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Abstract— At L-band (1-2GHz) due to significantly large free-
space wavelengths, compact antenna arrays with small inter-
element separation i.e., d < λ/2, are a suitable choice for overall
size reduction. However, mutual coupling becoming prominent in
compact arrays results in a degradation of the diversity degrees-
of-freedom, which are required for beamforming capabilities in
modern receivers. In this paper we discuss a potential approach
to mitigate this limitation. We present empirical results for an
eigenmode analysis applied to the radiation matrices of compact
planar arrays, derived from the far-field integration of complex
realised-gain matrices. Furthermore, optimal arrangements for
compact planar arrays with respect to the highest possible value
of minimum eigenmode efficiency are discussed. It could be
shown that planar arrays have higher efficiencies and lower
radiation correlation, hence better diversity degrees-of-freedom
than linear arrays, particularly in a compact configuration.

1 INTRODUCTION

Recent advances in radio frequency (RF) CMOS technology

have led to compact low-noise receiver designs [1], [2].

However, overall antenna array size in these modern

miniaturised receivers has been mostly limited to a separation

between neighbouring elements equal to d = λ/2, thus

limiting the overall compactness of the system. Especially, in

case of L-band where λ ≈ 20cm, this large separation among

elements becomes a limiting factor for designing a compact

array. A wide-spread application in L-band is global satellite

navigation, where multi-element antenna arrays are becoming

attractive for accurate and robust reception of the navigation

signal in presence of interferers. As a result, in addition to

compactness, this application demands efficient arrays with

maximal diversity capability and low-noise receivers.

Compact arrays with an inter-element separation d <
λ/2 severely suffer from mutual coupling [3], hence

degrade the overall performance of the system. Digital

beamforming at baseband could mitigate the effects of

coupling for a compact array to some extent, though

at the expense of reduced dynamic range or radiative

degrees-of-freedom [4], [5]. In the recent past, techniques

for reducing coupling have been reported, using decoupling

and matching networks [6] involving eigenmode excitation,

or defected ground structures as an electromagnetic bandgap

configuration in printed antennas [7]. In conjunction with

addressing coupling reduction between elements, it is

necessary to optimise the array design with respect to
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Fig. 1: Eigenmode gain patterns for a 4-element planar lossless array
in square arrangement with d = λ/4, where mode#1 has in-phase
(++++) excitation for elements, mode#2 has (−−++) excitation
with one null, mode#3 has (− + +−) excitation with two nulls,
mode#4 has (+−+−) excitation with three nulls. mode#1 has the
maximum gain, and mode#4 has the minimum gain but maximum
degrees-of-freedoms.

its diversity degrees-of-freedom. Several methods involving,

e.g., an analysis of the superdirectivity sensitivity factor,

mutual impedance, or active reflection coefficient have been

identified [8]-[10] but lack complete scalable performance

characterisation. In [6], an approach was introduced which

utilises eigenmode radiation efficiencies to analyse the

performance of a compact array. In this paper, we extend

this approach to the computation of the radiation matrix using

realised-gain matrices, making it applicable for both lossy and

lossless arrays, which is used to derive the eigenmodes. These

eigenmodes, as illustrated in Fig. 1 for a 4-element array, form

orthogonal sub-space vectors, where the correlation ρij = 0
between any two basis vectors, making them independent and

hence perfectly decoupled. In general, eigenmode patterns

indicate the highest-order eigenmode (mode#4 in Fig. 1) with

n−1 nulls to be least efficient. Therefore, keeping the minimal

modal radiation efficiency or eigenmode efficiency (λmin) as

high as possible may provide a valuable optimisation tool for

the design of compact arrays.

In Section II, we present the design of a compact single

radiator and chosen arrangements for an n − element array.

In Section III, we present the extended analysis of compact

arrays. In Section IV, we investigate the figure-of-merit of

compact arrays by simulations. Optimised planar arrays for

maximal diversity performance are discussed in Section V. In

the end, conclusions are given based on the simulated results

in Section IV.

978-1-4577-0048-4/11/$26.00 ©2011 IEEE

512

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11150312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 2: Single element design - square patch with reduced substrate
size.

2 DESIGN OF COMPACT ARRAYS

2.1 Radiating Element
The compactness of an antenna array is limited mainly by

the inter-element separation d, and the size of the individual

radiation elements. Therefore, initially a miniaturised single

radiator element is considered. We have designed a linearly

polarised square patch on a high-ielectric permittivity substrate

ECCOSTOCK HiK 500F with εr = 30 [11], where λg =
0.18λ, and an almost 80% reduced size in comparison to

free-space wavelength. In order to increase the impedance

bandwidth, a substrate thickness of h = 6.4mm was chosen.

The antenna design sketched in Fig. 2 is optimised at

the L-band frequency 1.575 GHz for maximum impedance

bandwidth and radiation efficiency, which results in a ground

length gl = 48mm, and a patch length pl = 14.86mm.

We also considered a reduced substrate over the ground

plane, where the substrate width sw is only 24mm, to

minimise the dielectric losses. This small dielectric size has

no obvious advantage for coupling reduction, as the ground

plane dimension remains large.

