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cations for interpreting remote sensing observations, and for the climate
impact of mineral aerosols.
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1. Introduction

Small-scale surface roughness is a morphological property that is encountered in many types of
aerosols in planetary atmospheres, as well as in mineral particles in the interplanetary and inter-
stellar medium. Modeling the optical properties of such particles is of high relevance in remote
sensing, astrophysics, and in quantifying the radiative climate forcing effect of mineral dust.
However, small-scale surface roughness is also among the most challenging morphological
features in numerical electromagnetic scattering computations. For instance, mineral aerosols
in planetary atmospheres typically have large size parameters in the visible part of the spectrum.
(The size parameter is defined as x = 2πr/λ , where r is the particle radius, and λ is the wave-
length of light.) However, geometric optics, which is an approximate method valid for large
size parameters, cannot be applied to such particles owing to the small size-scale of the surface
perturbations. On the other hand, computational methods based on rigorous electromagnetic
theory are typically plagued by ill-conditioning problems and rapidly growing computation
time for increasing size parameters.

Previous computational studies of particles with small-scale surface roughness have there-
fore been limited to rather moderate size parameters. For instance, a recent modeling study
of hematite aerosols at a wavelength of λ = 633 nm considered Chebyshev particles up to
r = 1.4 μm [1], which corresponds to a size parameter of 14. In the terrestrial atmosphere,
aerosols in the coarse mode (i.e. with radii of 1–5 μm) typically make the dominant contri-
bution to the mass concentration of mineral dust aerosols under background conditions, while
during dust storm events considerably larger particles can be suspended in air. Thus, current
computational methods for particles with small-scale surface roughness are severely limited
in the range of size parameters for which numerical computations are sufficiently stable and
expedient. Also, to the best of our knowledge, all previous studies based on T-matrix methods
have been limited to model particles with axisymmetric geometries (e.g. [1–3])

Our current understanding, although based on relatively few investigations, suggests a po-
tentially high relevance of surface roughness for the optical properties of dielectric particles.
For instance, it has been demonstrated that the phase function of high-order Chebyshev particles
with a small perturbation amplitude can substantially differ from that of a size-equivalent homo-
geneous sphere [2]. At higher values of the imaginary part of the refractive index, differences
between spheres and spheroids disappear, while differences between spheres and high-order
Chebyshev particles become more pronounced [2]. A plausible explanation is that internal res-
onances inside the particle, which are mainly responsible for the differences between the phase
functions of spheres and spheroids, are quenched in more strongly absorbing particles. On the
other hand, the impact of small scale surface roughness in high-order Chebyshev particles is
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not reduced by high absorption inside the particle.
It has also been noted that the impact of small-scale surface roughness may become more

pronounced for particles with larger real parts of the refractive index [1]. However, these results
are still preliminary. The conditions under which small-scale surface roughness has a dominant
impact on the optical properties may be a complex interplay of several physical properties, such
as the real and imaginary parts of the refractive index, the roughness amplitude, and the particle
size. An important prerequisite for further investigations is to overcome the present limitations
of computational methods. This is the main purpose of the present study.

Before proceeding, we will attempt to give a formal definition for small-scale surface rough-
ness. Consider a perturbation of the particle surface with a (mean) perturbation wavelength Λ
and a (mean) perturbation amplitude A that are small compared to the characteristic size r0 of
the particle and small compared to the wavelength λ of the incident light. To take a specific
example, consider an axisymmetric Chebyshev particle with the surface parameterization

r(θ) = r0[1+ ε cos(�θ)], (1)

where � is the order of the Chebyshev polynomial T�(θ) = cos(�θ), and ε is known as the
deformation parameter. The perturbation wavelength and amplitude in this case are given by

Λ =
2πr0

�
(2)

A = εr0. (3)

In a recent study on the optical properties of Chebyshev particles [2] it has been shown that for
low polynomial orders � the phase function changes with �. However, for high-order Cheby-
shev particles, the phase function becomes independent of �, even though the phase function
is distinctly different from that of the unperturbed sphere. So for a surface perturbation with a
sufficiently small Λ, the optical properties become independent of Λ, even though they are sen-
sitive to the perturbation amplitude. Based on this observation (and following [1]), we define
small-scale surface roughness as follows.

