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Human-Like Adaptation of Force and Impedance in
Stable and Unstable Interactions
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Abstract—This paper presents a novel human-like learning con-
troller to interact with unknown environments. Strictly derived
from the minimization of instability, motion error, and effort, the
controller compensates for the disturbance in the environment in
interaction tasks by adapting feedforward force and impedance. In
contrast with conventional learning controllers, the new controller
can deal with unstable situations that are typical of tool use and
gradually acquire a desired stability margin. Simulations show that
this controller is a good model of human motor adaptation. Robotic
implementations further demonstrate its capabilities to optimally
adapt interaction with dynamic environments and humans in joint
torque controlled robots and variable impedance actuators, with-
out requiring interaction force sensing.

Index Terms—Feedforward force, human motor control,
impedance, robotic control.

I. INTRODUCTION

N EW APPLICATIONS in service robotics, health care,
small-batch manufacturing, construction, entertainment,

and agriculture require efficient interaction with unknown envi-
ronments and human beings [1], [2]. These interactions are often
unstable, e.g., when the task involves a tool or if the interaction
is with an active environment. For example, carving requires
compensation for the instability and unknown forces due to the
contact with the raw material. While humans learn to perform

Manuscript received December 6, 2010; revised May 4, 2011; accepted May
23, 2011. Date of publication July 5, 2011; date of current version October 6,
2011. This paper was recommended for publication by Associate Editor Y. Choi
and Editor B. J. Nelson upon evaluation of the reviewers’ comments. The first
two authors contributed equally to the work. This work was supported in part
by the European Union FP7-ICT-2007-3 VIACTORS Grant.

C. Yang was with the Department of Bioengineering, Imperial College
London, London, SW7 2AZ, U.K. He is now with School of Computing
and Mathematics, University of Plymouth, Plymouth, PL4 8AA, U.K. (e-mail:
cyang@ieee.org).

G. Ganesh was with the Department of Bioengineering, Imperial College
London, London, SW7 2AZ, U.K. He is now with Computational Neuro-
science Laboratories, Advanced Telecommunication Research Institute, Kyoto
6190288, Japan, and also with the National Institute of Information and Com-
munications Technology, Japan (e-mail: gganesh@atr.jp).

S. Haddadin and S. Parusel are with the German Aerospace Center, Wessling
82234, Germany (e-mail: sami.haddadin@dlr.de; sven.parusel@dlr.de).
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these tasks with ease, robots lack such adaptation capabilities
and have generally not been conceived to deal with unstable
interactions.

A robust control approach was used in most previous robotic
works to guarantee interaction stability, where explicit design
bounds are developed for a particular controller to maintain
stability while the control structure is fixed [3]–[5]. However,
human beings use a different strategy to deal with instability [6],
[7]: They adapt endpoint force and viscoelasticity to compensate
for the environment forces and instability by minimizing error
and effort and ensuring a constant stability margin [8], [9].
Similar to humans, the learning controller that is developed in
this paper increases feedforward force and impedance as long as
the error is large, i.e., until the disturbing effect that results from
the interaction with the environment is overcome. In the absence
of a disturbance, the controller will decrease feedforward force
and impedance to a small margin to keep compliance while
maintaining stability.

Iterative learning control (ILC) [10], i.e., learning actuator
force trial after trial along a repeated trajectory by minimizing
feedback error, has produced efficient algorithms that have been
demonstrated in various robotic implementations [11], and has
provided an excellent model for human motor force adaptation
in a novel stable interaction [12]. However, such algorithms
are inefficient in unstable situations, as the force will be dif-
ferent in each trial due to noise or external disturbances [13].
Furthermore, safety (in particular, in a human–robot interac-
tion) [14]–[17] and energy minimization are required to keep
mechanical impedance low, which is out of the scope of ILC.

Control of the robot to match a target relation between force
and displacement has been proposed in impedance control [18].
For example, an ILC approach was developed in [19] to learn
the target impedance model. However, strict impedance control
methods [18] require measurement of interaction forces and a
fixed target impedance model so that if the environment changes
drastically, the interaction may become unstable. In addition, if
reproducible interaction forces are not considered, they will
interfere with the impedance control.

Impedance control strategies can be optimally implemented
using variable impedance actuators (VIA) [17], [20]. VIA pro-
vide robots embodied impedance as humans have through their
muscles. This yields immediate response to impact as well as
tunable (e.g., compliant or stiff) interaction. VIA further open
possibilities of low-energy behaviors and control of viscoelas-
ticity to improve performance in tasks such as assembly, saw-
ing, throwing, hammering, etc., as well as for interaction with
humans. However, concretizing these potentialities requires
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Fig. 1. Adaptation to novel dynamics: from humans to robot. (a) Investigation of point-to-point arm movements with lateral instability produced by a robotic
interface showed that humans adapt mechanical impedance to ensure stable movements with minimal metabolic cost [6]. (b) Control diagram of the biomimetic
controller that is presented in this paper and was derived from the results of this investigation.

appropriate algorithms to adapt force and impedance to the task
and to the dynamic environment.

In this context, this paper presents an automatic motor behav-
ior for a robot to perform tasks skillfully in unknown dynamic
interactions. It starts by analyzing the control strategy that is
used by the human central nervous system (CNS) in interac-
tion tasks and then designs a biomimetic learning controller
for robots using Lyapunov theory. The resulting adaptation of
impedance and force is demonstrated in simulations and im-
plemented on the 7 degree-of-freedom (DOF) DLR lightweight
robot (LWR), as well as on a novel VIA [17]. The human-like
adaptivity that is shown by robots in these stable and unstable
tasks illustrates the potential of the novel learning controller.

II. CONCURRENT ADAPTATION OF FORCE AND IMPEDANCE

A. Review of Human Motor Control and Learning

To develop a controller with biomimetic adaptation prop-
erties, we first review human motor control and learning. We
analyze them from a robotics point of view by considering the
influence of both biomechanical and neural control aspects.

