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Abstract: In this paper we evaluate the potential of Variable Stiffness Actuation to utilize
its inherent joint elasticity and capability to adjust the intrinsic joint stiffness. These abilities
make it possible to realize fundamentally different motion control schemes in comparison to
intrinsically stiff robots. In this paper we treat the problem of how to generate optimally
fast link side velocity at a certain time instant by fully exploiting the elastic energy transfer
effects between motor, joint elasticity, stiffness adjustment mechanism, and link. Based on
optimal control theory we show that it is possible to significantly and optimally exceed the
motor maximum velocity by appropriate motor commands. We solve the problem for models
of increasing complexity in order to consecutively elaborate the core insights into the chosen
problem. Finally, we present experimental results with a VIA joint prototype, confirming the
correctness of the developed formalism.

1. INTRODUCTION

Classical articulated robots are characterized by stiff ac-
tuation with elastic effects being certainly unwanted. Po-
sition accuracy and repeatability are the goals that are
aimed for. If compliance is desired it is realized via active
control, leading to such sophisticated solutions as for the
DLR Lightweight Robot III, Albu-Schäffer et al. [2007].
The robot utilizes integrated joint torque sensors to realize
e.g. high-performance Cartesian impedance control. How-
ever, recently elastic joints received increasing attention
as several interesting properties are achieved, if significant
intrinsic compliance is incorporated into the design. A
general argument in favor of intrinsic joint compliance,
apart from its role for joint protection from impact shocks,
is its ability to store and release energy

(1) for decreasing the energy consumption of the system
or

(2) to increase peak power output.

The former has received larger attention especially for
biped walking Yamaguchi et al. [1998a,b], Vanderborght
et al. [2006]. Our focus, however, lies on the latter as it
allows to considerably increase the link speed Schempf
et al. [1995], Paluska and Herr [2006], Okada et al. [2002],
Haddadin et al. [2007], Wolf and Hirzinger [2008] above
motor speed level. In most cases constant joint elasticity
is used (Series Elastic Actuation (SEA)), however, re-
cently also the concept of Variable Impedance Actuation
(VIA), which can be considered as an extension of SEA
has drawn large attention. The principle of VIA is truly
human-inspired in the sense that it intends to approach
the impedance adjustment capabilities of the human mus-
culoskeletal system. In humans all muscles work in pairs,
namely the agonist and the antagonist. For transferring
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this design idea to robotic actuation there are numerous
concrete concepts. An overview is e.g. given in van Ham
et al. [2009]. At DLR we developed an integrated hand
arm system, Grebenstein and van der Smagt [2008], Albu-
Schäffer et al. [2008] that is fully equipped with variable
impedance actuation, c.f. Fig.1.

Fig. 1. The DLR hand arm system.

Their unique characteristic is an intrinsically variable
impedance element between actuator and link, c.f. Fig 2.
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Fig. 2. 1-DoF model of a VIA joint.
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The elastic joint torque τJ (ϕ, σ1, σ2) between motor inertia
B (associated with motor position θ) and link inertia M
(associated with link position q) is in general a function of
the elastic deflection ϕ = θ − q, as well as of the stiffness
and damper actuation variables σ1, σ2. The desired motor
torque is denoted as τd.

As the mechanical complexity and capabilities of such
joints are significantly different from classical stiff ones,
there are still numerous open problems. One of the most
remarkable properties of VIA is that the elastic joint
element can be used to store and release energy. It is
therefore fundamental to analyze how this property can
be used for generating motions that take advantage of this
and significantly enhance the capabilities of VIA robots in
comparison with their stiff counterparts. Recently, it was
shown experimentally that it is possible to design VIA
motions such that the link side velocity can significantly
exceed the maximum motor velocity, Wolf and Hirzinger
[2008]. This is especially useful for achieving human like
peak performance by means of maximum speed 1 .

