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Abstract

In the present paper a fourth/fifth order upwind biased limiting strategy is pre-

sented for the simulation of turbulent flows and combustion. Because high order

numerical schemes usually suffer from stability problems and TVD approaches

often prevent convergence to machine accuracy the multi-dimensional limiting

process (MLP) [1] is employed. MLP uses information from diagonal volumes

of a discretization stencil. It interacts with the TVD limiter in such a way, that

local extrema at the corner points of the volume are avoided. This stabilizes

the numerical scheme and enables convergence in cases, where standard lim-

iters fail to converge. Up to now MLP has been used for inviscid and laminar

flows only. In the present paper this technique is applied to fully turbulent

sub- and supersonic flows simulated with a low Reynolds-number turbulence

closure. Additionally, combustion based on finite-rate chemistry is investigated.

An improved MLP version (MLP ld, low diffusion) as well as an analysis of its

capabilities and limitations are given. It is demonstrated, that the scheme offers

high accuracy and robustness while keeping the computational cost low. Both

steady and unsteady test cases are investigated.
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1. Introduction

The discretization of inviscid fluxes is still a challenging part of numerical

simulation. Especially in supersonic flow there is a demand for high accuracy

discretizations which suppress oscillations at shock waves and maintain mono-

tonicity. In classical high order MUSCL (Monotonic Upstream-centered Scheme

for Conservation Laws) [2] approaches, TVD (Total Variation Diminishing) lim-

iters [3] are used to avoid oscillations at discontinuities. Besides classical TVD

limiters like minmod, superbee, van Albada, or the van Leer limiter, there is

a number of newly developed limiter functions [4, 5] which are constructed to

achieve a sharp and accurate shock capturing while at the same time avoid

clipping and squaring effects of classical second order limiters [5]. Some lim-

iter functions are even able to maintain their formal accuracy at local extrema

[5]. Another topic of research is the handling of interface value reconstruc-

tion on highly stretched irregular grids. Moreover, there are activities to use

multi-dimensional information in the limiter design. Conventional flux vector

or flux difference splittings treat any coordinate direction separately from the

remaining ones. It is easy to show, that such one-dimensional limiters fail to

achieve a good shock resolution if the shock is located in direction diagonal to

the computational grid. This may cause an oscillatory behavior and a stall of

convergence. During the last two decades there was some activity in developing

multi-dimensional limiting techniques [6, 7, 8] without meeting a wide accep-

tance. However, the newly developed MLP approach of Kim and coworkers

[9, 1, 10, 11] seems to have a high potential to achieve significant improvements

in this field.

An alternative to these discretization techniques are ENO/WENO [12, 13,

14] schemes, which use a number of stencils from which the smoothest ones are

chosen. The great advantage of WENO schemes in supersonic flow is the ability

to achieve high order accuracies at discontinuities. However, the associated

numerical effort is relatively high, especially if the interface values are calculated

from characteristic variables. Some authors report this to be necessary to avoid
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numerical oscillations [15]. Moreover, convergence problems may appear in case

of steady state problems.

In the present paper the multi-dimensional limiting process (MLP) of Kim

et al. [9, 1] is combined with the AUSM+-up flux vector splitting of Liou [16].

The combination of both approaches promises a good monotone shock capturing

and a good convergence behavior at relatively low computational cost. The

disadvantage of the present scheme is, that due to the limiter function which

avoids oscillations at shock waves, the discretization order may be reduced to

first order locally. MLP shares this property with conventional TVD limiters.

On the other hand, there is a low computational effort and a high numerical

stability. In this paper the new discretization technique is extended to non-

equal grid spacing for cell interface interpolation functions up to fifth order.

Some improvements in comparison to the standard MLP [1] will be given and

a modified MLP version, MLP ld (low diffusion), will be presented. The new

approach is used for simulations including turbulence and combustion. This is

an extension to the work of Kim et al. [9, 1] who treated laminar and inviscid

flows only.

2. Governing equations and numerical scheme

For the investigation of high speed turbulent combustion the averaged ex-

panded Navier-Stokes, turbulence, and species transport equations are solved,

which are given by

∂Q
∂t

+
∂(F − Fν)

∂x
+

∂(G − Gν)
∂y

+
∂(H− Hν)

∂z
= S . (1)

The vector of conservative variables is

Q =
[
ρ̄, ρ̄ũ, ρ̄ṽ, ρ̄w̃, ρ̄Ẽ, ρ̄q, ρ̄ω, ρ̄Ỹα

]T
, α = 1, 2, . . . , Nk − 1 , (2)

where F, G, and H are inviscid, and Fν , Gν , and Hν are viscous fluxes in

x-, y- and z-direction, respectively. The variables in Eq. (2) are the averaged

density ρ̄, the velocity components ũ, ṽ, and w̃, the total specific energy Ẽ,
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the turbulence variables q =
√

k and ω (k is the turbulent kinetic energy and

ω = ε/k, ε is the dissipation rate of k), and the species mass fractions Ỹα. Nk

denotes the number of different species. For turbulence closure a two-equation

low-Reynolds-number q-ω turbulence model is employed [17]. Contributions to

the source vector

S = [ 0, 0, 0, 0, 0, Sq, Sω, Sα ]T , α = 1, 2, . . . , Nk − 1 (3)

arise from the q and ω and the species transport equations. The species source

terms are given by

Sα = Mα

Nr∑
r=1

[
(ν

′′
α,r − ν

′
α,r)

(
kfr

Nk∏
l=1

c
ν
′
l,r

l − kbr

Nk∏
l=1

c
ν
′′
l,r

l

)]
, (4)

where kfr and kbr are the forward and backward reaction rates of reaction r,

Nr is the number of reactions, and cl the concentration of species l.

The unsteady governing equations are integrated in time using an implicit

finite-volume LU-SGS (Lower-Upper Symmetric Gauß-Seidel) algorithm [18,

19]. Beside the source term and the inviscid flux Jacobians, simplified viscous

flux Jacobians based on the thin-layer Navier-Stokes equations are included in

the implicit part of the numerical solver. The following set of equations has to

be solved at any time step

L(Q) ΔQ = R(Q) , (5)

where L is an implicit operator including the Jacobians, R is the residual, and

ΔQ is the correction of the variable vector. The linearized set of equations is fac-

torized and solved in two subsequent steps by a lower and upper sweep through

the computational domain [19, 20]. While a first order temporal discretization

is used for all steady state problems, a second or third order BDF (backward

differentiation formula) scheme with subiterations is chosen for time-accurate

calculations. Varying time-step sizes are taken into account in the BDF coeffi-

cients. The non-linear set of equations is solved at any time-step by a number

of inner Newton iterations (dual time stepping) until the residual is dropped up

to a predefined limit.
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3. Multidimensional limiting process

In a number of papers Kim et al. [9, 1, 10, 21, 11] developed the multi-

dimensional limiting process (MLP) for different applications. In contrast to

conventional TVD schemes, MLP uses multi-dimensional information for slope

limitation. This enables an efficient and monotonic numerical scheme and pre-

vents oscillations across discontinuities which are oblique to the computational

grid. MLP may be seen as an extension to conventional second order limiters

such as minmod, van Leer, or superbee by considering information from diago-

nal volumes. Besides an improvement of the numerical solution it additionally

stabilizes the numerical scheme as shown by Kim et al. [9, 1]. However, the

great potential of MLP is its easy application to higher order spatial interpola-

tion (fourth, fifth order or higher). Such high order schemes may be used for

compressible supersonic flows while maintaining numerical stability and conver-

gence.

From the above cited papers concerning MLP there is only one [1] which

treats three-dimensional flows. This version differs from the other ones in

that geometrical considerations, by using gradient angles for flow variables, are

avoided. Such a treatment seems to be not practical in 3D. Because the present

analysis and the proposed extensions of MLP are intended to work in both 2D

and 3D, the 3D version of MLP is taken as a basis. While presenting MLP,

a different approach is used than in the original paper of Kim et al. [1]. This

offers another view, from which some corrections and improvements are derived.

3.1. One-dimensional reconstruction of unlimited interface values

In the framework of cell centered finite-volume discretization, inviscid fluxes

have to be calculated at the cell interfaces. This requires interface values, which

in the present case, are the primitive variables ρ, u, v, w, H , q, ω, Yα, and γ̄. H

is the total enthalpy and γ̄ the integral specific heat ratio which is required to

calculate the critical speed of sound a∗ in the AUSM+-up flux vector splitting.

The interface values are reconstructed from cell centered values with a spatial

accuracy of up to fifth order.
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Figure 1: Sketch of the discretization stencils for the one-dimensional fourth and fifth order

upwind biased calculation of the left (L) interface state at i+1/2 (x = 0). The circles indicate

the cell averages used.

Piecewise second or third order left (L) and right (R) interface states are

obtained from the MUSCL approach [2] by

qL
i+1/2 = qi +

1
4
[
(1 − κ)Δqi−1/2 + (1 + κ)Δqi+1/2

]
,

qR
i+1/2 = qi+1 − 1

4
[
(1 − κ)Δqi+3/2 + (1 + κ)Δqi+1/2

]
, (6)

where qi is an averaged value for volume i and κ is a free parameter to obtain

different second order and a third order (κ = 1/3) scheme. The cell interface

values of Eq. (6) may be interpreted as a first order upwind representation plus

an additional anti-diffusive term. The higher order corrections depend on local

gradients (e.g. Δqi−1/2 = qi − qi−1), one across the cell face in question and the

second immediately upwind [22].

Fourth and fifth order schemes are derived by a polynomial reconstruction

[12, 1]. If x = 0 is located at the interface i + 1/2 (see Fig. 1), the polynomials

q̂(x) = Ax3 + Bx2 + Cx + D , (7)

q̂(x) = Ax4 + Bx3 + Cx2 + Dx + E (8)

are used to calculate the left interface state qL
i+1/2 with fourth or fifth order

accuracy, respectively. During discretization the difference between the i + 1/2

and i − 1/2 fluxes is taken, and a fourth or fifth order scheme is obtained,

respectively. The coefficients (A, B, . . . , E) follow from a number of cell-
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averages

qi+m =
1

Δxi

∫ xi+m+1/2

xi+m−1/2

q̂(x) dx (9)

with m = −2,−1, . . . , 1 for the fourth order scheme, and m = −2,−1, . . . , 2 for

the fifth order scheme, respectively. The chosen discretization stencils for the

fourth and fifth order upwind biased determination of qL
i+1/2 (used in this paper)

are shown in Fig. 1. Right interface values are calculated correspondingly.

Based on cell averages, the unlimited left and right interface states at i + 1/2

follow from

qL
i+1/2 = aL

1 qi−2 + aL
2 qi−1 + aL

3 qi + aL
4 qi+1 ,

qR
i+1/2 = aR

1 qi + aR
2 qi+1 + aR

3 qi+2 + aR
4 qi+3 , 4th order,(10)

and

qL
i+1/2 = bL

1 qi−2 + bL
2 qi−1 + bL

3 qi + bL
4 qi+1 + bL

5 qi+2 ,

qR
i+1/2 = bR

1 qi−1 + bR
2 qi + bR

3 qi+1 + bR
4 qi+2 + bR

5 qi+3 5th order.(11)

The chosen stencils use three upwind and one downwind point for the fourth

order scheme and three upwind and two downwind points in case of the fifth

order scheme, respectively. Thus, the fourth order scheme has a stronger up-

wind character which, at least for one supersonic test case, was found to be

advantageous. Both schemes require three values at each side of the interface.

With respect to parallelization by domain decomposition, three rows of ghost

volumes have to be exchanged between adjacent blocks, located on different

CPUs. For every cell interface left and right coefficients (aL,R
i or bL,R

i ) have to

be calculated. Non-equal grid spacing is taken into account. TVD and MLP

limitations (which follow in the next section) are usually based on slope ratios

rL
i = Δqi+1/2 / Δqi−1/2 , rR

i = Δqi−1/2 / Δqi+1/2 (12)

which are connected by rR
i = 1/rL

i . Note that these ratios are formed by the

gradient across the cell interface in question (i + 1/2 in case of L and i − 1/2

in case of R) and the gradient immediately upwind (i − 1/2 in case of L and
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Table 1: Dependency of βL
i and βR

i+1 from slope ratios r for different orders of accuracy

βL
i βR

i+1 order of accuracy

βL
i (rL

i ) βR
i+1(r

R
i+1) 2nd or 3rd

βL
i (rL

i−1, rL
i ) βR

i+1(r
R
i+1, rR

i+2) 4th

βL
i (rL

i−1, rL
i , rL

i+1) βR
i+1(r

R
i , rR

i+1, rR
i+2) 5th

i + 1/2 in case of R). Equations (10) and (11) can be rewritten as functions of

ri

qL
i+1/2 = qi + 0.5

(
cL
1 / rL

i−1 + cL
2 + cL

3 rL
i

)
Δqi−1/2 ,

qR
i+1/2 = qi+1 − 0.5

(
cR
1 rR

i+1 + cR
2 + cR

3 / rR
i+2

)
Δqi+3/2 4th order,(13)

and

qL
i+1/2 = qi + 0.5

(
dL
1 / rL

i−1 + dL
2 + dL

3 rL
i + dL

4 rL
i rL

i+1

)
Δqi−1/2 ,

qR
i+1/2 = qi+1 − 0.5

(
dR
1 rR

i rR
i+1 + dR

2 rR
i+1 + dR

3 + dR
4 rR

i+2

)
Δqi+3/2 5th order.(14)

As before, the coefficients of the polynomial functions cL,R
i or dL,R

i depend on

the cell metrics only. The second and third order MUSCL approach from Eq.