2.2 Array Configurations
Different array configurations with different numbers of

elements were modelled and simulated in CST Microwave

Studio [12]. Planar arrays represent 2-D geometries as

compared to 1-D geometries of linear arrays. These

arrays were optimised with respect to inter-element

separations, and geometry configurations for maximal

diversity degrees-of-freedom, as mentioned before and

discussed further in later sections. Different geometries for

n = 3, 4, 6, and 9 elements were designed with inter-element

separations d as shown in Fig. 3.

3 ANALYSIS OF COMPACT ARRAYS

In order to evaluate an antenna array, it is desired to model

and analyse the parameters which encompass the effects of

power dissipated, i.e., lost within the antenna, and reflected

due to impedance mismatch, along with power radiated in the

presence of coupling between neighbouring elements. Power

dissipation within the antenna is mainly due to the losses in

the dielectric substrate materials and to the finite conductivity

of metal surfaces. Therefore, their practical characterisation in

performance analysis is necessary, especially in the case of

printed antennas. Compact arrays inherit a finite real part of

mutual impedances Zij , which result in feed impedances for

individual radiators different from their self impedances for

beamforming, giving rise to reflection losses. All these effects

negatively affect the total efficiency of the antenna. Therefore,

Fig. 3: Array geometry configurations for n−elements investigated
in this work.

our main concern has been to formulate an algorithm for

obtaining the radiation matrix H̃ of the designed array, and

then determine the realised radiation efficiencies including

all above mentioned losses. In [6], C. Volmer et al. have

introduced a technique for deriving the radiation matrix from

the scattering matrix Sij , assuming a lossless antenna array:

Prad = Pin − Pavg = �aH�a−�bH�b

= �aH(�I − �SH �S)�a
(1)

H̃acc = �I − �SH �S, (2)

whereas we use the complex valued realised-gain matrices of

the antenna array as compared to isotropic radiators Gi(θ, φ)
for determining the radiation matrix [13]:

H̃radθ
=

1

4π

∮

Giθ (θ, φ).Gjθ (θ, φ)dΩ (3)

H̃radφ
=

1

4π

∮

Giφ(θ, φ).Gjφ(θ, φ)dΩ (4)

H̃rad = H̃radθ
+ H̃radφ

(5)

Here, H̃rad includes the losses dissipated within the antenna

array, and hence, represents the true radiated power. It may be

noted that in case of a lossless array H̃rad = H̃acc.

3.1 Eigen-Analysis

The radiation matrix H̃ can be diagonalised to obtain

the eigenvectors and eigenvalues. The eigenvectors represent

the excitation vectors for a multi-element array providing

the decoupled excitations and the respective eigenvalues

(eigen-efficiencies or modal radiation efficiencies). Each

eigen-efficiency represents the power of the respective

eigenmode actually radiated into the far-field [6]:

H̃ = Q̃ΛQ̃H (6)

where Λ = diag{λ1, λ2, ...λn} (7)

Therefore, the worst-case radiation efficiency will be given by

λmin = min{�λi}.
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3.2 Radiation Pattern Correlation Analysis
In presence of mutual coupling, the diagonal elements

of H̃rad represent the amount of power radiated by the

individual elements, the off-diagonal elements are a measure

of correlation/overlap between the i and j elements. Therefore,

a correlation coefficient for mutually coupled compact arrays

can be represented as [14]:

ρij =
H̃ij

√

H̃iiH̃jj

(8)

where ρij is a complex number with absolute value of 1 for full

beam overlap and 0 for orthogonal beams. In literature, this

correlation coefficient ρ̃ is often treated as a figure-of-merit

for compact arrays.

4 FIGURE-OF-MERIT FOR COMPACT ARRAYS

4.1 Correlation coefficient ρ

If we consider an array with n = 4 and d = λ/4 in a square

configuration, the radiation matrix computed from eq. (5) is

given as

H̃rad =

⎡

⎢

⎢

⎣

0.58 0.19 0.01 0.09
0.17 0.57 0.07 0
0.13 0.07 0.56 0.18
0.09 0 0.18 0.58

⎤

⎥

⎥

⎦

and, using eq. (8), the correlation matrix is given as:

ρsq =

⎡

⎢

⎢

⎣

1 0.32 0.03 0.16
0.33 1 0.13 0.01
0.03 0.13 1 0.32
0.16 0.01 0.32 1

⎤

⎥

⎥

⎦

.

However, in contrast to the square arrangement, for the linear

array the correlation matrix is:

ρlin =

⎡

⎢

⎢

⎣

1 0.34 0.30 0.05
0.34 1 0.51 0.29
0.33 0.10 1 0.36
0.05 0.29 0.36 1

⎤

⎥

⎥

⎦

It is observed by comparison, that a linear array has an average

correlation ρavg = 1
n(n−1) (

∑

ij,i�=j

ρij) of 31% in contrast to a

much lower value of 16% for the planar array, which indicates

the superior diversity performance of a planar array for a given

number of elements and inter-element separation. However,

eigenvector excitation will lead to ρavg = 0, giving perfect

decorrelation, orthogonality, and decoupling of the radiation

patterns, thus making the correlation coefficient meaningless

for the comparison of different compact array configurations.

