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Abstract— This paper presents a realtime perception system
for catching flying balls with DLR’s humanoid Rollin’ Justin.
We use a two-staged bottom up approach in which we first
detect balls as circles and feed these measurements into a
multiple hypothesis tracker (MHT). The novel circle detection
scheme works in realistic scenes without tuning parameters
or background assumptions. We extend the classical multi-
hypothesis tracking with prior information about the expected
trajectories, therefore limiting the number of hypotheses in the
first place. Since the robot starts moving while the ball is still
tracked, the cameras shake heavily. A 6-DOF inertial measure-
ments unit (IMU) is integrated to compensate this motion. Using
ground-truth from a marker based tracking system we evaluate
the metrical accuracy of the motion compensation as well as
the tracker’s prediction accuracy while in motion.

I. INTRODUCTION

Human society cherishes sports as a noble activity showing
mastership in perception, body control, and in tactically
pursuing a goal. The same is applicable to robots, where per-
forming a sports activity is an excellent realtime benchmark
for perception of dynamic scenes, for motion planning and
control, and for action planning. Also, robots doing sports
fascinate novices (and experts), because everyone under-
stands what happens and can judge the robot’s performance
relative to a human. Hence, besides the benchmark view,
robotic sport activities also illustrate the relation between
humans and robots in a way accessible for everyone.

The activity reported here is DLR’s wheeled humanoid
robot Rollin’ Justin [1] catching two tossed balls with his two
arms and hands. This paper presents the perception system
that tracks and predicts the flying ball(s) from cameras at
the robots shaking head (Fig. 1). The subsystem of planning
the motion for a single arm-hand unit according for this task
was presented in [2] and adapted to Rollin’ Justin [3].

A. Related Work

As with this work, the task of tracking and predicting
balls was studied as part of robotic ball catching systems
([4], [5], [6], [7], [8]). All of these have a static setup using
stereo cameras with rather wide baselines. Detecting the
ball is done by pixel-wise segmentation, using color ([6],
[7], [8]) or using the difference to a reference image [5].
Also, all these systems assume just one flying ball and only
limited capability to handle false detections. Therefore, no
data association has to be made and estimating the ball’s
position and velocity from the state is done using Extended
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Fig. 1. The vision system tracks and predicts two thrown balls in realtime.
Predicted trajectories of the two simultaneously thrown balls as well as an
artificially horizon, depicting the camera’s orientation, are shown.

Kalman Filters (EKF) ([5], [7]) or fitting a parabola to the
measurements from both cameras ([4], [6], [8]).

Apart from robotic catching systems, Ribnick et al. [9]
present a method for detecting arbitrary objects which were
thrown. For this, regions of motion are extracted by comput-
ing the image’s inter-frame difference. The centroids of the
regions are then associated to a trajectory by a parabolic fit.
Also, Ren et al. [10] present a system for fully automated
3D soccer ball tracking including the possibility to classify
the ball’s state as rolling, flying, in possession or out of play.
Regarding the problem of data association, Yan et al. [11]
provide a solution for trajectory generation as the optimal
concatenation of tracklets containing true positive measure-
ments and applied their method to tennis ball tracking.

Detecting and tracking balls is also used in broadcast tele-
vision for augmenting the viewer’s experience. Such systems
are available for baseball [12], cricket and tennis [13].

B. Challenges and Contribution

In contrast to all aforementioned systems, our cameras are
mounted at the humanoid’s head. This gives rise to several
challenges addressed in this paper: First and foremost, the
cameras are not static but move when the robot moves and
even shake from the reaction forces of a moving arm. This
requires an IMU to compensate, i.e. to distinguish between
camera and ball motion and also to measure gravity. It also
precludes to use simple difference images for detecting the
ball. Second, the baseline is much smaller (0.2m) than pos-
sible with stationary cameras. This increases the uncertainty
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Fig. 2. Data flow of the perception system: Circles are independently detected in both images and passed as measurements to an Multiple Hypothesis
Tracker (MHT). The MHT also receives the integrated head pose from the IMU which is needed in the camera measurement model. In the MHT a list of
Unscented Kalman Filters (UKF) tracks different hypotheses for different balls, one for each hypothesis of each ball. The UKFs of the balls of the most
likely hypothesis are predicted and passed to the motion planner.