(6) may be expressed as a function of the corresponding upwind gradient too,

and

qL
i+1/2 = qi +

1
4
[
(1 − κ) + (1 + κ) rL

i

]
Δqi−1/2 ,

qR
i+1/2 = qi+1 − 1

4
[
(1 − κ) + (1 + κ) rR

i+1

]
Δqi+3/2 (15)

is obtained. By introduction of the parameters βL
i and βR

i+1 the MUSCL ap-

proach and the higher order reconstructions from Eqs. (13) and (14) are com-

bined in one equation [1]

qL
i+1/2 = qi + 0.5 βL

i Δqi−1/2 ,

qR
i+1/2 = qi+1 − 0.5 βR

i+1 Δqi+3/2 . (16)
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Table 2: Functions βL
i and βR

i+1 for different orders of accuracy in case of an equal grid

spacing. The various schemes are the 2nd order linear-upwind (U, κ = −1), Fromm (Fr,

κ = 0), central difference (CD, κ = 1), the 3rd order cubic (κ = 1/3), and a 4th and a 5th

order upwind biased (Ub) scheme.

βL
i βR

i+1 order of accuracy

1 1 2nd U(
1 + rL

i

)
/2

(
1 + rR

i+1

)
/2 2nd Fr

rL
i rR

i+1 2nd CD(
1 + 2rL

i

)
/3

(
1 + 2rR

i+1

)
/3 3rd Ub(−1/rL

i−1 + 4 + 3rL
i

)
/6

(
3rR

i+1 + 4 − 1/rR
i+2

)
/6 4th Ub(−2/rL

i−1 + 11 + 24rL
i − 3rL

i rL
i+1

)
/30

(−3rR
i rR

i+1 + 24rR
i+1 + 11 − 2/rR

i+2

)
/30 5th Ub

Table 1 shows which and how many slope ratios r are required for a βL
i and βR

i+1

of a certain spatial accuracy. The coefficients cL,R
i or dL,R

i have to be determined

in advance for any interface and coordinate direction, if non-equal grid spacing

is taken into account. This is done in the present paper for the fourth and fifth

order schemes. In case of an equally spaced grid (or if a non-equal grid spacing

is neglected) these locally varying coefficient become constants and are identical

for any cell interface. Table 2 summarizes βL
i and βR

i+1 functions for different

orders of accuracy in case of an equally spaced grid. The first four interpolation

schemes result from the MUSCL approach while using different values of κ.

For κ = −1 a second order fully upwind scheme is obtained. Any other value

introduces more or less downwind influence. The Fromm scheme (κ = 0) and the

central difference scheme (κ = 1) are of second order accuracy. The first one has

been designed to minimize dispersion errors [22]. The only third order MUSCL

scheme (cubic-upwind interpolation) requires κ = 1/3. Finally, interface value

reconstructions for the upwind biased fourth and fifth order schemes described

before are listed in the last two lines of Table 2.
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3.2. MLP reconstruction of interface values

It is easy to show for scalar problems, that the unlimited interface value

reconstructions given in Table 2 are not able to achieve a well resolved, non-

oscillatory discontinuity. Thus the basic idea of TVD methods is to increase

the amount of numerical dissipation at discontinuities, while maintaining high

order accuracy in smooth regions. To do this, a TVD limiter Φ is introduced

and Eq. (16) is replaced by

qL
i+1/2 = qi + 0.5 Φ(rL) Δqi−1/2 ,

qR
i+1/2 = qi+1 − 0.5 Φ(rR) Δqi+3/2 . (17)

The TVD limiter depends on the ratio of up- and downstream gradients ri,

which are a measure for the local smoothness of q. If the limiter is symmetric

(Φ(r) = r Φ(1/r)), than Eq. (17) directly follows from the MUSCL approach

which becomes independent of κ. According to Sweby [23] the one-dimensional

scalar TVD constraint is given by 0 ≤ Φ(r) ≤ min(2r, 2). Due to Φ(r) = 0 for

r < 0 the limiter switches to first order accuracy if r becomes negative. This is

the case for any extreme point. For the third and higher order reconstructions,

Kim et al. [9] use a filtering of the unlimited values by the TVD constraint of

Sweby [23]

qL
i+1/2 = qi + 0.5 max

[
0, min

(
2, 2rL

i , βL
i

)]
Δqi−1/2 ,

qR
i+1/2 = qi+1 − 0.5 max

[
0, min

(
2, 2rR

i+1, βR
i+1

)]
Δqi+3/2 . (18)

The interface values of the second order schemes given in Table 2 (upper three

lines) usually are not limited in this way. Instead a large number of limiter

functions have been developed which automatically are in the second order

TVD region. Corresponding values for the minmod, van Leer, and superbee

limiter are

Φ(rL
i ) = βL

i = min ( 1, rL
i ) 2nd order minmod,(19)

Φ(rL
i ) = βL

i = max
[
min

(
1, 2 rL

i

)
, min ( 2, rL

i )
]

2nd order superbee,(20)

Φ(rL
i ) = βL

i = 2 rL
i / ( 1 + rL

i ) 2rd order van Leer,(21)

10



which all have Φ(r) = 0 for r < 0 in common. The TVD constraint of Sweby is

the starting point for the development of MLP by Kim et al. [9, 1]. The MPL

region ΦMPL(r) is defined by

ΦMPL(r) = 0 : r < 0,

r ≤ ΦMPL(r) ≤ 2 r : 0 ≤ r ≤ 1,

1 ≤ ΦMPL(r) ≤ 2 : 1 ≤ r,

(22)

to be a subset of the TVD region. This definition enables the introduction a

single parameter 1 ≤ α ≤ 2 which, in dependence of r, performs a linear scaling

from the the upper limit (α = 2) to the more viscous lower limit (α = 1). TVD

and MLP regions are shown in Fig. 2. The upper limit is exactly two times

the minmod limiter and corresponds to the TVD region defined by Sweby [23],

while at the lower limit the minmod limiter is obtained. Instead of Eq. (18)

MLP uses

qL
i+1/2 = qi + 0.5 max

[
0, min

(
αL, αLrL

i , βL
i

)]
Δqi−1/2 ,

qR
i+1/2 = qi+1 − 0.5 max

[
0, min

(
αR, αRrR

i+1, β
R
i+1

)]
Δqi+3/2 (23)

to reconstruct the interface values. As will be discussed later, values of α < 2 are

used only, if the variable interpolation based on the upper MLP limit (α = 2)

causes a local extremum at one of the corners of the volume. Moreover, a

limitation of α to α ∈ [1, 2] while fulfilling the MLP condition (as demanded by

�����

�����

�

�����

�(r)

r

�

�

� �

TVD region

MLP region

MLP ��	�
���

MLP ��	�
���

Figure 2: TVD region of Sweby [23] and MLP region of Kim et al. [9] (α = 2 corresponds to

the TVD region and α = 1 is the minmod limiter). Depending on the definition of α (α ∈ [1, 2]

or α ∈ [0, 2] different MLP regions are obtained.
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Kim et al. [9]) is possible in two-dimensional flows only. As will be shown later

at least α ∈ [2/3, 2] is required for a three-dimensional flow, while for practical

reasons even α ∈ [0, 2] may be used (see Fig. 2). A reduction of α to α = 0 is

a blend to first order spatial accuracy, while α = 1 still maintains second order

accuracy. Equation (23) may be used in combination with any of the second

order limiters from Eqs. (19) to (21) or the third to fifth order scheme β values

from Table 2.

4. Two-dimensional MLP

As shown in detail in the original papers of Kim et al. [9, 1] MLP satisfies

the discrete maximum principle for multi-dimensional scalar conservation laws

qmin
nb ≤ qn+1

i,j ≤ qmax
nb , (24)

where qmin
nb and qmax

nb are minimum and maximum values out of some neigh-

bouring cells. One main difference to the earlier approaches of Spekreijse [24]

and Barth [25] is the choice of the neighbouring volumes. While on structured

two-dimensional grids Spekreijse and Barth use the volume in question and its

four neighbours (two in both coordinate directions), Kim et al. use the volume

in question and all eight surrounding cells, including the four diagonal ones.

This is advantageous for oscillation control in case of multi-dimensional oblique

discontinuities.

The basic point of the MLP approach is to determine the parameters α of

Eq. (23) in such a way, that the interface value reconstruction does not cause a

local extremum at any of the four corners of the two-dimensional volume. The

limiting condition (24) is applied to the four vertex points (i + κx/2, j + κy/2),

κx, κy = ±1 of volume i, j by

Qmin
i+κx/2,j+κy/2 ≤ qi+κx/2,j+κy/2 ≤ Qmax

i+κx/2,j+κy/2 , (25)

where

Qmin
i+κx/2,j+κy/2 = min (qi,j , qi+κx,j, qi,j+κy , qi+κx,j+κy ) ,

Qmax
i+κx/2,j+κy/2 = max (qi,j , qi+κx,j , qi,j+κy , qi+κx,j+κy) (26)
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are taken to be the minimum and maximum cell center values surrounding a cell

corner, respectively [1]. As will be shown later, the corner values qi+κx/2,j+κy/2

are calculated from the interface values scaled by α. Thus the parameter α can

be used to satisfy condition (25). If the interface values are calculated on basis

of MLP only (βL = βR = 2), Eq. (23) simplifies to

qL
i+1/2 = qi + 0.5 αL max

[
0, min

(
1, rL

i

)]
Δqi−1/2 ,

qR
i+1/2 = qi+1 − 0.5 αR max

[
0, min

(
1, rR

i+1

)]
Δqi+3/2 . (27)

Because MLP is a linear multiple of the minmod limiter, it is symmetric (Φ(r)/r =

Φ(1/r)). This allows the definition of a single α = αi = αL
i+1/2 = αR

i−1/2 for any

volume i (in one flow direction). With ri = rL
i = 1/rR

i it follows that

qL
i+1/2 = qi + 0.5 αmax [ 0, min (1, ri)] Δqi−1/2 = qi + 0.5 αΔqmm = qi + 0.5 ΔqMLP ,

qR
i−1/2 = qi − 0.5 αmax [ 0, min (1, ri)] Δqi−1/2 = qi − 0.5 αΔqmm = qi − 0.5 ΔqMLP ,

(28)

which simply shows the symmetry of the limiter. The newly defined term Δqmm

is the interface correction obtained by the minmod limiter (see also Eq. (19)),

and ΔqMLP is the MLP correction which has to fulfill condition (25). Assuming

a linear distribution, the four cell corner MLP values are calculated from the

MLP reconstructed interface values by

qMLP
i+κx/2,j+κy/2 = qi,j + 0.5 κx αx Δqmm

x + 0.5 κy αy Δqmm
y , (29)

with κx, κy = ±1. In contrast to Kim et al. [1], different values αx and αy are

introduced here for both coordinate directions. Kim et al. use a single value in

their derivation of MLP, and later on approximate one term instead of doing an

accurate simulation. As will be shown later, this approximation has the same

effect causing different α values for the different coordinate directions. Because

the present formulation seems to be more straight forward, it is preferred in this

work. This point will be discussed later in more detail. The four newly defined

and MLP limited cell corner values qMLP
i+κx/2,j+κy/2 have to fulfill condition (25)

Qmin
i+κx/2,j+κy/2 ≤ qMLP

i+κx/2,j+κy/2 ≤ Qmax
i+κx/2,j+κy/2 , (30)
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from which αx and αy will be derived. In principle, all four corners of a volume

must be checked whether for αx = αy = 2 (the upper limit of the MLP region)

the MLP reconstruction qMLP
i+κx/2,j+κy/2 is a local extremum or not. Kim et al. [9]

found an elegant way to reduce the corresponding computational effort. They

have shown for the two dimensional case, that a local maximum or minimum

is only possible at one of the four corners of a volume, respectively. Thus only

two corner value have to be checked, qMLP
imax,jmax to be a local maximum and

qMLP
imin,jmin to be a minimum. Depending on Δqmm

x and Δqmm
y the locations of

the vertex points (imax, jmax) and (imin, jmin) to be checked are

imax imin

Δqmm
x > 0 i + 1

2 i − 1
2

Δqmm
x < 0 i − 1

2 i + 1
2

jmax jmin

Δqmm
y > 0 j + 1

2 j − 1
2

Δqmm
y < 0 j − 1

2 j + 1
2

.

