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Enhanced Assessment of the Air Transportation System 

M. Weiss1, T. Gmelin2, X. Sun3, N. Dzikus4 
DLR - Air Transportation Systems, 21079 Hamburg, Germany 

 

This paper recommends an approach on how to assess the Air Transportation System (ATS) 
that draws on the results in [1], and considers the 3 pillars of sustainability: economy, ecol-
ogy and society. A framework has been developed to conduct sustainability studies of ATS 
and its sub elements separately. The framework shows the combination of Life Cycle As-
sessment (LCA), Life Cycle Cost Assessment (LCC) and Social Life Cycle Assessment 
(SLCA). The final results of the inventory analysis will be aggregated in a single value, ex-
pressed as Socio-Eco-Efficiency Index (SEEindex). This paper does not present the inventory 
calculations itself, but contains a proposed description of synthesis of the inventory results 
using Multiple Criteria Decision Aid (MCDA) methods. Additionally a reduced structure of 
the ATS will be proposed, which includes the most important stakeholders. To demonstrate 
the proposed approach, it is applied to two new low noise aircraft configurations. 

Nomenclature 
A+/-  =  Positive/ negative virtual product alternatives  
Ai  =  Product alternatives  
ANSP  =  Air Navigation Service Provider 
ATS  =  Air Transportation System 
ci  =  Cost inventory results [$], [€] 
ei  =  Ecology inventory results [different units: e.g. dB, kg, m²] 
Di  =  Decision matrices 
d  =  TOPSIS indices [1] 
ISO  =  International Standard Organization 
KPA  =  Key Performance Area 
LCA  =  Life Cycle Assessment 
LCC  =  Life Cycle Cost 
LCSA  =  Life Cycle Sustainability Assessment 
LCIA  =  Life Cycle Impact Assessment  
MCDA =  Multiple Criteria Decision Aid 
ri  =  Normalization vectors [1] 
RMP  =  Rear Mounted Propulsion Aircraft 
si  =  Social inventory result [different units: e.g. employed people [1], income [$]] 
SEEindex =  Social-Eco-Efficiency Index 
SEElab =  Social-Eco-Efficiency laboratory 
TOPSIS =  Technique for Order Preference by Similarity to Ideal Solution 
UNEP  =  United Nations Environment Programme 
VIP  =  Virtual Integration Platform 
wi  =  Weighting vectors 
z+/-  =  Positive/ negative relative closeness between virtual and real product alternatives  
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I. Introduction 
he Air Transportation System (ATS) is a complex system. The evaluation of its sustainability is a complicated 
task. Sustainability is described here by the combination of economical, ecological and social performance 

indicators, which should be optimized equally. Recently, 'Sustainability' became known as a term related to global 
development, defined in the United Nations Environment Programme (UNEP) Brudtland report [20]: 

 
Sustainable development is development that meets the  

needs of present without compromising the ability of  

future generations to meet their own needs. 

 
Currently, the overall assessment and optimization of products is mainly driven by improvements of its eco-

nomic benefit. This is well established and is conducted especially in the industrial sector. The increase of the prod-
uct value is the paramount target function for each stakeholder participating in the ATS. It has to be mentioned that 
‘product’ refers to both goods, e. g. an aircraft, and services, provided to the aviation community e.g. by airlines, 
airports or the ANSP. But in the recent decades public interest in reducing environmental life cycle impact of prod-
ucts has grown continuously - as a result the demand for developing sustainable products has increased equivalently. 
Thus, the introduction of life cycle assessment in the evaluation and optimization process for new or redefined prod-
ucts and systems rose significantly. Additionally, in the last years the scope of inventory has been being extended to 
social indicators. Here, an application is introduced which allows the assessment not only of environmental impact 
and costs but also of the societal impacts of products and processes. The aim is to quantify the performance of the 
three dimensions of sustainability with one integrated tool in order to direct - and measure - sustainable development 
in the industrial or research sector. It enables and supports potential valuators within the decision process in product 
development and improvements, strategic planning, policy making or marketing. These applications are directly 
linked to the LCA guideline ISO 14040 [17], describing the only internationally standardized environmental assess-
ment method. The ISO 14040 standards typically does not address the economic or social aspects of a product, but 
the life cycle approach and methodologies (overall framework) defined in this international standard could be ap-
plied to these other aspects too. At this point the international acknowledged UNEP/SETAC publication “Guidelines 
for Social Life Cycle Assessment of Products” [6] has to be highlighted. The latest developments indicate the fol-
lowing formulation for Life Cycle Sustainability Assessment (LCSA), described in Kloepffer [9] and improved into 
its current form including editorial hints of Finkbeiner [13]: 