in depth direction. We compensate by using high resolu-
tion (1600× 1200@25Hz) cameras, however making circle
detection computationally demanding. Third, the cameras
see the ball in front of an undefined background, namely
the person throwing it and other spectators. This precludes
simple color segmentation. It further requires a sophisticated
multi-hypothesis tracker that can discriminate false-alarms,
such as someone’s head, from the real ball by observing
whether it moves like a flying ball over time.

This paper continues our previous work [14], where
we showed tracking and prediction of up to three balls
which were tossed around by four people outdoors. The
novel contributions are: A method for converting the circle
detector responses to likelihoods resulting in fewer false-
positives (Sec. II), a prior on expected trajectories in the
MHT (Sec. III), use of an IMU to compensate for shaking
cameras (Sec. IV), integration into the real robot Rollin’
Justin, and a metric evaluation of the prediction accuracy
with a commercial marker based tracking system (Sec. VI).
Fig. 2 shows a data-flow overview of the system.

II. CIRCLE DETECTION

The most popular way to detect a ball in an image is the
circle Hough-transform ([15], [16], [17]). Conceptually, it
counts the number of pixels along every hypothetical circle
where the image gradient is radial (Fig. 3a). This criterion
involves two hard thresholds. One on the gradient norm for
classifying edge pixels (usually hand-tuned) and one on the
angle δ between the gradient and the radial direction (often
equivalent to 1 pixel at the center). Many methods threshold
the gradient, operating on a binarized edge image [18].

Hard thresholds often impair robustness and in particular
the gradient norm threshold depends highly on scene contrast
and illumination requiring frequent adjustment. Hence, we
propose a circle detection criterion that is invariant under
linear illumination changes and avoids hard thresholds and
tuning parameters. By passing the best N = 25 local maxima
to the MHT we also avoid thresholding the response itself.

A. Contrast Normalized Sobel Filter (CNS)

Gradient filters (e.g. the Sobel) ignore additive intensity
changes, but scale linearly with intensity. They could be
normalized for illumination invariance by dividing by the

gradient norm, i.e. using the direction only. However, this ap-
proach gives random results in (almost) uniform image areas.
Instead, we adopt the normalization in template matching and
divide by the square root of the local image variance.

C =

√
2
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+1 0 −1

)
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(
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)
∗ I
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√
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)
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)
∗ I
)2

+ ε2

(1)

The image is I and ∗ denotes convolution. We use the
Sobel filter in the nominator and compute the local image
variance by V (X) = E(X2)−E(X)2 with a weighting mask
in the denominator. ε = 1 is the discretization unit of pixel
intensity preventing 0/0 in constant image areas. Sobel
filters combine (1 2 1) low-pass and (+1 0 −1) differentiation.
So the weighting mask is the corresponding combination
(1 2 1) ∗ (1 2 1)T of low-pass filters. The factors

√
2 and

16 normalize the vector length to [0 . . .1]. Intuitively, the
norm of the CNS filter indicates gradient purity rather than
gradient intensity being 1 for a pure linear gradient and
gradually lower when there are other components in the local
image (Fig. 3c).

B. Circle Response

We use the squared scalar product of the CNS with the
radial direction as an indicator of how well the local image
at a point along the circle looks like a circle (Fig. 3d)

R(x,y,α) =

((
cosα

sinα

)
·C(x,y)

)2

= |C(x,y)|2 · cos2
δ (2)

The scheme (Fig. 3a) is similar to Hough-transform. How-
ever, it replaces the hard gradient intensity threshold with
a soft illumination invariant indicator of gradient purity
|C(x,y)|2. The hard threshold on the angle δ between the
gradient and the radial direction is replaced with a soft
penalty factor cos2(δ ) (Fig. 4).

