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Abstract—Permanent magnet synchronous motors (PMSMs)
produce a parasitic oscillating torque due to several reasons. This
contribution cancels the oscillating torque with adaptive control
algorithms. Therefore a mathematical model of the PMSM is
necessary. A model with nonlinear dynamics and a Fourier
approach for the ripples is used as a mathematical description.
Through comparisons between measured data and simulated data
it is shown that the model assumptions are valid.
The adaptive algorithm is implemented as an add-on controller
to the already existing control system which consists of a feedfor-
ward part and a basis controller. The challenge is that the closed
loop system has a resonant frequency and the algorithm should
have the same performance for all frequencies. Experimental
results show the performance and convergence of the adaptive
algorithm at constant and non constant velocity.

I. INTRODUCTION

In many industrial applications, like robotics or machine

tools, permanent magnet synchronous motors play a very

important role. A bad property of PMSMs is that they generate

torque ripples which cause a robot oscillating at tool center

point (TCP). This effect is insignificant if a robot does pick

and place tasks, because its structure dynamics is the most

important issue. Whenever a robot does quite slow movements

the ripples, generated by the motor, play an important role. For

practical robot applications like laser welding or gluing the

oscillations of the TCP are a disadvantage for the workpiece. A

PMSM often comes as servo-motors, where a cascaded control

structure is used. The inner loop is the current loop with a

decoupling network and the outer loop is a speed or position

loop.

Control based torque ripple minimization was studied by

many researchers already. The activities split into feedforward

and feedback control methods, see the summary of [7] for

AC drives. Several feedback control methods were discussed,

which implement the internal model principle [4], iterative

learning control with an observer [14], adaptive linear neuron

estimation [10], disturbance observers [3] or adaptive control

[11]. Also same feedforward methods are proposed like in [6].

The main properties of our method is the fast convergence, it

can handle accelerated movements and measurement noise. In
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Fig. 1. Block diagramm of a servo PMSM.

steady state the disturbance is canceled totally. Moreover, this

method can be combined with any basis feedback controller

and with any feedforward controller based on an inverse

model.

II. MODELING OF A PMSM

Figure 1 shows, how the physics of a PMSM can be

described by an analytical mathematical model. The ideal

PMSM is described by nonlinear differential equations in the

dq-coordinate system (CS). To this ideal model friction and

torque ripples are added. Often a PMSM is run with a field

oriented control (FOC) which consists of linear PI controllers,

a decoupling network and an inverter.

A. Nonlinear differential equations in dq-CS

The electrical differential equations of the PMSM are given

by

Ld

did

dt
= ud +

dqel

dt
Lqiq −Rid (1)

Lq

diq

dt
= uq −

dqel

dt
Ldid −Riq − q̇elψdm, (2)

with inductance L, resistance R, electric angle qel, current i,

voltage u and the flux ψdm. The indexes d and q describe the
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axis of the dq CS. The electromagnetic torque is given by

τm =
3

2
npψdmiq + (Ld − Lq)idiq, (3)

where 3

2
npψdm corresponds to the kT -factor of a DC-machine.

The mechanical differential equation is given by

Jm
d2qm

dt2
= τm − τf (T, q̇m)− τr(qm), (4)

with the moment of inertia Jm, friction torque τf , ripple torque

τr. For later control methods it is important, that only the

current iq and the motor position qm are measurable. The exact

derivation of the equations can be found in references [12] and

[2].

B. Causes for the torque ripples

There are several reasons for torque ripples in electric ma-

chines, see [15] [7] and [13], where also design modifications

are discussed to minimize the torque ripples. Some ripples

arise due to harmonics in the field flux linkage which are

electromagnetic effects. Another effect is often called cogging,

which is an unintentional interaction between the edge of the

pole and the slot, which creates a magnetic reluctance. Another

reason for ripples are due to current offsets and current scaling

errors. Nevertheless, for control based ripple rejection we

assume the following.