 

LCSA = LCA + LCC + SLCA                                                         (1) 

 

with  LCSA   = Life Cycle Sustainability Assessment 

  LCA   = Environmental Life Cycle Assessment 

  LCC  = LCA-type Life Cycle Costing 

  SLCA  = Social Life Cycle Assessment 

 

This scheme (1) suggests a separate execution of assessment for each dimension of sustainability, whereas the 
system boundaries of the three assessments should be consistent (ideally identical). In order to avoid double count-
ing, external costs, which may occur in the future due to aviation environmental impacts, should not be monetized. 
Environmental impacts are dealt with as part of LCA in physical – as opposed to monetary – terms. Costs occurring 
in the future, e.g. due to climate change or land demand are difficult, even impossible to estimate. External costs that 
are expected in the near future or that are already internalized comprise real money flows, such as environmental 
landing charges or taxes and must be included in the LCC. Nevertheless, these internalized costs might not reflect 
the real environmental impacts; hence they have to be accounted separately in the LCA. 

 
In accordance with Kloepfer [9] and Finkbeiner [13], formula (1) can be rearranged by introducing the eco-

efficiency term (3), appeared for the first time in 1990 [10]: 
   

T
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LCSA = EE + SLCA                                                               (2) 

with                                



 


n

1

n

1

damageylogeco

EffectsexternalpostiveOutputdesired
EE                                       (3) 

 

Several recently developed LCSA methods implement the SLCA method in eco-efficiency analysis. For exam-
ple, Saling et. al [19] extended the BASF eco-efficiency analysis by adding a social component, transferring the 
two-dimensional eco-efficiency portfolio to a three dimensional one; the environment is called SEEbalance®. The 
idea behind this approach has inspired the development of the ATS assessment approach presented in this paper. 
The fundamental architecture of the LCSA approach for measuring the air transportation systems’ performance and 
impacts is described in Figure 1. After goal and scope definition (1st step), for each assessment the life cycle inven-
tory analysis (2nd step) is substantial part for all three dimensions. Therein the product’s ‘life cycle’ is commonly 
subdivided into 4 phases (Figure 1). 
 

II. Procedure of synthesis and decision aid 

The principal assessment procedure is illustrated in Figure 1. The broadest analysis scope requires the ecological, 
economical and social inventory for each life stage. Depending on the goal and scope settings, suitable indicators 
and impact categories (decision criteria) have to be chosen, exemplarily shown for the ecological performance area. 
The highest aggregated result is achieved by consolidating each criterion to one value, here expressed as Socio-Eco-
Efficiency index (SEEindex). Its calculation requires 
normalizing all indicators in order to obtain a com-
patible dimension. Among others, the normalization 
method depends on the data available and the question 
to be answered. Each criterion will be normalized to a 
reference system by dividing it by a selected reference 
value. In accordance with the ISO 14040 [17] some 
examples of reference values are 

 

• the total inputs and outputs for a given area 
that may be global, regional, national or local 
(e.g. the national GDP or CO2 emissions), 

• the total inputs and outputs for a given area 
on per capita basis or similar measurement, 
and 

• inputs and outputs in a baseline scenario, 
such as a given alternative product system 
(e.g. an existing aircraft or airport) 

 

The global system may be considered as the most 
significant reference system. However, for normaliza-
tion from a scientific point of view, stakeholders are 
often interested in reference definitions on a lower 
system level, because these provide a more direct link 
to the stakeholder’s goals. 

