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Abstract— In this paper we present a novel control archi-
tecture for realizing human-friendly behaviors and intuitive
state based programming. The design implements strategies
that take advantage of sophisticated soft-robotics features for
providing reactive, robust, and safe robot actions in dynamic
environments. Quick access to the various functionalities of the
robot enables the user to develop flexible hybrid state automata
for programming robot behaviors. The real-time robot control
takes care of all safety critical aspects and provides reactive
reflexes that directly respond to external stimuli.

I. INTRODUCTION

In recent years robots have gained various new capabilities
in soft-robotics control and motion generation. This progress
makes it possible to physically interact, share a common
workspace, and even directly collaborate with humans.

An interesting first work in this respect is e.g. given in [1],
where a design of safety monitors for multifunctional robotic
systems is considered. In [2] a reflex based approach for
robotic arms is introduced. High-level commands that base
on low-level reflexes are shown and e.g. used, for collision
avoidance behaviors. In [3], [4] a human-friendly control
scheme is presented, which uses gravity compensation to
prevent human injury after collisions. To make human robot
interaction more safe, [5] proposed an algorithm, which
makes robot behavior predictable for a human operator. In
[6] environmental, as well as human behavior and reaction
observation is presented in order to improve the safety of
human robot-interaction. [7] introduces a high-level robot
programming approach, which uses sensory input to acchieve
local autonomy.

Due to the diversity and complexity of these features and
their sheer number it is non-trivial to design, implement
and switch them consistently whithin complex robot tasks
under the premise of ensuring safety to the human userand
task execution. Although there is currently major effort in
realizing safe robot control algorithms, the human safety
on the control architecture side was not yet treated to
a similar extent. For that reason we developed a control
architecture, which contains and consistently combines a
wide set of strategies for human safety and friendliness. The
system provides easy and consistent access for robot task
programming based on hybrid state machines.

In the line of cited research, the goal of our control
architecture for human-friendly real-time robot control is
to work as a lightweight platform for developing human-
friendly robot tasks1. Our solution intends to relieve the
high-level programming especially from the need to take care
of the increasingly complex low-level safety control. Thus,
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1The design we present here is the follow up and extension of the work
done in [8].

we designed an encapsulated low-level control framework,
which provides well defined interfaces at an intuitive yet,
powerful level of abstraction to the task programmer. We
support our results by various applications that demonstrate
the approach on the DLR Lightweight Robot III (LWR-
III). Creating a task for a robot is possible through abstract
commands without detailed knowledge of low-level core
parts of robot control. Especially the safety modalities of
the robot are arranged and implemented in a very robust and
non-accessible manner. Furthermore, it is possible to fuse all
relevant information that is provided by the internal robot
state or additional exteroceptive sensors to achieve complex
behavior also on task level.

In order to enable such a design we develop a stable
and modular robot control core that provides a locally
autonomous fault tolerant behavior as far as the particular
situation allows this. It is accomplished that errors in task
programming or network communication do not necessarily
lead to dangerous situations for humans or the robot.

For the presented concept we demand strict modularity
through all levels of the system in order to allow faster
development of core components and for reducing integration
faults. These include especially controllers, motion gener-
ators, or safety methods. Furthermore, we show that our
approach is able to support also the control of multi-robot
setups.

The paper is organized as follows. Section II introduces
and classifies the available methods for control and motion
generation. Furthermore, we introduce our concept for op-
erational and reflex behaviors for human-friendly operation
and outline the concept of functional modes. Section III de-
scribes the developed system architecture, which introduces
especially the systematic treatment of safety in a behavior
based manner. Section IV outlines the graphical state based
programming concepts that we designed particularly for
being able to implement human-friendly behavior also on
higher levels of abstraction. Finally, Sec. V concludes the
paper.

II. BEHAVIORS AND FUNCTIONAL MODES

To create adequate behavior during human presence, the
robot needs to be able to take multiple sources of internal
and external (environment and human) information into
account and act accordingly. Only full consideration of such
knowledge enables the robot to work in a safe and yet
efficient way. In order to equip the robot with robust behavior
all levels of motion and behavioral control need to be able
to respond in a flexible manner to unforeseen inputs and
events. The basic motion generation and control schemes
have to form an effective basis for implementing locally
robust behavior so the next levels of abstraction can reliably
built on that. For this we have developed numerous methods
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for soft-robotics control and online trajectory generationwith
collision avoidance, which are described hereafter.