Assumption 1: The torque ripples can be modeled on torque

level independent of their cause with

τr =

∞
∑

N=1

mN cos(Nqm + ϕN ). (5)

C. Basis control of a PMSM

A servo PMSM is often run with FOC, which consists of

several parts. In the d-path and q-path often two PI current

controllers

PIiq,id(s) = ks
Tss+ 1

Tss
(6)

are used. The equations for the decoupling network are given

by

∆ud = −q̇elLqiq (7)

∆uq = q̇elLdid + q̇elψdm, (8)

the voltages ud,q are the outputs of the linearization. The

inverter is often realized by a pulse width modulation (PWM),

which is from the control point of view an ideal delay given

by

PWMd,q(s) = e−Tσs, (9)

with the cycle time of the PWM Tσ . Since an ideal delay

sometimes causes a problem in simulation or controller design

the ideal delay can be approximated as a first order system

or Pad Approximation. The outer control loop is a speed

controller or a position controller. In our case a position

controller is used with a PID structure given by

PIDqm(s) = kp +
ki

s
+

kds

Tds+ 1
. (10)
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Fig. 2. Bode diagram from torque ripple to motor velocity (disturbance
transfer function).

All these transfer functions result in linearized closed loop

transfer functions. The effect of the ripples on the motor

velocity is analyzed with the closed-loop disturbance transfer

function which is shown in figure 2. This figure shows the

different effects of the ripples for different frequencies. The

frequencies of the Bode diagram are proportional to the

velocity of the motor, so at the resonant region around 10Hz
the ripple have the biggest effect on the system’s output (motor

position).

D. Fit of simulation and experiment

The step response of the motor is shown in figure 3 which

is the comparison between simulation and experiment. The

figure shows a good correlation in transient and steady state

behavior of current iq and speed qm. At the transient operation

the motor dynamic plays the most important role and in steady

state the motor ripple and friction get more important. In this

case the iq signal shows an offset, which is achieved with a

friction model given by

τf = τf (q̇m(t), T ), (11)

where T is the motor temperature. The friction model was

found at different motor velocities and is then put into a look-

up table.

III. ADAPTIVE CONTROL SCHEMES

This paper introduces two different algorithms for periodic

disturbance rejection which are called G−1 algorithm and fil-

tered least mean squared (FXLMS) algorithm. Since the plant

is not strictly positive real (SPR) some system information is

needed, so the G−1-algorithm uses an inverse system matrix

and the FXLMS algorithm uses a model of the plant as a filter,

see figure 4.

These type of controllers fall in the framework of adaptive

feedforward cancellation (AFC) which was introduced by

Bodson [1] and [5] for the suppression of sound waves (active

noise control). An important part of this work is to adjust these

gradient based algorithms to mechatronic systems.
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Ĝ

GradientAFC

θc(t)

θs(t)

sin(ωdt)
sin(ωdt)

cos(ωdt)
cos(ωdt)

ρ

Fig. 4. Block diagram of AFC and gradient.

1) The FXLMS algorithm: The following derivation is only

valid for plants without any reference input. The disturbance is

given in the time domain and is transformed to vector notation

d(t) = θ∗c cos(ωdt) + θ∗s sin(ωdt)

=

[

cos(ωdt)
sin(ωdt)

]T [

θ∗c
θ∗s

]

= wT (t)θ∗,

(12)

where w is the regressor or regressor vector. The control signal

v(t) is given by

v(t) = θc(t) cos(ωdt) + θs(t) sin(ωdt)

=

[

cos(ωdt)
sin(ωdt)

]T [

θc(t)
θs(t)

]

= wT (t)θ(t).

(13)

Since the reference signal is w = 0, the output of the plant is

given by

e(t) = G(s)[v(t)− d(t)]1

= G(s)[wT (t)(θ(t)− θ∗)]
(14)

and is the error signal for the adaptation. Perfect cancellation

(e = 0) is achieved, if θ∗ = θ(t). This can be obtained by an

adaptation such that θ(t) → θ∗. A gradient based algorithm

is used that minimizes the squared error e(t)2 as a function of

the adaptive states θ(t), where ρ is the gain of the adaptation.