(31)

For Δqmm = 0 in one or both coordinate directions, a local extremum at one of

the corners of the volume becomes impossible [1] (the cell center i, j already is

an extremum). In this case αx = αy = 2 can be used and there is no limitation

due to MLP in the remaining coordinate direction. Due to the fact that only two

vertex points have to be checked with one condition each, Eq. (30) is replaced

by

Qmin
imin,jmin ≤ qMLP

imin,jmin , qMLP
imax,jmax ≤ Qmax

imax,jmax . (32)

Inserting Eq. (29) and taking positive gradients to check for a maximum and

negative ones to check for a minimum

αx |Δqmm
x | + αy |Δqmm

y | ≤ 2
(
Qmax

imax,jmax − qi,j

)
, (33)

−αx |Δqmm
x | − αy |Δqmm

y | ≥ 2
(
Qmin

imin,jmin − qi,j

)
(34)

are obtained. Finally both criteria are combined to

|ΔqMLP | = αx |Δqmm
x | + αy |Δqmm

y |
≤ 2 min

(
Qmax

imax,jmax − qi,j , qi,j − Qmin
imin,jmin

)
= Δqc .(35)
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This criterion has to be fulfilled to satisfy the MLP condition. The newly

defined term Δqc is a limiting value for the interface state reconstruction. The

added reconstructed interface differences from both coordinate directions (linear

assumption) must be below this value as to avoid a local extremum. It is easy

to show, that for αx = αy = 1 condition (35) is always satisfied, independently

from the values of the diagonal volumes. This means that in 2D the minmod

limiter always satisfies the MLP condition.

Proof: If there is no local extremum (ri ≥ 0) it follows from Eqs. (28) and

(12) that

|Δqmm
x | = max [ 0, min (1, ri)] |Δqi−1/2,j |

= min
(|Δqi−1/2,j |, |Δqi+1/2,j |

)
(36)

and with this result and the index definition

Imax Imin

Δqmm
x > 0 i + 1 i − 1

Δqmm
x < 0 i − 1 i + 1

Jmax Jmin

Δqmm
y > 0 j + 1 j − 1

Δqmm
y < 0 j − 1 j + 1

(37)

it follows from Eq. (26) that

2
(
Qmax

imax,jmax − qi,j

)
= 2 [ max (qi,j , qImax,j, qi,Jmax, qImax,Jmax) − qi,j ] ,

≥ 2 max [ 0, qImax,j − qi,j , qi,Jmax − qi,j ] ,

≥ 2 max
[
min

(|Δqi−1/2,j |, |Δqi+1/2,j |
)
, min

(|Δqi,j−1/2|, |Δqi,j+1/2|
)]

.(38)

By inserting the last result, Eq. (36), and αx = αy = 1 in Eq. (33)

min
(|Δqi−1/2,j |, |Δqi+1/2,j |

)
+ min

(|Δqi,j−1/2|, |Δqi,j+1/2|
)

≤ 2 max
[
min

(|Δqi−1/2,j |, |Δqi+1/2,j |
)
, min

(|Δqi,j−1/2|, |Δqi,j+1/2|
)]
(39)

is obtained. This condition corresponds to |a| + |b| ≤ 2 max (|a|, |b|), which is

always satisfied. The proof for the minimum is identical and thus Eq. (35) is

proved for αx = αy = 1. �
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In two-dimensional flow there is another property of MLP, which simplifies

the procedure: If there is a local extremum (ri < 0) in one direction of the flow,

α = 2 (the upper MLP limit) may be used in the other direction.

Proof: With rx < 0 there is a maximum or minimum in the x-direction and

from the minmod limiter defined by Eq. (19) Δqmm
x = 0 is obtained. With

ry > 0 in the other direction (otherwise the proof is trivial) it follows from Eq.

(36) that

|Δqmm
y | = min

(|Δqi,j−1/2|, |Δqi,j+1/2|
)

(40)

and from Eq. (38)

2
(
Qmax

imax,jmax − qi,j

) ≥ 2 min
(|Δqi,j−1/2|, |Δqi,j+1/2|

)
. (41)

Inserting both results into Eq. (35) achieves

αy min
(|Δqi,j−1/2|, |Δqi,j+1/2|

) ≤ 2 min
(|Δqi,j−1/2|, |Δqi,j+1/2|

)
(42)

which is valid for αy = 2. �

4.1. A modified MLP version - MLP ld

The previous section has shown, that by an appropriate choice of the MLP

parameters αx and αy, local extrema at the corner points of a volume can be

avoided. The question is now, how αx and αy are determined. With Eq. (35)

there is only one condition for two unknown parameters which not necessarily

have to have the same value. In Fig. 3 the situation is shown for rx, ry ≥ 0.

With αx, αy ∈ [1, 2] it follows from Eq. (28) that the possible absolute changes

in x- and y-direction, allowed by MLP, are between one and two times the

changes, caused by the minmod limiter. This corresponds to the thick drawn

rectangle plotted in Fig. 3. If the ≤ sign in Eq. (35) is replaced by the equality

sign, the upper limit for αx, αy is taken to avoid excessive numerical dissipation

and

|ΔqMLP | = αx |Δqmm
x | + αy |Δqmm

y | = |ΔqMLP
x | + |ΔqMLP

y | = Δqc (43)
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Figure 3: Possible two-dimensional MLP region (shaded section) and limiting lines Δqc due

to the MLP criteria. The dashed line is the mean gradient direction (mgd) and point A is

the solutions in case of Δqc
A.

is obtained. According to this equation, a given point |ΔqMLP
x |, |ΔqMLP

y | in

the diagram of Fig. 3 directly corresponds to a set of αx = |ΔqMLP
x |/|Δqmm

x |
and αy = |ΔqMLP

y |/|Δqmm
y | values. Using Eqs. (35), (31) and (26) the limiting

factor Δqc can be calculated easily for any volume. For a given Δqc the linear

relationship (43) defines a line with slope minus one in |ΔqMLP
x |-|ΔqMLP

y |-space.

In Fig. 3 examples of such limiting lines are plotted. As proved before, Δqc ≥
|Δqmm

x | + |Δqmm
y |. However,

Δqc ≥ Δqc
min = 2 max (|Δqmm

x |, |Δqmm
y |) (44)

is a more important limit which generally defines the lowest possible value for

Δqc. The corresponding proof has already been given by Eq. (38). It follows

that a simultaneous MLP limitation to αx = αy = 1 (minmod limiter) in both

coordinate directions is possible for |Δqmm
x | = |Δqmm

y | only. For |Δqmm
x | �=

|Δqmm
y | the line Δqc

min narrows the MLP region (αx, αy ∈ [1, 2]) to the dark

shaded area plotted in Fig. 3, which later on is called realizable or possible MLP

region. For |Δqmm
x | = |Δqmm

y | = |Δqmm| a square MLP region is obtained. In
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this case the lower limiting line Δqc = Δqc
min collapses into a single possible

solution in the MLP region, given by Pmin = P (|Δqmm|, |Δqmm|). If, on the

other hand, Δqc ≥ 2 (|Δqmm
x | + |Δqmm

y |) = Δqc
max (see lines Δqc

max and Δqc
B),

the upper MLP limit is reached or exceeded and with Pmax and αx = αy = 2

there again is a single solution only. The question is what happens, if Δqc

is located between the lower limit Δqc
min and the upper limit Δqc

max? In this

case any point on the line of constant Δqc crossing the shaded area fulfills the

MLP condition. In case of Δqc
A (see Fig. 3), any point between P1 and P2

could be chosen. Obviously this choice has a strong influence on the gradient

of the reconstructed interface values. Hence the MLP condition can be satisfied

(|ΔqMLP | = Δqc) and at the same time a certain gradient |ΔqMLP
y |/|ΔqMLP

x |
of the interface values can be created within some given limits. The most simple

choice is αx = αy. In this case the changes in both coordinate directions are

reduced by MLP (if necessary) with the same factor. However, in practical tests

this measure caused a stall of convergence. Thus the present choice is to create

a gradient for the interface values, which corresponds as far as possible to the

mean gradient of the flow variable. The absolute mean gradient of a variable q

γ̄yx =
∣∣∣∣Δq̄y

Δq̄x

∣∣∣∣ =
∣∣∣∣qi,j+1 − qi,j−1

qi+1,j − qi−1,j

∣∣∣∣ (45)

is calculated by second order central differences [1]. Even for the fourth and

fifth order schemes this spatially second order approximation was found to be

sufficient and a fourth order central discretization achieved no improvements.

The line of absolute mean gradient direction (mgd) |ΔqMLP
y | = γ̄yx |ΔqMLP

x | is

used as a second condition to define the ratio between αx and αy. In Fig. 3

a possible line for the mean gradient direction (the dashed line indicated with

mgd) is plotted. The point of intersection A = A (Ax, Ay) between the line

of absolute mean gradient direction with the limiting line |ΔqMLP | = Δqc =

const. can be easily calculated by

Ax =
Δqc

1 + γ̄yx
, Ay = γ̄yx Ax . (46)

This point (A in Fig. 3 for the limiting line Δqc
A) fulfills the following conditions:
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Figure 4: Realizable MLP regions (dark shaded sections) in two-dimensional flow in case of

αx, αy ∈ [1, 2] (left side) and αx, αy ∈ [0, 2] (right side). Lines of constant Δqc are possible

limits due to the MLP condition and the dashed lines (mgd1 or mgd2) indicate possible

mean gradient directions. If the points of intersection Ai or Bi are outside the MLP region,

they are shifted back to the outer MLP boundary (to the points Ui or Vi) while keeping

|ΔqMLP | = Δqc
A,B constant.

1. The MLP criteria is satisfied and the interface value reconstruction does

not cause a local extremum at any of the corners of the volume.

2. Maximum values for αx and αy are obtained by using |ΔqMLP | = Δqc.

3. The reconstructed interface values have a gradient which corresponds to

the mean gradient direction.

The compliance of all conditions can be achieved only, if the point of intersection

is in the possible MLP region, given by the shaded area in Fig. 3. As long as the

flowfield is relatively smooth this usually is the case. Close to a discontinuity

however, large deviations may occur between the gradients caused by mean and

interface values. It even becomes possible, that the line of the mean gradient

direction does not cross the MLP region at all. Corresponding situations are

plotted on the left side of Fig. 4. Both lines of mean gradient directions (mgd1

and mgd2) do not cross the MLP region and one of the last two above given

requirements has to be skipped. In our newly proposed version, which is called

MLP ld (low diffusion), the highest possible value for |ΔqMLP | (defined by Eq.
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(43)) is required (|ΔqMLP | = Δqc). This is an important feature because in this

way the highest possible values for αx and αy are obtained, independently from

the mean gradient direction. Thus the third condition has to be skipped. As to

fulfill the first two conditions, the point of intersection of the line |ΔqMLP | =

Δqc = const. with the outer MLP boundary is sought. In case of the limiting

condition Δqc
A and the mean gradient direction mgd1 (see Fig. 4 left side) point

A1 is shifted to U1 which is the final solution. While in this way the first two

conditions given above are fulfilled, the direction of the limited interface values

(see line O−U1 in Fig. 4, left side) deviates from the mean gradient direction

mgd1.

Even if the third condition is skipped, a stabilizing effect was observed if the

gradient of the interface values is close to the mean gradient direction. A better

agreement between both directions can be achieved, if the requirement αx, αy ∈
[1, 2] is released to αx, αy ∈ [0, 2]. This causes more numerical dissipation in the

vicinity of discontinuities. However, practical investigations have shown, that

this measure improves the level of convergence significantly, while differences

in the variable profiles where hardly visible. Thus, if not stated otherwise, in

this paper αx, αy ∈ [0, 2] is used for all simulations. Mathematically the shift

(if necessary) back to the outer MLP boundary is easy to perform. First the

coordinates of A = A (Ax, Ay) (or B) are calculated according to Eq. (46) from

which the coordinates of U = U (Ux, Uy) (or V) are obtained by

|Δqxy| = − max (Ax − 2|Δqmm
x |, 0 ) + max (Ay − 2|Δqmm

y |, 0 ) ,

Ux = Ax + |Δqxy| ,

Uy = Ay − |Δqxy| . (47)

If A already is inside the realizable MLP boundary no shift is performed by this

measure.

The effect of such a shift on the gradient of the interface values is illustrated

on the right side of Fig. 4. The dark shaded area is the possible MLP region in

case of αx, αy ∈ [0, 2]. For the points B1 and B2 the situation remains the same

as in case of αx, αy ∈ [1, 2] and points V1 and V2 deliver the final αx and αy
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values. For the points A1 and A2 however, the situation differs. While on the

left side of Fig. 4 point A1 is located outside the realizable MLP region, it is

inside in case of the extended MLP region (right figure). In the latter case A1

directly delivers final αx and αy values. The gradients of the mean and inter-

face values are identical at the price, that αy takes a value below one. In case

of A2 a shift to U2 is performed. The corresponding αx value of U2 is below

one, but again, the difference to the mean gradient direction is smaller than in

case of αx, αy ∈ [1, 2]. Due to the lower limiting line Δqc
min the differences in

the possible MLP areas between both approaches (left and right side of Fig. 4)

are much smaller, than it could expected by a change from αx, αy ∈ [1, 2] to

αx, αy ∈ [0, 2]. The MLP condition |ΔqMLP | = Δqc is always satisfied inde-

pendently from the definition of the αi-range. Because Δqc is kept constant in

MLP ld, a reduction of αi to values below one in one coordinate direction (by

the shift to the outer MLP boundary) causes an identical increase of αj , j �= i in

the remaining direction. This is in contrast to the standard MLP version, where

the αj values are not increased. Moreover, it has to be taken into account, that

these limitations are performed only, if there is local extremum at a vertex point

of the volume.