First, it was observed that when the human hand is slightly
perturbed during arm movements, it tends to return to the undis-
turbed trajectory, as if the hand were connected to a spring along
a planned trajectory [21]. This spring-like property stems from
muscle viscoelasticity and the stretch reflex, which produce a
restoring force toward the undisturbed trajectory. Analysis of
this restoring force shows that the stiffness and damping in-
crease with muscle activation [22] or endpoint force [23], and
both stiffness and damping can be adapted to compensate for dy-
namic environments [24]. This provides feedback during move-
ment due to muscle elastic property and reflexes, i.e., neural
feedback.

In addition, skillful movements require a feedforward mech-
anism to plan the forces for a task in advance. Shadmehr and
Mussa-Ivaldi have studied how this feedforward is acquired dur-
ing performance by having subjects repeat planar arm reaching
movements while interacting with a novel environment [25].
The results demonstrate that the human central nervous system

(CNS) reduces movement error trial after trial by adapting feed-
forward control and compensating for the environment forces.

To manipulate objects or use tools, one has to interact with the
environment and compensate for forces and instability that arise
from it. While muscle intrinsic properties and reflexes generally
stabilize motion, the stabilization that is provided by reflexes
is limited by a time delay of at least 60 ms, which means that
in some cases, reflexes can create instability [26]. Furthermore,
many tasks that are common to daily life, e.g., most tasks that
involve tool use, are unstable [27]. This instability will amplify
the important variability that is observed in consecutive arm
movements and make them unpredictable.

In a series of studies, we have analyzed the learning of stable
and unstable dynamics (see Fig. 1(a), e.g., [6], [28], and [29]).
We found principles of motor learning [8], [9] that yield the
adaptation of both force and impedance by the concurrent min-
imization of motion error and effort while maintaining a fixed
stability margin.

B. Biomimetic Adaptive Controller

Let us now derive a robot controller with adaptive proper-
ties that are similar to human motor control as modeled in the
previous review. In the following, ‖ · ‖ denotes the Euclidean
vector norm and induced matrix norm, tr{·} stands for the trace
of a matrix, 0[m,n ] for an (m × n)-dimensional matrix with all
zero elements, and ⊗ is the Kronecker product. The task for this
controller consists of the following:

1) moving an m DOF robot (or a human arm) with dynamics

M(q)q̈ + C(q, q̇)q̇ + G(q) (1)

where q ∈ Rm is the joint position vector, M(q) is the
(symmetric, positive definite) mass matrix, C(q, q̇)q̇ rep-
resents the torque vector due to Coriolis and centrifu-
gal forces, and G(q) represents the torque vector due to
gravity;

2) using actuators/muscles producing joint torques τu and
suffering from noise τν (t) ≤ ν̄ < ∞;
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3) in an n-dimensional Cartesian task space (n ≤ m) that
is characterized by an interaction force FI (x, ẋ, t) that
depends on Cartesian position x, velocity ẋ, and time;

4) while tracking a C2 bounded periodic task reference tra-
jectory q∗(t):

q∗(t) = q∗(t − T ) < ∞ , T > 0 . (2)

Corresponding to the previous analysis of human motion con-
trol, we propose a robot/human controller that is composed of
feedforward and feedback [see Fig. 1(b)], both of which are
adapted during movements

τu (t) = −τ(t) − K(t)e(t) − D(t)ė(t) − L(t)ε(t) + τr (t)
(3)

where

e(t) ≡ q(t) − q∗(t) , ė(t) ≡ q̇(t) − q̇∗(t)

are position error and velocity error relative to the task reference
trajectory and

ε ≡ ė(t) + κe(t) , κ > 0

is the tracking error commonly used in robot control [30].
In the controller (3), −τ(t) is the learned feedforward, and
−K(t)e(t) − D(t)ė(t) is the feedback due to stiffness K(t)
and damping D(t) learned through interaction with the envi-
ronment, as described in (14) and (16), shown below. The term
−L(t)ε(t) corresponds to the desired stability margin, where
L(t) is a symmetric positive-definite matrix with minimal eigen-
value

λmin(L(t)) ≥ λL > 0 (4)

that ensures stable but compliant motion control. In the human
arm, this minimal feedback is produced by passive mechanical
properties of muscles without contraction and reflexes [31]. To
compensate for robot/arm dynamics and bounded noise, we set

τr (t) ≡ Mq̈∗ + Cq̇∗ + G − sign(ε)ν̄ (5)

with the sign function that is defined component wise.
Let KE (t), DE (t), and τE be the stiffness, damping, and

feedforward torque that is required to maintain stability and to
reduce systematic deviation caused by the interaction with the
environment, which are represented by the vector

Φ∗(t) ≡ [vec(KE (t))T , vec(DE (t))T , τT
E (t)]T (6)

where vec(·) is the column vectorization operator. Correspond-
ing to the human motor behavior as observed in Section II-A, we
assume that the CNS adapts stiffness, damping, and feedforward
torque

Φ(t) ≡ [vec(K(t))T , vec(D(t))T , τT (t)]T (7)

such that Φ(t) approaches the required value Φ∗(t), while at the
same time, the CNS tends to minimize the metabolic cost so
that no extra effort will be spent on the learned impedance and
feedforward torque. This can be summarized as minimization
of the cost function

Vc(t) ≡
1
2

∫ t

t−T

Φ̃T (σ)Q−1Φ̃(σ)dσ (8)

where

Φ̃(t) ≡ Φ(t) − Φ∗(t)

≡ [vec(K̃(t))T , vec(D̃(t))T , τ̃ T (t)]T

with

K̃ ≡ K(t) − KE (t)

D̃ ≡ D(t) − DE (t)

τ̃ ≡ τ(t) − τE (t) (9)

and

Q ≡ diag(I ⊗ QK , I ⊗ QD ,Qτ ) (10)

in which QK , QD , and Qτ are the symmetric positive-definite
matrices corresponding to the learning rate of K, D, and τ ,
respectively [see (14) and (16)]. In addition, the CNS tends to
minimize motion error that is translated as concurrent minimiza-
tion of

Vp(t) ≡
1
2
εT (t)M(q)ε(t) (11)

such that the overall cost function to minimize is

V (t) ≡ Vp(t) + Vc(t) . (12)

In the following, we use the motion error cost Vp of (11) as a
stability measure. As human and robot motions have finite time,
we define stability using finite time intervals. The interaction of
a robot or the human body with an environment is stable from
time t, if there is δ > 0 so that for all instant t1 > t

∫ t1

t

V̇p(σ) dσ < δ . (13)

Otherwise, the interaction is unstable. This definition, which
is similar to uniformly ultimate boundedness stability [32], is
illustrated by an example in Appendix A. As the evolution time
is assumed to be extendable, this definition actually describes
the tendency to stability/instability.