The equations of the adaption law is given by

θ̇(t) = −ρ∇e2(t) (15)

= −ρ
∂e2(t)

∂θ(t)
(16)

= −2ρĜ(s)[w(t)]e(t), (17)

where Ĝ(s)[wT (t)] is the inner derivative of the error. In the

continuous time domain the adaptation can be written as

θ̇(t) = −2ρĜ(s)[w(t)]e(t), (18)

which is an implementation of the algorithm. Stability can not

be proven ∀ ρ > 0, which is a drawback of the algorithm. Still

the following lemma can be proven with Lyapunov theory, see

[8].

Lemma 1: With assumption 2 and assumption 3 sta-

bility can be proven for the adaptation law θ̇(t) =
−2ρĜ(s)[w(t)]e(t) with Lyapunov theory in all operating

points.

Assumption 2: The transfer function of the plant G(s) =
Ĝ(s) is completely known.

Assumption 3: The adaptation gain is chosen to be small

enough, it holds for the coordinates φ̇(t) ∼= 0 and φ(t) ∼=
const with the coordinate transformation φ(t) = θ(t) − θ∗

and φ̇(t) = θ̇(t).
Proof 1: If the error signal from equation 14 is inserted into

the adaptation law 18 it follows

θ̇(t) = −2ρG(s)[w(t)]G(s)[wT (t)(θ(t)− θ∗)] (19)

and with the coordinate transformation

φ̇(t) = −2ρG(s)[w(t)]G(s)[wT (t)φ]. (20)

With assumption 3 it follows

φ̇(t) = −2ρG(s)[w(t)]G(s)[wT (t)]φ(t). (21)

To simplify the notation it holds G(s)[w(t)] = wF (t) which

leads to the nonlinear differential equation

φ̇(t) = −2ρwF (t)w
T
F (t)φ(t), (22)

= −2ρA∗(t)φ(t) = −A(t)φ(t). (23)

As an approach for the Lyapunov function

V (t) = φT (t)φ(t) (24)

is chosen. For the derivative of the Lyapunov function it holds

V̇ (t) = φ̇
T
(t)φ(t) + φT (t)φ̇(t), (25)

= −(A(t)φ(t))Tφ(t)− φT (t)A(t)φ(t), (26)

= −φ(t)TA(t)Tφ(t)− φT (t)A(t)φ(t), (27)

= −φT (t)(A(t) +AT (t))φ(t) (28)

1For notation convolution is written as G(s)[v(t)−d(t)] = g(t)∗ (v(t)−
d(t)) in squared brackets, so time domain signals and frequency domain
system can mixed up easily.



The condition of stability is fulfilled if A(t)+AT (t) is positive

semidefinite, which is the case, because A(t) + AT (t) is

symmetric and has the eigenvalues λ = 0, 2.

A. The G−1 algorithm

Another implementation of the gradient algorithm is de-

scribed by the G−1 algorithm and the adaptation law is given

by

θ̇(t) = −2ρĜ
−1

(ω)w(t)e(t), (29)

with the system matrix

Ĝ(ω) =

[

ℜ{Ĝ(jω)} ℑ{jĜ(ω)}

−ℑ{Ĝ(jω)} ℜ{jĜ(ω)}

]

. (30)

For the error signal in matrix notation it follows

e(t) = w(t)TG(ω)(θ(t)− θ∗). (31)

For the proof of stability the following lemma has to be proven

Lemma 2: With assumption 2 stability can be proven for the

adaptation low θ̇(t) = −2ρĜ
−1

(ω)w(t)e(t) with Lyaponov

in all operating points.