In this paper we develop the theory to maximize the link
side velocity of a variable impedance joint and verify the
results experimentally. For solving this problem, we use
methods from optimal control theory. In order to system-
atically analyze the different effects and constraints we
increase the complexity of the used models and try to
find analytical solutions if possible. Table 1 depicts the
consecutive steps we have made and points out whether
analytical or numerical solutions were obtained. First, we
solve the constant stiffness case (case A) with different
motor models (case B+C), incorporate the presence of
bounds on the state variables (case D), analyze the in-
fluence of adjusting the stiffness (case F+G), and finally
discuss experimental results on the DLR QA-Joint (case
H). Each step contributes particular insights, as e.g. the
influence of constrained motor dynamics, constraints on
the elastic deflection, or stiffness adjustment, which makes
it possible to formulate a full view on the problem. As
mechanical damping is usually unwanted due to energetic
arguments, most VIA implementations realize damping
via active control and not through a mechanically complex
solution. Therefore, we do not consider damping in this
paper, i.e. DJ = 0. Furthermore, we assume KJ = σ1 for
the theoretical analysis in order to keep it clear for the
reader. Therefore, we use only σ to denote the stiffness
actuation variable from now on.

2. PROBLEM FORMULATION

As we assume systems which state space equations do
not explicitly depend on time, the description of their
dynamics is a system of differential equations of first order.

ẋ(t) = f(x(t),u(t)), (1)
with x and u being the state vector and control input,
respectively. For achieving an optimal control input, a
general optimality criterion is usually to be chosen such
that the timely evolution of x(t) and u(t), as well as the
final state of the system x(tf ) are weighted with respect
to each other. Therefore, an integral cost functional is a
reasonable choice, as it weights the final state with the
1 Extreme examples show that humans are capable of generating
enormous joint speeds as e.g. shoulder rotation of 6.900 − 9800 ◦/s
during a baseball pitch of a professional pitcher Herman [2007]. This
speed range is currently not realizable by robots if the torque range
and the weight of the joint should be also compatible with human
values.

function h and the timely evolution of the state and control
input with integrating the function g.

J = h(x(tf ), tf ) +
∫ tf

0

g(x(t),u(t), t) dt (2)

Together with the Hamiltonian

H(x(t), λ(t),u(t), t) = −g(x(t),u(t), t) + λT f(x(t),u(t), t)(3)
the constrained optimization problem is transformed into
a problem without constraints. However, in order to maxi-
mize the link side velocity at a certain time instant tf only,
(2) reduces to:

J = h(x(tf ), tf )) = q̇(tf ) (4)
Since no other constraints are taken into consideration (3)
reduces to

H(x, λ, u, t) = λT f(x(t), u(t), t). (5)

For the optimization of the final state the boundary con-
ditions of the adjoint equations result from the transversal
condition

λ(tf ) =
∂h(tf )

∂x
. (6)

Together with the initial boundary conditions of the state
space equation and the final boundary conditions of the
adjoint equations lead to a two point boundary problem.
The partial derivatives of the Hamiltonian with regard
to the state and co-states define a canonical system of
differential equations that needs to be solved:

ẋ =
∂H

∂λ
(7)

λ̇ = −∂H

∂x
(8)

In the next section we analyze models of increasing com-
plexity in order to elaborate the fundamental aspects
about optimizing the link side velocity at a certain time
instant tf .

3. OPTIMAL CONTROL FOR LINEAR CASES

In this section we treat the constant elasticity case (KJ =
const.). Stiffness adjustment and other nonlinear effects
are discussed in Sec. 4 and Sec. 5. For the first model the
motor behaves as a velocity source, which gives insight
into the principles of utilizing joint elasticity. In order
to investigate the influence of motor dynamics on the
switching trajectory, we then consider the motor to be
position controlled. We investigate both PT1 and PT2
behavior for the controlled motor. In a first step we neglect
the influence of the elastic joint torque feedback on the
motor inertia as this allows to find a closed solution 2 .
Finally, the feedback of the elastic joint torque is also
considered. The actuating variable u is chosen to be the
desired motor speed θd. The proportional and damping
gain values for the motor controller are denoted as KP
and KD, respectively.
2 Please note that the stiffness of the motor PD controller is three
order of magnitudes larger than the joint stiffness. Therefore, the
effect of the elastic torque is expected to be reasonably small to
neglect this effect. This will be later on confirmed with realistic
simulation parameters.



case model solution achieved insights

A Velocity source + SEA analytical principal effect of significant joint elasticity
B PT1 + SEA analytical influence of constrained motor dynamics, 1st order
C PT2 + SEA analytical influence of constrained motor dynamics, 2nd order
D PT2 + SEA + JTF numerical influence of joint torque feedback on motor inertia
E PT2 + SEA + JTF + CD numerical influence of deflection constraints
F Velocity source + VS analytical principle effect of stiffness adjustment
G Velocity source + VS + CD numerical influence of stiffness adjustment and constrained deflection
H PT2 + VS + CMT numerical real VIA design behavior and constrained motor torque

Table 1. Analyzed models (SEA= Series Elastic Actuation, JTF = joint torque feedback, CD
= constrained deflection, VS = variable stiffness, CMT = constrained motor torque).