• The roughness wavelength Λ is sufficiently small so that any further decrease in Λ does
not alter the optical properties.

• Λ � 2πr0, i.e., Λ is much smaller than the circumference of the particle.

• Λ � λ , where λ is the wavelength of light.

• A � r0, where A is the roughness amplitude.

• A � λ .

• A is sufficiently large so that the optical properties of a particle with a perturbed boundary
surface differ from those of the corresponding unperturbed geometry.

For instance, in a recent modeling study for Chebyshev particles with a refractive index of
m = 3+ 0.1i [1] it was found that the phase matrix elements become independent of Λ for
Λ ∼< λ/4.

In the following section we present our numerical approach for modeling electromagnetic
scattering by particles with small-scale surface roughness. The method is based on the T-matrix
formulation of the scattering problem. In Sect. 3 we present some illustrative results of our
numerical implementation. Concluding remarks are given in Sect. 4.
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Fig. 1. 2D (left) and 3D (right) Chebyshev particle with polynomial order �=45 and defor-
mation parameter ε=0.05.

2. Methods

Numerically exact electromagnetic scattering computations for irregular particles become pro-
hibitively time consuming for size parameters much larger than unity. For this reason, expe-
dient numerical methods need to rely on adequate simplifications. One approach is based on
abandoning rigorous electromagnetic theory, and invoking approximations to the physics of the
scattering problem, such as in ray tracing methods or Rayleigh-Debye-Gans theory. Possible
disadvantages of such ad hoc approximations have been discussed in [4]. Another approach
is to use numerically exact methods to solve the electromagnetic scattering problem in con-
junction with certain symmetry assumptions about the geometry of the scatterer. The simplest
example is Lorenz-Mie theory for scattering by homogeneous spheres. A much more flexible,
but also computationally more costly approach is to consider particles with axial symmetry. For
instance, Chebyshev particles as defined in Eq. (1) belong to this class of geometries.

Figure 1 (left) shows an example for a Chebyshev particle. The prize we pay for restricting
the geometry to axisymmetric symmetry is that we can only account for surface roughness in
the polar direction, while the particle surface is unperturbed in the azimuthal direction. A more
general model is obtained by perturbing the sphere by Chebyshev polynomials in both the polar
and the azimuthal direction, i.e.

r(θ ,φ) = r0[1+ ε cos(�θ)cos(�φ)], (4)

Such a particle is shown in Fig. 1 (right). Since axisymmetric Chebyshev particles are de-
scribed by the coordinates (θ ,r(θ)), we will refer to them as “2D Chebyshev particles”. Non-
axisymmetric Chebyshev particles are characterized by the coordinates (θ ,φ ,r(θ ,φ)), so we
will refer to them as “3D Chebyshev particles”. 3D Chebyshev particles have a lower symme-
try than 2D Chebyshev particles. On the other hand, they appear to provide a more realistic
model for particles with small-scale surface roughness. So we consider them here as a com-
promise between the computationally efficient 2D Chebyshev model, and a realistic model that
would assume a completely irregular perturbation of the surface, such as a Gaussian random
sphere [5].

Although not axisymmetric, 3D Chebychev particles still have a high degree of symmetry,
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of which we will take advantage in the computations. The way to systematically exploit sym-
metries in electromagnetic scattering, and in fact in all disciplines of physics, is to use group
theory.

2.1. Application of group theory

Systematic accounts of the use of group theory in electromagnetic scattering theory are given,
e.g., in [6, 7]. Here we only summarize the most important points. Symmetry operations are
coordinate transformations that bring a particle into a new orientation indistinguishable from
the original one. Therefore the optical properties are invariant under such transformations. The
set of all symmetry operations of a particle forms a so-called point group. All point groups are
sub-groups of the orthogonal group O(3), so the elements of such groups consist of rotations
and pseudo-rotations.