A. Methods
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Fig. 1. Using disturbance inputs at different motion controllevels for
realizing effective disturbance response.

Figure 1 depicts a classical Operational space control loop
consisting of

1) the motion generator for providing the desired refer-
ence motion in terms of generalized Operational space
coordinatesxd as a general function of time,

2) the controller that provides the desired Operational
space force, which is then transformed via the Jacobian
transpose to desired torque commands, and

3) the physical robot that transforms the desired torque
command via a low-level motor torque loop into motor
torques that generate the respective robot motion.

A reactive disturbance response2 can be fourfold:
1) Physical forces act on the robot and inherently produce

a dynamic response of the robot.
2) The controller can implement a purely passive distur-

bance response (the measurement of external forces
is not directly incorporated) with respect to external
forces, or actively react to them (a classical example
is inertia shaping). A combination of both is of course
possible as well.

3) Furthermore, generalized virtual forces, generated e.g.
by repulsive potentials, can act directly as a motor
command input and add a respective behavior on the
controller.

4) The motion generator provides motion commands that
directly take into account the presence of physical or
generalized virtual forces, leading e.g. to a collision
retraction or reactive collision maneuvers.

Usually, disturbance reaction schemes act isolated in the
sense that the particular response is exclusively carried out
by a single scheme. However, in order to provide more so-
phisticated and situation dependent behavior, it is important
to equip a robot with the capability to react on multiple levels
of abstraction simultaneously. For this we developed various
control and motion generation schemes over the last years
that are able to process various sensorial inputs as described
in the following.

1) Control algorithms:For the LWR-III there are numer-
ous controllers available for both, Operational and joint space

2Please note that we do refer to hard real-time reaction and not adaptation
of via points that are e.g. provided by a global motion planner.

Controller Virt. forces Phys. forces Reference
Joint position control (C.1) × × [9]

Cartesian position control (C.1) × × [9]
Torque control (C.2) X X [10]

Joint impedance control (C.3) X X [9]
Cartesian impedance control (C.3) X X [9]

Joint admittance control (C.4) X X [11]
Cartesian admittance control (C.4) X X -

TABLE I
CONTROLLER AND LOW-LEVEL DISTURBANCE INPUT.

Motion generation Virt. forces Phys. forces Reference
Stop (M.1) × × [12], [11]

Non-reactive (M.2) × × [12], [11]
Attractor based (M.3) X X [13]

Trajectory scaling (M.4) X X [12], [11]
Admittance based (M.5) X X [12], [11]

TABLE II
MOTION GENERATOR AND LOW-LEVEL DISTURBANCE INPUT.

control. They include position control (C.1), torque control
with gravity compensation (C.2), impedance control (C.3),
and admittance control (C.4), see Tab. II-A.1. The different
controllers enable us to feed different disturbance signals as
physical or virtual forces3.

2) Motion generation:Apart from different standard mo-
tion generators for operational and joint space (M.2), we
developed several reactive motion generators as well. For
example a reactive attractor-based algorithm (M.3) that is
able to circumvent virtual object representations in real-time
and at the same time retracts from external forces [14]. A
particular method included in every motion generator is time
scaling (M.4) [11]. For this a residual generator (generalized
disturbance observer) monitors human presence in the work-
cell, proximity to the robot, and external as well as virtual
forces acting on the robot. These quantities are used to scale
the desired motion back and forth such that the geometric
properties of the commanded trajectory are preserved, while
collision avoidance and retraction is performed in a strictly
task consistent manner (by scaling the time increment of
the time generator). This enables the robot to slow down,
stop the motion, and drive back along the desired path in a
continuous and real-time manner. II-A.2.

From now on we denote the according space (joint or
Cartesian) of a motion generator or controller by.J for
joint space or.C for Cartesian space (or more generally
Operational space).