In the final step of the aggregation the relative im-
portance of criteria need to be determined. Thus, a weighting procedure has to be applied. The relative significance 
of the different  impact  categories  is  defined by their weighting factors. The use  of  weighting  factors  often  
raises   discussions  about  whether they are  “scientifically correct” or not and whether the factors are representative  

Table 1 Weighting methods [14] 
 
 
Non-monetary weighting methods 
Proxy methods 
 Ad hoc scoring 
 Indicators in physical units 
Distance-to-target methods 
Panel weighting methods 
 Ad hoc methods using expert assessments,  

stakeholders, etc. 
 Multi-criteria analysis 
 
Monetary valuation methods 
Revealed willingness to pay 
 Market prices (damage costs: loss of production) 
 Hedonic pricing 
Inputed willingness to pay 
 Damage cost avoided method (e.g. restoration costs) 
Political willingness to pay 
 Costs-to-reach-target 

Taxes 
Avoidance costs 
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Life Cycle Phases 

Exploration of materials Manufacturing Operation Disposal 

 
 
 
 
 
 
Performance areas 

Ecology (LCA) Social (SLCA) Economy (LCC) 
  Land-use    Employees   Cost 
  Raw materials   Consumer   Revenue 
  Emissions   International community  
  Water and waste   National community  
  Energy consumption   Future generations  

 
 
 
 

Ecology (LCA) Ecology Inventory Ecology Impact 
  Land-use                   CO2 [kg]  
  Raw materials                 NOX [kg]        GWP [CO2-equiv. kg] 
  Emissions                 SOX [kg]  
                       Pollutant                  H2O [kg]         AP [SO2-equiv. kg] 
                       Noise                     … … 

 

Economy (LCC) Economic Inventory Economy “Impact” 
               Manufacturing costs [$]  
  Cost             Manufacture revenues [$]                            NPV [$] 
  Revenue             Operational costs [$]  
                                   Airline revenues [$]          
                        … … 

 

Social (SLCA) Social Inventory Social “Impact” 
  Employees   space [m² / pax]  
  Consumer   waiting time [min] Comfort index [1] 
  … …  

 

 

 

 

Figure 1: General assessment procedure (using example criteria) 
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or not. Coping with this situation, the ISO 14044 (2006) [18] standard recommends: “[…] it may be desirable to use 
several different weighting factors and weighting methods, and to conduct sensitivity analysis to assess the conse-
quences on the LCIA results of different value-choices and weighting methods.” There are several different opera-
tional methods of weighting, which may lead to very different results. But this is all the more reason to apply diverse 
weighting techniques, except for having essential knowledge about the relative impact of each criterion. Fundamen-
tally, one can distinguish between ‘monetary’ and ‘non-monetary valuation’ methods as listed in Table 1 [14]: The 
distance-to-target (economic: cost-to-reach-target) principle is a common approach in LCIA. There, the weights are 
derived from the distance between the current level of the criteria and a future target value (for a detailed descrip-
tion, see Weiss et al. [3]). As described in Seppälä et al. [11] the method ranks an impact as more important the fur-
ther away society is from achieving the desired standard for the criteria. However, the arguments for setting the tar-
gets may vary between countries and may be politically rather than scientifically based. Political targets are often 
agreed upon an arbitrary fashion. Shortly explained, the weight of impact category is calculated by dividing the dis-
tance-to-target factor by the target level. The total impact caused by an ATS element can be computed with (4). For 
calculation of environmental criteria, a generic example is given in Table 2. Within the temporal scope (e.g. a design 
optimization or product refinement over the life cycle) a regular ‘distance’-review (in Table 2 stated as midterm re-
view) should be applied with the intention of realigning the priorities. The simple linear approach presented here has 
some disadvantages because the impact of the categories will not be reflected adequately: It is based on the assump-
tion that all targets are equally important. Hence, to capture the non-linear effects (e.g.: noise impacts), the distance-
to-target weighting process can be enhanced by using damage functions, introduced and explained in Seppälä et al. 
[11].  
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                                                     (4) 

where 

I(E) = total impact result caused by ATS element E 
N
jL   = actual level of intervention j related to a given scope 