It will be shown in Section IV how this minimization of V (t)
leads to the adaptation of feedforward torque and impedance as
described now. Feedforward torque is adapted through

δτ(t) = τ(t) − τ(t − T ) = Qτ (ε(t) − γ(t)τ(t))

τ(t) = 0[n,1], t ∈ [0, T ) . (14)

where Qτ is a symmetric positive-definite constant matrix, and

γ(t) =
a

1 + b‖ε(t)‖2 (15)

is a forgetting factor of learning with positive a and b. In fact,
any positive value of γ > 0 can be used to yield the convergent
result as will be shown in Section IV-A; however, a too large
γ will prevent good buildup of torque and impedance, while a
small γ will slow the decrease/unlearn of torque and impedance.
The aforesaid definition of γ has the advantage that when the
tracking performance is bad, i.e., ε(t) is large, then γ(t) is
small, and vice versa. The values of a and b can be selected
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by the designer to adapt the response speed. The stiffness and
damping matrices are adapted according to

δK(t) = K(t) − K(t − T )

= QK

(
ε(t)eT (t) − γ(t)K(t)

)
δD(t) = D(t) − D(t − T )

= QD

(
ε(t)ėT (t) − γ(t)D(t)

)
(16)

with K(t) = 0[n,n ] , and D(t) = 0[n,n ] , t ∈ [0, T ), where
QK and QD are symmetric positive-definite constant gain ma-
trices. Section IV demonstrates that with this learning law, the
controller of (3) acquires stability without using superfluous
effort.

C. Comments

1) Force Sensing: It is noted that the developed controller
of eq. (3), together with adaptation laws (14) and (16), does not
require force sensing. Therefore, no force sensor is required to
implement this controller, which is an advantage as good quality
force sensors are usually expensive and may not be able to detect
force if the contact point is outside the measurement range.

2) Stability Margin: As will be illustrated by the simulation
in Section III and the robotic implementation in Section V, the
proposed controller can deal with both stable and unstable con-
ditions. The learned stiffness K and damping D as well as feed-
forward torque τ will compensate for the external force, such
that the closed-loop dynamics of the interaction between robot
and environmental force match the interaction-free behavior

M(q) ë + C(q, q̇) ė + Lε = 0 . (17)

This is similar to the human-adaptive behavior [9], where the
net impedance was observed to be maintained at the same level
in various dynamic environments. In addition, as analyzed in
Section IV, no extra effort will be spent to increase impedance or
feedforward torque if there is no interaction or if the interaction
force is assisting the tracking task.

3) Joint Space Controller: An interesting property of the
above controller that is implemented in joint space is that the
impedance is distributed according to the limbs dynamics, such
that if the proximal limbs have large inertia or damping, high-
frequency perturbations applied on the distal limb will lead to
increase impedance mainly distally.

With the above controller, the task reference trajectory q∗(t)
can be transformed from a Cartesian space reference trajectory
x∗(t) by the use of a local minimization and by the integration
of the transformed velocity. For example, minimization of speed
‖q̇∗‖2 leads to q̇∗(t) = J †(q∗)ẋ∗(t) with the pseudo inverse
J † ≡ JT (J JT )−1 (where J(q) is the Jacobian defined through
ẋ ≡ J(q) q̇), which can be integrated to yield the position. This
transformation needs to be computed only once, e.g., offline.
In addition, a desired Cartesian space impedance Lx(t) can be
specified directly using the relation L(t) ≡ J(q∗)T Lx(t)J(q∗).
Again, this transformation needs to be computed only once be-
fore starting the movement and adaptation.

4) Cartesian Space Controller: Equations (3)–(16) can be
similarly formulated in Cartesian space. This Cartesian space

controller can be implemented (on the actuators) using

τu ≡ JT Fu . (18)

If the robot position sensing is done in joint space, the Carte-
sian space version of the controller requires a forward kinematic
transformation to compute the end effector’s position in Carte-
sian space (in which the control force will be computed), then
this force has to be transformed into joint torque and executed
by the actuators. Similarly, when using VIA, embodiment of
impedance requires transformation of stiffness and damping
from Cartesian to joint space at every time step. These back-
and-forth transformations, which must be performed at every
time step, are avoided in the joint space version.

5) Adaptive Control Extends to τr : In the proposed con-
troller, the term τr (t) that is defined in (5) assumed that the
model of robot/arm is exactly known such that M(q), C(q, q̇),
and G(q) are available. If the model parameters are unknown,
they can be identified using adaptive control as described in
Appendix B.

III. SIMULATIONS

Before analyzing the dynamic properties of the new con-
troller in Section IV, we first examine its efficiency and its
adaptive properties through simulations. Simulations are carried
on planar arm movements using the two-joint model of human
arm/robot that is detailed in [13] along various movement with
reference velocity profile

v(t) =
30t2

T 3

(
1 − 2

(
t

T

)
+

(
t

T

)2
)

m

s
. (19)

A. Comparison With Human Motor Control Experiments

To verify that the proposed controller is able to learn to com-
pensate for interaction dynamics and to model human motor
adaptation, we first simulate the adaptation of a point-to-point
movement ahead of the body in an unstable interaction, as was
tested in the experiments of [6] (see Fig. 1(a), where the right
shoulder position is set as coordinate origin). We investigate the
adaptation to the unstable divergent force field (DF)

FDF =
[

450 0
0 0

] [
x1
x2

]
N, if − 0.03m ≤ x1 ≤ 0.03m

otherwise FDF = 0[2,2]

which was used in the experiments of [6]. Note that the destabi-
lizing force was set to zero outside of this workspace for safety
reasons.

