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ABSTRACT 

 
In this work we propose a model for the polarimetric 

backscattering of shallow sub-arctic lakes, which are frozen usually 

up to two meters depth during winter. The model takes into 

account the inhomogeneities in the ice layer introduced mainly by 

CH4 bubbles trapped in the lake ice. The model is validated against 

experimental data acquired by ALOS-PalSAR. 

 

Index Terms— sub-arctic lakes, methane bubbles, ellipsoid, 

dihedral scattering, polarimetric modeling, coherency matrix 

 

1. INTRODUCTION 
 

Thermokarst lakes are known to emit CH4 gas. However, the 

magnitude of these emissions remains uncertain since the principal 

emission mode (ebullition) is highly variable in space and time. 

Ebullition represents 50-95% of lake methane emissions and 

increases the previous estimations of northern wetlands methane 

fluxes by 10-63%. This methane is currently unaccounted in 

climate change modeling [1]. 

The analysis of SAR data acquired by RADARSAT-1 (C-band) 

and ALOS-PalSAR (L-band) over thermokarst lakes made clear 

that the backscattering from methane bubbles becomes visible in 

the SAR image implying that SAR may play a role in evaluating 

methane ebullition from lakes. In [2] a correlation between the 

backscattered power measured by RADARSAT-1 with field survey 

data for percent cover of lake ice with bubbles and for point-source 

ebullition has been observed. The results describe a better 

correlation in the early winter acquisitions, and steeper look 

angles. Similar relations are shown in [3]. However relations based 

on observations are not sufficient for a quantitative evaluation of 

CH4 ebullition, thus an adequate modeling of the polarimetric 

backscattered signature is required. 

Any scattering model for the evaluation of CH4 bubbles trapped in 

the ice lake should be able to take into account the variety of 

possible scenarios, see Fig. 1: While on some lakes water freezes 

to the lake bed and forms grounded ice, on deeper lakes only 

floating ice is generated during winter. The change in the dielectric 

properties of the material under the ice influences the 

backscattering to the SAR system. When floating ice is formed, the 

backscattered power increases dramatically (around 10 dB at C-

band), mainly due to the contribution of the scattering from the ice 

inhomogeneity that is reflected back on the ice-water interface [3]. 

The backscattered power is lower when the water freezes to the 

bed, since the reflection from the ice water interface is replaced by 

the one from ice-lakebed. 

 

 
Fig. 1: Scattering scenarios in thermokarst lakes (winter). 

 

2. MODELING OF ICE ABOVE A SURFACE 
 

The proposed model considers three main scattering mechanisms: 

subsurface scattering from the ice/water or ice/frozen soil interface, 

volume scattering from the methane bubbles, and dihedral 

scattering which is generated by scattering from the volume that is 

reflected by the subsurface. The backscattering from the air-ice 

surface is neglected, as its power is very low compared to the 

backscattered power from the ice-water interface and its 

polarimetric signature is very similar, which will further reduce its 

influence [4]. The measured coherency matrix  ST  is then given 

by: 
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The first term corresponds to the back scattering from the 

subsurface. Information about roughness conditions is not 

available, but an X-Bragg subsurface is assumed since the X-Bragg 

model [5] describes well the backscattering from the lakes during 

summer, where only scattering from the air-water interface is 

expected. The last term  NT stands for the noise coherency matrix. 

The second term is the coherency matrix of partially vertically 

oriented volume of ellipsoids, as will be discussed below. The 

third term stand for the coherency matrix of the dihedral scattering 

from first the same volume that contribute with the volume 

scattering then reflected back by the subsurface. The volume and 

dihedral backscattering depend strongly on the nature and shape of 

the bubbles. 

More recent observations of lakes with high CH4 emission describe 

methane bubbles as tiny bubble tubes (<2 cm diameter) generated 

at the sediment layer [7]. In general, bubbles rise constantly from 
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the sediment at the bottom of the lake. The ice is formed layer by 

layer and the bubbles that rise get trapped in the newly formed 

layer of ice, generating a columns shape structure. 