Therefore, we discuss an additional figure-of-merit based on

eigen-analysis.

4.2 Worst-case eigen-efficiency λmin

The diversity loss Ld of mutually coupled antenna arrays

with respect to its ideal uncoupled counterpart as defined in

[15] can be equated in terms of eigen-efficiencies as:

Ld ≈ −10

n
log

[

n
∏

i=1

λi

]

dB (9)

TABLE I: Diversity loss and minimum, maximum, average modal
radiation eigen-efficiencies in % for n = 4 and d = λ/4 and λ/5 in
linear, square and circular configurations.

d = λ/4 d = λ/5
Modes linear square circular square

1 88 83 83 71

2 81 68 78 40

3 66 48 39 30

4 2 29 9 14

λmin 2 29 9 14

λavg 77 57 53 38

λmax 88 83 83 71

LddB
5.02 2.76 4.02 4.81

In Table I, planar and linear lossless arrays for n = 4 for

d = λ/4 and λ/5 are compared in terms of λmin, average

eigen-efficiency λavg = 1
n

n
∑

i=1

λi, maximum eigen-efficiency

λmax, and Ld. It becomes evident that λavg and λmax are

optimistic parameters for analysing the diversity performance

of compact arrays in contrast to λmin. The lower the minimum

eigen-efficiency, the higher becomes the diversity loss. For

example, for an array with n = 4 and d = λ/4, it is

shown in Table I that λmin = 2% in the linear configuration,

while for the planar array it improves dramatically to 29%. In

contrast, comparing λavg, λmax = 77%, 88% and 57%, 83%
respectively, suggests that the linear configuration were better

than planar. The results for the diversity loss clearly indicate

a gain of 2.26dB for the planar arrangement, which is an

implication of its higher λmin. We conclude that an optimal

diversity performance can be achieved by improving the

λmin − values of compact arrays.

5 OPTIMISATION OF COMPACT PLANAR ARRAYS

5.1 Optimal Geometry
Now, we wish to optimise an n = 6 element lossless planar

array, with respect to λmin, by altering the arrangement of the

individual radiating elements. We choose two inter-element

separations as shown in Table II, d = λ/2 where coupling is

minimal, and d = λ/4 having prominent coupling effects.

It can be noticed that for the case of minimal coupling,

an improvement of λmin is not possible by using different

geometrical arrangements. However, for d = λ/4, the optimal

arrangement turned out to be circular or hexagonal, where

both provide a minimum eigenefficiency of 21%, in contrast to

merely 6% for a rectangular arrangement. Therefore, it can be

generalised that a n−element compact array, where coupling

is prominent, can be optimised in geometry with respect to

maximum λmin.

5.2 Optimal Inter-Element Separation d

The design of compact arrays requires reduced inter-element

separations. However, for a given number of n elements and

reduced separation, λmin becomes very low, e.g., for n = 4
and d = λ/5 in planar configuration its value drops to
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TABLE II: λmin in %, different geometry configurations for n = 6
and d = λ/2 and λ/4.

n = 6 n = 6
Optimal Geometry Shape d = λ/2 d = λ/4

Linear 62 2

Planar Rectangular 64 6

Circular/Hexagonal 64 21

14% as shown in Fig. 4. Therefore, for the n − element
array, to maintain all degrees-of-freedom efficient, thus above

a threshold value of λmin, a compromise has to be found

for the choice of d, limiting the overall compactness. If we

consider the simulated results of Fig. 4, n = 6 and d = λ/4
in circular/hexagonal configuration is a suitable choice with

sufficiently high λmin and diversity performance.

6 CONCLUSIONS

We have considered compact planar arrays for applications

at L-band frequencies, such as robust satellite navigation.

Compactness causes mutual coupling between neighbouring

radiating elements, which makes the array inefficient. As the

introduction of beamforming capability is required in compact

arrays, direction dependent reflection losses occur as a further

consequence. Therefore, a complete eigen-analysis using

eigenmode excitations encompassing both mutual coupling

and mismatch effects has been considered. The analysis

has shown that a correlation coefficient for distinguishing

mutually coupled arrays is of limited use, especially when

the excitations are orthogonal, e.g., eigenvector excitations.

Rather, the minimal eigen-efficiency λmin has been identified

as a suitable optimisation parameter for compact arrays. It

has also been shown that planar arrays display higher λmin

values compared to linear arrangements, and accordingly

provide better diversity performance. Furthermore, planar

array geometries can be optimised for λmin, i.e., in case

of n = 6 a circular arrangement is preferred over

rectangular, whereas for n = 4, a square arrangement

performs better than circular. It is worth-mentioning that these

results have been inferred from simulations, and practical

implementations of such systems may result in different

quantitative values, as manufacturing tolerances may give rise

to smaller eigen-efficiency values. Therefore, we are on the

way to implement such systems, and evaluate the resulting

diversity performance.
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