The simulation uses the reference trajectory with velocity
v∗(t) = (xf − xs)v(t) starting at xs = [0, 0.31]T m and fin-
ishing at xf = [0, 0.55]T m, with duration T = 0.7 s. The
controller parameters are selected as Qτ = diag{5, 5}, QK =
diag{80, 80}, QD = diag{10, 10}, a = 0.2, b = 5, κ = 5, and

L =
[

5 1.2
1.2 4

]
. (20)

Adaptation is simulated during 60 iterations. The robust term
sign(ε)ν̄ in (5), which is specific to robot control, is not included
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Fig. 2. Simulation of adaptation to unstable dynamics as in the experiment of [6]. (a) Hand paths before and after learning. (b) Change in the stiffness ellipse at
midpoint of movement (first iteration: in dashed blue, final iteration: in solid black). (c) Feedforward force after learning in the final iteration. The evolution of (d)
stiffness and (e) damping (2 × 2 matrices) and (f) force during the trials is a prediction from the model that cannot be directly compared with experiment results,
as they were not measured. However, the evolution patterns are consistent with the evolution of muscle activity that is shown in [29].

in the simulation. At the end of each iteration, the position q is
reset to the start point and the velocity q̇, and acceleration q̈ are
reset to zero to emulate the experimental conditions. The noise
is Gaussian with standard deviation σ = 1N/m truncated at ±σ.

Simulation results are presented in Fig. 2. We observe similar
patterns of the evolution of hand trajectories, stiffness ellipse
change, and feedforward hand force after learning as in the
experiments of [6]. Initial divergent trajectories become straight
and successful after learning [see Fig. 2(a)]. This is caused by a
selective increase in stiffness (and damping) to compensate for
the unstable interaction [see Fig. 2(b), (d), and (e)] without a
large modification of the feedforward force [see Fig. 2(f)].

In Fig. 2 (d)– (f), we see that stiffness and damping selectively
change to maintain stability in the DF, while the feedforward
force in the unstable direction (along the x1-axis) does not vary
much.

B. Test on a Circular Tracking Task

We further test the adaptive properties of the proposed con-
troller on the tracking of a circle of radius r centered at xc (see
the solid red line in Fig. 3) with velocity profile (19), i.e.,

v∗(t) = 2πr

[
− sin(2π v(t))
cos(2π v(t))

]
(21)

with period T = 1.2 s. Three kinds of force fields are applied
during motion:

Fig. 3. Simulation of circular motion with constant force Fc , velocity-
dependent divergent force Fv , and position-dependent divergent force Fd .

1) a constant interaction force field

Fc =
[

0
−20

]
N; (22)
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Fig. 4. Adaptation to stable and unstable position- and velocity-dependent interactions. (a) Trajectories of three consecutive periods at the beginning (1: blue; 2:
yellow; 3: green) and end (1: blue; 2: black; 3: cyan) of each phase (reference trajectory in red). (b) Stiffness ellipses along the circle at the end of phase II with κL
as dashed and κL + K as solid lines. (c) Evolution of the (mean over a period of) components of transformed stiffness K ′ in the x′

1 o′x′
2 system. (d) Evolution of

the (mean over a period of) components of damping D in the x1 o x2 coordinate. (e) Average norm of errors for every periods for the three phases. (f) Evolution
of feedforward force in the x1 o x2 system.

2) a position-dependent DF normal to the circle

Fd = Kd(‖�x‖ − r)
�x

‖�x‖ , �x ≡ x − xc

Kd = 450 N/m;

3) a velocity-dependent DF

Fv = Kv ẋ, Kv = 30 Ns/m;

with both Fd and Fv limited to a torus within 5 cm of the
circle (see the dashed green line in Fig. 3).

The task reference trajectory in joint space q∗(t) is obtained
by inverse kinematics from (21). The same controller and noise
parameters are used as in Section III-A.

Starting with K, D, and τ , all equal to zero, 120 peri-
ods of learning with the Cartesian space version of the learn-
ing controller were performed under the following conditions:
phase I: periods 1–30 with a constant bias force FI = Fc ;
phase II: periods 31–60 with an additional position-dependent
divergent force, i.e., FI = Fc + Fd ; phase III: periods 61–90
with additional velocity-dependent divergent force, i.e, FI =

Fc + Fd + Fv ; and phase IV: periods 91–120 with no interac-
tion force.

The simulation results are presented in Fig. 4, where the
stiffness ellipse, which is defined as {Kx/‖x‖, x ∈ R2}, was
plotted by multiplying the Cartesian space stiffness matrix K ∈
R2×2 with the unit circle trajectory x = [cos(α), sin(α)]T , 0 ≤
α < 2π. From the definition of the controller in (3), we see
that initially K = 02,2 , i.e., the initial stiffness is the minimal
feedback κL, while after learning the overall stiffness has been
modified to κL + K. Initial stiffness and overall stiffness at the
end of phase II are plotted in Fig. 4(b) (dashed blue and solid
black ellipses).

In addition, the learned stiffness K is also transformed
into a moving coordinate x′

1o
′x′

2 (which is shown in Fig. 3)
with x′

1-axis along the radial direction and x′
2-axis normal

to the radial direction. The transformed K ′ is calculated as
K ′ = RT (α)KR(α) with R(α) the rotation matrix of angle
α shown in Fig. 3, and each components of K ′ is plotted in
Fig. 4(c).

At the beginning of the simulation, when the constant force
field Fc is introduced, the trajectories in consecutive periods
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deviate from the circle [see the first row of Fig. 4(a)] systemati-
cally in the direction of the force. Thereafter, they monotonically
converge toward the circle in less than ten periods [see phase I
in Fig. 4(e)].

We see in the second row of Fig. 4(a) that the system becomes
unstable when the position-dependent interaction force Fd is
added, and the trajectory deviates in a nonsystematic way from
the circle in the first trials. However after the 40th period, the
system becomes able to track the circular trajectory well (see
phase II in Fig. 4(e)]. Fig. 4(b) shows that the stable behavior in
phase II has been acquired by increasing stiffness mainly in the
direction of instability, i.e., normal to the circle (along the x′

1-
axis). The adaptation of the stiffness ellipse from before learning
(dashed blue) to after learning (solid black) matches well with
the experimental results of the human stiffness adaptation in a
DF [6], [9].