3) Environmental disturbances:In order to incorporate
external and virtual forces explicitly into the motion gener-
ation and control schemes, an accurate estimation of forces
acting on the robot during physical contact and the geometric
properties of the environment are needed. The according
methods are introduced hereafter.

a) Estimation of external forces:The internal joint
torque sensors in each joint of the LWR III and the available
accurate dynamics model can be used to obtain detailed
information about contacts that occurred between a robot
and its environment [12], [11]. The measured torques are
used in a nonlinear disturbance observer that estimates the

3Please note that we assume any generalized virtual disturbance signal
to be a virtual force, i.e. every sensory input is somehow transformed into
the force domain.



external torques and forces along the entire structure of
the manipulator. Furthermore, a force-torque sensor can be
attached to the wrist.

b) Virtual environment forces:For preventing the robot
to collide with it’s surrounding there are several strategies im-
plemented, which work for static (e.g. table) and/or dynamic
(e.g. human) parts of the environment. These are directly
integrated into the low-level torque control and reactive
motion schemes4.

1) Virtual walls with adjustable compliance protect the
static environment and the robot from colliding with
it. These are also applicable in real-time and may vary
with time.

2) So called virtual traps, which apply virtual forces to the
robot in the sense of potential fields. They confine the
manipulator similarly to virtual fixtures on specified
spots or planes. They can be used for example to
suspend the gravity compensated robot in order to
avoid uncontrolled collisions. Thus, intuitive release
strategies are available.

3) Advanced virtual geometric environment models can
also be used to generate virtual forces at a slower rate
(or even remotely). Such algorithms can be fed by
dynamical data of objects or persons, which are located
in the robot’s vicinity. To gather data of dynamic
objects any kind of additional external detection can
of course be used. In our laboratory setup we utilize
e.g. optical tracking via passive markers attached to
the object, or various image processing approaches.
A further possibility is to generate virtual objects at
run-time from the input given by the external force
estimation. This enables the robot to “remember” col-
lisions and avoid them in its future course. This is
realized by performing tactile exploration and then use
the gathered information for collision avoidance.

Due to the non-trivial interaction between the aforemen-
tioned methods, a thorough concept for their combination
and use is absolutely crucial. For unification of methods
we define behaviors that consist of the relevant control and
motion algorithms.

B. Operational and reflex reaction concept
In general, we design robot actions such that they are

defined as
• Operational behaviors: a formal high-level

parametrization of the robot capabilities that defines
its particular motion, control, and safety properties.
This fully determines the nominal motion control and
disturbance response of a robot.

• Reflexes behaviors:a formal parametrization of a real-
time reflex behavior of a robot that is associated with
real-time activation signals. This represents either the
indication of a certain stimulus or a fault5. Reflexes
override the currently active behavior and execute a low-
level strategy.

The formal definition of behaviors, as well as operational
and reflex behaviors is described in the following.

4On http:
www.safe-robots.com several videos show the particular schemes imple-
mented on the LWR-III.

5Stimuli are general perception inputs, whereas faults are detected either
by processed stimuli (observation of external torques, proximity information,
. . . ) or general system malfunctions, as e.g. communication collapse or run-
time violations.
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Fig. 2. A basic example depicting the combination of operational and
reflex behaviors during a two-behavior nominal task. Besides the motion
generatormg ∈ MG and the controllerctr ∈ CTR the important safety
set parameterss ∈ S are depicted for each behavior.CD denotes the
activation of collision detection and switching VirtForce/PhysForce toon
enables the incorporation of virtual/physical forces.

1) Behaviors:A behaviorb ∈ B is defined as a6−tupel
that is an element of

B = (MG× PMG × CTR× PCTR × PR× S), (1)

whereMG is the set of motion generators,PMG the pa-
rameter set ofMG, CTR the set of possible controllers,
PCTR the parameter set ofCTR, andS the set of safety
feature activation and parameterization.PR is the priority
set. Therefore, each elementb consists of a motion generator
mg ∈ MG, the associated parameter vectorpMG ∈ PMG,
a controllerctr ∈ CTR, the associated parameter vector
pCTR ∈ PCTR, a priority pr ∈ PR and a set of safety
featuress ∈ S. Such a safety set contains activation signals
and parameters for all defined safety features. It e.g. de-
termines whether physical and/or virtual forces shall affect
the activated motion generator and/or controller while the
behavior is active.Bv is the subset ofB including all valid
combinations ofmg,ctrl, and s, while Binv ∈ B are the
invalid combinations. An obvious example of a non-valid
behavior would be a combination of a Cartesian motion
generator and a joint controller. In nominal condition the
according behavior is defined withinBv ⊂ B.

