes of all four wheelsets are
displayed by lines. Generally, the thick lines indicate the leading
bogie of the vehicle, the thin lines the trailing one. Black lines
refer to the leading wheelset within a bogie, gray lines to the trail-
ing one.

The comparisons of bifurcation analyses using brute-force and
path-following method for wheel-rail contact geometry 06A are
presented in Figs. 4–9. For the model variants noYD and YD6, a
periodic attractor could only be found for the hunting of the front
bogie. In this case, the front bogie performs large motions, while
the motions of the rear bogie are small.

The results of the variant noYD are displayed in Fig. 4. The
periodic attractor could be found in the range of
189 km=h < v0 < 228 km=h. For the variant YD6, the periodic

Fig. 2 Multi-body model of the double-decker coach

Fig. 3 Characteristics of the different yaw dampers used in the
vehicle model

Fig. 4 Without yaw dampers (noYD), profiles 06A: Brute-force
results versus path-following results for hunting of the front
bogie
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attractor exists in the range of 234 km=h < v0 < 394 km=h, as
shown in Fig. 5.

For the variants YD12 and YD18, two coexisting limit cycle
attractors could be found, the one describing the hunting of the
front bogie, the other describing a hunting of both bogies. The
results for the yaw damper YD12 are displayed in Figs. 6 and 7.
Here, the periodic attractor describing the hunting of both bogies
exists only in a comparatively short interval of 300 km=h
< v0 < 312 km=h, while the attractor describing the hunting of
the front bogie covers a wide range of 296 km=h < v0

< 436 km=h. The results for the yaw damper YD18 are displayed
in Figs. 8 and 9. In this case, two isolated periodic attractors,
which describe the hunting of both bogies, occur in the ranges of
297 km=h < v0 < 334 km=h and 362 km=h < v0 < 389 km=h.
Between those two ranges, quasi-periodic behavior occurs for the
hunting of both bogies. The periodic attractor describing the hunt-
ing of the front bogie exists in the range of 296 km=h
< v0 < 379 km=h. As the diagrams in Figs. 6–9 show, in both
cases, the value for the critical speed determined by the path-
following method is slightly higher than the one determined by
the brute-force method.

The comparisons of bifurcation analyses using brute-force and
path-following method for wheel-rail contact geometry 06B are
presented in Fig. 10 for the vehicle with yaw dampers YD12, as
this is the only variant for which the attractors were identified
using the path-following method. There is only a very short attrac-
tor at speed slightly below 200 km/h, so that the nonlinear critical
speed could not be exactly identified. The brute-force method,
however, shows bifurcation diagrams for all yaw damper variants
as can be seen in Fig. 11.

The missing results of the path-following method can be
explained by the quasi-periodic oscillations. The behavior of the
vehicle without yaw dampers on the wheel-rail contact geometry
06A is exemplarily illustrated in Figs. 12–15 on phase diagrams
of lateral displacement of wheelsets and carbody at vehicle speed
of 250 km/h. While the behavior of the wheelsets is nearly peri-
odic, the displacement of the carbody, although much smaller,
shows quasi-periodicity. This can be seen in Fig. 15 displaying
the phase diagram for the yaw motion of the carbody.

Similar behavior can be observed for the combination of the
wheel-rail contact geometry 06B with the yaw damper YD12,

Fig. 5 Yaw dampers YD6, profiles 06A: Brute-force results ver-
sus path-following results for hunting of the front bogie

Fig. 6 Yaw dampers YD12, profiles 06A: Brute-force results
versus path-following results for hunting of both bogies

Fig. 7 Yaw dampers YD12, profiles 06A: Brute-force results
versus path-following results for hunting of the front bogie

Fig. 8 Yaw dampers YD18, profiles 06A: Brute-force results
versus path-following results for hunting of both bogies

Fig. 9 Yaw dampers YD18, profiles 06A: Brute-force results
versus path-following results for hunting of the front bogie
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where only a very small attractor could be identified by the path-
following method. Figure 16 displays the time history of lateral
and yaw carbody displacement showing clear quasi-periodic
behavior for the wheel-rail contact geometry 06B at a running
speed of v0 ¼ 250 km=h. The phase diagrams of lateral displace-
ment in Figs. 17–19 confirm a slightly quasi-periodic motion of
wheelsets of the second bogie and clearly quasi-periodic behavior
of carbody, which explains the failure of the path following
method in the presented conditions.