Vel. source (A) PT1 (B) PT2 (C) PT2+τJ (D)

1
θ=
∫ tf

0
θ̇d dt

Mq̈= KJ(θ − q)

τm= KP (θ̇d − θ̇)

τm= Bθ̈

Mq̈= KJ(θ − q)

τm= KD(θ̇d − θ̇) + KP (θd − θ)

τm= Bθ̈

Mq̈= KJ (θ − q)

τm= KD(θ̇d − θ̇) + KP (θd − θ)

τm= Bθ̈ − KJ (θ − q)

Mq̈= KJ(θ − q)

2
xT = [θ q q̇]

u= θ̇d

xT = [θ θ̇ q q̇]

u= θ̇d

xT = [θd θ θ̇ q q̇]

u= θ̇d

xT = [θd θ θ̇ q q̇]

u= θ̇d

3
ẋ1 = u

ẋ2 = x3

ẋ3 = ω2(x1 − x2)

ẋ1 = x2

ẋ2 = KP
B

(u − x2)

ẋ3 = x4

ẋ4 = KJ
M

(x1 − x3)

ẋ1 = u

ẋ2 = x3

ẋ3 = 1
B

(KD(u − x3)+

+KP (x1 − x2))

ẋ4 = x5

ẋ5 = KJ
M

(x2 − x4)

ẋ1 = u

ẋ2 = x3

ẋ3 = 1
B

(KD(u − x3)+

+KP (x1 − x2) − KJ (x2 − x4))

ẋ4 = x5

ẋ5 = KJ
M

(x2 − x4)

4
H(x(t), λ(t), u(t), t) =

λ1u + λ2x3 + λ3ω2(x1 − x2)

H(x(t), λ(t), u(t), t) =

λ1u + λ2x3 + λ3ω2(x1 − x2)

H(x(t), λ(t), u(t)) = λ1u + λ2x3

+λ3
1
B

(KD(u − x3) + KP (x1 − x2))+

+λ4x5 + λ5
KJ
M

(x2 − x4)

H(x(t), λ(t), u(t)) = λ1u + λ2x3

+λ3
1
B

(KD(u − x3)+

+KP (x1 − x2) − KJ(x2 − x4))+

+λ4x5 + λ5
KJ
M

(x2 − x4)

5
λ̇1= −λ3ω2

λ̇2= λ3ω2

λ̇3= −λ2

λ̇1 = −λ4ω

λ̇2 = −λ1 + KP
B

λ2

λ̇3 = λ4ω

λ̇4 = −λ3

λ̇1 = −λ3
KP
B

λ̇2 = λ3
KP
B

− λ5ω

λ̇3 = −λ2 + λ3
KD
B

λ̇4 = λ5ω

λ̇5 = −λ4

λ̇1 = −λ3
KP
B

λ̇2 = λ3

(
KP
B

+ KJ
B

)
− λ5ω

λ̇3 = −λ2 + λ3
KD
B

λ̇4 = −(λ3 + λ5)KD
M

λ̇5 = −λ4

6
λT (tf )= [0 0 1]

xT (0)= [0 0 0]

λT (tf )= [0 0 0 1]

xT (0)= [0 0 0 0]

λT (tf )= [0 0 0 0 1]

xT (0)= [0 0 0 0 0]

λT (tf )= [0 0 0 0 1]

xT (0)= [0 0 0 0 0]

7 θ̇∗d =

{
θ̇max, λ1 > 0

θ̇min, λ1 < 0
singular, λ1 = 0

θ̇∗d =

{
θ̇max, λ2 > 0

θ̇min, λ2 < 0
singular, λ2 = 0

θ̇∗d =

⎧⎨⎩ θ̇max, λ1 + KD
B

λ3 > 0

θ̇min, λ1 + KD
B

λ3 < 0

singular, λ1 + KD
B

λ3 = 0

θ̇∗d =

⎧⎨⎩ θ̇max, λ1 + KD
B

λ3 > 0

θ̇min, λ1 + KD
B

λ3 < 0

singular, λ1 + KD
B

λ3 = 0

Table 2. Summary of the investigated linear optimal control problems.

