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ABSTRACT

In SAR tomography, the vertical reflectivity function for
every azimuth-range pixel is usually recovered by pro-
cessing data collected using a defined repeat-pass acqui-
sition geometry. A common and appealing approach is
to generate a synthetic aperture in the elevation direc-
tion through imaging from parallel tracks. However, the
quality of conventional reconstruction methods is gen-
erally dictated by the Nyquist rate, which can be con-
siderably high. In an attempt to reduce this rate, we
propose a new tomographic focusing approach that ex-
ploits correlations between neighboring azimuth-range
pixels and polarimetric channels. As a matter of fact, this
can be done under the framework of Distributed Com-
pressed Sensing (DCS), which stems from Compressed
Sensing (CS) theory, thus also exploiting sparsity in the
tomographic signal. Results demonstrating the potential
of the DCS methodology will be validated, for the first
time, using dual-polarized data acquired at X-band by the
TerraSAR-X spaceborne system.

Keywords: SAR tomography, polarimetry, compressed
sensing, distributed compressed sensing.

1. INTRODUCTION

1.1. Compressed sensing

Compressed Sensing (CS) proposes measuring a sig-
nal f by collecting m linear measurements of the form
b = Af + y, where A is a m by n sensing matrix with
m typically smaller than n by several orders of magni-
tude and y is a noise term. The theory asserts that if f
is approximately sparse in a specific basis Ψ, it is indeed
possible to recover f , under suitable conditions on the
matrix A, by L1 minimization

min
f̃

∥∥∥Ψf̃
∥∥∥
1

subject to
∥∥∥Af̃ − b

∥∥∥
2
≤ ε; (1)

where ε is an upper bound on the noise level [3], [1], [5],
[4]. In other words, CS thrives on sparse representations
to recover a high-resolution signal from a reduced set of
samples.

1.2. Distributed compressed sensing

Distributed Compressed Sensing (DCS) theory enables
the joint recovery of multi-signal ensembles by exploit-
ing inter-signal correlations. It generalizes the concept of
a signal being sparse in some basis to the concept of an
ensemble of signals being jointly sparse. In this paper, we
demonstrate how to apply a multiple measurement vector
model that has been thoroughly studied and can be found
in the literature [2], [6]. One of the crowning achieve-
ments of this model is that it allows for a further reduction
in the number of measurements.

1.3. Compressed sensing for SAR tomography

In [9], CS inversion techniques for SAR tomography have
proven to be applicable. The contribution of this paper is
to extend this concept and take advantage of the inter-
signal correlations between neighboring azimuth-range
pixels as well as between polarimetric channels by means
of DCS.

2. PROBLEM FORMULATION

Given three 3-D complex reflectivity functions
ghh(x, r, s), gvv(x, r, s), and ghv(x, r, s) (one per
polarimetric channel) of a specific area; where x, r,
and s are the azimuth, range, and elevation coordinates,
respectively, and taking a small discretized subset of the
space domain, i.e. a window of size ∆x, ∆r, ∆s, so that
1 ≤ x ≤ ∆x, 1 ≤ r ≤ ∆r, and 1 ≤ s ≤ ∆s, is there
a way to compress these reflectivity functions? Do they
share any information? If so, we can use this knowledge
to recover them by means of the DCS machinery.
Throughout this paper, the reflectivity functions will
be represented as an ensemble of P = ∆x∆r signals
along s. That is, ghh(p, s), gvv(p, s), and ghv(p, s) with
1 ≤ p ≤ P . Each signal of size ∆s will be denoted with
the corresponding column vectors ghhp, gvvp, and ghvp.
Additionally, the tomographic sensing operation (using
parallel tracks) for the signals in the xy channel, will be
jointly expressed as

Bxy = Φ̂Gxy + Yxy; (2)
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where

Bxy =


bxy1
bxy2
bxy3

...
bxyP

 (3)

and

Φ̂Gxy =


Φ1 0 0 · · · 0
0 Φ2 0 · · · 0
0 0 Φ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · ΦP




gxy1
gxy2
gxy3

...
gxyP

 .

(4)
The matrices Φp, with 1 ≤ p ≤ P , are the so-called
steering matrices, bxyp is a stack (column vector) of m
pixels taken from m corregistered SAR images that are
measurements of gxyp, and Yxy is a noise term. Expres-
sions for the different polarimetric channels can be found
by replacing xy with hh, vv, or hv, accordingly. Also, k̃
will represent a vector or matrix of variables to be deter-
mined that approximate k. Finally, the support of a vector
w is defined as supp w = {j, wj 6= 0}.

3. COMMON SUPPORT REGULARIZATION

In this method, we suppose that all P signals through-
out polarimetric channels share, approximately, the same
sparse support in the space domain but have different
nonzero coefficients. This makes sense, as we are expect-
ing backscatter from the same structure [7]. From (2), it
follows that[

Bhh

Bvv

Bhv

]
=

 Φ̂ 0 0

0 Φ̂ 0

0 0 Φ̂

[ Ghh

Gvv

Ghv

]
+

[
Yhh

Yvv

Yhv

]
(5)

or B = Φ̂allG+ Y . And so, we can focus in all channels
simultaneously by mixed L2,1 minimization as follows

min
H̃

∥∥∥H̃∥∥∥
2,1

subject to
∥∥∥Φ̂allG̃−B

∥∥∥
F
≤ ε; (6)

where ‖·‖F is the Frobenius matrix norm, ‖·‖2,1 is a
mixed norm (sum of the L2 norms of the rows of a ma-
trix), and H is constructed by concatenating the signals
(column vectors) side by side as follows

H = [ Hhh Hvv Hhv ] ; (7)

where

Hhh = [ ghh1 ghh2 · · · ghhP ] , (8)

Hvv = [ gvv1 gvv2 · · · gvvP ] , (9)

Hhv = [ ghv1 ghv2 · · · ghvP ] . (10)

Intuitively, the L2,1 norm promotes sparsity along rows,
while minimizing the energy along columns. As a re-
sult, the solution will be an ensemble of signals with

significant overlap, which allows for polarimetric anal-
yses. As a matter of fact, the authors in [6] proved that
the probability of recovery failure decays exponentially
in the number of columns of H . This improvement can
be understood from the fact that a mixed norm regular-
ization rules out many of the possible subspaces where
our solution might lie, thereby reducing the degrees of
freedom in the optimization.