In electromagnetic scattering theory we represent the elements g of a point group G by
unitary matrices U(g) that operate on the vector space of the vectorial eigensolutions of the
Helmholtz equation. The invariance of the optical properties is expressed by

T = U(g) ·T ·U−1(g), (5)

or
[T,U(g)] = 0, ∀g ∈ G , (6)

where the T-matrix T contains the complete information on the particle’s scattering and absorp-
tion properties for a given wavelength, and where [A,B]=A ·B−B ·A is know as the commutator
of the two matrices A and B. The commutation relation of the T-matrix can, in fact, be derived
from very general considerations about boundary symmetries in differential and integral equa-
tion problems [8].

For each point group we can identify a minimum set of generators g1, . . . ,gr ∈ G , from which
all other group elements can be obtained by combination of the generators. Only the generators
provide us with independent commutation relations for the T-matrix [7].

Consider as an example a 3D Chebyshev particle of even order �. The symmetries of such
a particle are described by the point group D�h, which contains 4� elements. The generators
of that group are the elements C�, C′

2, and σh, where C� represents a rotation about the main
symmetry axis by an angle 2π/�, C′

2 denotes a rotation by π about an axis perpendicular to
the main symmetry axis, and σh stands for a reflection in a plane perpendicular to the main
symmetry axis. For this group, the commutation relations (Eq. (6)) of the three generators
become in explicit form (see [7] for details)

Tn,m,τ ,n′,m′,τ ′ = 0 unless |m−m′|= 0, �,2�, . . . (7)

Tn,m,τ ,n′,m′,τ ′ = (−1)n+n′Tn,−m,τ ,n′,−m′,τ ′ (8)

Tn,m,τ ,n′,m′,τ ′ = 0 unless (n+m+ τ +n′+m′+ τ ′). even (9)

The indices n,n′ = 1,2, . . . are related to the degree, m = −n, . . . ,n, m′ = −n′, . . . ,n′ to the
order, and τ,τ ′ = 1,2 to the mode of the vector spherical wave functions. The first commutation
relation comes from the rotational symmetry operation C�, the second comes from the dihedral
symmetry C′

2, and the third relation originates from the reflection symmetry σh.
In numerical calculations, symmetries can be exploited in three different ways.

1. The commutation relations reduce the number of non-zero, independent T-matrix ele-
ments that need to be numerically evaluated by a factor of 1/M [7], where M denotes the
order of the symmetry group (i.e. the number of the elements in the group). For instance,
for 3D Chebyshev particles of even order � this reduces the computation time by a factor
of 1/(4�).
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2. In the extended boundary condition method [9], the T-matrix elements are computed by
numerically evaluating surface integrals over cross products of vector spherical wave
functions, where the integration surface is the boundary surface of the particle. It can be
shown by use of the commutation relations that the integration area can be reduced by a
factor of 1/M [6]. In conjunction with the reduction in the number of T-matrix elements,
this results in a total reduction in computation time by a factor of 1/M2. For even-order
3D Chebyshev particles, this would reduce the computation time by a total of 1/(4�)2.

3. By use of the matrices U(g) and the so-called characters of the group one can construct
a transformation matrix that brings all matrices that commute with U(g) into block di-
agonal form, where the number of block matrices is equal to the number of irreducible
representations of the group. This method has been presented and tested in [7]. The merit
of the method is to save additional computation time and, most importantly, to signif-
icantly reduce numerical ill-conditioning problems. The method is completely general
and can be applied to any geometry with discrete symmetries. However, for particles with
small-scale surface roughness there is an even more efficient method for circumventing
the notorious ill-conditioning problems in numerical T-matrix computations, which will
be discussed in the following subsection.

2.2. Perturbation expansion of the T-matrix

Most approaches for computing a T-matrix, such as the extended boundary condition method
[9], the separation of variables method [10], or the generalized point-matching method [11] are
based on computing two matrices Q and RgQ, from which the T-matrix is obtained according
to

T =−RgQ ·Q−1. (10)

The origin of the ill-conditioning problems is the numerical inversion of the Q-matrix. The ill-
conditioning problems tend to drastically increase with increasing size parameters. For particles
that deviate only mildly from a reference geometry, such as a sphere, one can avoid the ill-
conditioning problem by performing a perturbation expansion. This has been proposed and
tested for the scalar Helmholtz equation in [12]. Here we will use this approach for the vector
Helmholtz problem.