MLP ld procedure for the calculation of αx and αy in two-dimensional

flows

Calculate |Δqmm
x | and |Δqmm

y | from Eq. (28), Δqc from the right part of Eq.

(35), |Δq̄x|, |Δq̄y| and γ̄yx from Eq. (45), and set αx = αy = 2.

MLP ld

αx, αy ∈ [0, 2]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if ( 2 (|Δqmm
x | + |Δqmm

y |) > Δqc) then

|Δqx| = Δqc/(1 + γ̄yx) , |Δqy| = |Δqx| γ̄yx ,

|Δqxy| = − max ( |Δqx| − 2|Δqmm
x |, 0 ) + max ( |Δqy| − 2|Δqmm

y |, 0 ) ,

|Δqx| = |Δqx| + |Δqxy| , |Δqy | = |Δqy | − |Δqxy| ,

αx = |Δqx| / |Δqmm
x | , αy = |Δqy| / |Δqmm

y |
end if

(48)
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As mentioned before, in 2D the MLP condition can already be satisfied with

αx, αy ∈ [1, 2]. The corresponding procedure requires additional checks at the

lower MLP boundaries

MLP ld

αx, αy ∈ [1, 2]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if ( 2 (|Δqmm
x | + |Δqmm

y |) > Δqc) then

γ̄yx = min
[
max

(
γ̄yx, 0.5 |Δqmm

y |/|Δqmm
x |) , 2 |Δqmm

y |/|Δqmm
x | ] ,

|Δqx| = Δqc/(1 + γ̄yx) , |Δqy| = |Δqx| γ̄yx ,

|Δqxy| = max ( |Δqmm
x | − |Δqx|, 0 ) − max ( |Δqx| − 2|Δqmm

x |, 0 )

− max ( |Δqmm
y | − |Δqy |, 0 ) + max ( |Δqy | − 2|Δqmm

y |, 0 ) ,

|Δqx| = |Δqx| + |Δqxy| , |Δqy | = |Δqy | − |Δqxy| ,

αx = |Δqx| / |Δqmm
x | , αy = |Δqy| / |Δqmm

y |
end if

(49)

In practice however, the more simple approach from Eq. (48) was found to be

sufficient and thus is recommended. The calculated αx and αy values may be

used in Eq. (23) in combination with any higher order approach for β.

4.2. The MLP version of Kim et al. [1]

The derivation of the newly proposed version MLP ld basically follows the

work of Kim et al. [1]. Different however, is the adaption of the interface values

to the direction of the mean gradient outside the defined MLP region. Kim et

al. start from Eq. (43) using a single parameter α

α |Δqmm
x | + α |Δqmm

y | = Δqc . (50)

By introducing ryx = |Δqmm
y |/|Δqmm

x | and rxy = 1/ryx two identical equations

α (1 + ryx) |Δqmm
x | = Δqc , x − direction ,

α (rxy + 1) |Δqmm
y | = Δqc , y − direction (51)

are formulated. Later on ryx is approximated by ryx ≈ γ̄yx using γ̄yx from Eq.

(45) and rxy is approximated by rxy ≈ γ̄xy = 1/γ̄yx. Thus different values in

the x- and y-direction

αx = Δqc / [(1 + γ̄yx) |Δqmm
x |] ,
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Figure 5: Possible MLP region (dark shaded area) in two-dimensional flow for the MLP

version of Kim et al. [1] and the assumption αx, αy ∈ [0, 2]. Shown are situations where the

intersections between limiting lines Δqc and mean gradient directions (mgd) are inside (A1)

or outside (the remaining points) the possible MLP region. Final solutions for outside points

are obtained by horizontal and vertical shifts back to the outer MLP boundary.

αy = Δqc /
[
(γ̄xy + 1) |Δqmm

y |] (52)

are obtained. As before in case of MLP ld, the ratio between αx and αy and

therefore the gradient of the reconstructed interface values is defined by the

mean gradient direction γ̄yx.

Proof: Based on different values for αx and αy, Eq. (43) is reformulated to

αx = Δqc / (|Δqmm
x | + |Δqmm

y |αy/αx) ,

αy = Δqc / (|Δqmm
x |αx/αy + |Δqmm

y |) . (53)

Equations (52) are identical to Eqs. (53) for

αy

αx

|Δqmm
y |

|Δqmm
x | = γ̄yx . (54)

Hence the ratio between the MLP limited interface values αy|Δqmm
y | and αx|Δqmm

x |
corresponds to the direction of the mean gradient. �

The proof is valid only, if no additional limitations are performed. In prac-

tice, αx and αy at least have to be limited to αx, αy ≤ 2. In addition αx and αy
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can be limited to αx, αy ≥ 1. However, the last limitation causes a discontinuous

behaviour of αx and αy. The realizable MLP region without any lower limita-

tion is plotted in Fig. 5 by the dark shaded area. The newly proposed versions

MLP ld and the approach of Kim et al. [1] are identical, as long as the point of

intersection between the mean gradient and the limiting line Δqc = const. is lo-

cated in the realizable MLP region. If this is not the case, significant differences

are possible. In the approach of Kim et al. [1] points located outside are shifted

horizontally or vertically back to the boundary of the MLP region. This has

the disadvantage, that Δqc is reduced instead of kept constant. Thus, αx and

αy take values, which are smaller than required by the MLP condition. There-

fore close to discontinuities, this version is expected to be more dissipative than

necessary. Two examples are shown in Fig. 5 (using αx, αy ∈ [0, 2]) where the

points B1 and B2 are shifted to V1 and V2, respectively. In case of mgd1 and

Δqc
A point A1 is the point of intersection which already is in the MLP region.

In the MLP version of Kim et al. [1], α values below two are possible even in

cases, where actually no limitation is needed due to the MLP constraint. In Fig.

5 such a situation is shown for mgd1 and Δqc
C. The point of intersection C1 is

shifted to the border of the MLP region (point W1) with final values of αx = 2

and αy < 1. However, Δqc
C is above the MLP limit and no limitation is needed.

This problem arises because Δqc
C is not kept constant. As long as αx > 2 and

αy < 2 or reverse, limitation takes place independently from Δqc. Moreover it

is possible, that the final αx and αy values are outside the shaded MLP region,

as shown in another example in Fig. 5. Point A2 is shifted to the boundary

point U2 and Δqc
U2

< Δqc
min. If the mean gradient direction approaches the

x- or the y-axis, these problems increase. Of course some of these effects may

be corrected by additional limitations. On the other hand, the MLP scheme of

Kim et al. [1] is more simple to program. The savings in CPU time however,

are negligible.
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5. Three-dimensional MLP

In the three-dimensional case the basics of MLP remain the same. Again,

local extrema at the corners of a volume are avoided by choosing appropriate

α values. Now eight corners have to be checked for any volume i, j, k and with

κx, κy, κz = ±1 it follows from Eqs. (25) and (26)

Qmin
i+κx/2,j+κy/2,k+κz/2 ≤ qi+κx/2,j+κy/2,k+κz/2 ≤ Qmax

i+κx/2,j+κy/2,k+κz/2 ,

(55)

where

Qmin
i+κx/2,j+κy/2,k+κz/2 = min (qi,j,k, qi+κx,j,k, qi,j+κy ,k, qi+κx,j+κy ,k, qi,j,k+κz , qi+κx,j,k+κz ,

qi,j+κy ,k+κz , qi+κx,j+κy,k+κz ) ,

Qmax
i+κx/2,j+κy/2,k+κz/2 = max (qi,j,k, qi+κx,j,k, qi,j+κy ,k, qi+κx,j+κy ,k, qi,j,k+κz , qi+κx,j,k+κz ,

qi,j+κy ,k+κz , qi+κx,j+κy,k+κz ) . (56)

The upper and lower limits Qmax and Qmin are obtained for any corner of a

volume by taking the minimum or maximum out of the eight surrounding cell

center values. To check for a local extremum, the interface values are linearly

combined by

qMLP
i+κx/2,j+κy/2,k+κz/2 = qi,j,k+0.5 κx αx Δqmm

x + 0.5 κy αy Δqmm
y + 0.5 κz αz Δqmm

z ,

(57)

to a corner MLP value. As in the two dimensional case (see Eq. (28)) Δqmm
x ,

Δqmm
y , Δqmm

z are the differences caused by the minmod limiter in the corre-

sponding coordinate direction, respectively. The MLP corner values have to

fulfill the following condition

Qmin
i+κx/2,j+κy/2,k+κz/2 ≤ qMLP

i+κx/2,j+κy/2,k+κz/2 ≤ Qmax
i+κx/2,j+κy/2,k+κz/2 ,

(58)

from which αx, αy, and αz are derived. Again not all corners of a volume have

to be checked for a local extremum. However, in contrast to the two-dimensional

case and what is stated by Kim et al. [1], in 3D two corner points may cause
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a local maximum and two a local minimum. The first corner to be checked for

a maximum is Cmax
1 located at imax, jmax, kmax and for a minimum Cmin

1

located at imin, jmin, kmin. In the same way as in 2D the corner indices

imax imin

Δqmm
x > 0 i + 1

2 i − 1
2

Δqmm
x < 0 i − 1

2 i + 1
2

jmax jmin

Δqmm
y > 0 j + 1

2 j − 1
2

Δqmm
y < 0 j − 1

2 j + 1
2

kmax kmin

Δqmm
z > 0 k + 1

2 k − 1
2

Δqmm
z < 0 k − 1

2 k + 1
2

(59)

are obtained from the minmod differences in the corresponding coordinate di-

rection. The indices of the second point to be checked for a maximum (Cmax
2 )

and for a minimum (Cmin
2 ), respectively, follow from

Cmax
2 Cmin

2

|Δqx| < min (|Δqy|, |Δqz |) imin, jmax, kmax imax, jmin, kmin

|Δqy| < min (|Δqx|, |Δqz |) imax, jmin, kmax imin, jmax, kmin

|Δqz | < min (|Δqx|, |Δqy|) imax, jmax, kmin imin, jmin, kmax

.

(60)

It can be summarized, that from the eight corners of a 3D volume two corners

(Cmax
1 and Cmax

2 ) have to be checked for a local maximum and two corners

(Cmin
1 and Cmin

2 ) for a local minimum.

To illustrate the required check an example for a local maximum is given in

Fig. 6. We assume Δqmm
x = 10, Δqmm

y = 8, and Δqmm
z = 2 and it follows from

Eqs. (59) and (60) that the corners Cmax
1 located at i + 1/2, j + 1/2, k + 1/2

and Cmax
2 located at i + 1/2, j + 1/2, k − 1/2 have to be checked for a local

maximum. With αx = αy = αz = 2

qMLP
imax,jmax,kmax−qi,j,k = 20 , qMLP

imax,jmax,kmin−qi,j,k = 16 (61)

is obtained from Eq. (57) for the corners Cmax
1 and Cmax

2 , respectively. Both

corners have to be checked to be a local maximum. Without additional infor-

mation from neighbouring volumes it follows from Eq. (56) that

Qmax
imax,jmax,kmax − qi,j,k ≥ 10 , Qmax

imax,jmax,kmin − qi,j,k ≥ 10 . (62)

These values are smaller than the MLP values at both corners and limitation
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i-1/2, j-1/2, k-1/2

C1

min

C2

min

Figure 6: Volume i, j, k with corners (indicated by •) to be checked for a local maximum

(Cmax
1 and Cmax

2 ) or minimum (Cmin
1 and Cmin

2 ) in case of Δqmm
x = 10, Δqmm

y = 8, and

Δqmm
z = 2.

may be required. Due to the neglected diagonal values the inequality sign

appears in Eq. (62) and the actual values may be higher. If, for example, there

is a high value at the diagonal volume i+1, j+1, k+1 (qi+1,j+1,k+1−qi,j,k > 20)

it follows that Qmax
imax,jmax,kmax − qi,j,k > 20 and no MLP limitation is required

at the corner Cmax
1 . At the same time corner Cmax

2 still may require limiting.

It can be summarized, that two corners of a volume have to be checked for

a maximum and two for a minimum. The remaining corners do not need to be

checked.

