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ABSTRACT

Polarimetric spectral analysis techniques have been re-
cently introduced for processing multibaseline interferomet-
ric synthetic aperture radar data that are affected by the
speckle phenomenon. In this paper, their phase estimation
accuracy for retrieving the three-dimensional structure of
scatterers from measurements corrupted by multiplicative
noise is examined. The performance of the polarimetric
beamforming, Capon, and MUSIC algorithms is investigated
by Monte Carlo simulations and compared with the polari-
metric Cramér-Rao bound. It is demonstrated by the CRLB
that radar probing systems possessing polarization diversity
offer the potential of considerably improving the information
extracted from the observation space enlarged by scattering
polarimetry. Moreover, it is shown that the polarimetric al-
gorithms lead to noticeably enhanced estimation precision, in
particular in terms of refined resolution, under the condition
of polarization diversity.

Index Terms— Polarimetric multibaseline interferomet-
ric CRLB, polarimetic performance analysis, multi-channel
synthetic aperture radar signal processing, multiplicative
noise, polarimetric array signal processing techniques.

1. INTRODUCTION

In the past, spectral analysis techniques to process single po-
larization multibaseline interferometric SAR data have been
investigated by numerical simulations and the Cramér-Rao
lower bound (CRLB) [1, 2]. Recently, a new way of pro-
cessing polarimetric multibaseline InSAR observations has
been introduced: Beamforming, Capon, and MUSIC have
been adapted to the scenario of scattering polarimetry [3, 4]
based on ideas in [5, 6]. The polarimetric algorithms have
been examined using real polarimetric multibaseline InSAR
data [7, 8, 9].

In this paper, the performance of these new methods is
evaluated by Monte Carlo simulations and compared with the
CRLB extended to the polarimetric case. It is shown that po-
larimetric analysis techniques enhance significantly the verti-
cal resolution by separating closely located scatterers having
diverse polarizations.

2. POLARIMETRIC SIGNAL MODEL

The polarimetric multibaseline InSAR data vector y(l) with
p sensors is modeled as

y(l) =
Ns∑

m=1

√
τmxm(l)� b(θm) + n(l) (1)

where L is the number of statistically independent samples,
l = 1, . . . , L, and � the Schur-Hadamard product (elemen-
twise multiplication). The polarimetric measurement vector
y(l) ∈ Cp̃ with p̃ being the product of the number of prob-
ing devices p and the polarization number Npol, p̃ = pNpol.
For classical single polarization observations Npol = 1, and
Npol = 3 for fully polarimetric configurations with equal
cross-polarizations. In the following, the case Npol = 3 is
considered, but the developed concept is also valid for quad-
polarized data (Npol = 4) and in dual-polarized scenarios
(Npol = 2). As an example, the polarimetric data vector in
the lexicographic basis has the shape

y(l) = [sHH,1(l), . . . , sHH,p(l),
√

2sHV,1(l), . . . ,√
2sHV,p(l), sV V,1(l), . . . , sV V,p(l)]T

where sµν,i(l), i = 1, . . . , p, is the data captured by sensor i
in µν polarization, µ, ν ∈ {H,V }. The polarimetric reflec-
tivity τm of the mth source is assumed to be deterministic as
well as the number of backscattering sources Ns. The multi-
baseline polarimetric interferometric (MBPI) steering vector
b(θm),b(θm) ∈ Cp̃ is a function of the vector of param-
eters θm, that are modeled as deterministic quantities. The
subindex m is dropped in the following for clarity reasons.
The MBPI steering vector is a linear combination of three
vectors aξ(ϕ) ∈ Cp̃, ξ = 1, . . . , Npol, each of them related to
one particular polarization

b(ϕ,w) = w1a1(ϕ) + w2a2(ϕ) + w3a3(ϕ)

=
[
w1aT (ϕ), w2aT (ϕ), w3aT (ϕ)

]T
(2)

where a(ϕ) ∈ Cp is the uniform linear array (ULA) steering
vector

a(ϕ) = [1, exp{jϕ/(p− 1)}, . . . , exp{jϕ}]T . (3)