When the velocity-dependent interaction force Fv is intro-
duced, we see that the tracking performance worsens (observe
the few periods starting from the 60th). However, while suitable
damping D is learned [see Fig. 4(d)], the tracking improves
again. The evolution of the average norm of errors [see phase
III in Fig. 4(e)] confirms this with a large reduction in about ten
periods. When all the external force fields are released at period
91, a large tracking error appears in the reverse direction due
to the memory of learned feedforward force [see the last row
of Fig. 4(a)]. This error, however, soon decreases to a low level
[see the white part in Fig. 4(e)].

Fig. 4(c) shows the transformed stiffness K ′ in the x′
1o

′x′
2

coordinate. We see that when the stable interaction due to Fc

is introduced at period 1, stiffness changes in the very few next
periods but soon tends to return back to the previous level. When
the position-dependent divergent force is brought in phase II,
the controller increases stiffness mainly in the normal direction
to the circle (along x′

1) in 30–40 periods, which reduces motion
error as was just explained. Note that mainly the normal com-
ponent of stiffness compensates for the interaction force, while
other components are smaller.

We see in Fig. 4(f) that the feedforward force is learned at
roughly the right level and during the right periods to compen-
sate for external force Fc . Note that the level reached is slightly
less than Fc=20 N, probably due to the assistance that is pro-
vided by increased impedance during these periods.

C. Comparison With Traditional Iterative Learning Control

To illustrate the difference of the novel control with respect
to traditional ILC, we performed the same simulation while
adapting only the feedforward force, which corresponds to ILC
(but without resetting position and velocity at the beginning of
every period). The results in Fig. 5 demonstrate that without
impedance learning, the ILC controller is not able to perform
successfully with either the divergent force Fd or the divergent
force Fv , i.e., the tracking performance does not improve at all
with only adaptation of feedforward force.

In contrast with the ILC method, where every iteration starts
from time instant 0 to time instant T , and the values of position
and velocity are reset to the fixed initial conditions (q0 and q̇0),

Fig. 5. Simulation result without adaptation of stiffness K and damping D.

e.g., q(0) = q0 , and q̇(0) = q̇0 at each iteration, our proposed
algorithm runs in a continuous manner and does not require
resetting after each period.

D. Summary

The simulation results demonstrate that the developed con-
troller is able to acquire stability when starting with an unstable
interaction. It learns to efficiently perform the tracking task with
little superfluous effort, i.e., force and impedance are adapted
to compensate for the environment in which the hand/robot is
moving, which is similar to what was observed in the human
behavior [6], [7], [28], [29]. These simulations demonstrate that
the developed controller is a good model of human motor learn-
ing [9], which has promising properties as a robot controller.

IV. STABILITY AND CONVERGENCE ANALYSIS

This section describes the convergence analysis of the joint
space version of the controller. Analysis of the Cartesian space
version is omitted as it is similar.

A. Convergence Proof

The interaction force can be transformed into joint space
using the forward kinematics x = φ(q), i.e.,

τI (t) = JT (q)FI (φ(q), J(q)q̇, t) (23)

yielding the interaction dynamics

M(q)q̈ + C(q, q̇)q̇ + G(q) ≡ τu (t) + τν (t) + τI (t) . (24)

For simplicity, the arguments q, q̇ in M(q), C(q, q̇), and G(q)
are dropped in the following, and time index t will also be
dropped sometimes in order to avoid confusion. Using the skew
symmetry of the matrix Ṁ − 2C [33], the first derivative of
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Vp(t) can be calculated as follows:

V̇p(t) = εT Mε̇ + εT Cε.

Defining

q̇d ≡ q̇∗ − κe (25)

yields [with (5)]

ε = q̇ − q̇d , ε̇ = q̈ − q̈d . (26)

Using (24) and (3), we obtain

V̇p(t) = εT (τν − sign(ε)ν̄ − Lε − Dė − Ke − τ + τI )

≤ −εT Lε − εT Ke − εT Dė − εT τ + εT τI (27)

from which one sees that the term −sign(ε)ν̄ in (5) is used to
compensate for the effect of noise τν .

Given an interaction torque τI , KE (t), DE (t), and τE (t)
represent the minimal required effort of stiffness, damping, and
feedforward force (which are assumed in Section II-B) required
to guarantee

∫ t+T

t

{−εT (σ)KE (σ)e(σ) − εT (σ)DE (σ)ė(σ)

− εT (σ)τE (σ) + εT (σ)τI (σ)} dσ ≤ 0 (28)

so that from (27), we have
∫ t+T

t V̇p(σ) dσ ≤ 0. In fact, any
smooth interaction force can be approximated by the linear
terms of its Taylor expansion along the reference trajectory as
follows:

τI (t) = τ0(t) + KI (t) e + DI (t) ė (29)

where τ0(t) is the zero-order term, and KI (t) and DI (t) are
the first-order coefficients, which are all periodic with T (as
q∗(t) in (2) is periodic). Therefore, from (29) and (26), one can
obtain the values for KE (t), DE (t), and τE (t) to guarantee
(28), i.e., stability. Different τI will yield different values of
KE (t), DE (t), and τE (t) and when τI (t) is zero or is assisting
the tracking task ‖ε(t)‖ → 0, KE (t), DE (t), and τE (t) will be
0.

Considering the first difference of overall cost function V (t)
in (12)

δV (t) = V (t) − V (t − T ) = δVp(t) + δVc(t) . (30)

It is shown in Appendix C that a sufficient condition for δV (t) ≤
0 is

λLb‖ε‖4 + λL‖ε‖2 + a‖Φ̃‖2 − a‖Φ̃‖‖Φ∗‖ ≥ 0 (31)

with λL defined in (4). By LaSalle’s theorem, it follows that
‖ε‖2 and ‖Φ̃‖ will converge to an invariant set Ωs ⊆ Ω on
which δV (t) = 0, where Ω is the bounding set that is defined as

Ω ≡{
(‖ε‖2 , ‖Φ̃‖) ,

(λLb‖ε‖2 + 1
2b )

2 + a(‖Φ̃‖ − ‖Φ∗‖/2)2

λL

4b + a‖Φ∗‖2

4λL b

≤ 1
}

.

(32)

Fig. 6. Bounding set Ω for the convergence set as defined in (32).