In practice, we may want to rephase every element of B,
so that all pixels have a flat earth phase component based
on the distance to the center of the window of size ∆x,
∆r. Thus,

Φ = Φ1 = Φ2 = Φ3 = . . . = Φp, (11)

which not only makes computations easier but also pro-
vides more accurate results.

4. EXPERIMENTAL RESULTS

In order to demonstrate the potential of the DCS ap-
proach, we used TerraSAR-X data acquired over the
city of Osaki, Japan. It consists of a stack of 33 dual-
polarimetric corregisterd images taken in high-resolution
spotlight mode. Specifically, the resulting range and az-
imuth resolution was 1 m and 2 m, respectively. As de-
picted in Fig. 1, the baseline distribution presents a total
tomographic aperture of around 250 m. As regards the
temporal baselines, the first image was acquired on April
20, 2009, whereas the last one on October 22, 2010. Due
to this large gap between acquisitions, the phase calibra-
tion of the data required the determination of stable points
in amplitude and phase. This selection was performed ac-
cording to [8].

Figure 1. Perpendicular baseline distribution.

As shown in Fig. 2, the area of interest consists of an
isolated building surrounded by agricultural fields. From
Fig. 3, the height of the building can be estimated at
15 m - 20 m. Fig. 4 presents the corresponding SAR SLC
dual-polarimetric image, together with a slice along az-
imuth that we analyzed for tomographic reconstruction.
In particular, we used the methodologies previously de-
scribed for 120 contiguous azimuth positions. As a result,
we obtained tomograms in the azimuth and elevation di-
rections of dimensions 240 m by 40 m, respectively.

In Fig. 5 (a) and (b), we took a 9 by 1 azimuth-range win-
dow and processed the tomograms individually for every



Figure 2. Optical image of the area of interest
( c©Google).

Figure 3. Image of the building reconstructed by means of
SAR tomography ( c©Google). Its height can be estimated
at 15 m - 20 m.

Figure 4. Master SLC dual-polarimetric image of the
area of interest. Color code: R: VV, B: HH. The tomo-
graphic processing was carried out in the azimuth direc-
tion along the white line.

azimuth-range position and for each polarimetric chan-
nel. For instance, for the hh channel we solved

min
g̃hhp

‖g̃hhp‖1 subject to ‖Φpg̃hhp − bhhp‖2 ≤ ε (12)

for every p such that 1 ≤ p ≤ 9. In Fig. 5 (a), the av-
erage intensities are displayed per polarimetric channel
(R: VV, B: HH). In Fig. 5 (b), we added the resulting
average intensities together at a specific elevation for all
polarimetric channels. In Fig. 5 (c) and (d), we took
again a 9 by 1 azimuth-range window but did the pro-
cessing according to (6) for all azimuth-range positions
and polarimetric channels. Evidently, Fig. 5 (c) and (d)
exhibit a much clearer structure than Fig. 5 (a) and (b).

In order to emphasize the quality of the reconstruction,
Fig. 6 presents the same results as Fig. 5 but no averag-
ing is performed. In other words, only the reconstructed
profile at the center of the azimuth-range window is dis-
played. Clearly, Fig. 6 (c) and (d) retain the main struc-
tural characteristics while Fig. 6 (a) and (b) degrade sig-
nificantly.

5. CONCLUSIONS

A Distributed Compressed Sensing approach for polari-
metric SAR tomography makes it possible to significantly
improve the quality of the estimated sparse elevation pro-
files. In fact, it confers a distinct advantage, especially in
the presence of large temporal baselines, as is the case for
the spaceborne data analyzed in this work.

In effect, even though the elevation profiles for each
azimuth-range pixel are separately encoded, joint recov-
ery of ensembles of polarimetric reflectivity functions al-
lows exploiting their shared information. In addition, the
methods outlined allow for a robust polarimetric analysis
of sparse solutions.

In the same spirit, a direct benefit of reducing the num-
ber of required passes is the possibility of studying the
anisotropic behavior of scatterers in the elevation direc-
tion, since high resolution can be achieved using many
small overlapping subapertures.

Future work will focus on including additional regular-
izations for targets that might not be sparse in the space
domain, such as forests. As a matter of fact, elevation
profiles are still extremely simple as compared with the
behavior of the reflectivity function along azimuth and
range. Hence, we are likely to find sparsifying bases,
which may allow for analysis in the presence of volumet-
ric scattering.



(a) (b)

(c) (d)

Figure 5. Comparison between CS and DCS (240 m by 40 m) using 33 passes and a 9 by 1 azimuth-range window:
(a) Average intensities per polarimetric channel for CS; (b) Average span for CS; (c) Average intensities per polarimetric
channel for DCS; (d) Average span for DCS.

(a) (b)

(c) (d)

Figure 6. Comparison between CS and DCS (240 m by 40 m) using 33 passes and a 9 by 1 azimuth-range window.
The plots show the reconstructed profiles at the center of the window (no averaging is carried out): (a) Intensities per
polarimetric channel for CS; (b) Span for CS; (c) Intensities per polarimetric channel for DCS; (d) Span for DCS.
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