Suppose we have a reference geometry (such as a sphere) with Q-matrix Q0, and suppose
we perform a small perturbation of the reference geometry, resulting in a new particle (e.g. a
Chebyshev particle with small-scale surface roughness) with matrices Q and RgQ. We formally
define ΔQ=Q−Q0 and substitute this into Eq. (10), which yields after rearranging terms

T · (Q0 +ΔQ) =−RgQ. (11)

We subtract T ·ΔQ and multiply by Q−1
0 , which gives

T =−(RgQ+T ·ΔQ) ·Q−1
0 . (12)

While Eq. (10) involves the potentially ill-conditioned inversion of the matrix Q, Eq. (12) only
requires us to invert the matrix Q0. For instance, if the unperturbed geometry is a sphere, then
the matrix Q0 is diagonal, and computation of Q−1

0 is trivial; the ill-conditioning problem has
completely disappeared! The prize we have to pay for this is that Eq. (12) only provides us with
an implicit equation for the T-matrix.

Equation (12) is of the same form as the Lippmann-Schwinger equation for the Stückelberg-
Feynman propagator in quantum electrodynamics (e.g. [13]). In practice, one solves this type
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of equation by performing a perturbation expansion. To this end, we obtain a zeroth-order
approximation by setting T = 0 on the rhs of Eq. (12), i.e.

T(0) =−RgQ ·Q−1
0 . (13)

A first-order approximation T(1) is obtained by substituting T(0) in the rhs of Eq. (12). This can
be continued iteratively. So, more generally, if we have an approximate solution T(n−1) of order
n−1, then we obtain a solution of order n according to

T(n) =−(RgQ+T(n−1) ·ΔQ) ·Q−1
0 . (14)

Equation (14) in conjunction with the initial value given in Eq. (13) is the sought perturbative
T-matrix solution. As to the convergence of the method for n → ∞, we take a pragmatic point of
view by numerically testing the accuracy of the results for increasing n. To this end, we exploit
the reciprocity condition [12, 14]. In general, we expect the method to be most efficient and
robust for geometries that deviate only mildly from the unperturbed geometry.

3. Results

We test our approach by implementing the perturbation expansion method into the Tsym pro-
gram, which is a T-matrix code for scattering by 3D targets that has been specifically made for
accounting for point-group symmetries [6,7]. This code has previously been applied to polyhe-
dral prisms only (e.g. [15]). We now added 2D and 3D Chebyshev particles of arbitrary order
to the code. We will here present comparisons with results computed with mieschka, which is
a comprehensively tested T-matrix code for axisymmetric particles [14].

We thus follow the traditional way of testing the accuracy of newly developed numerical
methods by comparing their performance with well-established existing codes. A main moti-
vation of the work presented here is to develop a method for particles with small-scale surface
roughness that goes significantly beyond the current state-of-the-art by extending the accessi-
ble range of size parameters. We therefore expect that direct comparisons with existing codes
are only possible within a limited size range; the most interesting results are those obtained for
larger size parameters, which are beyond the reach of existing codes. However, it is nevertheless
possible to test the method at larger size parameters. There exists a highly sensitive method for
testing the accuracy of electromagnetic scattering computations, namely, the reciprocity con-
dition [12, 14]. We will apply the reciprocity condition to test our approach for particle size
parameters that lie beyond the capabilities of existing methods.

3.1. Comparison to 2D Chebyshev computations with mieschka

We compute the polarized differential scattering cross sections for a 2D Chebyshev particle of
order � = 45, deformation parameter ε = 0.03, and refractive index m = 3+ 0.1i. The size of
the unperturbed sphere is r0=1.4 μm, and the wavelength is λ=0.6328 μm, so the size param-
eter is approximately x=14. Our choice of the refractive index is typical for hematite at visible
wavelengths [16]. The incident field is taken to be in the positive z-direction, the z-axis is as-
sumed to coincide with the particle’s main rotational symmetry axis, and the scattered field is
computed in the xz-plane as a function of the scattering angle Θ. Figure 2 shows Sα,β (Θ)=
k2 (dσ/dΩ)α ,β (Θ), where k = 2π/λ is the wavenumber, and where (dσ/dΩ)α ,β is the po-
larized differential scattering cross section. α = h means that the incident field is polarized
“horizontally” that is in the xz plane, while α = v means that the incident field is polarized
“vertically”, i.e. perpendicularly to the scattering plane. Similarly, β = h and β = v refer to the
polarization state of the scattered field. Figures 2a and 2b show (dσ/dΩ)h,h and (dσ/dΩ)v,v,
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a b