As illustrated in Fig. 6, the bounding set is the area in the
first quadrant of an ellipse that passes through the points
(‖ε‖2 = 0, ‖Φ̃‖ = 0) and (‖ε‖2 = 0, ‖Φ̃‖ = ‖Φ∗‖). Note that
if the parameter γ is constant, this bounding set is

{
(‖ε‖2 , ‖Φ̃‖) ,

4λL‖ε‖2 + 4γ(‖Φ̃‖ − ‖Φ∗‖/2)2

γ‖Φ∗‖ ≤ 1
}

i.e., as long as it is positive, the exact value of γ does not affect
convergence; however, it will affect the speed of convergence
as well as the size of convergence set.

B. Interpretation

We see that whatever interaction disturbing the tracking task,
e.g., the stable interaction force Fc and unstable interaction
forces Fd and Fv in the simulation, the tracking error ε and
compensation error ‖Φ̃‖ will eventually fall into the (small)
bounding set Ω, which implies that the system has become
stable.

In addition, since the controller aims to minimize the cost
function V , which includes Vc , i.e., the measurement of the
difference between learned impedance/torque and required
impedance/torque to maintain stability, it will bring no extra
effort in impedance/torque and thus tend to achieve optimal
compensation for stable and unstable interactions.

Let us illustrate this with an example. When there is no inter-
action, i.e., τI (t) = 0, ‖Φ∗‖ = 0, or when the interaction force
is assisting the tracking task ‖ε‖ → 0, we again have ‖Φ∗‖ = 0
because zero values of KE , DE , and τe will be required. It is
easy to see from Fig. 6 that Ω shrinks to a point at origin, i.e.,
Ω = {‖ε‖2 = 0, ‖Φ̃‖ = 0}. It follows ‖Φ‖ → 0, i.e., ‖K‖ → 0,
‖D‖ → 0, and ‖τ‖ → 0, such that no effort is spent in compen-
sation, and the control remains compliant.

In summary, the proposed control saves extra effort in the
compensation of unstable interaction such that the impact with
a stiff environment is minimized. When applied to VIA, the
learned impedance behavior minimizes the control effort that is
spent.

V. IMPLEMENTATION AND EXPERIMENTS

The algorithm was tested on a 1-DOF DLR LWR testbed, on
the DLR 7-DOF LWR arm, and on a new VIA joint. The posture
control and trajectory control experiments resulted in a human-
like adaptation of the feedforward torque and impedance. Videos
of these experiments are attached to this paper.

Fig. 7 shows the behavior of the 1-DOF VIA joint in a pos-
ture control experiment. The 1-DOF system with a vertical link
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Fig. 7. Adaptation in posture control on the VIA. The robot automatically
maintains its position [blue trace of (a)] in the presence of low-frequency dis-
turbance (green region) by adapting (b) torque and reacts to high-frequency
perturbations (orange) by increasing (c) stiffness.

serves as a testbed for the DLR QA joint [34]. The proposed
adaptation algorithm runs on top of a low-level controller with
1-kHz rate [34]–[36] and directly commands the desired feed-
forward torque and impedance to it. The setup is controlled by
a QNX real-time PC for low-level control that is connected to a
Windows XP PC controlling the non real-time task. Parameters
used in this experiment were Qτ = 9, QK = 20, QD = 3.0, and
a constant γ = 0.2, which were selected to result in a behav-
ior roughly similar to that observed in humans doing a similar
task [37].

The robot attempts to maintain its initial position at 0 rad [see
Fig. 7(a)], while a perturbation of low frequency [see the green
area in Fig. 7(a)] or high frequency (orange area) is applied to the
robot. The robot adapts to the vibration by changing the applied
feedforward torque [see Fig. 7(b)] or impedance [see Fig. 7(c)]
to minimize the deviation. When the force perturbation changes
slowly, the robot applies a counter torque to reduce the deviation,
with little change to impedance. However, when the perturbation
frequency is higher, the robot no longer counters with torque but
automatically increases its stiffness to reduce the deviation.

In the posture control experiment, the period T becomes
sampling period Δt of the digital controller in the implemen-
tation. In the presence of a time-dependent disturbing force
of low frequency (� 1/T ), one sees that there is a periodic
time-dependent function τ0(t) = τ0(t − T ) such that τI = τ0
and ‖KE ‖ = ‖DE ‖ = 0 in (29). According to the convergence
analysis, ‖K̃‖ and ‖D̃‖ will be eventually confined to a small
region, thus K and D will remain small.

However, when the time-dependent disturbance is of high
frequency such that τI cannot be approximated only by a time-
dependent periodic function τ0(t) (which implies that KE and
DE cannot be zero values again), the proposed adaptation will
compensate for the disturbance by increasing impedance as was
seen in the experiment. Let us explain this as follows. By neglect-
ing the small forgetting factor γ(t) in (14) and (16), we see that
‖τ(t)‖, ‖K(t)‖, and ‖D(t)‖ increase approximately linearly

with the integration of ε = ė + κe, tr{εeT } = 1
2

d(eT e)
dt + κeT e

Fig. 8. Trajectory control adaptation with the 1-DOF LWR testbed. Starting
with an unknown load, the periodic robot movement [(blue trace of (a)] adapts
to follow the reference [red trace in (a)]. On addition (yellow) and removal
(green) of a spring load, the error is compensated with trials by the change of
(b) feedforward torque. (c) Impedance of the robot increases every time there
are novel and, thus, unpredictable dynamics but falls once the appropriate torque
profile is adapted.

and tr{εėT } = ėT ė + κ
2

d(eT e)
dt , respectively. As in the experi-

ment, error e (as well as ė) oscillates around zero, then τ(t) will
not change much, while ‖K(t)‖ and ‖D(t)‖ increase roughly
linearly with

∫
κeT e and ėT ė.

A trajectory control experiment tested the adaptation to loads
by the robot, while it had to move repetitively between 0 and 0.7
rad (see the red trace in Fig. 8). Fig. 8 plots data from implemen-
tation on the testbed of the 1-DOF LWR [38] that is controlled
by a D-Space system that runs at 1 kHz with Qτ = 9, QK = 95,
QD = 9, and γ = 0.5. The proposed adaptation algorithm runs
on top of a lower level controller, which compensates for gear
friction and makes the robot backdrivable [35], [36].