2) Operational behaviors:Operational behaviorsbOp ∈
BOp ⊂ Bv are defined in the so calledoperational space
(usually the non-realtime part of the system). They are used
for the higher-level task composition and rely on data coming
from sensors, actuators, and other real-time information
sources. Operational behaviors close the loop via the low-
level space.

In order to be able to rapidly (i.e. in real-time) respond to
external or internal stimuli, a robot should be able to activate
certain pre-defined behaviors within the fastest available
control loop. We call this low-level space thereflex space
(usually the real-time system) and the corresponding behav-
iors reflex behaviors. These behaviors act exclusively within
the reflex space and are only enabled from the operational
space, i.e. no loop closing takes place.

3) Reflex behaviors:Real-time reflex behaviorsr ∈ R ≡
RS ∪RF ⊂ Bv build the setR of all conservative and task



abandoned behaviors.R is the union ofRS and RF , the
stimuli and fault reflexes. They are used to appropriately re-
act to the physical state of the system, e.g. during collisions.
Useful examples for reflex strategies in case of collisions
could be stopping the motion generation (M.1) and switch
to torque control (C.2) for minimizing contact forces after
contact. Another possible reaction is the use of the robot
emergency brake6.

Next, we introduce so called functional modes, which are
directly related to certain subsets ofBv

C. Functional modes

We generally distinguish between four major functional
modes of the robot potentially working in human vicinity
[15]:

1) Autonomous task execution:Autonomous mode in
human absence

2) Human-friendly mode: Autonomous mode in human
presence

3) Collaborative mode: Cooperation with human in the
loop

4) Fault and reflex reaction mode:Safe fault behavior
with and without human in the loop

In thefirst one the robot is autonomously fulfilling its given
task without considering the human presence. The task is car-
ried out under certain optimality criteria in order to increase
productivity. The possible behaviors in this mode areBam ⊂
Bv. The task has of course to be designed such that it does
not collide with the cooperative mode. In thesecondmode
the corresponding set of behaviors isBhf ⊂ Bv. The setBhf

contains only behaviors, which are safe for the human. In the
second and third mode we need a meaningful partition in task
space, which subdivides the given workspace of the robot
into regions of interaction and human-friendly behavior. In
the third mode the interaction zones, in particular interaction
tasks, are carried out. They have to be specified or generated
for fulfilling a common desired goal, involving a synergy of
human and robot capabilities in an efficient manner. These
two modes are forming an integrative interaction concept,
which allows seamless switching between each other. The
fourth mode is defining the fault reaction reflexes, which
take care of the appropriate and safe state dependent fault
reaction of the robot. Here only reflexes,r ∈ R, can be used.

To sum up following relations hold for the distinct sets of
behaviors:

B = Bv ∪ Binv (2)
Bv ≡ R ∪ Bam ∪ Bhf ≡ R ∪ Bop (3)

Bam 6≡ Bhf 6≡ R (4)
Bam ∩ Bhf 6≡ {} (5)
Bam ∩R 6≡ {} (6)
Bhf ∩R 6≡ {} (7)
R ≡ RS ∪RF (8)

The activation of reflexes is discussed hereafter.

6Of course also complex reaction chains are possible. However, they
have to be designed carefully and should not be accessible to the task
programmer.

1) Activation signals and fault severity stages:To achieve
an adequate reaction with respect to activation signals or the
severity of a fault we use six distinct layers. A different
reflex reaction can be assigned to each of them. If a fault
occurs, the behavior, which equates the activation/fault level
is activated and retained until a confirmation was received.
The layers are separated by thresholds on physical or virtual
forces (they represent also external stimuli), communication
faults and low-level robot states.

1) Human friendliness mode 1 (HF L1)
2) Human friendliness mode 2 (HF L2)
3) Fault tolerance mode 1 (FT L1)
4) Fault tolerance mode 2 (FT L2)
5) Emergency mode 1(E L1)
6) Emergency mode 2(E L2)
The human friendly mods HF Li are activated in case of

minor activation signals or faults as e.g. slight contact. The
fault tolerance modes FT Li are associated to faults as hard
collisions. The emergency layer is activated only if a severe
fault as a very hard collision occurs. The external torque
thresholdτEL1

ext is close to the robots maximum joint torque
limits τmax. The reflexes for FT L1 to E L1 is specified
in advance to protect human and robot from being harmed.
The reflexes in the HF layers can be chosen freely to fit the
current state.