c d

scattering angle scattering angle

mieschka, hh, o1
mieschka, hh, o2

mieschka, vv, o1
mieschka, vv, o2

Tsym, hh, o1
mieschka, hh, o1

Tsym, vv, o1
mieschka, vv, o1

Fig. 2. Top row: hh (left) and vv (right) components of the polarized differential scattering
cross sections of 2D Chebyshev particles in a fixed orientation, computed with the group
theoretical/perturbative T-matrix approach (black) and with mieschka (red). Bottom row:
hh (left) and vv (right) components computed with mieschka for two different orientations.

respectively. Results obtained with Tsym in conjunction with the perturbation expansion ap-
proach are represented by a black line, while the results computed with mieschka are plotted in
red. The perturbation expansion of the T-matrix has been carried out to third order. The Tsym
and mieschka results are indistinguishable. The cross-polarization components (dσ/dΩ)h,v and
(dσ/dΩ)v,h (not shown) are essentially zero in this case.

3.2. Reciprocity condition

In general, if the wavevector of the incident field points in the direction k̂inc, and that of the
scattered field in the direction k̂sca, then the reciprocity condition states

(
dσ
dΩ

)
α ,β

(k̂inc, k̂sca) =

(
dσ
dΩ

)
β ,α

(−k̂sca,−k̂inc). (15)

For instance, if we choose k̂inc=ẑ and k̂sca=x̂ (i.e. Θ = 90◦), then in the reciprocal case we
need to take the incident field in the direction −x̂ and the scattered field in the direction −ẑ.
Equivalently, we can keep the direction of the incident field fixed, rotate the particle by an angle
θp = 90◦ around the y-axis, and take the scattered field in the direction −x̂, i.e. Θ = 270◦. So
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the reciprocity condition in this example becomes
(

dσ
dΩ

)
α,β

(Θ = 90◦;θp = 0) =

(
dσ
dΩ

)
β ,α

(Θ = 270◦;θp = 90◦). (16)

We usually require that the reciprocity condition has to be satisfied with an error smaller than
2 % [14]. This has proven to be a highly sensitive necessary condition for the accuracy of
T-matrix computations.

Table 1 shows Sα ,β (Θ,θp) computed with Tsym, where k denotes the wavenumber. Since
the differential scattering cross section has units μm2 sr−1, Sα,β has units sr−1. We see that for

Table 1. Reciprocity Test for 2D Chebyshev Particles

Sh,h(90◦;0◦) Sh,h(270◦;90◦) Sv,v(90◦;0◦) Sv,v(270◦;90◦)
2.77032 2.71676 8.60376 8.64614

both polarization components the error is less than 2 %, so the reciprocity condition is fulfilled
with the required accuracy. In the following subsection we will present more reciprocity tests
for an extended range of size parameters and for the case of 3D Chebyshev particles. But we
first want to mention an interesting observation.

Figure 2c shows a comparison of Sh,h(Θ;θp = 0◦) (black) and Sh,h(Θ;θp = 90◦) (red) com-
puted with mieschka. Figure 2d shows a corresponding comparison for Sv,v. We see that the
differential scattering cross sections for the two particle orientations are very similar, even
though a 2D Chebyshev particle does not possess spherical symmetry. In fact, Sα,β averaged
over particle orientations (not shown) is rather similar to that of particles in a fixed orientation.
This fact may be exploited in simplifying orientational averaging in numerical computations.