As the principal approach is always the same we summa-
rized the relevant equations and conditions for the inter-
ested reader in Tab. 2 and focus only on the most signifi-
cant general insights in the following description. Table 2
lists the system dynamics (1), the state and input vector
(2), the state space equations (3), the Hamiltonian (4), the
adjoint system (5), the boundary conditions (6), and the
solution of the switching system (7). The eigenfrequency
is denoted as ω =

√
KJ/M .

Since all system equations (row 3) are linear in u, the
Pontryagin maximum principle leads to bang-bang control.
The optimal switching functions are the terms of the
particular Hamilton (row 4) that linearly depend on u.
Together with its final conditions (row 5) the adjoint
equation system (row 4) forms a final value problem.

For case A we obtain following solution for the relevant
adjoint λ1.

λ1 = ω sin(ω(t − tf )) (9)

The switching law is therefore

θ̇∗d = θ̇max sgn(sin(ω(t − tf ))). (10)

This rectangular function, which frequency is the reso-
nance frequency of the joint has a phase shift that depends
on tf in order to maximize the link side velocity at this
particular time instant. Figure 3 depicts an example for
the solution of the adjoint and system equation as well as
the input. This result leads to the conclusion that with
half period t = ω/(4π) the link side velocity is doubled.

As for case A the optimal control trajectory of case B is
derived also from Pontriyagin’s maximum principle. The
solution is again linear in u and thus of bang-bang type.
The switching times depend for case B on sign(λ2), which
is found to be
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Fig. 3. Solution of the adjoint and system equations.

λ2 (t) =

(
B2KJ e

KP (t−tf)
B − B2KJ cos (ω (t − tf ))

−B KP sin (ω (t − tf ))
√

KJ M
) (

KP
2M + KJ B2

)−1
.

(11)

Compared to case A the switching condition consists of
an additional trigonometric and exponential lag term.
However, the principal structure remains the same.

For case C the solution is also similar to the previous ones,
except for some additional trigonometric and exponential
terms. Again, they do not alter the principal switching
structure. The switching condition is

λ1 +
KD

B
λ3 = −KD K2

J B

X1
cos (ω (t − tf ))

+

(
KJ B KP − KJ KD

2 − KP
2M
)√

KJ M
X1

sin (ω (t − tf ))

+
X4

X1 X2
e
(t−tf)(X2+KD )

2 B +
X3

X1 X2
e
(t−tf )(−X2+KD )

2 B

(12)

with
X1 = KJ KD

2M + KJ
2B2 − 2 KJ B KP M + KP

2M 2

X2 =
√

KD
2 − 4 KP B

X3 = 1/2 KJ B
(
−2 KJ B KP + 2 KP

2M + KJ KD

√
KD

2 − 4 KP B + KJ KD
2

)
X4 = 1/2 KJ B

(
2 KJ B KP − 2 KP

2M + KJ KD

√
KD

2 − 4 KP B − KJ KD
2

)
.

(13)

In order to complete the motor model, the feedback of
the elastic joint torque shall be considered now (case D).
Table 2 lists again all relevant equations and also the
switching law. Unfortunately, we did not find an analytical
solution for this system. Therefore, numerical methods
have to be applied. Since the adjoints are not coupled with
the system’s differential equation they can e.g. be solved
with the Runge-Kutta method via numerical integration.

A comparison of the different motor models is depicted in
Fig. 4, showing the dynamic response of θ̇ for θ̇d, being the
step function. Two main observations can be made: The
significant switching time between PT1 and PT2 and the
negligible influence of the elastic joint torque τJ on the
motor response of the PT2 model.

The main conclusions up to now are

• Motor dynamics do not influence the principal switch-
ing structure.

• Every delay element leads to a phase shift of the
switching times.

• No analytical solution was found, when adding the
influence of the elastic joint torque τJ .

• Insufficient motor dynamics lead to a saturation of
the characteristic velocity increase curve (not de-
scribed for brevity).
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In the next section we discuss the influence of an important
real-world constraint of VIA joints: the elastic deflection
limit ϕmax.

4. CONSTRAINED DEFLECTION

ϕmax can be expressed as an inequality constraint on
the difference of motor and link side position. Its second
derivative incorporates the control variable. Thus, the
order of the constraint is q = 2 and one contact point
exists.