The interferometric phase ϕ is related to the spatial frequency
ω, ω ∈ [−π, π), by [1, 10, 11]

ϕ = (p− 1)ω. (4)

The weighting coefficients wξ ∈ C form a vector

w = [w1, w2, w3]
T (5)

that is a unitary scattering mechanism, wHw = 1. It com-
prises the polarimetric features of the backscattering source.
To each phase center belongs one particular scattering mech-
anism, i.e., one specific polarization combination. The com-
plex vector w is uniquely defined apart from an exponential
term exp(jψ) with ψ ∈ R, that cancels out when forming
b(θm)bH(θm). Hence, without loss of generality<(w1) and
=(w1) can be considered to be fixed due to the normalization
of w, and the exponential term, respectively. In such a way,
the polarimetric model is a generalization of the single polar-
ization multibaseline InSAR model introduced in [1, 2], and
conforms to the conventional single polarization model for
Ns = 1.

The MBPI steering vector can be written in matrix nota-
tion as

b(ϕ,w) = B(ϕ)w (6)

with the steering vector matrix B(ϕ) ∈ Matp̃,Npol
(C)

B(ϕ) =

 a(ϕ) 0 0
0 a(ϕ) 0
0 0 a(ϕ)

 . (7)

The multiplicative noise xm(l) ∈ Cp̃ associated with the
mth source is modeled as a stationary, circular Gaussian ran-
dom vector with zero mean, unit variance, and covariance
matrix Cm. The random processes xm(l1) and xm(l2) are
assumed to be independent and identically distributed for dif-
ferent realizations l1 6= l2. For the numerical simulations
in section 4 further assumptions about the structure of the
speckle covariance matrix are introduced. The additive white
Gaussian noise n(l) ∈ Cp̃ is assumed to have zero mean and
power σ2

n, i.e., n(l) ∼ N p̃
C(0, σ2

nI). Thus, the polarimetric
MB InSAR data y(l) is a circular Gaussian random vector
with zero mean and covariance matrix R = E{y(l)yH(l)}
with

R =
Ns∑

m=1

τmCm � b(θm)bH(θm) + σ2
nI. (8)

3. POLARIMETRIC SPECTRAL ANALYSIS
TECHNIQUES

3.1. Polarimetric Beamforming

The beamforming method has been proposed for sensors hav-
ing polarization diversity on receive in [6]. The spectrum of

the polarimetric beamforming is [7]

P̂P
BF (ω) =

λmax(BH(ω)R̂B(ω))
p2

(9)

where λmax(·) is the maximum eigenvalue operator. This
means that for each frequency ω the maximal eigenvalue and
its corresponding eigenvector of the linear system

BH(ω)R̂B(ω)wmax = λmaxwmax (10)

have to be computed. The frequency estimates
ω̂ = [ω̂1, . . . , ω̂Ns ]

T are given by the locations of the Ns

maxima of the spectrum.

3.2. Polarimetric Capon Method

The Capon algorithm has been extended to the particular sce-
nario of polarization diversity in the receive channel in [6].
The spectrum of the polarimetric Capon method is given by

P̂P
C (ω) =

1
λmin(BH(ω)R̂−1B(ω))

(11)

where λmin(·) is the minimum eigenvalue operator. For each
frequency ω the minimal eigenvalue and associated eigenvec-
tor of the linear system [7]

BH(ω)R̂−1B(ω)wmin = λminwmin (12)

have to be calculated. The inverse matrix R̂−1 exists if the
noise term has a positive definite covariance matrix and

L ≥ pNpol. (13)

The frequency estimates ω̂ = [ω̂1, . . . , ω̂Ns ]
T are related to

the positions of the Ns largest peaks of the spectrum P̂P
C (ω).