Accordingly, the particles that form the volume and contribute in 

the dihedral backscattering are assumed to be vertically oriented 

ellipsoids as an approximation for the formation described above. 

 

3. MATHEMATICAL FORMULATION OF A 

VOLUME OF ELLIPSOIDS 
 

An ellipsoid in the Rayleigh scattering region can be modeled 

using three orthogonal dipoles of different lengths, which span the 

3 axes of it [8]. Those three dipoles are also known as 

polarizabilities ( 1p , 32 pp  ). This approach is used to calculate 

the ellipsoid backscattering, and with the same approach the 

ellipsoid scattering toward the subsurface can be obtained. 

                 
    

Fig. 2: Polariszabilities 1p , 2p and 3p of a small ellipsoid. 

 

For an incident electromagnetic wave on a dipole, whose polar 

angle is incθ  and azimuthal angle incφ  180°, and a scattering 

observed at polar angle obsθ  and azimuthal angle obsφ  180°, the 

power normalized scattering matrix for a single dipole oriented at 

polar angle θ, and azimuthal angle φ can be derived and is as 

follows: 
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For an ellipsoid, its polarizabilities are perpendicular to each other 

and aligned along its principle axes, as shown in Fig. 2. The 

scattering from the ellipsoid is equivalent to the coherent 

superposition of the three polarizabilities as in the following: 
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The particles usually do not exist alone, but rather in a cloud with a 

given distribution and different size, shape and orientation. The 

average of this is seen by the radar, and the total scattering is the 

incoherent sum of the scattering from the particles. 

The volume backscattering can be obtained by setting the incident 

and observe angles equal to the satellite look angle Lincobs θθθ  . 

Then the coherency matrix is calculated as follows: 
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The distribution width of the ellipsoid orientation in the polar 

angle direction is denoted by norientatioθ , and  θP  is the probability 

density function of the ellipsoids’ orientation angles in the volume. 

The probability density of the distribution presented in the 

equation above maintains a uniform distribution of ellipsoids’ 

orientations in a 3D space. 

By applying Eigen-decomposition on the coherency matrix [5], the 

Entropy-Alpha values for the volume scattering at Lθ =25° are 

shown in Fig. 3(a). In general, the volume of spherically shaped 

particles (red dots) has lower mean Alpha angle values, and more 

randomly oriented volumes (blue) larger Entropy. 

With a subsurface present, multiple scattering can occur as a 

sequence of scattering at a particle in the volume followed by the 

specular reflection at the subsurface interface with Fresnel 

coefficients ( ||, RR ). The same particle scatters back another 

portion of the electromagnetic wave but in a reverse order. The 

normalized scattering matrix of the backscattering from a dihedral 

formed by a particle and a subsurface is given by the coherent 

addition of these two components: 
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The coherency matrix for the dihedral scattering at the ellipsoid 

volume and subsurface is calculated similar to the coherency 

matrix of the volume backscattering by implementing Eq. (4) for 

the dihedral scattering matrix. 

      
(a) Volume backscattering (b) Dihedral backscattering 

Fig. 3: Entropy-Alpha plots at Lθ = 25° and subsurface permittivity 

of (80+j20). The red colour indicates the shape from dipole (dark 

red) to spheres (bright red) and blue the orientation from totally 

(dark blue) to randomly oriented (bright blue) particles. 

 

The resulting Entropy-Alpha distribution of the dihedral scattering 

of a volume and a subsurface at Lθ =25° is in Fig. 3(b). No large 

difference in the distribution is observed by changing the 

subsurface permittivity from water to frozen soil. In general the 

points show a slightly larger Alpha value compared to the volume 

backscattering, indicating a larger co-polarization ratio due to the 

reflection coefficient that increases the horizontal polarization 

compared to the vertical one. The points cover a wider range of 

Entropy-Alpha values including the region of the conventional 

dihedral with Alpha angles above 50°. 

21 pp   
21 pp   21 pp   



Some areas of the Entropy-Alpha distribution of the dihedral 

mechanism overlap with areas covered by the volume; however the 

backscattering is different VVHH  . 