Proof 2: If the error signal from equation 31 is inserted into

the adaptation law 29 it follows

θ̇(t) = −2ρG−1(ω)w(t)w(t)TG(ω)(θ(t)− θ∗) (32)

and with the coordinate transformation φ(t) = θ(t) − θ∗,

φ̇(t) = θ̇(t) it follows

φ̇(t) = −2ρG−1(ω)w(t)w(t)TG(ω)φ(t) (33)

= −G−1(ω)A(t)G(ω)φ(t). (34)

As an approach for the Lyapunov function

V (t) = φT (t)φ(t) (35)

is chosen. For the derivative of the Lyapunov function it holds

V̇ (t) = φ̇
T
(t)φ(t) + φT (t)φ̇(t), (36)

= −(G−1AGφ)Tφ− φTG−1AGφ, (37)

= −φTGTAT (G−1)Tφ− φTG−1AGφ, (38)

= −φT (GTAT (G−1)T +G−1AG)φ (39)

The condition of stability is fulfilled if GTAT (G−1)T +
G−1AG is positive semidefinite, which is the case, because

GTAT (G−1)T + G−1AG is symmetric and has the eigen-

values λ = 0, 2.

IV. REJECTION OF TORQUE RIPPLES AT A PMSM

In this paper we use gradient based AFC methods to

reject torque ripples of a PMSM. The disturbance can not be

modeled as an exosystem, but as a function of a system state

(motor position), see equation 5.
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Fig. 5. Block diagram of the complete control system for the PMSM without
feedforward control.

A. Integration of the adaptation in the existing control system

Several signals can be used as an error signal and also

several locations for the intervention of the adaptive signal

(vd,vf ) are possible, see figure 5. If the adaptive signal

intervenes on the position level the adaptive states are not

constant at accelerated movements, because of the dynamics,

which is between the location of intervention and the location

of the disturbance. If the location of intervention of the

adaptive signal is the current level, it is possible to achieve

(quasi) constant adaptive states. The only disadvantage of this

algorithm is that it uses the closed loop disturbance transfer

function of the closed loop system, which is a function of the

basis controller. Thus, if the basis control system changes, also

the adaption has to be adjusted.

As an error signal the position signal is used because it is less

noisy and the velocity has to be calculated numerically. It is

also good-natured during accelerated movements.

1) Adaptation without feedforward control: The goal of the

control system of figure 5 is to follow a reference trajectory

and to reject a periodic disturbance at the same time. It holds

for the motor position with location of intervention of the

adaptive controller on position level

qm = Gfvf +Gfq
d
m +Gdd. (40)

with Gf = GK
1+GK

and Gd = G
1+GK

. For the adaptation we

make the system fictively free from the reference trajectory,

which is achieved with

e = qm − Ĝfq
d
m. (41)

The error for the adaptation becomes with equation 40 and

assumption 2

e(t) = Gd(s)[w
Tθ∗] +Gf (s)[w

Tθ(t)]. (42)

The adaptation error is minimized with a gradient so it follows

θ̇ = −ρ
∂e2(t)

∂θ(t)
(43)

= −2ρGf (s)[w
T e(t)]. (44)
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The filter of the adaptation of figure 5 Ĝx(t) is the reference

transfer function Ĝf (s). If the location of intervention is

chosen to be current level it holds for the motor position

qm = Gdvd +Gfq
d
m +Gdd. (45)

With a gradient it holds

θ̇(t) = −2ρGd(s)[w
T e(t)]. (46)

Now the filter of the adaptive algorithm Ĝx(t) becomes the

disturbance transfer function Ĝd(s) of the closed loop system.