3.3. Illustrative application to 3D Chebyshev particles

We performed computations for 3D Chebyshev particles at an optical wavelength of λ=0.6328
μm, assuming a refractive index of m = 3+0.1i, and considering particles sizes r0 = 1,2, . . . ,7
μm. Thus the range of size parameters now extends up to xmax=70. We choose a size-dependent
Chebyshev order � such that the perturbation wavelength Λ = 2πr0/� is fixed at Λ = λ/4. This
means that for r0 = 1,2, . . . ,7 μm we use � = 40,80, . . . ,280, respectively. For Λ ∼< λ/4, the
optical properties do no longer depend on Λ, which was one of the essential characteristics
in our definition of small-scale surface roughness. We experiment with two different cases for
the deformation parameter. In the first case, we use a constant value of the relative amplitude
ε = 0.01, in the second case we use a constant value of the absolute amplitude A= εr0 = 0.11λ .
For r = 7 μm, these two cases coincide. In all cases we carried out the perturbation expansion
of the T-matrix to sixth order. Tables 2 and 3 show the reciprocity tests for the two choices
of the perturbation amplitudes. In either case, the reciprocity condition is satisfied with high
accuracy.

Figure 3 shows the single scattering albedo ω (top left), the asymmetry parameter g (top
right), and the backscattering cross section Cbak (bottom left) as a function of particle size after
averaging over particle orientations and polarization states. For comparison, corresponding re-
sults for size-equivalent unperturbed spheres are also shown (dashed line). For the case in which
we keep ε fixed at 0.01 (blue line), ω , g, and Cbak computed for spheres and 3D Chebyshev
particles are similar for the smallest particles, but they already start diverging at about r0 = 2
μm. For the case in which we keep the perturbation amplitude A fixed at 0.11λ (red line), ω
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Table 2. Reciprocity Test for 3D Chebyshev Particles with ε = 0.01

r0 Sh,h(90◦;0◦) Sh,h(270◦;90◦) Sv,v(90◦;0◦) Sv,v(270◦;90◦)
1 3.20368 3.20363 10.6317 10.6317
2 13.6312 13.6318 33.6934 33.6934
3 24.6851 24.6859 68.8825 68.8823
4 38.1723 38.1669 105.215 105.215
5 50.1139 50.1217 133.364 133.364
6 55.0429 55.0444 146.434 146.433
7 51.8876 51.8692 140.824 140.826

Table 3. Reciprocity Test for 3D Chebyshev Particles with A = 0.11λ

r0 Sh,h(90◦;0◦) Sh,h(270◦;90◦) Sv,v(90◦;0◦) Sv,v(270◦;90◦)
1 1.41650 1.41372 4.39453 4.39484
2 5.00893 5.01386 11.0705 11.0697
3 8.70649 8.71068 25.8196 25.8173
4 16.3797 16.3665 46.2344 46.2356
5 27.4014 27.4142 72.0140 72.0139
6 39.1350 39.1371 103.497 103.497
7 51.8876 51.8692 140.824 140.826

computed for 3D Chebyshev particles is lower by about 0.1 than that computed for spheres
over the entire size range, while g is higher for 3D Chebyshev particles by about 0.13 than the
corresponding value for spheres for all sizes. These are surprisingly large differences that may
even be important in radiative forcing computations. The results suggest that neglecting the
effect of small scale surface roughness results in too high values of ω and too low values of g.
In radiative transfer computations, this would result in too much total scattering in relation to
absorption, and too much side- and backscattering, both resulting in too much aerosol cooling.
Thus, these two sources of error would be additive; the homogeneous sphere model is expected
to predict a larger radiative cooling effect than the 3D Chebyshev model.

Perhaps the most remarkable result is the large difference in Cbak computed for spheres and
3D Chebyshev particles, which increases with particle size. For the largest particles, Cbak com-
puted for spheres is almost 6 times larger than that computed for 3D Chebyshev particles. This
can have important consequences for interpreting lidar observations of the backscattering coef-
ficient of mineral dust particles. Our results suggest that model particles that neglect the effect
of surface roughness may significantly overestimate the backscattering coefficient. If used in a
retrieval method, the retrieval algorithm would interpret a lidar return signal backscattered on
rough dust particles by underestimating the particle concentrations, so that the product of the
low particle concentration and the high value of Cbak would reproduce the observed backscat-
tering coefficient.