T
jL   = target level of intervention j related to a given scope (e.g. region, technical or political target) 

ij  = inventory result (economic, social, ecology) 
Nj  = normalization reference for impact category 

 

Table 2 Distance-to-target weighting with midterm review (generic example) 

ATS element T0 - T + T (end term perspective) T + t**) (midterm review) 
 current  target *) weight w actual at t weight w 

GWP [kg CO2-equiv.] 2,5E9 40% 1,5E9  1,7 20,7% 2,2E9 24,7% 
AP [kg SO2-equiv.] 3,4E7 9% 3,1E7  1,1 13,4% 3,4E7 18,4% 
Land-use [km²] 800 31% 550  1,5 18,3% 600 18,3% 
People affected [1] 57800 63% 21000  2,7 32,9% 25000 20,0% 
Aircraft noise [EPNdB] 85 18% 70  1,2 14,7% 78 18,6% 
   *) set by stakeholders     100% **) e.g.: t < 0.5 T 100% 

   

 
Monetary valuation methods are often used as a general term for all methods which have an economic measure 

as the unit for weighting factors. Based on Finnveden et al. [15], a distinction can be made between methods that are 
based on willingness-to-pay (or willingness-to-accept) - measuring an economic value (e.g. prevention or abatement 
costs) - and methods that are not based on willingness-to-pay. More detailed descriptions are stated in [15] and Ahl-
roth et al. [14]. Panel methods have in common that weighting factors are derived by a group of people by data ac-
quisition. The group is asked about their values through the methodology of questionnaires, interviews or group dis-
cussions consisting  of  experts,  stakeholders or citizens. The  panel procedure can  differ by a one-round  or  multi- 
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… procedure above again: Normalization > weighting > relative closeness  

 

 A1 A2 … An 
Socio-Eco-Efficiency Index (TOPSIS index) C1 C2 ... Cn 

Socio-Eco-Efficiency Rank (TOPSIS rank) 
If C1< C2 

2 
If C2 > Cn 

1 
… n 

 
 

Figure 2: Mathematical description of assessment procedure with MCDA (TOPSIS) 
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Figure 3: Stages at ATS SEE-Assessment 

Aircraft Engine
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MACRO
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round procedure and with feedback (Delphi). Responses can differ by ranks, ratings, pair wise comparison or ranges 
etc. and to what extend background information is provided. 

In this study the complete synthesis is conducted by a 4-fold MCDA process; executed for the economical, envi-
ronmental and societal column and finally for aggregating the results to a single number 
(Socio-Eco-Efficiency-Index), described synoptically in Figure 2. MCDA is a process that allows making decisions 
in the presence of multiple, potentially conflicting criteria. There are a variety of existing MCDA methods, thus the 
selection of the most appropriate methods is critical. The use of inappropriate methods is often the cause of mislead-
ing design decisions. An intelligent knowledge-based system is developed, consisting of a MCDA library storing the 
widely used decision making methods and a knowledge base providing the information required for the method se-
lection process (see Sun et al. [2]). An Appropriateness Index (AI) is proposed to evaluate the methods and identify 
the most suitable one. In our case, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) has 
been recommended as the most fitting MCDA method to be applied. The first decision matrices (I) include the in-
ventory results of each criterion for n alternatives. Weighting and normalization can be applied as described above. 
The resulted TOPSIS-Indices or partitioned as Ecology-Index, Economy-Index and Society-Index for each alterna-
tive are merged to the Socio-Eco-Efficiency-Index by using TOPSIS again. The alternative with the highest index 
might be the solution with the highest reachable sustainability compared to the other evaluated options. 

