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ABSTRACT

This paper provides an overview of the BIOMASS Mission
End-to-End simulator (BEES) and of the mission perfor-
mance analysis performed with it. The end-to-end perfor-
mance, in terms of biomass estimates error, is close to the
20% error goal set for the mission. The main sources of
errors are temporal decorrelation and the limited available
bandwidth, while system induced errors have a negligible
impact on the final performance.

Index Terms— BIOMASS, Simulator, SAR

1. INTRODUCTION

BIOMASS [1, 2] is a mission concept currently in the Phase-
A study stage, proposed by European scientists in the frame
of ESA’s 7th Earth Explorer [3] program. BIOMASS is based
on a P-band Synthetic Aperture Radar that will systematically
acquire fully- (quad-) polarized image data in an interfero-
metric mode over all major forested areas on the globe. The
inversion methodology is then based on backscatter intensity
measurements at different polarizations and interferometric
coherence measurements at different polarizations.

BIOMASS is conceived to reduce the uncertainty in the
worldwide spatial distribution and dynamics of forests lead-
ing to improved present assessments and future projections of
the carbon cycle. While the world’s forests contain the largest
proportion of carbon in living vegetation, global and accurate
quantification of stock and dynamics - occurring as a con-
sequence of, for example, deforestation, regrowth, manage-
ment or fires – remains a significant but pressing challenge.
This uncertainty remains because of the lack of a system-
atic and reliable mechanism for differentiating biomass levels
across large areas, an observational gap that would be filled
by BIOMASS.

A common critical key element for the final mission selec-
tion procedure is an End-to-End mission performance assess-
ment. For this purpose, the Biomass End-to-End Simulator

(BEES) has been implemented [4]. The purpose of this paper
is to present a summary of the mission performance assess-
ment performed using this tool.

2. BIOMASS END-TO-END SIMULATOR (BEES)

Fig 1 shows the high-level diagram of BEES. Its modular de-
sign reflects not only a logical data flow within the simula-
tor, but related also to the distributed development process,
with different scientific and engineering teams being respon-
sible for specific aspects of the simulation. In BEES, first a
simplified but realistic forest scene is generated as a map of
biomass (in t/ha) and canopy heights. Then, a semi-empirical
forward model is used to calculate, for each grid point, the
extended covariance matrix that describes the second order
statistics of a repeat-pass PolInSAR acquisition. At the core
of BEES, the Product Generation Module (PGM) uses this
map of covariance matrices to generate random realizations of
the multi-channel complex radar scattering coefficients (im-
plicitly including speckle), which are then convolved with the
end-to-end impulse response function (IRF) of the system.
The PGM then introduces realistic ionospheric distortions us-
ing realizations of the Faraday Rotation (FR) map and iono-
spheric phase screen generated by the Ionosphere Generation
Module. In addition, the PGM introduces all the relevant
system disturbances: noise, cross talk, channel unbalances,
and phase and amplitude drifts. The simulated multi-channel
single look complex data are then passed to a Ionospheric
Correction Module that estimates and compensates the iono-
spheric distortions, after which a L1b product consisting of
estimated extended covariance matrices is generated. Finally,
these are fed to a L2 retrieval module which uses a combina-
tion of PolInSAR and intensity based retrieval algorithms to
estimate biomass levels and, when PolInSAR is used, canopy
heights.

For illustration, Fig. 2 shows, from top to bottom, a SGM
generated biomass map, the corresponding biomass estimates
after the full end-to-end simulation, and the estimation error.
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Fig. 1. Block diagram of the End-to-End simulator
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Fig. 2. From top to bottom: examples of a SGM generated
biomass map, the corresponding estimated biomass, and the
biomass error. The horizontal and vertical axes correspond to
ground range and azimuth, respectively.