The overall response for a circle xc,yc,r is obtained by

CR(xc,yc,r) =
1

2π

∫ 2π

α=0
R(xc + r cosα,yc + r sinα,α)dα (3)

integrating (2) along the circle (Fig. 3e). The range of R
is limited with ≈ 0.12 for a random pixel in our images
and 1 for a perfect edge. When instead using gradient
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a) b) c) d) e)

Fig. 3. The proposed circle detector: a) overall idea of how well the gradient vector at a circle pixel has radial direction, b) input image, c) CNS (1)
vector image, d) response (2) at every circle pixel for a fixed circle, e) response (3) for r = 3 and different center xc,yc.

Fig. 4. Plot of the response (2) as a function of CNS norm |C| and
angular mismatch δ between the image gradient and the radial direction.
The corresponding plot for the classical Hough-transform is 1 inside a hand-
tuned rectangle and 0 outside.

intensity to weight the responses, we experienced that a
small high contrast edge dominates the integral creating false
responses, e.g. along window edges. The same happens when
normalizing the contrast not per pixel but on the whole circle,
e.g. by the average gradient intensity.

A mathematical derivation [14], omitted here for lack of
space, further motivates the filter choice in (1) and the square
in (2). It shows that R(x,y,α) is the fraction of image contrast
around (x,y) that is a linear gradient in direction α .

Finally, smoothing the image with the above mentioned
filter prior to (1) improves gradient precision and responses.

C. Multiscale Approach and Modifications

While the Hough-transform’s hard thresholds impair ro-
bustness, they facilitate efficiency: For every pixel above the
gradient threshold, only the circle centers along the line in
gradient direction need to be considered.

Evaluation of (3) for our image format and circle sizes
requires to compute (2) πr2

maxwh = 34.7 · 109 times, where
w and h are the image’s width and height respectively.
From the formula one can see, that by downscaling the
image to half the resolution, computation time reduces by a
factor of 16. Hence we use a multiscale pyramid, detecting
every circle at the coarsest level where this is possible and
refine progressively at finer levels. This needs only 32.3 ·106

TABLE I
DIFFERENT LEVELS OF THE MULTISCALE CIRCLE DETECTOR. THE LAST

COLUMN ASSUMES SEARCHING FOR N = 25 CIRCLES. OVERALL

32.3 ·106 EVALUATIONS ARE NEEDED INSTEAD OF 34.7 ·109 FOR SINGLE

SCALE.

scale size r equiv. r # evaluations # evaluations
on 1:1 (global search) (refinement)

1:1 1600×1200 4.17 M
1:2 800× 600 2.07 M
1:4 400× 300 3 . . .7 12 . . .31 19.80 M 0.98 M
1:8 200× 150 4 . . .7 32 . . .63 4.43 M 0.50 M

1:16 100× 75 4 . . .4 64 . . .79 0.27 M 0.10 M
total 12 . . .79 24.50 M 7.81 M

evaluations.
On the downside, the multiscale detector is slightly less

robust, as it is harder to detect a small circle on a coarse
level than the corresponding large circle on the fine level.
Hence, the MHT provides predictions for flying balls which
are additionally refined on the finest level. Table I shows the
policy which radius is detected where.

D. Conversion to Likelihoods

The detector described so far has a tendency to find
small false circles, because it is more likely that the average
response of few pixels is high than of many. To compare
responses probabilistically, we compute the likelihood that
the response is coincidence. For that, the distribution of
responses R for a radius r is assumed to be a Gaussian
N (µ,(σrγ)2) and µ , σ , and γ are learned from training
data.