S(0) := (θ − q) − ϕmax ≤ 0 (14)

S(1) := (θ̇ − q̇) ≤ 0 (15)

S(2) := (θ̈ − q̈) ≤ 0 (16)

The formulation of the optimal control problem with con-
straints is based on the model of case D. The Hamiltonian
is extended by a term that incorporates new Lagrange
multipliers μ. In total one obtains an 11th order canonical
system of differential equations with side constraints. For
contact points the conditions given in Bryson and Ho
[1975] count. This leads to a jump in the adjoint variables
for the contact time tb. Because ∂S(2)

∂xi
= 0 and for choosing

μ1 = 0 we may write

λ2(t+b ) = λ2(t−b ) + μ0
dS(0)

dx2
(17)

λ4(t+b ) = λ4(t−b ) + μ0
dS(0)

dx4
. (18)

The concrete jumping conditions are

λ2(t+b ) = λ2(t−b ) + μ0 (19)

λ4(t+b ) = λ2(t−b ) − μ0.

The additional trivial differential equation is
μ̇0 = 0. (20)

The full system of equations can be solved with a numeri-
cal multiple-shooting method as e.g. described in Bulirsch
and Stoer [1978], Carl-Cranz-Gesellschaft [1981].

Figure 5 depicts such a numerical solution of the multi
point boundary value problem (MPBVP) obtained with
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the multiple-goal method implemented with the program
BNDSCO Oberle [2001]. Important to notice is that for
the constrained deflection case the optimization aims at
the maximal elastic deflection (upper right). The optimal
switching time is rather defined by keeping the constraints
than resonant excitation.

In the next section we discuss to what extent the stiffness
adjustment during motion contributes to an increase in
maximum link side velocity.

5. STIFFNESS ADJUSTMENT

First, we take into consideration the influence of stiffness
adjustment without a deflection constraint and then ana-
lyze the effect such limits have.

5.1 Unconstrained deflection

In order to elaborate the effect of stiffness adjustment, we
choose the underlying model for this analysis to be the
one of case A. The joint stiffness is now considered as an
additional control input. Overall, the system equations are

θ =
∫

θ̇d dt with θ̇min ≤ θ̇ ≤ θ̇max (21)

Mq̈ = KJ(t)(θ − q) with KJ,min ≤ KJ(t) ≤ KJ,max,
(22)

with x = [θ q q̇]T being the state vector and u =
[θ̇d KJ(t)]T the control input vector. The canonical
system of differential equations is

ẋ1 = u1 (23)

ẋ2 = x3 (24)

ẋ3 =
u2

M
(x1 − x2) (25)

λ̇1 =−λ3ω
2 (26)

λ̇2 = λ3ω
2 (27)

λ̇3 =−λ2. (28)

The corresponding Hamiltonian can be derived as

H(x(t), λ(t),u(t), t) = λ1u1 + λ2x3 + λ3
u2
M (x1 − x2). (29)

The Hamiltonian is linear in u1 and u2, leading directly to
following switching laws.

θ̇∗d =

⎧⎨⎩ θ̇max, λ1 > 0
θ̇min, λ1 < 0

singular, λ1 = 0
(30)

K∗
J,d =

⎧⎨⎩
KJ,max, λ3

x1−x2
M > 0

KJ,min, λ3
x1−x2

M < 0
singular, λ3

x1−x2
M = 0

(31)

Due to the bang-bang structure of the desired stiffness the
solution of the adjoints is similar to (9). However, this time
a variable eigenfrequency characterizes the result 3 .

λ1 =
√

u2

M
sin
(√

u2

M
(t − tf )

)
(32)

λ3 = cos
(√

u2

M
(t − tf )

)
(33)

For the present case two adjoints influence the switching
condition. λ1 determines the excitation of the system with
θ̇d in resonance, depending on the current eigenfrequency.
The stiffness switching function is characterized by two
terms. First, the sign of the elastic deflection sign(x1−x2)
and secondly, the switching function λ3.