3. PERFORMANCE ASSESSMENT STRATEGY

The mission performance assessment is done at two levels.
Comparing the input and output L1b data allows evaluating
the performance of the system, including SAR processing and

Forest type Boreal
Location 48◦N, 110◦W

kz (= 2π/hamb)
0.14 (near range)
0.11 (far range)

Biomass level 20 to 320 t/ha
Ionosphere conditions mild and severe

Temporal decorrelation
High (γtmp = 0.61)
Medium (γtmp = 0.95)

Retrieval Combined
Product resolution 200 x 200 m2

Image width Full swath (∼ 70 km)
image length 7 km

Table 1. Characteristics of simulated scenarios

ionospheric corrections. On the other hand, comparing input
and output L2 data allows assessing the end-to-end perfor-
mance of the system. Note that it is possible to have a good
system (good L1b performance) but still have a poor mission
performance due to difficulties in the geophysical inversion.
To quantify the system performance two sets of simulations
have been defined:

• Diagnostic tests: these are meant to identify the possi-
ble bottlenecks. This is done by turning all disturbances
off except one and evaluating the performance degrada-
tion due to this disturbance.

• General performance assessment: this is done for Bo-
real forests under a range of biomass levels, ionospheric
conditions and temporal decorrelation scenarios.

Table 1 summarizes the range of scenarios tested. One
of the purposes of BEES was to compare the predicted end-
to-end performance of two competing system designs, one
by Astrium (OSS-A), and one by Thales Alenia (OSS-B).
The simulated performance for both systems was very simi-
lar. The results shown in this paper correspond to OSS-B. The
location is particularly affected by ionospheric disturbances
because of its high geomagnetic latitude.

4. RESULTS

4.1. General performance

Fig. 3(a) shows the relative canopy height estimation bias as
a function of the biomass level for the four possible combina-
tions of ionospheric state and temporal decorrelation consid-
ered. These results were obtained by averaging over the entire
scene and over 10 independent runs of BEES. The height was
retrieved using a PolInSAR algorithm, using as input the es-
timated covariance matrices describing the joint second order
statistics of the two fully-polarimetric acquisitions simulated
[5]. In this, and all subsequent figures, a relative value of 1
indicates a 100% error. Figure 3(b) shows the standard devi-
ation of the relative height error. Bias and standard deviation



offer a consistent picture. Height estimation errors are higher
for higher temporal decorrelation and, to a lesser extent, for
severe ionospheric disturbances. In both cases this can be
explained by an unaccounted for loss of coherence, which is
wrongly attributed to volume decorrelation and, therefore, to
an increased height. For low biomass levels, where height
interferometric coherences are expected, the relative loss of
coherence is higher, leading to larger errors.

Figs. 3(c) and 3(d) show the corresponding bias and stan-
dard deviation of the biomass estimate error. These biomass
levels were obtained using a combined retrieval approach, us-
ing the biomass estimate resulting from the PolInSAR algo-
rithm (after the corresponding height to biomass conversion)
and the estimates inverted from the HV-channel intensity[5].
In terms of standard deviation, the biomass error is below
20% for biomass levels above 50 t/ha for the low temporal
decorrelation cases, with somewhat larger errors for the high
temporal decorrelation cases. There is, however, a significant
bias, in particular for low biomass levels. This bias is intro-
duced by the PolInSAR retrieval, since the intensity-based es-
timates were (in the simulations) unbiased. While this could
invite to give more weight to this intensity based retrieval, it
should be noted that the RMS error of these estimates was,
in general, higher than that of the PolInSAR-based retrieval.
For low temporal decorrelation cases, it may be possible to in-
troduce systematic corrections to compensate system induced
biases.

To support the interpretation of Fig. 3, Fig. 4 shows the
relation between biomass and canopy height (left) and the
relative coherence loss for the interferometric HH channel
(right), also as a function of biomass and for the four afore-
mentioned cases. This relative coherence is given by γrel =
γL1b/γSGM , the ratio between the coherence estimated in the
simulated L1b product, and the coherence set at the output of
the Scene Generator Module. Note that since temporal decor-
relation is introduced by the SGM, it does not affect this rela-
tive value, although it has an impact on the final performance.