L =
1√

2π(σrγ)
exp
(
− (R−µ)2

2(σrγ)2

)
(4)

− lnL =
( 1

2(σrγ)2︸ ︷︷ ︸
a

R− 1
2(σrγ)2 µ︸ ︷︷ ︸

b

)2
+ ln

(√
2πσrγ

)
︸ ︷︷ ︸

c

(5)

For efficiency reasons we use negative log-likelihoods
(NLL), so the computation in (5) reduces to evaluating
(aR−b)2 + c, with a,b,c precomputed for each r.

The conversion to likelihoods works well and is theoret-
ically elegant as the result could be used as the false alarm
likelihood in the tracker. This gives the MHT the information
that low response circles are more likely false alarms than
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high response circles. However, we also tried another alterna-
tive: The number of circles accepted as measurements by the
MHT is counted. For this, circle measurements from a set of
trajectories are extracted. The circle detector is then applied
on the source images of the trajectories and the number of
correct circle detections is then maximized with regard to
µ , σ , and γ by evaluating all reasonable combinations in
an offline fashion. This approach works even better and is
hence use it by us. Unfortunately, it has no probabilistic
interpretation anymore.

E. Efficient Implementation

A major challenge was processing 2×2MPixel images in
<25ms leaving >15ms for the MHT. We therefore optimized
the implementation using OpenMP multi-core and Single
Instruction Multiple Data (SIMD, Intel SSE) parallelization.

The SIMD implementation of (1) processes 8 pixel at a
time. All filters are factored into X and Y. First, in one line

(1 2 1)∗ I, (+1 0 −1)∗ I, (1 2 1)∗ I2 (6)

are computed as 16, 16, and 32 bit integers. The result is
stored for two lines and then filtered vertically, resulting in

(+1 0 −1)T ∗ (1 2 1)∗ I, (1 2 1)T ∗ (1 2 1)∗I , (7)

(1 2 1)T ∗ (+1 0 −1)∗ I, (1 2 1)T ∗ (1 2 1)∗I2. (8)

Then (1) can be evaluated as a floating point number and
converted back to signed 8 bit integer to save memory
bandwidth. The downsampled image needed for the next
coarser scale is obtained by averaging the low-pass filter over
2× 2 pixel. It is important to do all these computations in
one pass to save memory bandwidth. All this runs parallel
with each core computing a horizontal stripe in the image.

Most performance critical is the SIMD implementation of
(3) resp. (2) being evaluated 32.3 · 106 times (Tab. I). The
values of sine and cosine and the address of the circle pixel
relative to the center are precomputed. The memory access
pattern is irregular with respect to α (around the circle) and
r (different circles). But it is regular with respect to xc,yc, so
we compute the response for a block of 16×16 (refinement:
8×8) circle centers and a fixed radius at a time. The next
outer loop is iterating over different radii. Since there is a
large overlap in the accessed pixel, these are usually cached.
The outermost loop iterates the circle center blockwise over
the image.

Intel’s SSE3 includes an instruction pmaddubsw that
multiplies 2× 16 bytes adding adjacent products (16 bit).
This computes cosαCx + sinαCy. However, one operand is
unsigned, so we shift the CNS image by 1, i.e. 128, and
correct the product by subtracting cosα + sinα . The result
is squared (2) and accumulated (3). Overall, 6 instructions
perform 8 evaluations of (2) in 2.6 cycles, 0.12ns/eval.

Again, the computation is executed in parallel on horizon-
tal stripes and refinement is also parallelized. Figure 5 shows
the computation time over image size and number of cores.
As we hoped, it scales well up to four cores.
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Fig. 5. Computation time of the circle detector on 4:3 images of different
size with 1 to 4 cores on a desktop Intel XeonTM W3520 @2.67GHz.

F. Discussion

The presented circle detector is illumination invariant and
contains neither hard thresholds nor parameters that need
to be tuned to the current scene or lighting situation. This
statement holds with two restrictions:

First, of course at some point the system takes a hard
decision by letting the robot start moving, However, in
passing as many detected circles as possible to the MHT,
we delay this decision. This is better, because the MHT has
much more context, namely the whole image sequence, to
decide, whether something is a ball or not.