The dihedral mechanism explains the dependency between the 

backscattered power and ebullition during early winter and the 

look angle dependency as mentioned in [2]. 

 

4. SCENARIO SIMULATION 

 

The model of Eq. (1) is used to simulate different lakes conditions. 

The subsurface permittivity is assumed to be 80+j20 for water 

subsurface and 8+j2 for soil/frozen soil. The ice permittivity is 

assumed to be 2.5+j0.01. In spite of the pessimistically assumed 

high value for the imaginary part of the ice permittivity, the 

influence of the losses within the ice is still negligible for the 2 

meters depth. For the subsurface coherency matrix, the X-Bragg 

model with a distribution width of surface slope angles equal to 

30° is used. The subsurface backscattered power coefficient SSP  

depends mainly on the surface roughness and permittivity. Pre-

assumptions of subsurface power contribution are not realistic. 

The coherency matrix of the volume and dihedral backscattering 

depends on the particles shape and orientation, which are expected 

to vary greatly with space and time. The volume backscattered 

power coefficient VP  depends on volume density, ice thickness 

and particle size. Pre-assumptions of volume power contribution 

are also not realistic. The dihedral backscattered power coefficient 

DP  depends on the volume scattering in the direction where the 

scattering is reflected back to the satellite by the subsurface, and 

the reflection coefficients on the subsurface. For simplicity and 

since ice thickness is around 1-2 meters, attenuation through the 

ice layer is neglected. The roughness of the subsurface interface is 

assumed to be low such that the dihedral backscattered power is 

approximated by the multiplication of the volume backscattered 

power by the average of the Fresnel coefficients: 

  .4/
2

||RRPP VD                                                                    (6) 

 

4.1 Volume and dihedral backscattering 
 

The power contribution of the dihedral compared to the volume 

contribution is highly dependent on the subsurface permittivity. 

The high permittivity of the water yield to a higher dihedral 

backscattering contribution which brings an Entropy-Alpha 

distribution closer to the maximum Entropy line compared to 

subsurface frozen soil as can be observed in Fig. 4.  

By applying Eq. (6) for the water subsurface, the dihedral 

contribution represents around 33% of the backscattered power 

from both volume and dihedral which is the case in Fig. 4(a). For 

the case of soil subsurface as in Fig. 4(b) the dihedral contribution 

represent 8% of the backscattered power from volume and 

dihedral. 

In spite of the low contribution from the dihedral component, the 

entropy values in Fig. 4(b) are effectively increased compared to 

the volume backscattering in Fig. 3(a). That is because the dihedral 

backscattering has a higher correlation between vvhh SS  and 

vvhh SS   channels than the volume backscattering, and opposite 

in sign for vertically oriented prolate which is the case that is 

considered here. 

 

      
    (a) Water subsurface        (b) Soil subsurface 

Fig. 4: Entropy-Alpha plot for a combination of a volume and 

dihedral backscattering; at Lθ =25°, for the same particle’s shape 

and orientation distribution used in Fig. 3. 

 

4.2 Subsurface, volume and dihedral backscattering 

 

The forward simulation of the model in Eq. (1) requires an 

assumption for the volume backscattered contribution as a portion 

of the total backscattered power. The portion of the dihedral 

backscattered power contribution is a function of the volume 

portion and is obtained from Eq. (6). The rest of the power is the 

subsurface contribution. In this way, every assumption of a volume 

contribution results in a different Entropy-Alpha distribution. 

To simulate the change in the backscattering from floating to 

grounded ice, the volume backscattered power is assumed to be the 

same for both cases. The dihedral backscattered power is reduced 

from the subsurface water to soil by a factor of 
2

||
2

|| |)||/(||)||(| waterwatersoilsoil RRRR    which is less than 

one since the permittivity of water is higher. The subsurface 

backscattered power is also reduced by a factor of 
22 )/()( watervwaterhsoilvsoilh RRRR  , where ( vh RR , ) are the 

Bragg scattering coefficients.  

      
   (a) 10% volume contribution 

above water subsurface. 