3.3. Polarimetric MUSIC Algorithm

The MUSIC approach has been adapted to the special con-
figuration of polarization diversity in the receive antennas
in [5, 6]. The eigendecomposition of R̂ provides the eigen-
values λ̂1 ≥ · · · ≥ λ̂p̃ and the eigenvectors (f̂1, . . . , f̂Ns) and
(ĝ1, . . . , ĝp̃−Ns) associated with the signal and noise sub-
space, respectively. Using the matrix Ĝ = [ĝ1, . . . , ĝp̃−Ns ] ∈
Matp̃,p̃−Ns(C), the pseudo-spectrum of the polarimetric
MUSIC method is [7]

P̂P
MU (ω) =

1
λmin(BH(ω)ĜĜHB(ω))

. (14)

For each frequency ω the minimum eigenvalue and its eigen-
vector of the linear system

BH(ω)ĜĜHB(ω)wmin = λminwmin (15)

are calculated. The frequency estimates ω̂ = [ω̂1, . . . , ω̂Ns ]
T

correspond to the locations of the Ns maxima of the pseudo-
spectrum P̂P

MU (ω).



4. NUMERICAL ANALYSIS

For analyzing the performance of the polarimetric methods
and comparing their root mean square error with the CRLB,
the following assumptions concerning the multiplicative noise
xm(l) are made. The polarimetric speckle covariance matrix
Cm = E{xm(l)xH

m(l)} ∈ Matp̃(R) of the mth source is a
block matrix of the form

Cm =

 CHHHH,m CHHV V,m CHHHV,m

CH
HHV V,m CV V V V,m CV V HV,m

CH
HHHV,m CH

V V HV,m CHV HV,m

 . (16)

The autocorrelation function of each block matrix Cµν,m ∈
Matp(R) is given by

[Cµν,m]s,t =


(
1− |s−t|

p−1 bµν,m

)
dµν,m |s− t| ≤ p−1

bµν,m

0 otherwise
(17)

where µ, ν ∈ {HH,V V,HV }. The normalized base-
lines [1] of the like-wise polarization channels are denoted
by bHHHH,m, bV V V V,m, bHV HV,m ∈ R, and the normalized
baselines of the cross-polarizations by
bHHV V,m, bHHHV,m, bV V HV,m ∈ R. The coefficients
dHHV V,m, dHHHV,m, dV V HV,m ∈ R represent the cross-
polarization correlations. Each of these parameters attain val-
ues between 0 and 1. It is assumed that the like-wise polariza-
tion correlations dHHHH,m = dV V V V,m = dHV HV,m = 1.
It is clear that this model constitutes a generalization of the
single polarization model [1, 2], since each block diagonal
matrix corresponds to one polarization.

The vector of real-valued unknown parameters χ ∈
R15Ns+1 of the covariance matrix (8) is

χ = [ϕ1, . . . , ϕNs , τ1, . . . , τNs ,<(w2,1), . . . ,<(w2,Ns),
=(w2,1), . . . ,=(w2,Ns),<(w3,1), . . . ,<(w3,Ns),
=(w3,1), . . . ,=(w3,Ns), bHHHH,1, . . . , bHHHH,Ns ,

bV V V V,1, . . . , bV V V V,Ns , bHV HV,1, . . . , bHV HV,Ns ,

bHHV V,1, . . . , bHHV V,Ns , bHHHV,1, . . . , bHHHV,Ns ,

bV V HV,1, . . . , bV V HV,Ns , dHHV V,1, . . . , dHHV V,Ns ,

dHHHV,1, . . . , dHHHV,Ns , dV V HV,1, . . . , dV V HV,Ns ,

σ2
n]T . (18)

They are considered to be deterministic. In the simulation
it is assumed that two phase centers are present, Ns = 2,
with ϕ1 = 0◦ and ϕ1 = 540◦. The standard values of
the main simulation parameters are summarized in Table 1.
The number of sensors is p = 8 and the number of indepen-
dent samples L = 82. The signal-to-noise ratio is defined by
SNRm = τm/σ

2
n.