At this point it has to be differentiated be-
tween a post- and an in-loop assessment. In 
the post-assessment, the alternatives have 
already been designed and even introduced in 
the system being evaluated. In the in-loop 
assessment, the alternatives can be re-
designed for optimizing their sustainability. 
What approach to choose depends on the 
question whether either the alternatives (e.g. 
aircraft, airports, airspaces or its sub elements 
such as an airport terminal or runway system) 
have to be optimized in respect of its eco-
nomic, environmental or social performance 
only or in all three sustainable dimensions. 
Additionally, if one merely wants to improve 
and compare the technical behavior of a 
product without being interested in its overall 
sustainable outcome, the procedure described 
in Figure 1 can be stopped after the inventory 
calculations (e.g. airfield capacity or check-in 
time). Nevertheless, MCDA can be applied 
for supporting the evaluators. Thus, the proc-
ess described above (Figure 1 and Figure 2) 
can be embedded in the optimization strategy at different ATS design points (Figure 3): In the microscopic level this 
means the improvement of product (airport, aircraft,…) sub elements, in the meso-level the synthesized primary 
ATS elements and in the macro level the integrated air transportation system. 

 

III. SEEtrade and assessment of ATS by an example 

In this chapter a new low noise aircraft configuration is taken as a simplified example to show how the assess-
ment described in chapter 1 and 2 can be used, the reference aircraft is similar to a Boeing B737 or Airbus A320 
(Figure 4). This is also introduced in Gollnick et al. [16] as VIP 1 reference case. First, the inventory calculations 
define the system boundaries and are necessary to select the performance indicators. Thus a primary ATS structure 
has been defined, to obtain a consistent definition. The recommended structure of the ATS is subdivided into 4 
stakeholders (Table 3): Airport operator, manufacturer, airline operator and ANSP. For each of these stakeholders 
subcategories have been indentified to detail the system description. A broad inventory of the ATS has to cover all 
of these elements concerning environmental, economical and social implications of construction and operation. De-
pending on the assessment task or level of detail, the number of elements can be reduced to focus on a single system 
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component. For example, if the introduction of a new runway lighting system should be investigated, then only the 
‘runway system’ will be considered The boundaries should be extended to the ‘aircraft operation at airport’ if this 
new lighting system also influences the airfields’ capacity or concerns the aircraft operator. In the case of evaluating 
a new aircraft, the scope of investigation is much broader. Besides its impacts on airport operations, maybe also on 
its infrastructure due to necessary extensions, its effects on operator, manufacturer and ANSP have to be accounted. 
The inventory scope is strongly focused on the airline and airport perspective. The new configurations are refer-
enced to a current short/ medium range aircraft, the highest potential candidate to be substituted. 

 
Table 3: 4-stakeholder-model 

I) Airport operator 
1. Infrastructure construction and operation 

 Runway system 
 Taxiway system 
 Apron system 
 Terminal and other facilities 
 Tank farm 
 Landside access 

2. Aircraft operation at Airport 
 Ground handling 
 Aircraft ground operations 
 Aircraft CTR/ TMA operation 

II) Manufacturer 
1. Plant construction and operation 

 Production facilities 
 Research and test facilities 
 Office facilities 
 Logistic infrastructure 
 Power and cogeneration plants 

III) ANSP 
1. Infrastructure construction and operation 

 Administrative buildings 
 Operative buildings 
 Airport navigation systems 
 En-route navigation systems 
 Training facilities 

2. Aircraft operation 
 Apron / Ground 
 Tower (Runway/ CTR) 
 Radar (TMA/ En-route) 

IV) Aircraft operator (e. g. Airline) 
1. Infrastructure construction and operation 

 Administrative buildings 
 Maintenance facilities 
 Cargo facilities 
 Terminal facilities 

2. Aircraft 
 Aircraft operation 
 Aircraft maintenance 

 

  

  

 
 