Second, the parameters in (5) and the multiscale policy
in Table I needed somehow to be chosen. However, the
first were learned from training data and we once tuned
the second for the available computation time. Neither was
changed when moving from the lab to other settings. So, we
believe they are not hand-tuned parameters.

Finally, on a desktop PC the detector was even faster
than needed. This allowed moving to an 2.5 times slower
embedded PC inside Rollin’ Justin using 2 cores per camera.

III. MULTI-HYPOTHESIS TRACKER

We use Cox’ [19] extension of Reid’s [20] Multi-
Hypothesis Tracker (MHT) with an Unscented Kalman Filter
(UKF) [21, §3.4] for every hypothesis as the core algorithm
for predicting one or more trajectories from the set of
detected circles. We give an intuitive description here, details
are found in [14] and [19].

A. Algorithm Overview

The MHT is a probabilistic algorithm for estimating
target states (here ball position and velocity) from uncertain
measurements. It is related to a Kalman Filter (KF), however
the MHT considers not only measurement noise, but also
probabilities for a measurement not to be detected and for
a spurious measurement to occur. It models target dynamics
(here ball flight) as a KF, but also randomly appearing and
disappearing targets, i.e. the number of targets is estimated.

Conceptually, the MHT maintains a mixture distribution,
where every hypothesis is a fixed assignment of measure-
ments to targets. It is represented by a probability and a list
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of Gaussians. The probability defines how likely it is that
this assignment is true and the list of independent Gaussians
gives the distribution of the target state conditional on the
assignment. With a fixed assignment, every Gaussian can be
updated by a classical filter, in our case a UKF where the
concrete formulas of ball-flight and of mapping a world ball
to an image circles are implemented. The MHT dynamic step
simply consists of executing a dynamic step on each UKF.
The measurement step in principle updates every Gaussian in
every hypothesis with every measurement systematically go-
ing through all possible assignments and creating many new
hypotheses. The probability of an hypothesis is multiplied by
probabilities for “everything that happened”, i.e. constants
for missed observations (PS), spurious measurements (λF ),
appearing targets (λN) and disappearing target (Pχ ). In the
case of assigning a measurement to a target, the UKF mea-
surement update returns the so-called Mahalanobis-distance,
a measure of consistency. It is converted into a probability
and multiplied into the probability of the hypothesis.

This is the main mechanism of the MHT: Measurements
that are consistent with the state, i.e. over time with the
dynamic model, lead to hypotheses with high probability.
Inconsistent measurements generate low probability hypothe-
ses, lower than the hypothesis that they were spurious.

B. Implementation

The description above is conceptual, the actual imple-
mentation [19] is optimized with clever data-structures, an
efficient assignment algorithm, and pruning of hypotheses.
In our UKF the measurement model is the usual pin-hole
camera with radial distortion, with measurement uncertainty
σx,y for the center and σr for the radius of the circle. The
dynamic model [14], [22] is

b̈ = g−α · ‖ḃ‖ · ḃ, (9)

with b ball position, g gravity and air-drag coefficient α .
Dynamic noise is considered as σQ.

The MHT is executed twice per stereo-frame, first on the
left then on the right image. This way it finds both the stereo
correspondences and the correspondences over time.