Proof: Given |Δqmm
x | ≥ |Δqmm

y | ≥ |Δqmm
z | and using cell center values in

the coordinate directions only (i, j, k; i±1, j, k; i, j±1, k; i, j, k±1), the following

limits for the eight maximum corner values are obtained from Eq. (56)

Qmax
imax,jmax,k+κz/2 − qi,j,k ≥ |Δqmm

x | ,

Qmax
imax,jmin,k+κz/2 − qi,j,k ≥ |Δqmm

x | ,

Qmax
imin,jmax,k+κz/2 − qi,j,k ≥ |Δqmm

y | ,

Qmax
imin,jmin,k+κz/2 − qi,j,k ≥ |Δqmm

z | (63)

with κz = ±1. The right hand sides follow from the definition of the min-

mod limiter where, e.g. in x-direction, |qi+1,j,k − qi,j,k| ≥ |Δqmm
x | and |qi,j,k −

qi−1,j,k| ≥ |Δqmm
x | are valid. To neglect a corner in the search for a local ex-

tremum requires, that the MLP criterium is satisfied even for maximum values
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of α. Using Eq. (57) and αx = αy = αz = 2

qMLP
imax,jmax,k+κz/2 − qi,j,k = |Δqmm

x | + |Δqmm
y | ± |Δqmm

z | ≥ |Δqmm
x | ,

qMLP
imax,jmin,k+κz/2 − qi,j,k = |Δqmm

x | − |Δqmm
y | ± |Δqmm

z | ≤ |Δqmm
x | ,

qMLP
imin,jmax,k+κz/2 − qi,j,k = −|Δqmm

x | + |Δqmm
y | ± |Δqmm

z | ≤ |Δqmm
y | ,

qMLP
imin,jmin,k+κz/2 − qi,j,k = −|Δqmm

x | − |Δqmm
y | ± |Δqmm

z | ≤ |Δqmm
z |(64)

is obtained. Equations (63) and (64) are used to check if the MLP condition (58)

is satisfied. It follows, that the first conditions from Eqs. (63) and (64) are not

automatically fulfilled and have to be checked. This corresponds to the check of

points Cmax
1 and Cmax

2 . At the remaining corners the Eqs. (63) and (64) (lower

three lines) show, that the MLP condition is always satisfied. The proof may

be performed in the same way for a local minimum or different magnitudes of

|Δqmm
x |, |Δqmm

y |, |Δqmm
z |. �

The fact that two corners have to be checked in 3D for a maximum/minimum

complicates MLP. On one hand two independent checks have to be performed

from which some minimum/maximum has to be taken. On the other hand the

minus sign for one of the contributions to qMLP at corner Cmax
2 (or the plus

sign for one of the contributions to qMLP at corner Cmin
2 ) causes problems. For

example, if −αz|Δqmm
z | is a contribution to check corner Cmax

2 to be a local

maximum, then a reduction in αz does not decrease this contribution to the

maximum, but increases it. Therefore a simplified check is proposed

αx |Δqmm
x | + αy |Δqmm

y | + αz |Δqmm
z | ≤ 2 min (Qmax

1 − qi,j,k, Qmax
2 − qi,j,k + 2|Δqmm

min |) ,(65)

−αx |Δqmm
x | − αy |Δqmm

y | − αz |Δqmm
z | ≥ 2 max

(
Qmin

1 − qi,j,k, Qmin
2 − qi,j,k − 2|Δqmm

min |
)

(66)

to keep the computational effort low. These equations follow from Eq. (58)

by inserting Eq. (57) and changing the right hand sides to take the sec-

ond corners Cmax
2 and Cmin

2 into account. Here Qmax
1 and Qmax

2 are max-

imum corner values at points Cmax
1 and Cmax

2 , respectively, and |Δqmm
min | =

min (|Δqmm
x |, |Δqmm

y |, |Δqmm
z |) is the smallest absolute change from the three

coordinate directions. As in 2D, the checks for a maximum and minimum may
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be combined into a single MLP condition where

αx |Δqmm
x | + αy |Δqmm

y | + αz |Δqmm
z | ≤ 2 min (Qmax

1 − qi,j,k, Qmax
2 − qi,j,k + 2|Δqmm

min |,
qi,j,k − Qmin

1 , qi,j,k − Qmin
2 + 2|Δqmm

min | )
= Δqc (67)

has to be satisfied. Again Δqc defines the limit (obtained from surrounding cell

center values) for the reconstructed interface states.

There is another important difference between MLP in 2D and 3D which

does not become clear from previous publications. In 2D the minmod limiter

(αx = αy = 1) is a possible lower limit for MLP and thus prevents local extrema

at corner points. Moreover, the minmod limiter still is in the second order TVD

region. In 3D the MLP criteria may require αx, αy, αz < 1.

Proof: Given is |Δqmm
x | ≥ |Δqmm

y | ≥ |Δqmm
z |. If αx = αy = αz = 1 is used

for interface value reconstruction and if the corner with highest value Cmax
1 is

checked, it follows from the first line of Eq. (63)

Qmax
imax,jmax,kmax − qi,j,k = |Δqmm

x | (68)

as a lower limit, and from the first line of (64)

qMLP
imax,jmax,kmax − qi,j,k = 0.5 |Δqmm

x | + 0.5 |Δqmm
y | + 0.5|Δqmm

z | . (69)

Thus with αx = αy = αz = 1 the MLP condition

0.5 |Δqmm
x | + 0.5 |Δqmm

y | + 0.5 |Δqmm
z | ≤ |Δqmm

x | , (70)

is not satisfied if |Δqmm
y | + |Δqmm

z | > |Δqmm
x |. In case of |Δqmm

x | = |Δqmm
y | =

|Δqmm
z | this condition is fulfilled for αx = αy = αz = 2/3. �

5.1. MLP ld for three-dimensional flow

With the MLP condition (67) there is only one equation for three unknown

parameters αx, αy, and αz. As to avoid excessive numerical dissipation, the

upper limit is chosen in Eq. (67), corresponding to the equality sign

|ΔqMLP | = αx |Δqmm
x | + αy |Δqmm

y | + αz |Δqmm
z | = Δqc . (71)
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Figure 7: Realizable MLP ld region (lightly shaded volume) in 3D. The dark shaded plane

corresponds to Δqc = constant. The point of intersection of this plane with the mean gradient

direction (mgd), indicated with A, defines the solution and thus αx, αy, and αz .

As proofed before, this condition may require αx, αy, αz < 1. In principle

αx, αy, αz ∈ [2/3, 2] could be used. However, as to achieve a better agreement

between the mean flow direction and the gradient of the interface values, the

requirements on α are released and αx, αy, αz ∈ [0, 2] is allowed in the present

approach. This improves the convergence behaviour while the impact on the

accuracy of the solution is very small. Again there is a lower limit for Δqc which

does not allow αx, αy, and αz to simultaneously take small values. In the same

way Eq. (44) is derived in two-dimensional flow

Δqc
min = 2 max (|Δqmm

x |, |Δqmm
y |, |Δqmm

z |) (72)

follows in 3D, using direct neighbours of volume i, j, k only. Figure 7 shows the

possible MLP region for rx, ry, rz > 0 in |Δqx|-|Δqy|-|Δqz|-space by the lightly

shaded volume. As may be seen, the cuboid defined by αx, αy, αz ∈ [0, 2] is

narrowed by the plane Δqc
min = 2 |Δqmm

x | (this is the lower limit in the present

case) to a significantly smaller volume.

The MLP condition (71) defines a plane of constant Δqc. If the change in

one coordinate direction is frozen, the slope of this plane is minus one. While
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Δqc
min is the lower limit, the upper one is given by Δqc

max = 2 (|Δqmm
x | +

|Δqmm
y | + |Δqmm

z |). The corresponding plane would cross the point Pmax =

P (2 |Δqmm
x |, 2 |Δqmm

y |, 2 |Δqmm
z |) plotted in Fig. 7. Any Δqc higher than

Δqc
max results in αx = αy = αz = 2. An example for a plane of constant

Δqc is shown in Fig. 7 by the dark shaded area.

The determination of αx, αy and αz is based on the same criteria as in the

two-dimensional case:

1. The MLP condition (67) has to be satisfied to achieve, that the interface

values do not cause a local extremum at any of the corners of the volume.

2. Maximum values for αx, αy, and αz are required by using |ΔqMLP | = Δqc

(low diffusion).

3. The MLP interface values should have a gradient which corresponds to

the mean gradient direction.

First step in the determination of αx, αy, and αz is to calculate the coordinates

of the point of intersection A between the line of the absolute mean gradient

direction and the limiting plane |ΔqMLP | = Δqc = const. (see Fig. 7). The re-

quired mean gradient direction is obtained from second order central differences

|Δq̄x| = |qi+1,j,k−qi−1,j,k| , |Δq̄y| = |qi,j+1,k−qi,j−1,k| , |Δq̄z | = |qi,j,k+1−qi,j,k−1|
(73)

which are used to calculate the scaling factor

f = Δqc / (|Δq̄x| + |Δq̄y| + |Δq̄z|) (74)

from which the coordinates of the point of intersection A = A (Ax, Ay, Az)

Ax = f |Δq̄x| , Ay = f |Δq̄y | , Az = f |Δq̄z| (75)

are obtained. The coordinates of A have to be checked to be below the upper

boundary of the realizable MLP region

Ax ≤ 2 |Δqmm
x | , Ay ≤ 2 |Δqmm

y | , Az ≤ 2 |Δqmm
z | (76)
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Figure 8: Realizable MLP ld region (lightly shaded volume) in 3D. The dark shaded plane

corresponds to Δqc = constant. The point of intersection (A1 or A2) of this plane with the

mean gradient direction (mgd1 or mgd2) is located outside the MLP region and has to be

shifted back to the MLP boundary (U1 or U2).

(the lower limit is met automatically). In the following three cases are possible

which are treated separately.

A: Point A is in the realizable MLP region and satisfies Eq. (76). In this case

the point of intersection A = A (Ax, Ay, Az) = A (|ΔqMLP
x |, |ΔqMLP

y |, |ΔqMLP
z |)

is the final solution and the required αx, αy and αz values follow from

αx = |ΔqMLP
x | / |Δqmm

x | , αy = |ΔqMLP
y | / |Δqmm

y | , αz = |ΔqMLP
z | / |Δqmm

z | .

(77)

A corresponding example is given by point A plotted in Fig. 7.

B: Point A is outside the realizable MLP region according to Eq. (76) in one

coordinate direction only. Corresponding situations are shown for the points A1

and A2 in Fig. 8. In this case, one of the three conditions given above has to be

skipped. As in two-dimensional flow, MLP ld requires the first two conditions to

be fulfilled. Because |ΔqMLP | = Δqc is maintained, the final solution has to be
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located on the plane Δqc = constant. The first condition requires a shift back

to the outer MLP boundary. The third condition is violated and the gradient

of the interface values differs from the mean gradient direction. However, in

contrast to two-dimensional simulations, there is not a single solution for the

shift back to the outer MLP boundary. Due to the intersection of the plane

Δqc = const. with the outer MLP boundary, a line with slope minus one is

created (see e.g. the line crossing point U1 in Fig. 8). Any point on this line

is a valid solution with respect to the first two conditions, given above. The

question is now, which point on the line should be taken? The most obvious

choice would be the point, which causes the smallest change with respect to the

mean gradient direction. Because this solution is relatively costly, a more simple

approach is taken, which comes close to it: The solution point U is defined by

the smallest distance from A to U (U is located on the line of intersection on

the outer MLP boundary). In practice such a shift from A to U may be realized

by simple measures:

1. The distance hi = max (Ai − 2 |Δqmm
i |, 0) to the outer boundary is calcu-

lated for all coordinate directions i = x, y, z. It is checked, if Ai is outside

the outer MLP boundary (hi > 0).

2. If hi > 0 in one coordinate direction only:

(a) The i-coordinate of U = U (Ux, Uy, Uz) is calculated by Ui = Ai −
hi to lie exactly on the plane of the outer MLP boundary with

|ΔqMLP
i | = 2 |Δqmm

i |.
(b) The remaining two coordinates Uj , j = x, y, z and j �= i are obtained

from Uj = Aj + hi/2.

In this way Δqc is kept constant (Δqc
U = Δqc

A). It is simple to show, that a

move on a plane with x+ y + z = const. by −hi in one coordinate direction and

by hi/2 in the remaining two directions minimizes the distance between both

points on the plane (the proof is not given but easy to obtain). Next it has to

be checked, if the coordinates of U are inside the outer MLP boundary. Two

cases have to be distinguished.
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B1: Point U is within the realizable MLP region according to Eq. (76). In

this case U is the final solution and defines the required αi values (see e.g. U1

or U2 in Fig. 8).

B2: Point U is outside the realizable MLP region according to Eq. (76).

The shift from A to U has caused a violation of the outer MLP limit in one of

the Uj, j = x, y, z and j �= i coordinates and another shift is required. Because

Ui already is on the outer MLP i-boundary and because only one Uj may be

located outside, the second shift is a simple move from U = U(Ux, Uy, Uz)

along a line with slope minus one to S = S (Sx, Sy, Sz) as shown on the left

side of Fig. 9. It is achieved by:

1. The distances lj = max (Uj − 2 |Δqmm
j |, 0) to the outer j-boundaries are

calculated for the coordinate directions j = x, y, z and j �= i. It is checked,

which Uj is outside the outer MLP boundary (lj > 0).