2) Concrete implementation:E L1 is a low-level fault,
which directly enables the robot emergency breaks (e.g.
triggered by the emergency stop button). If a very hard
collisions occurs, which leads to an E L1 event, the system
automatically stops the robot with its emergency brakes and
exits the running task. Also the reaction strategy for FT L1
and FT L2 are hard coded in the reflex space (real-time)
layer and cannot be changed by the user. FT L2 leads to a
controlled software stop without using brakes (M.1). If FT L1
occurs, the robot is automatically set to gravity compensation
mode (C.1). The threshold for these layers is fixed to 95%,
80% and 50% ofτmax. For HF L1, HF L2 and FT L1 the
threshold can be set according to the task. To achieve a fast
collision reaction it is necessary that the decision and the
strategy itself run in the fast real-time loop of the system.

Figure 2 depicts an example with two operational be-
haviors B.1 (Non reactive joint motion generator (M.2.J)
with joint position control (C.1.J)) andB.2 (attractor based
Cartesian motion (M.3.C) with Cartesian impedance con-
trol (C.3.C)), a reflex behavior on HF L1ReflexHFL1
(stopping the motion (M.1) and switch to Cartesian
impedance (C.3.C)). In addition, we define for harder contact
ReflexHFL2 on HF L2 (stopping motion (M.1) and switch
to torque control (gravity compensation) (C.2.C)).

3) Selecting the functional mode:Up to now, industrial
settings are usually simple sequences of tasks whose execu-
tion order is static and sometimes some binary branching is
possible. In our concept, on the other hand, flexible jumps
within execution are an integrated part and do not need
some special treatment as they act autonomously. In order
to optimally combine human and robot capabilities the robot
must be able to quickly adapt to the human intention during
task execution for both achieving a safe way of interaction
and high productivity. Thus, the measured human state is the
driving transition between the proposed functional modes.

Estimating the human state is a wide topic of research
and has been treated in some recent work [16]. However,
for selecting the functional modes, the more relevant infor-
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mation is the physical state the human currently occupies.
Thus, a clear set of sufficient behaviors and reflexes can be
selected and activated, which leads to very robust and reliable
behavior:

• oP: out of perception
• iP: in perception
• iCM : in collaborative mode
• iHF : in human-friendly mode
This information is primary used to switch between the

different functional modes, since it indicates the nominal
task and furthermore, it specifies how to react during certain
faults. In Sec. III-C we describe this on the detailed low-level
architecture.

III. SYSTEM ARCHITECTURE

To enable efficient robot task development with the afore-
mentioned behaviors together with the functional modes, a
well structured architecture is needed, which automatically
handles consistent activation and switching of the system
state. In this section we present our control architecture and
discuss its core elements7.

The basic structure of this architecture is depicted in
Fig. 3. It shows the four central entities for robot control:

1) Task control unit (TCU)
2) Robot control unit (RCU)

a) Safety control unit (SCU)
b) Motion control unit (MCU)

The first two units serve as the general interface to the
robot and communicate with each other via asynchronous
protocols8. The TCU is the general state based control entity
for gathering non-real-time data and providing the correct
nominal behavior changes on an abstract level to the RCU.
The RCU runs in the same clock rate as the robot, assigning
control, motion generation, and safety methods, i.e. the
concrete behaviors. Furthermore, it interprets and validates
the selection of behaviors from the TCU, while preventing
incorrect combinations with respect to the actual functional
mode. The SCU serves as an underlying safety layer below

7For brevity we skip the communication design.
8DLR agile Robot Development communication (aRDnet) [17] is used.

the RCU, which combines all low-level safety behaviors and
activates them consistently. The Motion Control Unit, which
is supervised by the SCU, is responsible for appropriately
changing the control and motion behavior of the robot.
SCU and MCU are both designed as hybrid state machines.
The SCU supervises information from various sources and
routes all control sinks. It decides state dependently whether
environmental sensor input is used and which behaviors for
environment and robot protection are activated.