C. Prior

There are many false-alarms from (roughly) circular look-
ing objects. Most of them are discarded but some by coin-
cidence resemble a ball trajectory and become tracks in the
MHT. To rule them out, we include the prior information, that
the ball is thrown from some typical position and towards
the robot. The information is learned from training data
(currently simulated). For that, a 6-D Gaussian is fitted to
a sample of initial states (position and velocity) from several
tracked balls. This Gaussian defines with uncertainty from
where a ball is typically thrown (position), in roughly what
trajectory (velocity) and that it is thrown towards the robot
(correlation between both). Theoretically, it could be used to
initialize the UKF. Practically, there are two problems:

First, the prior Gaussian is large causing linearization
errors in the UKF for the first visual measurement. Instead,

Fig. 6. The head as the camera-IMU-rig where the IMU is the orange box
on the top. The angle of view for each camera is 49◦. The delay between
physical event and arrival at the PC are 40ms for the cameras and 5ms for
the IMU.

we map the first measurement (circle center and radius) to
a position. The covariance of that position is obtained by
sigma-point propagation through that mapping, i.e. lineariz-
ing at the position derived from the first measurement, not at
the prior’s mean. The resulting Gaussian is then fused with
the prior using the Kalman filter update equation, since once
the measurement is converted to a position, the measurement
function is linear. The result is the state of the UKF which
processes all following measurements as usual.

Second, we want the system to act independently from
which direction the ball is thrown. This is enforced by
rotating the initial states to a normalized position for learning
the Gaussian prior and rotating the Gaussian back to the
actual position before fusing it.

IV. INERTIAL POSE ESTIMATION

The state (b, ḃ) must be expressed in a static coordinate-
system, because only there (9) holds. A static camera could
be calibrated relative to a world frame with known gravity
vector, e.g. the robot base. For Rollin’ Justin this is more
difficult, because while the kinematic chain between head
and arms is precise, the torso has elasticity and hysteresis
and the wheels have dampers and slip on the floor. Even,
when the arms move the reaction forces jiggle the head.

Our solution is to view the head-arm system as a self-
contained “catching device” that is somehow moved by the
rest of the robot and this motion is exclusively obtained
from a head-mounted IMU (Fig. 6). This view makes the
perception module independent, allowing to test it with a
manually moved camera-IMU-rig. As a matter of fact, this
was essential, as Rollin’ Justin’s experimental time is scarce
and the perception system could be developed independently.

A. IMU Integration

So, our world frame is defined by the IMU pose at start up
rotated such that Z points against measured gravity. The head
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Fig. 7. Four images from an image sequence recorded during a ball catch showing detected circles, the detected track, its predicted trajectory and an
artificial horizon. A yellow horizon indicates that only orientation whereas a green horizon indicates that the full 6-D pose is estimated, see (Sec. IV).

pose is tracked in that frame by the usual IMU integration:

qt+∆t = qt · exp(∆t ·ωt) (10)
vt+∆t = vt +∆t · (qt ·at · q̄t −g) (11)
xt+∆t = xt +∆t · vt (12)

Here x is position, v velocity, q orientation as a quaternion,
a and ω are acceleration and angular velocity from the IMU,
and ∆t is the time-step. The Rodriguez formula exp(v) rotates
around v by |v|. Integration of low-cost IMUs suffers from
drift and works for seconds at most (Sec. VI-A). Hence,
during stand-still we switch to orientation tracking [23], [24],
[25], fixing vt = 0, but estimating gyro-bias and orientation.

Future work will be to replace this switching by an
integrative approach. It could use the prior information that
the robot’s velocity is limited, just as orientation trackers do
but still integrate full 6-DOF motion over a short time. This
would allow the robot to start a catch while being in motion.

B. Structure of the Estimation Problem

To understand the consequences of IMU drift one has
to consider the structure of ball prediction as an estima-
tion problem. The problem is invariant to translation and
rotation around gravity before the ball appears, because all
observations and actions are relative to the robot’s head.
Except for air-drag, it is even invariant to linear motion
due to the inertial-frame principle in physics. This means,
the robot’s velocity when observing the ball simply adds
to the estimated velocity of the ball itself cancelling out in
predictions relative to the robot. The air-drag term −α‖ḃ‖ḃ
violates this invariance assuming static air in the world
frame. Hence, an velocity error acts as a “false wind”.