The experiment starts with the robot at 0◦ and with an un-
known load that is fixed to the link, which causes a deviation
from the reference trajectory that is reduced by adaptation in
five trials. In the sixth trial, an extension spring is attached to
the link, which reduces the movement amplitude [see the or-
ange region in Fig. 8(a)]. However, the robot again learns the
required torque [see Fig. 8(b)] to achieve the movement task in
about nine movements. The spring is then removed in the 15th
trial [see the green region in Fig. 8(a)], causing an overshoot,
after which, the robot readapts to have torque levels that are
similar to that of before the spring addition.

Fig. 8(b) shows the underlying torque adaptation, and
Fig. 8(c) the adaptation of the stiffness of the robot during
the experiment. The stiffness is initially high, but the end effec-
tor becomes more compliant as the robot adapts to the unknown
load. When the spring is added, the robot increases its stiffness to
quickly adapt to the induced error. However, as the robot adapts
to the torque, the stiffness is reduced again. When the spring is
suddenly removed, leading to an error in the task, stiffness again
increases and then reduces as torque is readapted.

The 1-DOF implementations exhibited the ability of the al-
gorithm to tune feedforward torque and impedance in magni-
tude. To test the ability of the adaptive control algorithm to tune
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Fig. 9. Task stiffness shaping with the DLR 7-DOF LWR. The joint space
implementation on the 7-DOF arm exhibits the ability of the algorithm to shape
the task stiffness in magnitude and direction while maintaining a posture (which
is shown in the figure) against disturbances that are applied at the end effector
by a human. The 2-D projection on the yz plane of the translational task space
stiffness matrix is presented at different time instances.

Fig. 10. Task feedforward shaping. On addition of a 0.7-kg load at the end
effector (see the green region), the robot selectively increases feedforward force
in the z-direction (red traces) to reduce the perturbation due to the load. There
is no increase of the task space force in the y-direction.

impedance in both magnitude and geometry, a joint space imple-
mentation was performed on the 7-DOF DLR-LWR robot con-
trolled via a VxWorks real-time system running at 1 kHz [38].
The same parameters as in the 1-DOF LWR testbed were used
in each joint of the 7-DOF arm.

Fig. 9 shows the initial position of the robot, which it tries
to maintain against disturbances that are generated by a human
experimenter. Depending on the disturbance, the robot reacts by
increasing the task space stiffness specifically in the direction
of disturbance (as humans also do [6]). The disturbance may be
applied on any joint or body of the robot to produce a similar
result (see the attached video).

On addition of an unknown load (see the green region in
Fig. 10) at the end effector, the robot learns feedforward force
specifically in the z-direction without changing the force in the
y-direction (see the central panel in Fig. 10). Note that the task
stiffness also remains the same before (left-most ellipse) and

Fig. 11. Conceptual “human–machine learning cycle” showing the learning
cycle between human and machine to advance understanding of human and
development of better robots. On the one hand, we want to understand human
motor control and provide assistive tools to humans and, on the other hand, to
create better robots based on this knowledge. The control diagram in the right
bottom corner is the biological version [9] of the controller that is presented in
this paper.

after (second ellipse from left) the load addition, indicating that
the load was compensated purely by a feedforward. The mid-
dle plot shows that impedance adaptation to a high-frequency
perturbation is not modified by the new feedforward force
condition.

VI. CONCLUSION

Using robotic tools and techniques to investigate human mo-
tor control led to significant advances in our understanding of
how humans control motion, as described in Section II. This
in turn led to a novel robotic controller, which could simulate
human motor control and learning, as shown in Section III, and
was theoretically analyzed in Section IV. This novel adaptive
controller, which was implemented and demonstrated, as de-
scribed in Section V, can be used to assist humans (e.g., by
automatically filtering tremor), or in rehabilitation robots, pro-
viding guiding assistance adapted to the patient and her or his
state. This embodies one of the very first examples of the vir-
tuous human–machine motor learning cycle (see Fig. 11) in
which progresses in neuroscience and neurology lead to robotic
advances, and conversely.

Specifically, a novel adaptive motor behavior has been cre-
ated, which is both a successful model of human motor adap-
tation that is able to predict all published observations on
impedance adaptation [9], as well as a robotic controller with
the following properties.

1) It is the first controller that is able to simultaneously adapt
force and impedance in the presence of unknown dynam-
ics.

2) It can deal with unstable situations that are typical of tool
use and gradually acquire a desired stability margin.

3) It does not require interaction force sensing.
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4) It is strictly derived from the minimization of motion error
and effort.

5) It is an intuitive adaptive solution for a human–robot inter-
action, such as what is needed in rehabilitation, physical
training, and teleoperation.

The controller was validated in implementations with one and
multi-DOF force controlled robots, can utilize the new possi-
bilities offered by VIA, and can realize optimal assistance in a
human–machine interaction.

APPENDIX A

STABILITY MEASURE

This Appendix illustrates the stability definition of eq. (13)
through an unstable interaction example. For simplicity, we as-
sume that there is no adaptation of stiffness, damping, or feed-
forward torque, i.e., K, D, and τ equal zero in controller (3), and
there is an interaction torque τI = KI e + DI ė with positive-
definite constant matrices KI and DI , from time t. For simplic-
ity, we neglect the effect of noise and the robust term sign(ε)ν̄,
and assume that at the starting time t, ė(t) = e(t) = 0[n,1] . Us-
ing (27) yields

∫ t1

t

V̇p(σ) dσ =
∫ t1

t

εT KI e + εT DI ė − εT Lε dσ

=
∫ t1

t

κeT (KI − κL)e + ėT (DI − L)ė dσ

+
1
2
eT (KI + κDI − 2κL)e +

κ

2
eT DI e. (33)

Noting that [using (11) and (4)] Vp ≤ λM (ė(t) +
κe(t))T (ė(t) + κe(t)) with λM denoting the largest eigenvalue
of M(q), it can be shown from (33) that when KI > κL
and DI > L, there exists a constant scalar g such that∫ t1

t [V̇p(σ) − gVp(σ)] dσ > 0, and then, it can be further
shown that for any δ, there exists a time instant t1 to make∫ t1

t V̇p(σ) dσ > δ hold. This implies that the closed-loop
dynamics is unstable from time t.