 
Figure 4: Reference aircraft (top left); RMP aircraft (top right and bottom left) and rear ejector system [5] 

 

Reference aircraft (VIP 1) RMP-DT aircraft

RMP-V aircraft 
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Table 4: Technical performance of reference aircraft and RMP configurations [5] 

Inventory indicator Reference RMP-DT  RMP-V 
Pax 150 150 0,0% 150 0,0% 

MTOW [t] 73,5 76,2 +3,7% 76,9 +4,6% 

OEW [t] 42,3 43,9 +3,8% 44,1 +4,3% 

Max payload [t] 18,5 18,5 0,0% 18,5 0,0% 

R at max payload (DP) [nm] 1806 1807 0,0% 1811 0,0% 

payload at 2500 nm [t] 14,9 14,9 0,0% 14,7 -1,4% 

Fuel demand at DP [t] 10,3 11,2 +8,7% 11,6 +12,6% 

Ferry range [nm] 3463 3359 -2,4% 3263 -5,2% 

Climb rate [m/s] Ø 21,0 Ø 21,0 -1,9% Ø 21,9 +2,3% 

Climb rate in FL350 [m/s] 2,0 (M0,73) 
1,4 (M0,78) 

2,0 (M0,73) 
1,2 (M0,78) 

0,0% 
-14,3% 

2,0 (M0,73) 
0,9 (M0,78) 

0,0% 
-35,7% 

Climb time, FL350 [min] 23 24 +4,3% 23 0,0% 

Climb distance, FL350 [nm] 156 164 +5,1% 162,5 +4,2% 

Take-off field length [m]  
(FAR, MSL, ISA)  

2213 2129 -3,8% 2197 -0,8% 

v2 [m/s] 78,8 80,5 +2,2% 80,6 +2,3% 
 

 
Here, the aircraft configuration will be introduced briefly. A detailed information about the design features as 

well as flight performance, cost and emission calculations have been published in Weiss [5]. The reference is a short 
-to-medium range aircraft, similar to Boeing B737 or Airbus A320 (Figure 4 top left). The used reference engine has 
similar properties compared to the IAE V2500. The new short/medium range aircraft is characterized by two jet en-
gines embedded fully into the rear part of the fuselage (Figure 4 top right). Thus, the configuration is named Rear 
Mounted Propulsion Aircraft (RMP). Both turbofan engines are provided with air through two long S bended ducts. 
Besides its primary function as intake (reducing the air velocity efficiently), the ducts are equipped with sound ab-
sorbing liner materials for attenuating the forward emitted noise, especially from the fan and compressor. In order to 
control the jet noise, an ejector has been installed, movable in order to optimize its efficiency as function of flight 
phase. The aircraft was designed with back (RMP-DT) and forward (RMP-V) swept wings. Due to the integration of 
the turbofans and S-ducts, the cabin has been configured with a dead end zone: reducing passenger comfort at the 
rear part, complicating evacuation/ de-boarding procedures as well as serviceability. Additionally, the decreased 
engines’ accessibility and the higher load of the turbo machinery worsen its maintainability. Several aspects have 
been disregarded in the detailed inventory analysis due to lack of information, but peripherally considered with sen-
sitivity studies. The calculations are principally focused on fuel burn, emissions (pollutant / noise), and seat-
kilometres specified direct operating cost at one operation point (range at max payload  Table 4). For better un-
derstanding a generic cabin comfort index (e.g. accounting cabin noise, space, and accessibility) was considered. 