2) Adaptation with feedforward control: The PMSM has

to have a good disturbance rejection but it also has to follow

the reference trajectories perfectly. This can be improved, if a

feedforward controller is used, which consists of the inverse

model of the PMSM. The block diagram of the complete

control system is shown in figure 6. It holds for the motor

position with location of intervention of the adaptive controller

on position level

qm = Gdd+ Fvf + Fqdm. (47)

For the adaptation we make the system fictively free from the

reference trajectory, which is achieved with

e = qm − Fqdm (48)

With assumption 2 the error for the adaptation becomes

e(t) = Gd(s)[w
Tθ∗] + F (s)[wTθ(t)]. (49)

With a gradient it holds

θ̇(t) = −2ρF (s)[wT e(t)] (50)

Due to the inverse model at the input, the transfer function

Ĝx(t) of figure 5 is just the filter of the feedforward controller,

which is needed to differentiate the signals. For real-time

applications this is an advantage, because the order of the filter

is low and so computing time is saved. Another advantage is

that there is no information needed of the basis controller. The

disadvantage of the setup is again that the adaptation does not

have constant states at accelerated movements, which makes

q̇ q̈

<> γq̇ <> γq̈

or

v = 0 Stopp
Adap.

θ = 0 θFF = θFF + θ

Actualize θ

θFF = 0

> γθ

true/falsetrue/false

true

true

false

false

θFF

θ

θ

Fig. 7. Flow-chart for the logic control of the adaptation.

the convergence quite slow. If the location of intervention is

chosen to be current level it holds for the motor position

qm = Gdd+Gdvd + Fqdm. (51)

With a gradient it holds

θ̇(t) = −2ρGd(s)[w
T e(t)] (52)

Now the filter of the adaptive algorithm Ĝx(t) becomes the

disturbance transfer function Ĝd(s) of the closed loop system,

as in equation (46).

B. Logic control of the adaptation

There are several reasons to stop the adaptation. The os-

cillations only occur at a certain velocity region, see figure

2, so at velocity regions, where the ripples do not have any

effect the adaptation can be switched off. Also at movements

with high accelerations the effect of the ripples is very small. It

makes sense to use the already learned information for the next

learning phase. This is achieved with the following equation

v(t) = θ(t)wT (t) + θFFw
T (t) (53)

and with the help of figure 7. If the adaptation is switched off

the actual values of the adaptive states are set to θFF , so in

the next run θ only has to learn the oscillation which is left.

C. Experimental results on a PMSM testbed

1) Differences to the basis control system: Figure 8 shows

in the first column experimental results of a PMSM, controlled

with a common PID position controller. At constant velocity

there is a clear oscillation visible. The bottom picture of the

first column shows a position based Fourier analysis of this

signal, which shows a peak with N = 24.

The second column shows the compensated case, where the

oscillation is canceled totally, which is also visible at the

frequency spectra. The adaptive states converge in about 2s.
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Fig. 8. Experimental results of the G
−1 algorithm at constant speed.

The last column shows the same movement with feedforward

control, which consists of the inverse model and a friction

model. The offline calculated friction compensation works

well, as shown in the last picture of the last column, but has

no big influence on the adaptive states.

The experiments show some oscillations of the adaptive states

in steady state behavior, which is probably due to a model

error, non suppressed harmonics or frequency errors.

2) Convergence during an operational profile: Figure 9

(upper right) shows a practical operational profile for a PMSM.

Here the logic control of the adaption from section IV-B can be

studied. The second column shows that the convergence time

for the N = 4 ripple is not enough during the acceleration, but

during the movement with constant speed for the adaptation it

is easier to find the correct states due to the correct reset and

feedforward compensation.

The first picture of the second column shows the position error

during a positioning movement. Due to the feedforward con-

troller, which includes the inverse model, this error becomes

much smaller. The adaptive controller is designed to reject

several harmonics as in [9].

V. CONCLUSION

We presented an adaptive control scheme for a PMSM,

which was added to the existing control scheme and can be

combined with a feedforward controller, which consists of

the inverse plant. The torque ripples totally vanish with the

adaptive controller, which was tested on a real time PMSM

testbed.

As future work we want to implement this algorithm for more

complicated systems like an elastic robot, which will have

more challenges, because the system gets nonlinear and has

multiple inputs and outputs.
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