(b) Changing of Case (a) to a 

subsurface of Soil. 

      
    (c) 40% volume contribution 

above water subsurface  

(d) Changing of Case (c) to a 

soil subsurface. 

Fig. 5: Entropy-Alpha distribution for the model at Lθ =25° for the 

same particle’s shape & orientation distribution shown in Fig. 3.    

 

Fig. 5(a) assumes a low volume contribution to demonstrate a lake 

that is covered by a thin layer of ice: the volume contribution of 

10% results in around 5% dihedral contribution and 85% of the 

backscattered power corresponds to the subsurface. Fig. 5(b) is a 

theoretical case of a thin layer of ice above a soil subsurface. The 

lower subsurface permittivity reduces the backscattered power 

from the dihedral and subsurface, such that the total backscattered 

power in Case (b) equals to 1/4 the power for Case (a). The volume 



backscattered power contribution is driven to be more dominant 

and represents 39% of the backscattered power, the dihedral is 3% 

and the subsurface is 58%. Fig. 5(c) and (d) show a similar 

investigation with a volume contribution of 40%. The dihedral 

contribution is 19%, and the subsurface power is 41%. The total 

backscattered power of Case (d) is 1/2 of the backscattered power 

from Case (c). The volume contribution is 79%, dihedral 7% and 

subsurface 14%. 

In general, the Entropy and Alpha values increase for grounded ice 

compared to floating ice, as the volume becomes more dominant. 

With less dihedral contribution compared to the volume 

contribution for grounded ice case the distribution is further away 

from the maximum entropy line 

 

5. RESULTS AND EVALUATION OF ALOS DATA 
 

The forward simulation of the model is compared to fully 

polarimetric L-Band data obtained by ALOS PalSAR over 

Churchill region. Winter data contrary to summer over the lakes 

shows a considerable increase in the horizontal backscattered 

component compared to the vertical one. The data also shows a 

zero phase between them. The dihedral scattering from the volume 

and subsurface fulfills the observed characteristics in the 

backscattering. 

On Churchill site, the acquisition during ice presence (10/5/2009) 

is considered. The lake samples had been divided into two groups, 

one with low backscattered power that is assumed to be grounded 

ice. The other group has high backscattered power and is assumed 

to be floating ice. The grounded ice group shows an average 

backscattered power that is around 0.46 of the average power for 

the samples of the floating ice samples. The Entropy-Alpha 

histogram for the data is shown in Fig 6(a,b). 

According to the analysis presented is section 4.2, a volume power 

contribution of 35% for floating ice, results in a total backscattered 

power for grounded ice that has a factor of 0.46 of the power for 

floating ice. A certain range of volume orientation and particles’ 

shapes is simulated in Fig 6(c,d). The ranges are chosen to produce 

Entropy and alpha values that cover the same range observed in the 

histogram of the floating ice. Fig. 6(d) shows the distribution for 

the exact parameters used to produce Fig. 6(c) but for a soil 

subsurface instead of water. Both simulation results and data show 

the same tendency, and vary similarly from floating ice to 

grounded ice. 

Evaluations of data from other sites also follow the expectations 

obtained by the model, but are not shown here explicitly.  

 

6. CONCLUSION 
 

A model that explains the polarimetric backscattering of shallow 

subarctic lakes is developed and presented. The model considers 

the dihedral backscattering from the volume reflected by the 

subsurface. A mathematical formulation of the coherency matrix 

for this scattering mechanism is shown and simplified such that the 

mechanism does not produce additional unknowns to a model that 

does not consider it. The simulation results show the same 

tendencies as the observed data for Churchill site. 

For further investigation on the model validity, test sites with 

available on site measurements are required. In addition 

investigations on improving the model using different or several 

look angles might improve the evaluation of CH4 emission and the 

quantitative determination of the CH4 content. 

      
   (a) Floating ice (b) Grounded ice 

      
    (c) Simulation of floating ice  (d) Simulation of grounded 

Fig. 6: Entropy-Alpha Histogram for floating and grounded ice 

over Churchill site compared to simulated Entropy-Alpha 

distributions. 
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