5.2 Constrained deflection

Based on Sec. 4 it is clear that the stiffness adjustment
between maximal elastic deflection (maximum potential
energy stored) and the time instant of maximal velocity
(moment of launch) is critical. Therefore, we investigate
the maximization of the Hamiltonian (29) during this
particular time interval. The term containing the stiffness
u2 and the elastic deflection (x1 − x2) = (θ − q) is to be
maximized.

max
{
λ3

u2

M
(x1 − x2)

}
. (34)

(x1 − x2) is always larger than zero between the moment
of its maximal value and and launch. The maximal value
will be achieved the earliest at tf − 1

2πω . Due to the
transversality condition ∂h(x(tf ))/∂x3 = ∂q̇(tf )/∂q̇ = 1
the last adjoint λ3 reaches its maximal value λ3 = 1 at tf
(see (33)). Furthermore, it changes its sign also at a quarter
of the periodicity before the launch time. The switching
function λ3 is consequently positive in the considered time
interval. This leads, according to the maximum principle,
to maximizing the stiffness (see (31)) towards the moment
of launch.

K∗
J = KJ,max tb ≤ t ≤ tf (35)

Up to now, we assumed that the stiffness trajectory
before the boundary point does not influence the end
velocity. Therefore, it seems reasonable to set the stiffness
to its maximum value during the throwing trajectory
without additionally adjusting the stiffness. However, from
a practical point of view it can be necessary to start the
motion at low stiffness adjustment and enlarge it towards
the launch time. This can have three main reasons:

• The motor dynamics is not sufficient to excite the
joint at maximum stiffness at the corresponding
eigenfrequency.

• The motor power is not sufficient to deflect the joint
with an adequately low number of switching cycles.

• Limits on the elastic deflection can lead to higher
energy storage for lower stiffness ranges due to higher
possible deflection than for higher stiffness presets.

The last aspect can be explained with Fig. 6 and is caused
by the implemented working principle of the VIA mech-
anism. The left figure shows two different linear stiffness
curves for which the maximum deflection is constant for
3 Pease note that the eigenfrequency is not continuously varying,
but switching between its minimum and maximum value.
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all presets. On the right one characteristics are depicted,
where a functional relationship between maximum deflec-
tion and stiffness preset exists.

First, let us discuss the former. According to the maximum
principle the Hamiltonian is maximized through the entire
motion process and therefore the joint stiffness as well.
Consequently, the potential energy stored in the joint
elasticity is maximized for every deflection. This induces
that it is not optimal to change the stiffness, on the
contrary, it reduces the achievable link velocity.

For the latter characteristics the maximum elastic energy
that can be stored depends on the deflection. For large
deflection a soft preset and for small deflection a stiff
one are to be preferred. Maximization of joint torque is
therefore directly coupled with adjusting stiffness along
the admissible deflection.

Next, we discuss the analysis for a concrete joint design
and present various experimental results.

6. ANALYSIS FOR THE QA-JOINT

In this section we apply the elaborated insights to a
concrete VIA design, the DLR QA-Joint.

6.1 Without stiffness adjustment

For the QA-Joint, Eiberger et al. [2010], the elastic joint
torque τJ is defined as

τJ = 40(e15(ϕ−σ) − e15(−ϕ−σ)), (36)
so the mapping σ → KJ = ∂τJ/∂q is a nonlinear function.
With the state vector xT = [θd θ θ̇ q q̇], u = θ̇d and
initial conditions xT (0) = [0 0 0 0 0] we obtain the
following system of differential equations when assuming
elastic torque feedback and PT2 motor behavior.

ẋ1 = u ẋ2 = x3 ẋ3 = 1
B (τ̃m − τJ ) ẋ4 = x5 ẋ5 = τJ

M (37)

τ̃m denotes the bounded motor torque

τ̃m =

⎧⎨⎩
τm,max τm,d ≥ τmax

m

τm,d τmin
m < τm,d < τmax

m

τm,min τm,d ≤ τmin
m,d ,

(38)
with τm,d = KD(u − x3) + KP (x1 − x2) being the desired
motor torque from the PD controller. The Hamiltonian is

H(.) = λ1u + λ2x3 + λ3
1
B

(τ̃m − τ̃J (σ)) + λ4x5 + λ5
1
M

τJ(σ).

(39)

The optimal control problem to be solved consists of
a system of differential equation of 11th order (adjoint
and system equations), including the additional trivial
differential equation if taking into account the elastic
deflection limit with one boundary point, see Sec. 4. The
nonlinearity causes a coupling of the adjoint and state
equations, leading to a MPBVP with separated initial
and end conditions for the canonical system of differential
equations 4 . The limits of motor torque eventually lead
to a necessary formulation of boundary control. Solving
this problem with multi-goal methods turned out to be
very unstable. This is because on the one side for n
nodes 5n starting conditions need to be estimated and
their deviation from the solution is highly influencing
the convergence of the method. Furthermore, a physical
interpretation of the adjoint variables is also not given.
Thus, the estimation of their start values, which would
lead to a solution is not straight forward.