4.2. Diagnostics

Table 2 provides an overview of the results of the diagnostic
tests. All disturbances attributed to the system (ambiguities,
thermal noise, amplitude and phase instabilities, and channel
imbalance and cross-talk) have a negligible (less than 1%) im-
pact on the RMS error of the biomass estimates. Under typi-
cal conditions, ionospheric disturbances, after the corrections
included in the simulated chain, have also a small impact on
the mission performance. Nevertheless, is is also clear that
intense ionospheric disturbances may lead to a total perfor-
mance loss for the affected acquisitions.

Disturbance 50 t/ha 250 t/ha
Mild Ionosphere < 0.02 < 0.01

Severe Ionosphere > 0.5 < 0.02
Ambiguities < 0.01 < 0.01

Noise < 0.01 < 0.01
Amp and phase
errors

< 0.01 < 0.01

Channel imbal.
and cross-talk

< 0.01 < 0.01

Table 2. Impact of individual disturbances on biomass esti-
mation RMS error.

5. CONCLUSIONS

This paper summarizes the mission performance analysis of
the biomass mission done using BEES. The results shown
confirm that the two alternative system designs are good
enough in order to have a negligible impact on the end-to-end
mission performance. This mission performance is currently
limited by the significant impact of temporal decorrelation,
resulting in important biomass biases, and of the reduced
number of looks.

Currently BEES is being extended to allow simulations of
multiple (more than two) acquisitions, where it is expected
that the simulations will confirm the expected large perfor-
mance benefit resulting from the multi-baseline processing,
and to include topography effects, requiring, in particular, the
implementation of a more sophisticated forward-model. Fu-
ture simulations will be extended to tropical scenarios.

6. REFERENCES

[1] “BIOMASS – to observe global forest biomass for a bet-
ter understanding of the carbon cycle, report for assess-
ment,” Tech. Rep. ESA SP-1313/2„ ESA, Nov. 2008.

[2] F. Heliere, C.C. Lin, F. Fois, M. Davidson, A. Thomp-
son, and P. Bensi, “BIOMASS: a P-band SAR earth
explorer core mission candidate,” in Radar Conference,
2009 IEEE, 2009, pp. 1–6.

[3] J.-L. Bezy, P. Bensi, C.C. Lin, Y. Durand, F. Heliere,
A. Regan, P. Ingmann, J. Langen, M. Berger, M. David-
son, and H. Rebhan, “ESA future earth observation ex-
plorer missions,” in IEEE International Geoscience and
Remote Sensing Symposium (IGARSS)., 2007, pp. 212–
215.

[4] P. López-Dekker, F. De Zan, T. Börner, M. Younis, K. Pa-
pathanassio, T. Guardabrazo, V. Bourlon, S. Ramon-
gassie, N. Taveneau, L. Ulander, D. Murdin, N. Rogers,
S. Quegan, and R. Franco, “BIOMASS End-to-End mis-
sion simulation and performance assessment,” Proceed-
ings of Advanced RF Sensors and Remote Sensing Instru-
ments (ARSI), pp. 1–8, Sept. 2011.



50 100 150 200
mean biomass level [t/ha]

0.0

0.5

1.0

1.5

2.0

re
la

tiv
e 

he
ig

ht
 b

ia
s

mild iono, medium decorr
mild iono, high decorr
severe iono, medium decorr
severe iono, high decorr

(a)

50 100 150 200
mean biomass level [t/ha]

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

re
la

tiv
e 

he
ig

ht
 s

td
v

mild iono, medium decorr
mild iono, high decorr
severe iono, medium decorr
severe iono, high decorr

(b)

50 100 150 200
Mean biomass level [t/ha]

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
bi

om
as

s 
bi

as

Mild iono, medium decorr
Mild iono, high decorr
Severe iono, medium decorr
Severe iono, high decorr

(c)

50 100 150 200
Mean biomass level [t/ha]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e 
bi

om
as

s 
st

dv

Mild iono, medium decorr
Mild iono, high decorr
Severe iono, medium decorr
Severe iono, high decorr

(d)

Fig. 3. From left to right and from top to bottom: height estimation bias, RMS height estimation error, biomass estimation bias,
and RMS biomass estimation error.
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Fig. 4. Left: canopy height vs. biomass level. Right: relative coherence loss for interferometric HH channel vs. biomass level.
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