2. If lj > 0:

(a) The i-coordinate remains constant because it already is located on

the outer boundary (Si = Ui). The j-coordinate of S is calculated by

Sj = Uj− lj to lie exactly on the plane of the outer MLP j-boundary.

Thus S is located on one of the three outer edges of the MLP region.

(b) The remaining coordinate Uk, k = x, y, z and k �= i, k �= j is calcu-

lated by Sk = Uk + lj .

S is the final solution and defines the required αi values. An example for this

procedure is given on the left side of Fig. 9.

C: Point A is outside the realizable MLP region according to Eq. (76) in two

coordinate directions. In this case two shifts (from A to U and from U to S)

have to be performed, because after the first shift, a final solution is impossible.

Proof: Given is a point A with Ai > 2 |Δqmm
i | in two coordinate directions

i = x, y, z. If Ai > 2 |Δqmm
i | point U is calculated by Ui = Ai −hi = 2|Δqmm

i |.
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Figure 9: MLP ld regions (lightly shaded volumes) in 3D. The dark shaded planes correspond

to Δqc = constant. The point of intersection (A) of this plane with the mean gradient direction

(mgd) is located outside the MLP region in one coordinate direction only (left side), in two

coordinate directions (right side). First shifts to U (or Ū in the right figure) are performed.

These points are still outside the MLP region and have to be shifted a second time to the final

position S.

The remaining coordinates of U are obtained from Uj = Aj +hi/2 for j = x, y, z

and j �= i. Because one of the Aj with j �= i already exceeds the outer MLP

limit, this remains valid if hi/2 > 0 is added. �
Thus two shifts are necessary, which are performed in the same way as

described in B and B2. Because A exceeds the outer MLP boundary in two

coordinate directions, these shifts may be performed in two ways, depending

on which shift is performed first (A-U-S or A-Ū-S, as shown on the right side

of Fig. 9). Irrespectively from which direction is taken first, the final solution

points S are identical.

Proof: Given is point A = A (Ax, Ay, Az) with |Δqi| > 2 |Δqmm
i | in two

coordinate directions i = x, y, z. If Ai exceeds the outer MLP boundary, point

U is calculated as described above. A second shift in j-direction (j �= i) is

performed and the final coordinates of the solution point S = S (Sx, Sy, Sz) are

Si = 2 |Δqmm
i |, Sj = 2 |Δqmm

j | and Sk = Ai + Aj + Ak − 2 (Δqmm
i | + Δqmm

j |),
with i, j, k = x, y, z and i �= j �= k �= i. The coordinates of S are independent
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from the order in which the shifts in i- and j-direction are performed. Thus, the

same result is obtained for i being the first and j the second shift, or reverse. �

The last possibility, that the coordinates of the point of intersection A exceed

the outer MLP boundary in all coordinate directions is of no importance.

Proof: If there is a point A with |Δqi| > 2 |Δqmm
i | in all coordinate direc-

tions i = x, y, z, then Δqc
A > Δqc

max. In this case there is no interaction of the

plane Δqc
A = const. with the MLP region and the MLP criteria is not violated.

�

MLP ld procedure for the calculation of αx, αy, αz ∈ [0, 2] in three-

dimensional flows

For i = x, y, z calculate |Δqmm
i | from Eq. (28), Δqc from the right part of Eq.

(67), and the coordinates Ai of point A from Eq. (75) and set αi = 2.

MLP ld

αx, αy, αz ∈ [0, 2]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if ( 2 (|Δqmm
x | + |Δqmm

y |) + |Δqmm
z |) > Δqc) then

do for i = x, y, z

hi = max (Ai − 2 |Δqmm
i |, 0)

Ui = Ai − hi , Uj = Aj + hi/2 for j = x, y, z and j �= i

f = hi/(hi + ε) with ε is a small number

l = f [ max (Aj − 2 |Δqmm
j |, 0) − max ( Ak − 2 |Δqmm

k |, 0) ]

j, k = x, y, z and j, k �= i and j �= k

Si = Ui , Sj = Uj − l , Sk = Uk + l

αn = Sn / |Δqmm
n | , An = Sn for n = x, y, z

end do

end if
(78)

This formulation avoids numerous if-else constructions and is easy to program.

The obtained αx, αy, and αz values can be used in Eq. (23) in combination

with any higher order approach for β. An advantage of MLP and MLP ld is,

that no free parameters are required. Moreover, the described MLP ld version

for three-dimensional flows passes over in the two-dimensional version, if the
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Figure 10: MLP region (lightly shaded volume) for the version of Kim et al. [1] using

αx, αy , αz ∈ [0, 2] in 3D. The dark shaded plane corresponds to Δqc = constant. The point

of intersection (A1 or A2) of this area with the mean gradient directions is located outside

the MLP region. It is shifted back to the outer MLP boundary (U1 or U2) by moves in the

corresponding coordinate directions.

gradient in the third direction becomes zero.

5.2. MLP of Kim et al. [1] in 3D

The 3D version of the MLP from Kim et al. [1] is nearly identical to the

procedure in two-dimensional flow. The newly developed MLP ld version and

the original MLP are identical, as long as the point of intersection between the

mean gradient direction and the gradient of the interface values A is within the

possible MLP region. If this is not the case, point A has to be shifted back to the

outer MLP boundary. In the version of Kim et al. this is done without keeping

Δqc constant. Instead, simple shifts along the different coordinate directions

are performed, as shown in Fig. 10. The points A1 and A2 are located outside

the MLP region and are vertically or horizontally shifted back to the outer MLP

boundary, respectively. As in 2D, these measures are relatively easy to achieve.

On the other hand, the problems explained for the 2D case remain valid in 3D.

If the point of intersection A is outside the MLP region, Δqc is reduced beyond
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the limit required to avoid a local extremum. Additionally, MLP limitations

may take place, where no limitation is needed.

6. AUSM+-up flux vector splitting

For calculation of the inviscid fluxes through a cell interface the AUSM+-up

flux vector splitting scheme of Liou [16] is used. The required primitive left

(L) and right (R) interface variables are calculated as described in Sect. 3 to

5 with accuracies up to fifth order. According to Liou the inviscid flux vector

f1/2 through an interface is splitted by

f1/2 = ṁ1/2 ΨL/R + p1/2 (79)

into a convective and a pressure flux. Based on the left and right interface values

of the enthalpy hL,R and the ratio of integral specific heat capacities γ̄L,R the

critical speed of sound a∗
L,R is calculated by

a∗
L,R =

√
2

γ̄L,R − 1
γ̄L,R + 1

Hn
L,R . (80)

Because multi-dimensional flows are treated, different critical speeds of sound

are used for the different coordinate directions due to total enthalpies Hn
L,R =

hL,R + 0.5 q2
L,R, which differ due to different interface velocities

qL,R = nx uL,R + ny vL,R + nz wL,R . (81)

In the last equation n = (nx, ny, nz) is the unit normal vector for a cell interface.

In this way a physically correct splitting between subsonic and supersonic flow

is obtained at any cell interface. From these values an interface acoustic speed

a1/2 = min
[

a∗
L

2

max(a∗
L, qL)

,
a∗

R
2

max(a∗
R,−qR)

]
(82)

is determined and subsequently the left and right state Mach numbers ML,R =

uL,R/a1/2 as well as an averaged Mach number M̄2 = 0.5 (u2
L +u2

R)/a2
1/2. Next
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the split Mach numbers M+ = M+(ML), M− = M−(MR) and the split pres-

sures P+ = P+(ML), P− = P−(MR) are calculated using

M±(ML, MR) = ± 1
4

(M ± 1)2 ± 1
8

(M2 − 1)2 |M | < 1,

=
1
2

(M ± |M |) |M | ≥ 1, (83)

P±(ML, MR) =
1
4

(M ± 1)2 (2 ∓ M) ± α M (M2 − 1)2 |M | < 1,

=
1
2

(1 ± sgn(M) · 1) |M | ≥ 1(84)

with α = 3/16 (−4+5 f2
a). Finally the averaged Mach number and the averaged

pressure

M1/2 = M+ + M− − Kp/fa max(1 − σM̄2, 0) (pR − pL)/(ρ1/2 a2
1/2),(85)

p1/2 = P+ pL + P− pR − Ku P+ P− (ρL + ρR) fa a1/2 (uR − uL) (86)

are obtained with fa = Mo (2 − Mo), M2
o = min (1, max (M̄2, M2

∞)), ρ1/2 =

(ρL + ρR)/2 and the model constants σ = 1, Ku, Kp ∈ [0, 1]. Based on the

averaged Mach number the mass fluxes follow from

ṁ1/2 = a1/2 M1/2 ρL M1/2 > 0,

ṁ1/2 = a1/2 M1/2 ρR otherwise, (87)

and the total inviscid flux from

f1/2 = ṁ1/2 ΨL + p1/2 ṁ1/2 > 0,

f1/2 = ṁ1/2 ΨR + p1/2 otherwise (88)

with Ψ = [1, u, v, w, H, q, ω, Y1, Y2, · · · , YNk−1] and p1/2 = p1/2 [0, nx, ny, nz, 0, · · · , 0].

For the supersonic test cases M∞ = 1 is chosen. The model constants Ku

and Kp have an influence on the convergence behaviour and are chosen to be

Ku = Kp = 0.25.

7. Results and Discussion

To demonstrate the improvements in accuracy, stability, and convergence

which are achieved by MLP and in particular the higher order MLP versions, a
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number of laminar and turbulent test cases are investigated. In addition to the

limiter functions described above, the second order central discretization (with

second and fourth order artificial viscosity) of Jameson et al. [26] is included in

the study. With exception of the central difference scheme, all approaches use

the AUSM+-up flux vector splitting of Liou [16] to calculate the inviscid fluxes

at the cell interfaces.

7.1. Two-dimensional Turbulent Flow Over a Backward Facing Step

The first test case considered is a turbulent Mach 2 flow over a backward

facing step, which has been investigated experimentally by McDaniels et al.

[27]. The channel has a length of 45 mm, a step height of 3.18 mm, and,

after the step, a channel height of 21.29 mm. The computational grid uses two

blocks with 112 · 80 and 144 · 112 volumes, respectively. It is extremely fine

in the near wall regions and achieves y+-values below one, required for the low-

Reynolds number q-ω turbulence model [17]. The cell aspect ratio is up to 850

near solid walls. Inlet profiles for the simulation have been calculated with the

same code to match the experimentally measured boundary layer thickness of

δ = 1.45 mm at the x = 0 location. Figure 11 shows the calculated pressure

distribution using the fourth order MLP ld scheme. A good agreement between

simulation and experiment has been obtained using the second order central

discretization with artificial viscosity [28]. The differences to the results of

the present higher order flux vector splitting schemes with and without MLP

are small. This is probably due to the very fine grid for a channel of 45 mm

length and 21 mm height only. For steady state simulations, the improvements

achieved by the fourth/fifth order discretization (in contrast to a low diffusive

second order discretization) are limited to regions where the behaviour of the

flow variables is non-linear. In the present case such a region is the recirculation

zone downstream of the backward facing step. Figure 12 shows vertical profiles

of the velocity component u (left side) and of the turbulence variable q (q =
√

k,

k - turbulent kinetic energy, right side) at the position x = 5 mm. Both figures

show results using the 4th order MLPld scheme and the second order van Leer
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MLPld scheme on two grids: the standard grid (fine) and a coarse grid, where

every second grid point in both coordinate directions is neglected. While in

the smooth parts of the flow field the results are very close together, differences

occur in the recirculation zone. The comparison with simulations using a coarse

grid shows, that the fourth order coarse grid simulation is located right between

the corresponding second order coarse and second order fine grid simulation.

Thus a grid refinement by a factor of approximately 1.5 is required (in every

coordinate direction) to achieve the same results with the second order van Leer

MLPld scheme as with the fourth MLPld discretization (in strongly non-linear

regions). Because the additional effort in CPU time for the fourth/fifth order

scheme is negligible, the higher order schemes are recommended.