APPENDIX B

IDENTIFICATION OF THE ROBOT’S PARAMETERS

If the structure of the robot’s dynamics is known but the
actual robot parameters p ∈ R

p are unknown, e.g., the rigid
body dynamics model can be written as

Ψ(q̈∗, q̇∗, q̇, q) p ≡ M(q)q̈∗ + C(q, q̇)q̇∗ + G(q) (34)

with known Ψ and unknown p, then the unknown parameters p
can be identified online using the learning law [39]

p̂(t) = p̂(t − T ) − SΨ(q̈∗, q̇∗, q̇, q)T ε(t) (35)

where S is a symmetric positive-definite matrix, and
Ψ(q̈∗, q̇∗, q̇, q) is the regressor matrix, together with the learning
of feedforward (14) and impedance (16). Then, we can set

τr (t) = Ψ(q̈∗, q̇∗, q̇, q) p̂(t) − sign(ε)ν (36)

corresponding to adding, to the cost function (12), the following
term:

Vl(t) =
∫ t

t−T

p̃T (τ)S−1 p̃(τ) dτ (37)

with the same results as in Section IV-A.

APPENDIX C

DERIVATION OF EQ. (31)

In the following, we show that (31) is sufficient to guarantee
δV (k) > 0. As can be seen from (30), δV (k) consists of two
parts: δVp(t) and δVc(t). Let us first analyze δVp(t), for which
the following can be derived from (9), (27), and (28)

δVp(t) = Vp(t) − Vp(t − T )

≤
∫ t

t−T

−εT (σ)L(σ)ε(σ) − εT K̃(σ)e(σ)

− εT (σ)D̃(σ)ė(σ) − εT (σ)τ̃(σ)

− εT KE e − εT DE ė − εT τE + εT τI dσ

≤
∫ t

t−T

−εT (σ)L(σ)ε(σ) − εT K̃(σ)e(σ)

− εT (σ)D̃(σ)ė(σ) − εT (σ)τ̃(σ) dσ. (38)

We now turn our attention to the first difference of the cost func-
tion δVc(t) = Vc(t) − Vc(t − T ). According to the definition of
Φ(t) and Q in (7) and (10), we have

δVc(t)

=
1
2

∫ t

t−T

{tr{K̃T (σ)Q−1
K K̃(σ)−K̃T (σ−T )Q−1

K K̃(σ − T )}

+ tr{D̃T (σ)Q−1
D D̃(σ) − D̃T (σ − T )Q−1

D D̃(σ−T )}
+ τ̃ T (σ)Q−1

τ τ̃(σ) − τ̃ T (σ − T )Q−1
τ τ̃(σ − T )} dσ. (39)

Now, we rewrite (14) and (16) as

δK̃(t) = QK

(
ε(t)eT (t) − γ(t)K(t)

)

δD̃(t) = QD

(
ε(t)ėT (t) − γ(t)D(t)

)
δτ̃(t) = Qτ (ε − γ(t)τ(t)) . (40)

Using (40), the symmetry of Q−1
K and the fact K̃(σ) − K̃(σ −

T ) = δK(σ), one can show that the first term in the integrand
of (39) can be written as

tr{K̃T (σ)Q−1
K K̃(σ) − K̃T (σ − T )Q−1

K K̃(σ − T )}

= tr{(K̃(σ) − K̃(σ − T ))T Q−1
K

× (2K̃(σ) − K̃(σ) + K̃(σ − T ))}
= tr{δKT (σ)Q−1

K (2K̃(σ) − δK(σ))}

= −tr{δKT (σ)Q−1
K δK(σ)} + 2tr{δKT (σ)Q−1

K K̃(σ)}
= −tr{δKT (σ)Q−1

K δK(σ)}

+ 2εT (σ)K̃(σ)e(σ) − 2γ(σ)tr{KT (σ)K̃(σ)}. (41)
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Performing a similar derivation for the second and third terms
in the integrand of (39), we have

tr{D̃T (σ)Q−1
D D̃(σ) − D̃T (σ − T )Q−1

D D̃(σ − T )}

= −tr{δDT (σ)Q−1
D δD(σ)} + 2εT (σ)D̃(σ)ė(σ)

− 2γ(σ)tr{DT (σ)D̃(σ)} (42)

and

tr{τ̃ T (σ)Q−1
τ τ̃(σ) − τ̃ T (σ − T )Q−1

τ τ̃(σ − T )}
= −tr{δτT (σ)Q−1

τ δτ(σ)} + 2εT (σ)τ̃(σ)

− 2γ(σ)tr{τT (σ)τ̃(σ)}. (43)

Incorporating (41), (42) and (43) into (39), we finally obtain

δVc(t) = −1
2

∫ t

t−T

δΦ̃T (σ)Q−1δΦ̃(σ) dσ

−
∫ t

t−T

γ(σ)Φ̃T (σ)Φ(σ) dσ

+
∫ t

t−T

εT (σ)K̃(σ)e(σ) + εT (σ)D̃(σ)ė(σ)

+ εT (σ)τ̃(σ) dσ. (44)

Combining with (38) yields

δV (t) = V (t) − V (t − T ) = δVp(t) + δVc(t)

≤ −1
2

∫ t

t−T

δΦ̃T (σ)Q−1δΦ̃(σ) dσ −
∫ t

t−T

εT (σ)L(σ)ε(σ)

+ γ(σ)Φ̃T (σ)Φ̃(σ)

+ γ(σ)Φ̃T (σ)Φ∗(σ) dσ. (45)

A sufficient condition to make δV (t) in (45) non-positive is

εT Lε + γΦ̃T Φ̃ + γΦ̃T Φ∗

≥ λL‖ε‖2 + γ‖Φ̃‖2 − γ‖Φ̃‖‖Φ∗‖ ≥ 0 (46)

where λL was defined in (4) as the infimum of the smallest
eigenvalue of L. Substituting γ(t) = a

1+b‖ε‖2 into the above
inequality yields the inequality of (31).
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