The performance of the polarimetric array processing
techniques is investigated utilizing the bias, bias(ϕ̂m) =
E{ϕ̂m−ϕm}, and the root mean square error, RMSE(ϕ̂m) =

Table 1. Standard values of main simulation parameters.
First source Second source

(m = 1) (m = 2)
ϕm [deg] 0.0 540.0

SNRm [dB] 12.0 12.0

wm

 0.7070
−0.0141j
−0.7070

  0.7070
0.0071
0.7070


bHHHH,m 0.2 0.2
bV V V V,m 0.2 0.2
bHV HV,m 0.2 0.2
bHHV V,m 0.2 0.2
bHHHV,m 0.2 0.2
bV V HV,m 0.2 0.2
dHHV V,m 0.9 0.9
dHHHV,m 0.2 0.2
dV V HV,m 0.2 0.2

√
E{(ϕ̂m − ϕm)2}. The numerical simulations are per-

formed with 103 Monte Carlo runs. The phase estimation
accuracy of the polarimetric algorithms is compared with
each other and the CRLB. The impact of one parameter on
the performance is examined by varying this particular pa-
rameter while keeping the others fixed.

The estimation precision is analyzed by altering the dis-
tance between the phase centers, ∆ϕ = ϕ2 − ϕ1, with ϕ2 in
the range of [25◦, 500◦]. Firstly, two sources having diverse
polarization properties are considered (cf. w1 and w2 in Ta-
ble 1). When the phase centers are well separated, the polari-
metric methods are (almost) efficient (see Figure 1), Capon
exhibiting a larger RMSE than beamforming and MUSIC. As
the phases get closer together, the CRLB increases and the
performance of the polarimetric algorithms degrades: Beam-
forming diverges from the CRLB for ∆ϕ < 225◦, Capon for
∆ϕ < 125◦, and MUSIC for ∆ϕ < 50◦. The techniques are
unbiased for large ∆ϕ (not reported here), and their biases
start differing significantly from 0◦ at ∆ϕ ≈ 225◦ (beam-
forming), ∆ϕ ≈ 75◦ (Capon), and ∆ϕ ≈ 25◦ (MUSIC).

Secondly, it is assumed that the polarization features of
the phase centers are similar with

w1 = [0.7070,−j0.0141,−0.7070]T (19)

and
w2 = [0.7070, 0.0070,−0.7070]T . (20)

In the scenario of similar polarizations depicted in Figure 2,
the CRLB and the RMS errors increase much faster than in
the case of diverse polarizations. The CRLB is above 10◦ at
∆ϕ < 160◦ if the phases possess similar polarimetric fea-
tures, whereas it reaches this barrier at ∆ϕ < 40◦ if the
sources have different polarimetric characteristics. In the situ-



Fig. 1. RMSE of ϕ̂1 and ϕ̂2 versus ∆ϕ for diverse polariza-
tions.

Fig. 2. RMSE of ϕ̂1 and ϕ̂2 versus ∆ϕ for similar polariza-
tions.

ation of alike polarizations, the phase estimates of beamform-
ing depart from the CRLB and their RMSEs are more than
10◦ for ∆ϕ < 375◦, in the case of Capon at ∆ϕ ≈ 275◦, and
for MUSIC at ∆ϕ ≈ 175◦. Similar behavior can be found for
the bias not reported here.

Concluding, this analysis demonstrates that under the as-
sumption of phase centers related to diverse polarizations, the
performance of polarimetric acquisition systems (as indicated
by the CRLB) and the estimation accuracy of polarimetric
algorithms are remarkably better than in the case of similar
polarizations. Polarization diversity leads to considerably re-
fined resolution.

5. CONCLUSION

The performance of polarimetric spectral analysis methods
for estimating the vertical structure of scatterers using multi-

baseline InSAR data has been investigated. The phase re-
trieval accuracy has been examined for the polarimetric beam-
forming, Capon, and MUSIC algorithms in terms of bias and
RMSE and compared with the polarimetric CRLB with re-
spect to phase center distance and polarization diversity.

Most interestingly, by reducing the phase center differ-
ence it has been shown that the estimation precision can be
enhanced considerably under the condition of diverse polar-
izations compared with the case of similar polarizations. That
means that polarimetric systems and processing algorithms
have a significantly improved resolution capability over sin-
gle polarization scenarios.

These findings confirm results obtained by applying the
polarimetric spectral analysis techniques to multibaseline
InSAR data acquired by the E-SAR system of DLR over
forested terrain [12] and urban areas [13].
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