Convergence histories for this test case are plotted in Fig. 13 for a number

of different discretizations. On the left side, averaged, normalized, absolute

density residuals are plotted versus the number of iterations. On the right side,

corresponding turbulence residuals (for q) are shown. As may be seen from

both figures, convergence using the standard van Leer (vL) limiter stalls after a

residual reduction of two orders of magnitude. All other second order schemes

converge at similar rates, as far as the density residual is concerned. Besides

the van Leer MLP scheme of Kim et al. [1] with αx, αy ∈ [0, 2], this includes

the newly proposed MLP ld scheme with αx, αy ∈ [1, 2] and αx, αy ∈ [0, 2], a

minmod limiter based scheme, and the central difference scheme. Concerning

the turbulence residuals, there is a stall in convergence for the MLP ld scheme

using αx, αy ∈ [1, 2] after three orders of magnitude. This scheme is the least

dissipative of the three MLP schemes investigated. Obviously more dissipation

is needed, which enables the MLP scheme of Kim et al. and the MLP ld scheme

(both with αx, αy ∈ [0, 2]) to converge. Concerning the quality of the obtained

results, the differences between the three MLP schemes are minimal. In case of

MLP ld with αx, αy ∈ [1, 2] the stall of convergence is caused by a few volumes

only, located directly at the oblique shock wave. Based on this experience it

is recommended, to use the somewhat more dissipative version MLP ld with

αx, αy ∈ [0, 2].
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On the left side of Fig. 14 convergence histories for the higher order schemes

are plotted (one second order result is shown for comparison). While the third

and fourth order MLP ld schemes converge at nearly the same rate as the corre-

sponding second order scheme, the fifth order discretization causes a stall after

a residual reduction of two orders of magnitude. The stronger upwind character

of the fourth order scheme could be an explanation for its better behavior in this

supersonic test case. Figure 14 (right side) shows normalized pressure profiles

along the channel height at x = 40 mm. This figure is an extension of the region

9.6 mm ≤ y ≤ 11.2 mm and thus a cut through the pressure increase caused by

the reattachment shock (see Fig. 11). As expected, the shock is smeared the

most by the minmod limiter, followed by the central discretization scheme. The

good convergence properties of both schemes are paid for by an increased nu-

merical dissipation. The remaining MLP schemes are relatively close together.

Thus the higher accuracy of the MLP schemes is combined with convergence

rates, which are comparable to more dissipative approaches.

Finally the newly proposed MLP ld scheme is compared with the MLP ap-

proach of Kim et al. on a sequence of increasingly coarser grids (both versions

are based on αx, αy ∈ [0, 2]). Grid 1 is the original fine grid and the grids 2 to

4 are always obtained by neglecting any second grid point in both coordinate

directions. The comparison is performed using the fourth order upwind biased

discretization. Figure 15 shows extensions of vertical pressure profiles through

the reattachment shock at the positions x = 20 mm (left side) and x = 40

mm (right side), respectively. On the fine grids, the differences between both

approaches are relatively small. However, they increase with decreasing grid

size. As may be seen from both figures, MLP ld is always closer to the solution

on the next finer grid. Due to the smaller amount of added viscosity the shock

resolution improves.

7.2. Two-dimensional Turbulent Supersonic Hydrogen Mixing Channel

This test case is based on experimental investigations performed at the Uni-

versity of Stuttgart [29]. Subject is a Mach 2 supersonic mixing channel, where
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hydrogen is injected through the blunt end of a strut injector, located at the

channel axis. The simulated channel length is about 500 mm, the channel

height is 35.4 mm. The simulation starts with sonic inlet conditions at the

nozzle throat, where the supersonic flow is created in the experiment. The

hydrogen nozzle inside the strut is included in the computational grid. For

turbulence closure, a low Reynolds number q-ω turbulence model is used. To

achieve y+-values smaller or around one, very fine grids are required at all near

wall regions. Distances from the first cell centers to the walls are smaller than

0.5 · 10−6 m. A three block grid with 472 · 32, 432 · 56 and 672 · 96 volumes

is used in these simulations. The cell aspect ratios reached in the boundary

layer are higher than 2000. More details concerning this test case as well as

previous simulations (using the central difference scheme only) may be found

in Ref. [29]. Figure 16 shows calculated pressure contours for the second order

central difference scheme (upper figure) and the fourth order MLP ld scheme

(lower figure). Up to the end of the shown channel part, the shock waves in-

duced by the strut are reflected approximately nine times. Moreover, the shocks

cross large density gradients due to the injected hydrogen at the channel axis.

While the central difference scheme performed well in the previous test case,

here the shocks get smeared strongly due to the multiple wall reflections. This

smearing is caused by the added second and fourth order artificial viscosity [26]

which is required to avoid oscillations at shock waves. Using AUSM+-up and

the fourth order MLP ld scheme, a much better shock resolution is obtained.

Figure 17 shows wall static pressures along the channel length for different dis-

cretization approaches. Large differences between the MLP ld schemes and the

central difference scheme are observed. Moreover, the pressure level of the cen-

tral difference scheme is significantly higher. The differences between the second

and the fourth and fifth order MLP ld schemes are much smaller. Nevertheless

there is a clearly visible improvement achieved by the fourth and fifth order

MLP ld schemes, when compared to the second order MLP ld discretization.

Even for this relatively complex test case with multiple shock reflexion, good

convergence properties are obtained (not shown). More than five orders of
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magnitude residual reduction (for both density and turbulence residuals) are

obtained with the fifth order MLP ld scheme. This is more than one order of

magnitude more than with the standard MLP scheme of Kim et al.

7.3. Laminar Supersonic Flow over Intersecting Wedges

The first three-dimensional test case is a laminar supersonic flow over two in-

tersecting wedges. The corresponding experiment has been performed by Char-

wat and Redekeopp [30]. Figure 18 shows a sketch of the geometrical setup. In

the present investigation, the corner flow is symmetric and both wedge angles

are identical (α = β = 12.2◦). The inflow Mach number is 3.17 and the Reynolds

number is 6.73 ·106 1/m, respectively. Displacement effects and viscous-inviscid

interaction can have an influence on the entire inviscid flow structure further

downstream [31]. This test case is well suited to investigate three-dimensional

flow separation, its interaction with shock waves, as well as shock resolution

in inviscid parts of the flow field. Figure 19 shows calculated density contours

at x = 25.4 mm, corresponding to a Reynolds number of 1.63 · 105. As can

be seen from this figure, the bow shocks caused by the wedges do not inter-

sect but are joined by a third shock [30]. The internal flow field includes two

strong, curved, embedded (inner) shocks, which terminate at the wedges sur-

faces. There is a considerable extension of the shock disturbed boundary layer

and the disturbances laterally spread far beyond the locations of the embedded

shock waves. From the triple points two slip surfaces start in the direction of

the corner. As will be seen later, a special feature of the laminar intersecting

wedge flow is the curvature of the inner shocks, which cause expansion fans,

starting from the triple points. Besides the numerically obtained density distri-

bution, Fig. 19 additionally shows measured locations of the two wedge shocks,

the corner shock, and the embedded shocks (indicated by circles) as well as the

slip surfaces (shear layers, indicated by squares). The experimental structures

are determined from Pitot pressure survey mappings. All experimental flow

features are well predicted by the simulation.

The numerically simulated volume covers a region of 30 mm · 60 mm ·

44



60 mm in x-, y- and z-direction, respectively. At the position x = 25.4 mm

experimental data are available and all results shown later refer to this axial

position. The computational grid used in all simulations consists of 64 · 128

· 128 volumes in x-, y- and z-direction, respectively. The density distribution

given above has been obtained using the fourth order MLP ld scheme. The

corresponding wall surface pressure distribution at x = 25.4 mm is plotted in

Fig. 20. Again, the overall agreement between simulation and experiment is

quite good. Differences only occur in the outer region, where the inner shock

reaches the wedge surface. There the experimental pressures are lower than in

the simulation. In the experiment there is an expansion between y/x = 0.5

and y/x = 0.9 which is associated to turning the flow away from the corner.

However, as shown in the paper of Charwat and Redekeopp [30], the appearance

of such a large range for the expansion is strongly Mach number dependent. It

does not appear in this way at Mach numbers lower (Ma = 2.78) or higher (Ma

= 3.64) than the one investigated. Thus, not too much importance is given

to this discrepancy. Because only for the investigated Mach number detailed

experimental data is available, this one has been chosen.

The increase in pressure at 0.2 < y/x < 0.4 is not a ”simple” shock [30],

but exhibits considerable overshoots in both, up- and downstream direction. As

noted by Charwat and Redekeopp [30], upstream of the shock the pressure is

higher than the undisturbed two-dimensional pressure (p/p0 > 1) over a length

more than twice the distance from the corner to the shock (from y/x ≈ 0.4

up to y/x > 0.8). Downstream of the shock there is an overshoot followed

by an expansion and a nearly constant pressure level very close to the wall

(y/x < 0.18) [30]. These features are well reproduced by the simulation. For

more information concerning the physical details of this test case see Ref. [30].

In Fig. 21 convergence behaviours are compared for a number of different

discretization techniques. On the left side density residuals are plotted for a

selection of second order schemes. Again convergence stalls after a residual

reduction by two orders of magnitude using the van Leer (vL) limiter. The

most dissipative minmod limiter on the other hand, achieves the best results.
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MLP clearly improves the level of residual reduction: the version of Kim et al.

(αx, αy, αz ∈ [0, 2]) achieves a reduction by more than four, the new MLP ld

version even by five and a half orders of magnitude. The level of convergence

for MLP ld is comparable to the much more dissipative central difference scheme

with second and fourth order artificial viscosity. At the start of the simulations

all schemes converge at nearly the same rate. On the right side of Fig. 21

convergence histories for the higher order MLP schemes are plotted. While

Kim et al. [9, 1] reported better convergence levels for the high order schemes

in many cases, this is not observed in the present study. As may be seen from

the right figure, the level of residual reduction reduces from the second to the

fourth, and from the fourth to the fifth order MLP ld scheme. Nevertheless, the

convergence behaviour of the fifth order scheme is still good and significantly

better, than of the second order van Leer scheme without MLP. Moreover, the

level of residual reduction achieved by the newly proposed MLP ld scheme is

somewhat better, than for the version of Kim et al. [1]. This is unexpected

because ΔqMLP = Δqc is kept constant in case of MLP ld, independently from

the mean gradient direction. Thus the scheme should be less dissipative. A

possible explanation for this behaviour is, that, as described in Sect. 5.1, two

corner points are checked for a maximum and two for a minimum in case of

MLP ld, while only one point is checked in the version of Kim et al. [1].

To investigate influences of the grid resolution on the convergence behaviour,

a second series of simulations has been performed, using a coarser grid with 64

· 64 · 64 volumes in x-, y- and z-direction, respectively. Corresponding results

are given in Fig. 22. There are only small differences caused by the grid.

In case of the second order schemes (left side) the levels of residual reduction

improve for the conventional van Leer limiter as well as for the MLP ld van Leer

scheme, compared to the finer grid. The version of Kim et al. achieves slightly

worse results. In case of the higher order schemes (right side), convergence

improves significantly for the fourth order MLP ld discretization, while the level

of convergence of the fifth order scheme gets a little bit worse. No general trend

can be deduced from this study.
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The shock resolutions achieved by the different schemes are investigated

next. Figure 23 (left side) shows normalized wall static pressures at x = 25.4

mm as a function of y/x. Differences between the different approaches become

visible in the (physically correct) overshoots in the up- and downstream region of

the shock. The minmod limiter and the central difference scheme add the highest

amount of numerical dissipation. The remaining discretization techniques are

close together. On the right side of Fig. 23 results from higher order MLP ld

simulations are shown in an extension, which only covers the pressure increase

by the shock wave. The circles correspond to cell centers of the computational

grid. While the results from the fourth and fifth order schemes are very close

together, their shock resolution is somewhat better than that of the second order

MLP ld scheme.

The pre- and post-shock overshoots observed in wall static pressure have

to disappear, if the wedge shock is crossed in considerable distance from the

corner. Figure 24 (left side) shows such a normalized static pressure profile at

x = 25.4 mm and z = 58.1 mm. Given is an extension of the region, where the

wedge shock is located. No overshoots are observed in this figure from any of

the second order discretization schemes. The higher order schemes (not shown

in this figure) are very close to the second order MLP versions at this position.

Finally the newly proposed MLP ld scheme is compared with the MLP ap-

proach of Kim et al. [1] on a sequence of increasingly coarser grids. A similar

comparison has been given before for the 2D flow over a backward facing step.

The fifth order discretization and αx, αy, αz ∈ [0, 2] is used for both MLP ver-

sions. Grid 1 is the original fine grid, for grid 2 any second grid point is neglected

in the y- and z direction, and the grids 3 and 4 are always obtained from the

next finer grid by neglecting any second grid point in all coordinate directions.

Figure 24 (right side) shows an extension of the wall static pressure in the re-

gion where the shock wave reaches the wall. As in the two-dimensional case, on

the fine grids the differences between both approaches are small. Reasons are

the high order of the discretization and the relatively fine grids for the small

physical domain. However, the differences increase with decreasing grid size.

47



As before the MLP ld solutions are closer to the solution on the next finer grid

than the solution with the MLP version of Kim et al. [1].