Figure 4 compares the Mueller matrix elements F11 (left column) and −F12/F11 (right col-
umn) of spheres (blue) and randomly oriented 3D Chebyshev particles (red) for particle sizes
of r0 = 1 μm (top row) and 6 μm (bottom row). For both sizes, we see that the oscillation of
both elements as a function of the scattering angles are qualitatively similar, but the amplitude
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Fig. 3. Optical properties of spheres (dashed line), and 3D Chebyshev particles with ε=0.01
(blue) and A=0.11λ (red): ω (top left), g (top right), and Cbak (bottom left). Also shown is
the CPU time (bottom right) for computations using group theory (circles) and not using
group theory (pluses).

is larger for 3D Chebyshev particles than for homogeneous spheres. Most importantly, we see
that for scattering angles larger than about 30◦, spheres predict considerably larger values of F11

than 3D Chebyshev particles. In particular, this explains the differences in the backscattering
cross section Cbak.

3.4. Reduction of CPU time requirements by the use of group theory

As mentioned earlier, the use of symmetries is expected to reduce CPU time requirements by
a factor of about 1/(4�)2. In the Tsym program, a more detailed estimate shows that the actual
reduction is roughly on that order, but slightly smaller. This is due to the optimized T-matrix
truncation scheme used in the Tsym program, which is identical with the truncation method
used in mieschka — see [14] for details.

Figure 3 (lower right) shows the CPU time in seconds as a function of particle size. The curve
marked with circles shows the actual CPU time used in the calculations that fully exploit the
symmetries of the 3D Chebyshev particles. The curve marked with pluses shows the CPU time
that would have been required without the use of symmetries. The values shown are theoretical
values based on computing the number of extra numerical operations that would be required in
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Fig. 4. Mueller matrix elements F11 (left column) and −F12/F11 (right column) of 3D
Chebyshev particles (red) and spheres (blue) with particle radius 1 μm (top row) and 6 μm
(bottom row).

Tsym without the use of group theory. To check the correctness of the theoretical predictions, we
ran the T-matrix code for 3D Chebyshev particles of r0 = 1 μm with all symmetries switched
off. The CPU time of this calculation is indicated by the red square in the figure. It agrees well
with the theoretical prediction. For larger particle sizes, performing the computations without
symmetries would require large computational resources.

For r0 = 1 μm the computation without the use of symmetries takes about 1.25 hours. The
use of symmetries reduces the computations time to 0.5 seconds. So, group theory helps us
to save about 4 orders of magnitude in computations time in this case. For r0 = 7 μm using
symmetries results in a CPU time of 7.25 minutes. Without symmetries, the same computation
is estimated to take about 4.5 years! Thus the use of symmetries saves between 5-6 orders of
magnitude of CPU time in this case.

The CPU times of many electromagnetic scattering methods scale with size parameter x
according to a power law, i.e. CPU ∼ xL with some power L that depends on the method. A
power-law fit of the curves in Fig. 3 (lower right) reveals that the CPU-time with symmetries
scales like CPU ∼ x3.5, while the calculations without the use of symmetries give CPU ∼ x5.5.
Thus exploitation of group theory does not only reduce the CPU-time for any given particle size;
it actually reduced the size-scaling by 2 powers! This remarkable result is related to the way
in which we treat small-scale surface roughness in this application. We keep the perturbation
wavelength Λ constant at Λ = λ/4, which, as we discussed earlier, is a reasonable assumption
for treating small-scale surface roughness. However, since for 3D Chebyshev particles Λ =
2πr0/�, this means that � has to increase linearly with r0, so it increases linearly with size
parameter, � ∝ x. Further, since the order M of the symmetry group of Chebyshev particles
scales like M ∼ �, and since the CPU-time reduction is proportional to M−2, this means that
the achieved reduction in CPU-time scales like x−2. Thus, if the computation time without
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symmetries scales like CPU ∼ xL, then with the use of symmetries we obtain CPU ∼ xL−2.

4. Summary and conclusions

We have presented an approach for modeling electromagnetic scattering by particles with small-
scale surface roughness. The method is based on numerically exact electromagnetic scattering
computations, which are often severely limited in the range of accessible size parameters. Usu-
ally, the problems are particularly severe for non-axisymmetric particles. The limitations are
caused by (i) numerical ill-conditioning problems and (ii) CPU-time requirements that rapidly
increase with size parameter. In our approach we combine two different ideas to address these
problems.