So, with limited velocity error, only the IMU error during
the ball-flight actually affects the prediction accuracy. Even
better, the error from the first phase of the ball-flight affects
the final prediction only slightly. Consider the contribution
of a measurement to the ball position relative to the robot in
some moment. It is affected only by the IMU error accumu-
lated since that measurement. So early measurements sustain
larger errors than late ones, but they are less precise anyway
due to the distance from the cameras. So, while we cannot
quantify this, only a fraction of the IMU error accumulated
during ball-flight actually affects the final prediction.

A further remark outlines the “relative” structure: It is
easily derived that in stereo triangulation depth error relates
to lateral error as depth to baseline, i.e. by a factor of ≈ 20

Fig. 8. DLR’s Rollin’ Justin catching a ball. For robust catching, the
necessary accuracy is about 2cm in space and 5ms in time.

here. Hence, in calibration and detection, a relative error
between both cameras is worse than a common-mode error.
Similarly, after observing the ball for tO and predicting it for
tP a relative error during the observation is amplified by a
tP/tO (≈ 5 for early predictions), a common-mode error not.

V. CALIBRATION

Considerable effort has been spent in calibrating the sys-
tem to meet the required accuracy. The intrinsic parameters
as well as the relative pose of both cameras and the IMU was
calibrated with a horizontally aligned checkerboard and using
g as a vertical reference (RMS 0.33 px, 0.25◦). This method
only provides rotation, translation is measured manually.

All predictions are sent to the planner in the robot’s head
frame. Determining the relationship between this frame and
the cameras was done by estimating the extrinsic parameters
of the cameras with a single marker in both robot’s hands
and forward kinematics (RMS 1.5 px).

To provide ground truth, a rigid collection of markers was
mounted on the robot’s head. This allows an external tracking
system [26] to measure the 6-D head pose. For that, the
relationship between cameras and the marker collection was
calibrated. Circles of thrown balls were extracted and fitted
to trajectories using least-squares estimation. These and the
corresponding ones obtained from the external tracker were
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Fig. 9. Left) Overall rotational and translational movement (top) and the error (bottom) of the head pose during a catch made by the IMU during
integration over time w.r.t. to ground-truth. Right) Prediction error over time as well as the estimated accuracy by UKF obtained by propagating the
covariance.

then used to fit the desired transformation (RMS 0.01m).
By using the marker based tracking system, the manual

measurement of the translation between camera and IMU
can be refined. By fitting the translation to the translational
component of a head movement sensed by the IMU and the
marker based tracking system, a more accurate representation
of the frame is achieved (RMS 0.005m).

VI. EXPERIMENTAL EVALUATION

Beside the catch-rate (which is about 80%) as a practical
indicator, separate experiments involving an external track-
ing system as ground-truth were conducted to assess the
performance of the perception system. In all experiments
a ball (8.5cm diameter, wrapped into retro-reflective foil),
was thrown from about 5−7m away towards the robot. See
the sequence in (Fig. 7) for a view from the robot. The
robot acted accordingly (Fig. 8), rotating its head to keep
the ball in the camera image and moved the arm to the catch
configuration as computed by the planning algorithm during
the flight. The circle detector was instructed to detect the
best N = 25 local maxima. Circles that lie within circles
were excluded, as commonly observed at balls. This set of
circles is then passed to the MHT which was configured
according to (Tab. II). Here, two probabilities depend on the
state of the track: If it is outside the image it is always a
missing observation (PS = 1). If it hits the ground the track
ends (Pχ = 1). Although only one ball was thrown, the results
hold for multiple balls since multiple balls only pose a more
difficult data association problem leaving the accuracy (from
the UKF) unaffected.

A. IMU Integration

Metrical accuracy of the pose estimation using the IMU
is presented in (Fig. 9) on the left. The plot shows the
overall movement of the IMU (decomposed into rotational
and translational displacement) since the robot indicated it
will start to move soon as well as the error of the head
pose estimation using the IMU. The movement lasts about
0.76s. For the rotation the total displacement is 51.9◦. The

TABLE II
PARAMETERS OF MHT AND UKF, CONFER SECTIONS III-A, III-B

.