7.4. Turbulent Supersonic Flow over Intersecting Wedges

Concerning the geometry and inflow conditions this test case is nearly iden-

tical to the previous one. Main difference is an increased Reynolds number of

6.85 · 107 1/m which causes a turbulent flow field. The corresponding exper-

iment has been performed by West and Korkegi [31]. Again, two symmetric

intersecting wedges are the experimental basis as illustrated in Fig. 18. In

this case the wedge angles are α = β = 9.48◦ and the inflow Mach number is

3. Figure 25 shows calculated density contours for the x = 87.6 mm position,

corresponding to a Reynolds number of approximately 6 · 106. In accordance

with the laminar case, two wedge shocks and a corner shock are obtained. In

addition to the numerical results Fig. 25 also shows measured locations of the

two wedge shocks, the corner shock, and the embedded shocks (indicated by

circles) as well as the slip surfaces (shear layers, indicated by squares). The

curved embedded shocks from the laminar case are straight in this turbulent

flow field. As a consequence, the expansion fans, starting at the triple points,

disappear. The shock structure now is essentially independent of viscous effects.

Both shock structures and shear layers are well predicted by the simulation.

The numerical simulations of this test case cover a region of 100 mm · 152.4

mm · 152.4 mm in x-, y- and z-direction, respectively. At the position x =

87.6 mm experimental data are available and all results shown later refer to this

axial position. The computational grid used in all simulations consists of 100 ·
164 · 164 volumes in x-, y- and z-direction, respectively. The q-ω low-Reynolds

number turbulence closure [17] is used, which requires very fine grids in the

near wall region. With exception of the tip of the wedge, all y+-values of near

wall cell centers are below one. The density distribution shown above has been

obtained using the fourth order MLP ld scheme. The corresponding wall surface

pressure distribution at x = 87.6 mm is plotted in Fig. 26. Again, the over-

all agreement between simulation and experiment is quite good. Because the
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shock structure is nearly independent from viscous effects, the differences be-

tween the numerical schemes becomes relatively small. In the vicinity of shock

waves the discretization order is reduced and the behaviour of the fourth/fifth

order schemes and the second order schemes approach each other. This be-

comes obvious on the left side of Fig. 27 where normalized wall static pressure

distributions at the position x = 87.6 mm are plotted for a number of different

discretization techniques. All results are very close together. On the right side

of Fig. 27 an extension of the pressure profile at the position x = 87.6 mm and

z = 148 mm is shown. These profiles confirm the small differences caused by

the discretization techniques employed. Differences between a low dissipative

second order scheme and the fourth/fifth order schemes are limited to regions,

where the profiles of the flow variables have a non-linear behaviour. Figure 28

shows the velocity components v (left side) and w (right side) in dependence of

the y-coordinate at x = 100 mm and h = 15 mm above the lower wall. Given are

simulations using the second order van Leer MLP ld scheme and the fifth order

MLP ld discretization on two grids. Fine is the standard grid and the coarse grid

is obtained by neglecting any second grid point in all coordinate directions. The

results are similar as for the backward facing step test case. In the non-linear

parts the fifth order scheme achieves results on the coarse grid, which are right

between the second order coarse grid and the second order fine grid simulation.

Even if the improvements are small, there still is an improvement by using the

higher order schemes for this steady state test case. Because the computational

effort is nearly the same, the high order scheme is recommended.

Even if the pressure profiles are relatively close together, the convergence

histories for the different schemes considerably differ. Figure 29 shows density

(left side) and turbulence (q variable, right side) residuals over the number of

iterations for the different discretization techniques. As before the standard

van Leer limiter achieves a residual reduction by two orders of magnitude only.

MLP significantly improves this behaviour. The second order van Leer MLP ld

scheme reduces the residual levels by four orders of magnitude. For the fifth

order MLP ld scheme, convergence is even better and nearly reaches that of
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the dissipative minmod limiter. The convergence behaviour for the turbulence

residuals is comparable or even better than for the density. A very positive point

for the higher order MLP ld schemes is, that the turbulence equations, which

often suffer from stability problems caused by stiffness, show no difference to

the remaining flow variables. Thus MLP ld has proved to work reliably even in

cases with low-Reynolds number turbulence closure.

7.5. Subsonic Model Rocket Combustor

The final test case is an unsteady subsonic flow in a model rocket combustor.

The corresponding experiment has been performed at the Pennsylvania State

University [32]. It has been designed to characterize the wall heat transfer,

which is an important issue in rocket combustor design. The combustor is

axisymmetric and has a diameter of 38.1 mm and a length of 286 mm. Two

upstream preburners produce oxidizer-rich and fuel-rich gases, respectively. The

combustor is operated at 5.42 MPa pressure. Details concerning geometry and

operating conditions may be found in Ref. [32], details concerning the simulation

in Ref. [33, 34]. In this paper, a comparison between second and fifth order

discretizations will be given only.

As shown in Ref. [33], a steady RANS (Reynolds Averaged Navier-Stokes)

simulation of this test case did not achieve satisfactory results. Thus, unsteady

simulations (URANS) have been performed. Due to the unsteadiness of the

test case, the differences between second order and the fourth/fifth order dis-

cretizations are much more pronounced. Combustion is described by finite-rate

chemistry, based on the reaction mechanism of Ó Conaire [35]. This kinetic

scheme is well suited for high pressure hydrogen combustion. For turbulence

closure the q-ω low-Reynolds number turbulence model is used. In the exper-

iment combustor wall temperatures have been measured. These temperatures

are use in a least square fit to obtain the wall temperatures for the numerical

simulation. The computational grid has about 215000 volumes and is strongly

refined near the oxidizer post tip and at all near wall regions. The chosen

timestep for the simulation is 0.1 microseconds. After 10 milliseconds, time
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averaging of the flow variables is started (one flow through time is about 8.3

milliseconds). Figure 30 shows averaged temperature fields for this combus-

tor. The results shown in the upper figure are obtained with the AUSM+-up

flux vector splitting and the second order van Albada limiter to reconstruct left

and right cell interface states. Results shown in the lower figure are based on

the same flux vector splitting, however, with interface states calculated with

the fifth order MLP ld reconstruction. As can be seen from the temperature

plots (see Ref. [34] for other variables), there are large differences in the results

caused by the different discretization techniques. Both location and size of the

flame is strongly influenced by the chosen discretization technique despite the

fact, that the computational grid already is extremely fine (for a axisymmetric

two-dimensional simulation). This is in contrast to the steady state simula-

tions shown before, where the improvements obtained using a fourth/fifth order

scheme have been relatively small. The differences become visible in the cal-

culated wall heat fluxes too, which are plotted in Fig. 31 together with the

experimentally measured values. The increase in heat flux in the front part of

the combustor as well as the maximum value are predicted very well by the fifth

order simulation. Further downstream the decreasing heat flux is overpredicted

by both discretization techniques compared to the experiment. However, the

fifth order simulation achieves better results than the second order approach.

Considering the complexity of this test case, the agreement between the fifth

order MLP ld simulation and the experiment is very good.

8. Conclusions

The multi-dimensional limiting process (MLP) of Kim et al. [1] in its three-

dimensional version has been analysed to understand, how the different flow

directions interact during interface state reconstruction. To accomplish this, a

different approach has been used, compared to the derivations in the original

paper. It was found to be important, that the gradient of the limited inter-

face values agrees well with the mean gradient direction of the corresponding
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variables. Based on these investigations, a modified MLP version (MLP ld low

diffusion) has been proposed, which achieves higher α values (and thus less dif-

fusion) in cases, where strong differences between the mean gradient and the

gradient of the limited interface values occur. This is the case in the vicinity of

discontinuities. Diffusion is kept as low as possible while still satisfying the MLP

condition, independently from the mean gradient direction. By this measure lo-

cal extrema at the corners of a volume are avoided. For three-dimensional flow

it was found, that two corners of a volume have to be checked for a maximum

and two for a minimum. All described features are considered in MLP ld.

The original and the newly proposed MLP versions are used for the first

time to simulate complex turbulent test cases with and without combustion.

From these results it is concluded, that the convergence properties of the new

version are at least comparable to the original MLP. In some cases it performed

even better. It was found advantageous to use the range αx, αy, αz ∈ [0, 2]

to improve the convergence behaviour while the impact on the numerical re-

sults is extremely small. If the computational grid becomes very fine, results

from MLP ld and the original MLP version of Kim et al. agree very well. On

coarse grids however, MLP ld is closer to the results obtained on a finer grid.

Moreover, MLP ld has proven to work in a stable manner with low-Reynolds

number turbulence closures and combustion. As already observed by Kim et al.

[9, 1], MLP stabilizes the numerical scheme. Thus it is an efficient and simple

method to extend conventional second order schemes to higher accuracies and

at the same time improve convergence. This is especially attractive for unsteady

simulations.
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[28] P. Gerlinger, D. Brüggemann, An implicit multigrid scheme for the com-

pressible navier-stokes equations with low-reynolds-number turbulence clo-

sure, Journal of Fluids Engineering 120 (1998) 257–262.

55
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Figure 11: Calculated pressure contours for a supersonic flow over a backward facing step

using the fourth order MLP ld scheme.
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Figure 12: Vertical profiles of the velocity component u (left side) and the turbulence variable

q (right side) at x = 5 mm using different discretization techniques (vL - van Leer limiter).

Symbols are shown for every second grid point.
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Figure 13: Convergence histories (left side density, right side turbulence residuals) for back-

ward facing step simulations using different second order discretization techniques (vL - van

Leer limiter).
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Figure 14: Convergence histories (left side) for backward facing step simulations using different

higher order discretization techniques. Normalized pressure profiles (right side) across the

shock wave at x = 40 mm versus channel height (vL - van Leer limiter).
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Figure 15: Normalized pressure profiles across the shock wave at x = 20 mm (left side) and

x = 40 mm (right side) versus channel height. Simulations with fourth order MLP ld and the

MLP version of Kim et al. using different fine grids (grid 1 finest, grid 4 coarsest grid).
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Figure 16: Pressure contours for a Mach 2 supersonic mixing channel with planar hydrogen

strut injector. Results of simulations with second order central differences and artificial vis-

cosity (top) and fourth order MLP ld discretization (bottom). The y-coordinate is stretched

by a factor of two.
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Figure 17: Wall static pressures along the channel length of a Mach 2 supersonic mixing

channel. Results are compared for simulations using the second, fourth, and fifth order MLP ld

discretizations, and a second order central difference scheme.
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Figure 18: Sketch of the experimental setup to study the corner flow between two intersecting

wedges.
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Figure 19: Calculated density contours at x = 25.4 mm for the laminar flow between two

intersecting wedges. The simulation used the fourth order MLP ld scheme. Symbols indicate

experimentally obtained flow structures (circles show the wedge shocks, the corner shock and

the embedded shocks, squares slip surfaces).
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Figure 20: Experimental (two sets of measurements) and numerical wall static pressures at x

= 25.4 mm for the laminar flow between two intersecting wedges. The simulation used the

fourth order MLP ld scheme.
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Figure 21: Convergence histories for a laminar supersonic flow over intersecting wedges. On

the left side results of second order schemes, on the right side of higher order MLP schemes

(MLP ld and MLP version of Kim et al. [1] with αx, αy ∈ [0, 2] ) are given.
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Figure 22: Convergence histories for a laminar supersonic flow over intersecting wedges using

a coarse computational grid. On the left side results of second order schemes, on the right

side of higher order MLP ld schemes are given.
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Figure 23: Wall static pressures at x = 25.4 mm for a laminar flow over two intersecting

wedges. The simulations used different second order discretizations (left side) and higher

order MLP ld discretizations (right side). On the right side an extension of the shock region

is shown.
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Figure 24: Laminar flow over two intersecting wedges. Left side: Static pressures at x = 25.4

mm and z = 58.1 mm. The simulations used different second order discretizations. Right

side: Wall static pressures at x = 25.4 mm for simulations with the fifth order MLP ld scheme

and the MLP version of Kim et al. on different fine grids (grid 1 finest, grid 4 coarsest grid).
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Figure 25: Calculated density contours at x = 87.6 mm for a turbulent flow over two in-

tersecting wedges. The simulation used the fourth order MLP ld scheme. Symbols indicate

experimentally obtained flow structures (circles show the wedge shocks, corner shock, and the

embedded shocks, squares slip surfaces).
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Figure 26: Experimental and numerical wall static pressures at x = 87.6 mm for a turbulent

flow over two intersecting wedges. The simulation used the fourth order MLP ld scheme.
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Figure 27: Wall static pressures (left side) at x = 87.6 mm for a turbulent flow over two

intersecting wedges using different discretization techniques. Static pressures at x = 87.6 mm

and z = 148 mm (right side) using different discretization techniques (extension of the shock

region).
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Figure 28: Profiles of the velocity components v (left side) and w (right side) in dependence

of the y-coordinate at x = 100 mm and h = 15 mm above the lower wall. The simulations

use different discretization techniques (vL - van Leer limiter). Symbols are shown for every

second grid point.
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Figure 29: Convergence histories (left side density, right side turbulence q residual) for a

turbulent flow over two intersecting wedges.

Figure 30: Calculated averaged temperature distributions for the PennState model rocket

combustor [32]. In the upper figure a second order discretization with van Albada limiter is

used, the lower figure is based on the fifth order MLP ld scheme.
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Figure 31: Experimentally measured [32] and simulated wall heat fluxes of the PennState

model rocket combustor. Numerical results are for a second order scheme with van Albada

limiter and a fifth order MLP ld scheme.
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