A possibility to solve this optimization is a parameter es-
timation method by utilizing the information that the op-
timal control trajectory shows bang-bang behavior (which
comes from the linear occurrence of the input into the
state equation). This is also independent from the limit
in motor torque τ̃m (see (38)), as the principal structure
of the Hamiltonian remains the same regardless of the
saturation 5 :

H̃(λ(t), u(t)) =
(
λ1 + λ3

KD

B

)
u, τm,min < τm,d < τm,max (40)

H̃(λ(t), u(t)) = λ1u, (τm,d < τm,min) ∨ (τm,d > τm,max) (41)
The parameter to be estimated is the switching time.
The optimization is carried out by multiple solving of the
system equations with the jumping times in the control
variable being timely varied via appropriate optimization.
The used algorithm is the Nelder-Mead simplex downhill
method with the following optimization criterion.

J = −q̇ + Jp (42)

Jp =
{

0 ϕmin ≤ ϕ ≤ ϕmax

exp (|ϕ| − ϕmax) |ϕ| > ϕmax
(43)

Complying with the constraints is ensured with penalty
term Jp.
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Fig. 7. Final link velocity as a function of motor velocity.

4 The adjoint system is given in Appendix A.
5 Please note that only the relevant term of the Hamiltonian is
shown, which linearly depends on u.
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Under the premise of achieving maximal deflection with
one switching cycle (throwing with striking out once), a
limited velocity range for the position motor complies.
On the one hand, a minimum velocity for achieving the
maximal deflection is needed and on the other side there
exists a maximum velocity at which the constraint still
can be ensured. The simulation results are depicted in
Fig. 7 and Fig. 8. The red marked points on the theoretical
graphs were experimentally verified (green crosses).

Figure 7 shows the absolute achievable final velocity as a
function of commanded motor velocity characterized by
the almost linear relationship. This induces a continuous
velocity increase with stored potential energy. Further-
more, it becomes clear that too low elasticity leads to a
degradation of achievable link velocity. The relative veloc-
ity increase with respect to the motor velocity at final time
is depicted in Fig. 8. If this relation is considered as the
speed gain 6 of the elastic mechanism, it can be stated that
it degrades with increasing motor velocity and increasing
stiffness. As already explained, it is necessary to drive with
higher motor velocities to achieve the maximum deflection
for low stiffness. For the QA-Joint the largest speed gain
can be obtained at θd = 65 o/s and moderate stiffness.
This is equivalent to an efficiency of 2.7.

In Figure 9 the time courses of measurements and simu-
lations for high and low stiffness presets are shown. The
relevant variables are the link side velocity, deflection, and
the elastic joint torque.

• link velocity (left):
The trajectory of the link velocity shows very good
consistency with the simulation. At final time the
velocity is approximately twice the motor velocity.
The deviation in joint torque are almost not reflected
in the velocity profile.

• deflection (middle):
In contrast to the simulation a slight exceedance
of the deflection constraints can be observed in the
lower row. This is mainly due to the variance in the
identified stiffness and friction parameters, calibra-
tion errors, and simplified assumptions for the friction
model.

• joint torque (right):
The principal time course of the joint torque confirms

6 Please note that we consider the speed gain to be a relevant
quantity as it relates the achievable link side velocity in direct
relation to the maximum desired motor velocity, i.e. it directly relates
the relative benefit that one may obtain in principle.
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Fig. 9. Comparison of simulation and measurements for
different stiffness presets. The upper row shows the
motion for θ̇d = 60 o/s and σ = 3 o. The lower row
depicts the results for θ̇d = 100 o/s, σ = 11 o.

the joint model with respect to the identification
of stiffness and friction. The discontinuities in the
simulation are caused by the Coulomb friction model
during change of direction.

Next, we discuss the effect of stiffness adjustment for the
QA-Joint.