MHT UKF
λN 1.08 ·10−6 liklihood-ratio 0.01 σx,y 1.5px
λF 6.15 ·10−9 #hypotheses 10 σr 0.15%r
Pχ 0 (1) N-scan-back 10 σQ 0.1 m/s2

PS 0.05 (1)

error in orientation increases over time reaching a maximum
displacement of 0.8◦ at the end. Limiting the error at this
stage is crucial, since due to wrong orientation estimation
gravity and real acceleration caused by movement can not
be distinguished. For the translation, the head travels about
14cm during the catch. The error increases over time (0.18cm
at 0.25s and 0.53cm at 0.48s) with a final error of 1.48cm.

B. Tracking

Successful catches rely on accurate early predictions. To
evaluate the prediction accuracy over time, we compared the
predicted trajectory with the last 3D measurement of the
externally tracked ball right before it hits the hand in (Fig. 9)
on the right. Two curves are given: The overall error of the
predicted position and the accuracy estimate of the UKF
state, giving an intuition which overall accuracy can be
expected.

The prediction is quite accurate right from the start (12cm
after 0.04s), and becomes better in the following time steps,
temporarily decreasing when the movement of the robot
kicks in. From there, the accuracy gets better reaching a
final accuracy of about 0.5cm. Unfortunately, this value is
not of any particular value for the success of the catch,
since the planning stage needs some time to react to these
measurements. Usually, measurements obtained 0.16− 0.2s
before the catch are used for the final catch position, which
in this case have an accuracy of about 1.5cm.

C. Computing Time

As mentioned earlier, the perception system runs inside
the mobile platform in an embedded system equipped with
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a Intel CoreTM2 Quad Q9000 @2.00GHz. This considerably
changes the computation time. Processing the stereo images
in parallel with two cores per image takes about 25ms. MHT
takes about 5ms while idling and 10ms while tracking one
or more balls. This leaves room for another 5ms which
are reserved for difficult data association situations. The
headpose is updated by integrating IMU measurements con-
tinuously and takes less than 2ms. Incorporating the latency
between the physical event and the data’s arrival, it takes
about 75ms from capturing flying balls until the states are
updated, predicted into the future and sent to the planning
algorithm.

VII. CONCLUSION AND LESSONS LEARNED

We learned several lessons during this project which we
believe are valuable for similar applications:

First, realtime is more than performance. Like many
computer vision researchers we developed our software on
Linux and not on a realtime OS, e.g. QNX, resulting in
lost time-slices in the order of 50ms. This issue was hard
to track down and required to deactivate several hardware
components on the affected PC.

Second, for sensor fusion data must be timestamped w.r.t.
a common clock and this is poorly supported by current
hardware and drivers. Most sensors have a regular frequency
and some even provide timestamps, but usually with respect
to an internal clock. Clock synchronization, e.g. IEEE1588,
would be an ideal solution but few sensors support a query-
answer protocol needed for that. We resorted to timestamp
all sensor data upon arrival on the PC and postprocessed
them by a filter to find outliers and restore their periodicity.
Overall, in our experience timestamping in a system built
from components introduces many difficulties that could be
avoided by better sensor protocols.

Third, accuracy problems are difficult to track down. Many
different sources can deteriorate prediction accuracy, ranging
from sensor noise over calibration and timing problems
to ordinary program errors. The 3D tracking system was
essential in investigating these issues, since it allows to
quantify errors in 3D as a function of time. Nevertheless,
it must be mentioned, that the tracking system itself creates
additional problems regarding timestamps and calibration.

To make a virtue out of necessity: One contribution of
robotic sport activities is to operate robots in a regime that
reveals problems which remain unnoticed in more forgiv-
ing applications. This is actually similar to sports training,
where the goal is to come closer and closer to the level of
performance the human body can do in principle.
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