In a standard operation mode (no night time extension due to low noise operations), the novel configurations 
show a worse socio-eco-efficiency (Table 6: top) compared to the reference aircraft when considering all criteria 
listed in Table 5. The deteriorated engine efficiency and the higher aircraft weight can be indentified as the main 
reasons. The lower noise level of the RMP does not compensate the other disadvantages (e.g. higher fuel consump-
tion, higher emission, and higher cost). In the present configuration, only extending the aircraft operation time into 
the night (by definition between 10.00pm and 06.00 am) improves the socio-eco-efficiency of the new aircraft (Ta-
ble 6 below), because a higher utilization reduces the specific DOC (economic) and demands an additional crew 
(social:  higher number of employees). 
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Table 5: Preliminary inventory / impact results (standard mission) [5] 

Noise Flyover take-off Flyover approach Side-Line 
Reference       85 EPNdB      95 EPNdB      93 EPNdB 
RMP-DT 6,6 EPNdB 8,7 EPNdB 6,5 EPNdB 

RMP-V 6,8 EPNdB 9,1 EPNdB 6,5 EPNdB 
Emission, operation *) GWP [CO2-equiv. kg] / flight AP [SO2-equiv. kg] / flight 

Reference       42825      . 10,3 
RMP-DT       47154 (+10,1%) 11,2 

RMP-V       49124 (+14,7%) 11,6 
Emission, fuel production **) GWP [CO2-equiv. kg] / flight AP [SO2-equiv. kg] / flight 

Reference 7108 28 
RMP-DT 7729 30 

RMP-V 8005  31 
Emission, manufacturing ***) GWP [CO2-equiv. kg] / aircraft AP [SO2-equiv. kg] / aircraft 

Reference 240000 530 
RMP-DT 270000 590 

RMP-V 280000 600 
Additional ecology indicators Land-use ****) Energy: fuel demand *),**) 

Reference                     110650 m²             .                   10,3 t               . 
RMP-DT                    106450 m² (-3,8%)                   11,2 t (+8,7%) . 

RMP-V                    109850 m² (-0,8%)                    11,6 t (+12,6%) 
Economy performance DOCSKO [$/pax/km] *) DOC per year [$] 

Reference   0,0431            .          20,7 mill. 
RMP-DT   0,0446 | 0,0416 (+50% utilization)          21,4 mill. 

RMP-V   0,0450 | 0,0420 (+50% utilization)          21,5 mill. 
Social performance Consumer  Cabin Comfort [1] No. of employees (crew members) 

Reference 1,0  24                                             . 
RMP-DT 0,85 24  /   30 (extended ops: night) 

RMP-V 0,85 24   /  30 (extended ops: night) 
*) mission: max. range at max. payload/ pax (see Table 4), / **) kerosene / ***) materials only w/o assembly / ****) take-off field area only 

 
 

Table 6: Socio-Eco-Efficiency of aircraft with overall equal weighting of criteria 
(top: standard mission, bottom: extended operation for RMP aircraft) 

 
standard operation Reference Aircraft RMP-DT RMP-V 
Overall SEEindex *) 61,4% 45,6% 38,6% 
Overall SEE-Rank 1 2 3 

 
use 50% night-time **) Reference Aircraft RMP-DT RMP-V 
Overall SEEindex *) 20,4% 87,2% 77,1% 
Overall SEE-Rank 3 1 2 

*) 100% ≙ generated ideal solution among alternatives (TOPSIS) //     **) night-time: 10.00pm – 06.00am, RMP aircraft only 

 

In the preliminary design stage, there is often a lack of knowledge about specific weighting factors of the crite-
ria. Therefore, a sensitivity study should be conducted in advance. Thus, for investigating the influence of different 
weighting factors on the overall result, the SEEtrade diagram was developed (Figure 5). SEEtrade is a compilation 
of the weight-dependent SEE-Indices of all examined alternatives. In SEEtrade the behaviour of the social-eco-
efficiency vs. different weighting of ecological and economical or social criteria is depicted against a selected 
weighting ratio of performance indicators such as emissions vs. land-use or energy consumption. In Figure 5, the 
areas are reproduced where the overall SEEindex remains in a certain band depending on the weighting combination 
of the pre-selected criteria. Additionally, for each aircraft a curve has been inserted which indicates the boundary of  
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Figure 5: SEEtrade diagram (Example: Environment vs. Economy || Land-use vs. Emissions) 
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a SEEindex up to 90%. For example, for an environment-economy ratio of 80:20 the reference aircraft performs best 
against other alternatives (SEEindex > 90%), almost independent of the weight ratio between emission and land-use. 
For the aircraft design alternative “RMP-DT”, the SEEindex is strongly influenced by the interrelation of the weight 
ratios of the key performance areas (ecology vs. economy) and the performance areas (land-use vs. emissions). The 
higher the relevance of land-use the less important is the weighting ratio between the key performance areas econ-
omy and ecology. This is the case because of the inventory facts of an increased take-off performance, requiring less 
runway area ( land-use), as well as improved overall economics ( higher utilization). 