6.2 Stiffness adjustment

For the stiffness adjustment during the motion there are
also some conclusions to be drawn. For the linear joint
stiffness it was shown that the relation between stiffness
and deflection is critical, see Sec. 5.1. For the QA-Joint
this constraint is formally defined as

σ ≥ ϕ σ ∈ [3o 15o]. (44)

For maximizing the Hamiltonian (39), following term
is considered, which explicitly depends on the stiffness
adjustment σ.

H̃(λ(t),x(t), σ(t)) =
(

λ5
1
M

− λ3
1
B

)
︸ ︷︷ ︸

λ∗

τJ (σ) (45)

As assumed in Sec. 5.1 only a stiffening during the re-
laxation phase is essential. Thus, the sign of ϕ̇ does not
change. In Appendix A it is shown that λ∗ ≥ 0 holds
during the entire adjustment phase. Therefore, τJ has to
be maximized.

τJ =
1

e15σ

[
(aS − aR)e15(x2−x4) − (bS + bR)e15(−x2+x4)

]
(46)

The maximization of the elastic torque in turn necessitates
the maximization of stiffness, respectively a minimization
of σ at every time instant. Taking (44) into account the
optimal stiffness trajectory is

σ∗ =
{

3; ϕ ≤ 3
ϕ; 3 < ϕ < 15.

tb ≤ t ≤ tf (47)

This means that the acceleration torque has to be sus-
tained during relaxation as long as possible. From an en-
ergy point of view the stiffness adjuster injects additional
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energy such that the joint maximally stores potential en-
ergy for a certain deflection. The potential energy that can
be converted into kinetic energy is therefore maximized at
the same time.

The according experimental verification is depicted in
Fig. 10 and Fig. 11. For a moderate stiffness preset
σ = 9 o the achieved link velocity is 266 o/sec., which
is approximately 20 % higher than without adjustment.
From Figure 11 (left) it can be observed that adjusting
the stiffness according to (47) is not fully achieved due to
too little dynamics of the stiffness motor 7 . Nonetheless,
a significant velocity increase is observed here as well.
Compared to the constant elasticity case the joint torque
shows an increase from the moment of adjustment on,
confirming the theoretical requirement to maximize the
sustaining torque during relaxation phase.

7. CONCLUSION

In this paper we developed a theoretically sound concept
to achieve an optimal speed gain for Variable Impedance
Actuators based on optimal control theory. We analyzed
models of increasing complexity to identify the main fac-
tors determining the achievable performance and incor-
porated the most important real-world constraints into
the analysis. Furthermore, we verified the schemes on the
DLR QA-Joint, a novel VSA prototype, which is one of
the basis mechanisms for the anthropomorphic DLR hand
arm system. Our future work will deal with the extension
to the N-DoF case.
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Mathematik 2. Springer-Verlag, 1978. (German).

Carl-Cranz-Gesellschaft. Optimierungsverfahren- Soft-
ware und praktische Anwendungen, 1981. (German).

Oliver Eiberger, Sami Haddadin, Michael Weis, Alin Albu-
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Appendix A. SOLVING THE ADJOINT EQUATIONS

In order to confirm the assumption λ∗ ≥ 0 for the exper-
iment carried out in Sec. 6.2, the adjoint equations have
to be solved for the time interval of stiffness adjustment.
Since they do not show discontinuities they can be solved
numerically as a final value problem by utilizing the al-
ready optimized solution of the state equations.

The solution of the adjoint equation systems in the time
interval [tb tf ] gives the confirmation that the stiffness
adjustment presented in Sec. 4 is indeed satisfying optimal
control theory. For this, the switching function λ∗ has
to have positive sign in this interval. The system of
differential equation for the adjoints is

λ̇1 =−λ3
1
B

KP (A.1)

λ̇2 = λ3
1
B

((bS − bR) exp (15(ϕ − σ)) (A.2)

−(as − aR) exp (15(ϕ − σ)) + KP )

λ̇3 =−λ2 + λ3
KP

B
(A.3)

λ̇4 =
(

λ5
1
M

+ λ3
1
B

)
((bS − bR) exp (15(ϕ − σ))(A.4)

+(as − aR) exp (15(ϕ − σ)))

λ̇5 =−λ4, (A.5)

where ϕ = x2−x4. With final values λT (tf ) = [0 0 0 0 1]
the problem can be formulated as final value problem and
e.g. be solved with the Runge-Kutta method. Figure A.1
depicts the solution of the switching function λ∗ = λ5

1
M −

λ3
1
B , showing the positive sign over the relevant time

interval.