The distinctive quasi-periodic behavior for the motions of the
carbody and the nearly periodic motions of the wheelsets suggest
that the carbody is excited by the motions of the bogies, whereas
the frequencies of the bogies are not identical, but differ slightly.
Furthermore, it is noticeable that periodic behavior for the variants
noYD and YD6 combined with the wheel-rail contact geometry
06A can only be found if only one bogie is performing large oscil-
lations and the other one only small motions. A periodic attractor
describing a hunting of both bogies only occurs for the variants

Fig. 10 Yaw dampers YD12, profiles 06B: Brute-force results
versus path-following results for hunting of both bogies

Fig. 11 All yaw damper variants, profiles 06B: Bifurcation
curves obtained with the brute-force method

Fig. 12 Without yaw dampers (noYD), profiles 06A,
v0 ¼ 250 km=h: Phase diagram for the lateral displacement of
the wheelsets of the leading bogie

Fig. 13 Without yaw dampers (noYD), profiles 06A,
v0 ¼ 250 km=h: Phase diagram for the lateral displacement of
the wheelsets of the trailing bogie

Fig. 14 Without yaw dampers (noYD), profiles 06A,
v0 ¼ 250 km=h: Phase diagram for the lateral displacement of
the carbody

Fig. 15 Without yaw dampers (noYD), profiles 06A,
v0 ¼ 250 km=h: Phase diagram for the yaw angle of the carbody
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YD12 and YD18. In these cases, the coupling between the bogies
is stronger, which leads to a stronger interaction of the two bogies.
Apparently, the railway vehicle consists of two subsystems, which
have to be synchronized to generate periodic motions of the entire

system. Each bogie consists of a frame and two wheelsets, which
are connected by the comparatively stiff elements of the primary
suspension, while the secondary suspension acting between the
bogie frame and the carbody is softer. Therefore, each bogie can
be considered as a subsystem. The mechanism of the synchroniza-
tion is worth a separate study going deeper into details. The inves-
tigation described above shows, that a synchronization of two
bogies can already be difficult. For more complex multi-body sys-
tems, e.g., vehicles with more than two bogies like articulated
motorized units or vehicles with more complex mechanical
couplings of bodies than conventional vehicles, it can be even
more difficult to achieve this synchronization. Therefore, the
probability of periodic oscillations of such systems can be
assessed as very low.

5 Conclusions

For the analysis of the nonlinear hunting behavior of a railway
vehicle, two methods have been compared, the brute-force method
and the path-following method. The result of the comparison can
be summarized as follows:

The investigation shows that the path-following method based
on a direct calculation of periodic motions can be applied even to
complex multi-body models, which are common in railway dy-
namics. Therefore, the high order of the system, in the present
case 72 DOFs, is not a handicap.

The path-following method provides exact results for periodic
motions. However, the quasi-periodic motions cannot be handled,
since the path-following method exploits the periodicity of the
motions for the direct calculation. Such quasi-periodic solutions
have appeared at a conventional vehicle with two bogies due to
interaction between the bogie motions via the carbody. Even
wider ranges of speeds with quasi-periodic solutions can be
expected at models of more complex vehicles, which would
restrain the application of this method on such large models. Fur-
thermore, the path-following method does not allow a computa-
tion of unstable attractors. The use of this method allows the
automation of the calculation; however, a reliable application on
complex models is not possible. The treatment of quasi-periodic
motions requires new methods as, e.g., given in Ref. [31]. How-
ever, in this work, the method is applied to a comparatively small
system, so the application to systems with high order like a rail-
way vehicle is still challenging.

The brute-force method provides the shape of bifurcation dia-
gram, although with lesser accuracy, independently of vehicle
model complexity and fulfills the needs of railway engineering. It
also allows an assessment of an unstable attractor. The provided
solution with the largest amplitude is the most relevant solution
from the point of view of industrial application. It is in a sufficient
agreement with the solutions obtained by the path-following
method. A reliable automation of the brute-force method is

Fig. 16 Yaw dampers YD12, profiles 06B, v0 ¼ 250 km=h: Time
histories for the lateral displacement yCB and yaw angle wCB of
the carbody

Fig. 17 Yaw dampers YD12, profiles 06B, v0 ¼ 250 km=h:
Phase diagram for the lateral displacement of the wheelsets of
the leading bogie

Fig. 18 Yaw dampers YD12, profiles 06B, v0 ¼ 250 km=h:
Phase diagram for the lateral displacement of the wheelsets of
the trailing bogie

Fig. 19 Yaw dampers YD12, profiles 06B, v0 ¼ 250 km=h:
Phase diagram for the lateral displacement of the carbody
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difficult; manual work is required due to a large variation of possi-
ble bifurcation diagrams.

It can be concluded that the application of bifurcation analysis
for assessment of stability and hunting behavior of large railway
vehicle models, as used today during the development and engi-
neering of railway rolling stock, requires tedious and time con-
suming investigations; an automation as used for other kinds of
multi-body simulations is hardly possible. The presented study
demonstrates that a research on an automated and reliable bifurca-
tion analysis applicable for complex railway vehicle models
remains topical.
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