The main approximation we make is to impose symmetry assumptions for the structure of
the small-scale surface roughness. However, we do not limit our method to axisymmetric sym-
metry; so we are able to account for the effect of 3D surface roughness. The symmetry assump-
tions allow us to exploit group theory for making the computations sufficiently expedient. For
Chebyshev particles with a fixed perturbation wavelength, computation times are reduced by
4-6 orders of magnitude, and the scaling of the CPU-time with size parameter x is reduced by
two powers from CPU ∼ x5.5 (without symmetries) to CPU ∼ x3.5 (with symmetries).

To alleviate numerical ill-conditioning problems we use a perturbation expansion approach
of the T-matrix. This approach is ideally suited for particles with small-scale surface roughness.
For the geometries considered, it turned out that a perturbation expansion carried out to sixth
order was sufficient to obtain numerically accurate results. The computation time required for
performing the perturbation expansion of the T-matrix was only about 20–25 % of that needed
for computing the matrices Q and RgQ. Without the perturbation expansion, we obtained nu-
merically stable results for size parameters up to x=14. With the perturbation approach, we
performed computations up to x=70, which is an increase by a factor of 5!

The method was implemented into the Tsym code, and the accuracy of the results was tested
by performing direct comparisons with mieschka within the range of size parameters accessible
to a non-perturbative T-matrix code. In addition, the reciprocity condition for the polarized
differential scattering cross section was used as a necessary condition for the accuracy of the
results. These tests were performed for size parameters up to x=70, and the reciprocity condition
was found to be satisfied with high accuracy. These results demonstrate that the use of the
perturbation approach allows us to considerably extend the range of size parameters in our T-
matrix calculations. We emphasize that this depends on the perturbation amplitude we chose
in the test cases. For larger amplitudes, the range of accessible size parameters is likely to be
smaller, while for smaller amplitudes the size range will be larger.

The computational results we showed were mainly meant to illustrate possible applications of
the method. They underline the potentially high impact of small-scale surface roughness on the
optical properties of dielectric particles. The single scattering albedo, the asymmetry parameter,
and especially the backscattering cross section were strongly modulated by the presence of
small-scale surface roughness. This can have important implications for the interpretation of
lidar remote sensing measurements, and possibly even for the radiative forcing effect of mineral
dust aerosols.

Our study was limited to Chebyshev particles with a spherical base geometry. In that case,
the inversion of the unperturbed Q-matrix becomes a trivial task. However, one could equally
well apply the method to other base geometries, such as Chebyshev spheroids, which have
been considered in [2]. Since T-matrix computations tend to be much more well-conditioned
for smooth spheroids than for Chebyshev spheroids, the perturbation method is expected to
significantly improve the numerical stability of T-matrix computations for such particles.

We emphasize, once more, that the ideas on which this study was based were rather general.
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It would be possible to apply both the group theoretical method and the perturbation approach
to model particles with surface perturbations other than Chebyshev polynomials. The group the-
oretical approach merely requires that the perturbations be symmetric, while the perturbation
approach works best for small perturbation amplitudes and perturbation wavelengths. However,
it will require careful examinations to study the size-parameter ranges and the CPU-time reduc-
tions that can be achieved when applying the method to other geometries. Further, we point out
that the general ideas of this study may not be limited to traditional T-matrix computations with
Waterman’s extended boundary condition method [9]. For instance, an extention of the T-matrix
concept known as the shape matrix has recently been applied to Chebyshev spheres [17]. Group
theoretical methods would lend itself easily for applications in shape matrix computations.

There are many open questions on the significance of small-scale surface roughness that need
to be addressed in future studies. We will have to better understand the effect of small-scale sur-
face roughness as a function of dielectric properties, particle size, and perturbation amplitude.
Also, the differences between irregular surface roughness and regular 2D and 3D surface rough-
ness needs to be studied comprehensively for particles of different sizes and refractive indices.
Finally, the effect of surface roughness in relation to other morphological features, such as ag-
gregation or perturbations with low Λ-values, need to be investigated. The main purpose of this
work was to establish an accurate and expedient method that will be a useful tool in such future
studies.
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