Cutting away a specific weight ratio (e.g. land-use vs. emission  50%:50%) transfers SEEtrade into Figure 6. It 
describes the SEEindex over the weight ratio between the key performance areas “ecology” and “economy” or “so-
cial”, keeping all remaining weighting factors constant. Therein, especially the ‘switch’-ratios have to be high-
lighted, such as 65% ecology weight and beyond, where the reference aircraft becomes the best solution among the 
other design studies (although the SEEindex is around 60%). In other words, the rank changes between the aircraft 
configurations (Table 7). If one gets or derives more detailed information about the criteria weights, the pre-
processed results enable the user to make a decision about the configuration to be selected in order to match the fu-
ture demand properly. 

 
 
Table 7: Socio-Eco-Efficiency rank of aircraft at different weighting ratio between ecology and economy 
 

SEE-Rank 
KPA ‘Ecology’ 100% 60% 40% 0% 
KPA ‘Economy’ 0% 40% 60% 100% 

Reference 1 2 3 3 
RMP-DT 2 1 1 1 

RMP-V 3 3 2 2 
 
 

IV. Conclusion 

For the comprehensive assessment of the Air Transportation System an approach is proposed which combines 
the three pillars of sustainability: Ecology – Economy – Society. For that, an index is introduced which indicates the 
overall performance of the investigated system in a highly aggregated number. The index is named Social-Eco-
Efficiency-Index or abbreviated SEEindex. The SEEindex is the final output of a multi-step procedure which starts 
with the inventory of the environmental, economical and social impact and is finalized with a method to synthesis all 
different inventory results to one number. Here, the synthesis is conducted by a MCDA process whereas TOPSIS 
has been recommended as the most fitting method to be applied. The calculated SEEindex is intended for both as a 
flexible target value to be optimized and as a fixed value to indicate the socio-eco-efficiency. Thereby it has to be 
differentiated between a post- and an in-loop assessment. In comparison to the post-assessment, where the alterna-
tives have already been designed and introduced in the system, in the in-loop assessment the alternatives can be re-
designed for optimizing their sustainability (SEEindex  max). 

The extended assessment needs the knowledge about the relevance of the criteria to be investigated. In general 
the relevance is expressed as weighting factors of the performance indicators. For the case when there is a lack of 
knowledge of the weighting factors, a procedure is proposed to perform sensitivity studies by interrelating the 
weight ratios of different performance indicators. The results are visualized in a so called SEEtrade diagram. In 
SEEtrade the behaviour of the social-eco-efficiency vs. different weighting of ecological and economical or social 
criteria is depicted against a selected weighting ratio of performance indicators, e.g. as emissions vs. land-use or 
energy consumption. It assembles the weight-dependent SEE-Indices of all examined alternatives in one picture. 

The introduced assessment process has been applied to a simplified example of low noise aircraft configurations. 
These are mainly characterized by fuselage embedded turbofan engines. On the one side, the integration results in a 
lower engine noise, on the other side, in a reduced engine efficiency ( increased fuel consumption, air emissions). 
Additionally the specific direct operating costs are lower, due to an assumed higher utilization. Thus, there are more 
conflicting objectives to be managed in the optimization as well as decision strategy. It is shown, how the SEEindex 
supports the designer or evaluator in finding an optimal solution subject to certain constraints (e.g. different rele-
vance of criteria  weights). 
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