A. Modular Design

The modularity of the system begins with the separation of
TCU and RCU, see Fig. 4. This has several advantages. On
the one hand, the obvious performance benefit of separating
real-time and non-real-time. The non-real-time parts, which
are not necessary for real-time robot motion control and
safety can be handled by a standard non-real-time operation
system. On the other hand, developing a task is more
efficient, since the complex real-time parts as e.g. controllers,
robot dynamics calculation, or robot simulation are located in
a static real-time core. This design allows online detachment
and re-attachment of the TCU. Furthermore, we also demand
strict separation of methods within TCU and RCU, which
significantly accelerates the development and integration of
new methods into the system.

Next, we discuss TCU, RCU, and the connection of
external processing units.

B. Task Control Unit

The interface for the application programmer is the TCU,
see Fig. 4(right). A task can be implemented and tested
in a graphical hybrid state machine implementation. In this
state machine the entire relevant system data is gathered and
logically organized. This can then be used for implementing
complex decision structures as operational behaviors. Fur-
thermore, the reflex behaviors are activated according to the
task specification. The run-time demands on the TCU are
very relaxed compared to the RCU and due to the event
based decision structure no hard real-time requirements have
to be fulfilled.

C. Robot Control Unit

The Robot Control Unit (Fig. 4(left)) handles all parts of
the system, which have to run in real-time (Reflex Space).
The main elements of the RCU are

• controllers,
• motion generators,
• safety components,
• external components,
• state machine (SCU and MCU), and
• robot interface/ robot simulation.
The RCU state machine consists of the SCU and MCU.

They are responsible for consistent activation of features
and selecting different motion generators and controllers9.
Developing a robot task in the TCU, one has not to care
about timing problems or valid motion generator - controller
combinations and their correct switching. As already men-
tioned, the behavior reflexes can be set up by the task im-
plementation in the TCU. Afterwards the collision detection,

9A particularly important aspect is that we can seamlessly switch between
the real robot and and an integrated full dynamics simulation during runtime,
which significantly speeds up the development process of new motion
schemes and controllers.
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Fig. 4. The communication pathways between Robot Control Unit and Task Control Unit characterized by a complete bus system. The upper part of
the TCU depicts the hierarchical graphical state based programming of high-level tasks. The label SM in a block indicates that is implemented as a state
machine.

decision, and behavior switch are completely handled in the
fast real-time loop. Figure 5 depicts a functional overview
of the RCU. In the upper part all methods described in Sec.
II and their interrelation are shown. The motion generation,
controller and the robot interface, respectively robot sim-
ulation, are placed in the center. The small black frames
around these blocks describe their particular use for the
existing safety features. Dotted borders indicate that a block
generates information that is used for safety decisions in the
SCU. Blocks with dashed borders are effect conditioned with
respect to this information. If a block has a solid line it works
as both, a source and sink of safety information. The wide
borders depict by which state machine this block is affected.
Underneath, the SCU and MCU are shown.

D. External Components

For incorporating external sensing, reasoning, or con-
trollers, both RCU and TCU provide a generic interface to
connect stand-alone applications to the system10. The type of
external application is not specific (e.g. path planner, image
processors, or artificial intelligences). Therefore, they are
generally denoted as external components. External compo-
nents that require real-time data are directly connected to the
RCU, while non time-critical components are attached to the
TCU11.

IV. GRAPHICAL STATE-BASED PROGRAMMING

An important factor in robot programming is to provide
an environment that minimizes the chance of programming

10This is done via aRDnet, which allows direct access from the state
machine accross heterogeneous computer networks.

11Of course it is possible to connect to both at the same time as well.

errors for the task programmer. A convenient way to do
this is graphical state based programming. The program-
mer arranges well defined complex states that consist of
elementary operational behaviors, reflexes behavior setups
and corresponding commands hierarchically. Furthermore,
information coming from the RCU or external components
can be used for making local decisions (hybrid transition
graphs).

In the following we discuss the concrete implementation
of the example given in Fig. 2.

A. Programming example

Figure 6 depicts a concrete simple implementation ex-
ample to showcase our approach. The task is equivalent
to the conceptual scheme drawn in Fig. 2. However, HF
L1 reflexes are omitted for sake of clarity. The nominal
operational behavior is to move between two positions A
and B. For this motion (operational behavior states b1 and
b2) a reactive behavior is selected, which enables collision
avoidance (of the human) and contact retraction based on
proximity and physical forces. In case the contact forces
exceed the perdefined HF L2 threshold (HF L2 is the
corresponding activation signal a1), the collision reflex r1 is
activated. This causes the robot to switch to torque control
with gravity compensation and enables a virtual trap. After
confirming the collision by intuitive physical interaction (a2)
the task continues with the behavior prior to the collision
(b2).

B. Applications

Several applications were developed at DLR that base
on the concept of this paper. Figure 7 depicts a few of
them. The first picture shows the recent Braingate experiment
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Fig. 6. Implementation example of a simple human-friendly task.

Fig. 7. Several example setups using the here described concept are shown. (from left to right) LWR-III controlled via Brain-Machine Interface, SAPHARI
setup, billard playing, and EMG-controlled robot.

[18], where the LWR-III is continuously controlled via a
Brain-Machine-Interface. The decoded neural data is used to
command the robot, while several safety related behaviors
are activated. The second image depicts the SAPHARI setup,
which is an experimental multi-robot setup for evaluating
safe and autonomous physical Human-Robot Interaction.
At the recent trade fair AUTOMATICA 2010 the various
complex interaction capabilites of the state based controlled
robots were showcasd for different applications as e.g. inter-
active bin-picking12. The LWR-III billiard experiment [19]
(third picture) is an application in which an autonomous task
is combined with human-robot interaction modalities. The
fourth picture shows an EMG-controlled LWR-III. Please

12Please note that for the SAPHARI setup our concept is fully applied
in a modular sense to the multi-robot setup.

note that numerous videos of realized applications can be
found at http://www.safe-robots.com

V. CONCLUSION

In this paper we introduced a novel concept for for-
mulating complex behaviors tailored to the needs of safe
and autonomous pHRI. We extend the classical view on
behaviors by introducing the associated safety behavior of
the robot and distribute it in the sense that they are either
operational or reflex behaviors. Furthermore, we proposed a
light-weight modular robot control architecture, which builds
this formulation and incorporates on a variety of methods for
safe and human-friendly robot control. This architecture pro-
vides a graphical state based task programming interface and
allows to implement sophisticated and safe robot behavior in
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complex human-robot interaction scenarios as showcased for
numerous applications.

REFERENCES

[1] J. Guiochet, D. Powell, E. Baudin, and J.-P. Blanquart, “Online
safety monitoring using safety modes,”6th IARP/IEEE-RAS/EURON
Workshop on Technical Challenges for Dependable Robots in Human
Environments, 2008.

[2] T. S. Wikman, M. S. Branicky, and W. S. Newman, “Reflex control for
robot system preservation, reliability and autonomy,”Comput. Electr.
Eng., vol. 20, no. 5, pp. 391–407, 1994.

[3] Y. Matsumoto, J. Heinzmann, and A. Zelinsky, “The essential com-
ponents of human-friendly robot systems,” inin Int. Conference on
Field and Service Robotics, 1999, pp. 43–51.

[4] J. Heinzmann, A. Zelinsky, and E. Zelinsky, “The safe control of
human-friendly robots,” inProc. of the 1999 IEEE/RSJ Int. Conf. on
Intelligent Robots and System, 1999, pp. 1020–1025.

[5] R. Alami, A. Clodic, V. Montreuil, E. A. Sisbot, and R. Chatila, “Task
planning for human-robot interaction,” insOc-EUSAI ’05: Proceedings
of the 2005 joint conference on Smart objects and ambient intelligence.
New York, NY, USA: ACM, 2005, pp. 81–85.

[6] D. Kulic, “Pre-collision safety strategies for human-robot interaction,”
Autonomous Robots, vol. 22, pp. 149–164(16), February 2007.

[7] B. Brunner, K. Arbter, and G. Hirzinger, “Task directed programming
of sensor based robots,” inIntelligent Robots and Systems ’94. ’Ad-
vanced Robotic Systems and the Real World’, IROS ’94. Proceedings
of the IEEE/RSJ/GI International Conference on, vol. 2, sep. 1994,
pp. 1080 –1087 vol.2.

[8] S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmuller, A. Albu-Schäffer,
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