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Exploiting Elastic Energy Storage for Cyclic Manipulation:
Modeling, Stability, and Observations for Dribbling

Sami Haddadin, Kai Krieger, and Alin Albu-Schaffer

_ Abstract— For creating robots that are capable of human juggling without the need of active ball tracking, as thefat
like performance in terms of speed, energetic properties, @  motion is stabilized by the shape of the juggling paddle. In
robustness, intrinsic compliance is a promising design eheent. [8] the authors compared &M, optimal controller with the

In this paper we investigate the effects of elastic energy @tage . : . Ay
and release for ball dribbling in terms of cycle stability. We base ~Prévious open-loop solution, which turned out to have simil

the analysis on error evolution, peak power performance duing ~ Performance characteristics. ] o

hand contact, and robustness with respect to varying hand In this paper we present the analysis of an elastic dribbling
stiffness. As the ball can only be controlled during contactan  robot with one DoF. This is an interesting problem in order
intrinsically elastic hand extends the contact time and impoves 15 further understand how intrinsic elasticity can be used

the energetic characteristics of the process. As a human ibk . : - .
to dribble blindly, we decided to focus on the case of contact [© achieve high-performance and energy efficiency during

force sensing only, i.e. no vision is used in our approach. dynamic and/or repetitive tasks as e.g. throwing [1], wadki
[9] and batting [10]. Several questions arise when intansi
I. INTRODUCTION elasticity is taken into account. A particularly importamte

Actively compliant robots have found their way to mar-is how to select the spring stiffness for optimally achigyvin
ket with the launch of the DLR Lightweight Robot Il a given task. Our aim is to analyze this by considering
(LWR-IIl) that was recently commercialized as the KUKAthe dribbling problem, as this poses high demands on the
Lightweight Robot. These robots make it possible to dexterobot in terms of speed, dexterity, and robustness. A rather
ously manipulate objects and to interact with dynamic anihtuitive benefit why compliance is desired, which however
(partially) unknown environments. Along this line of resga has not been shown up to now, is that the robot should be
the design of systems with intrinsic compliance has drawable to sustain longer ball contact over a longer time period
significant attention. The approach has been motivated lepmpared to stiff robots. In turn, this should yield a better
the possibility to provide compliant behavior for the eatir opportunity to robustly control the ball. Besides, a furthe
mechanical bandwidth, which is of course much larger thaconsideration that is still to be validated is that the eperg
the one of an active compliance loop. Furthermore, goddansfer between robot and ball should be a much slower
shock resistance and the ability to dynamically store angrocess and thus require less peak power with smaller hand
release energy are main motivations for the design choicgtiffnes. Before treating these essential questions, \stedir-
The latter was recently exploited for explosive motions aalyze the stability of the system, give an observation metho
e.g. in throwing [1]. Based on an optimal control formulatio for tracking the ball based on proprioceptive force sensing
the use of the joint elasticity enables the robot to reacbnly, and provide a stability analysis for this observation
link speeds that are significantly larger than the maximuracheme.
motor speed. In this paper we exploit intrinsic elasticity f  The paper is organized as follows. In Section Il we
cyclic object manipulation based on ball dribbling with andescribe the considered hybrid system and provide a solutio
intrinsically compliant robot. for a periodic cycle. In Section Ill the stability of the

Related hybrid object manipulation problems have beetalculated periodic cycle is analyzed. Then, in Sec. IV, we
investigated for quite some time. Robot dribbling, e.g.swagive a solution for tracking the ball by measuring contact
first introduced in [2]. The authors used a half-cylindricaforces during the hand contact phase only and also provide a
tube for mapping the system to2aD problem. The control stability proof for this observer. Section V gives simudati
is reactive and pushes the ball downwards if a contact iesults that are compared to human dribbling and provide
detected. [3] utilizes a high-speed multi-fingered hand fansight into how varying hand stiffness affects peak power,
dribbling a ping-pong ball. This experiment was used t@ontact forces, cycle robustness, and energy flows.
evaluate high-speed vision for ball tracking. [4] introdda
basketball playing industrial robot, utilizing a solid faas Il. MODELING
hand. The control mainly relies on the ball tracking vision In this section we describe the considered model for ana-
system and achieves stability of the cycle. In [5] the awgthollyzing the periodic dribbling task. Furthermore, we intnod
used an elastic element for prolonging the contact time aritle used hand trajectory and then deduce an analytic solutio
storing elastic energy in the system based on an optim&dr the equation of motion for the ball.
control trajectory.

Closely related to dribbling is the classical juggling task”A- MECHANICAL MODEL
[6] investigated this first. It uses a mirrored and scaled Figure 1 depicts a schematic illustration of the considered
version of the ball trajectory, which means that the ball hasystem. The ball is modeled as a point mass and radius
to be tracked over the entire cycle. In [7] the first blindlyrg that can do vertical movements denoted by the ball height
juggling robot was presented. [8] used only a linear motor fozg. The hand position is(t). In this paper we consider

The first two auth ibuted o th S, b K the hand to be elastic and having zero mass. The associated

he Tirst iwo authors contributed equally 1o the work. S. » K. stiffness K is attached to the hand. Since the ball stiffness
Kger and & Abu Schifer are wif e st ofeabs and Miechis much larger than the hand stifiness, we may assume the
sam . haddadi n@ll r. de ball to be a rigid object during hand contact. Please note
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that we consider physical springs and not actively coredbll hand contact
elastic behavior, as no available robot is able to provide th | . _ [ 4ip } — fy(emt) = [ b Z2p
necessary control bandwidth for such high-speed motions Z2p ’ ~mg (215 +rE = 2() — g
We use this simplified robot model as we want to study

the essential elements of the vertical elastic dribblingesy.
Furthermore, as the spring is considered to be much more
compliant than the robot, we may assume the robot to be a zip +rp < 2(t) 216+ 2 2(t)
position actuator.

2B+ 1B > 2(t)

free flight
Q Zp = [ 2? } =fi(zp) = [ éfj[j ] 218 € |rB; 2(0) — B[
zip>rp N zip+rp < z(t)
21B | ._ 21B 21B <TB
2B T —COR 2B
Fig. 2. Directed graph of the hybrid dribbling model.
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; B. HAND TRAJECTORY
A \<>/ ! In [6] the authors used a mirrored trajectory of the ball for
mp I

robot juggling, which is essentially a parabola. Furthemmo

K negative acceleration seems desirable, as it was showado le
X NN to stable juggling cycles [8]. However, instead of a parabol
we select a sinusoidal excitation motion of the hand, since
during contact the considered system is a second order mass-

Lo , ring complex. In addition, a positive sine half-wave has
The ball motion is modeled as a hybrid system. One Stagé)so negative acceleration but changes sign at the end so tha
node represents the ball being in free flight. Defining thﬁq

state vectorzp i— | IT = [25 2p]T we obtain the e reversal can be carried out faster. This imposes smaller
<B = |Z1B Z2B| = B ZB velocity and acceleration requirements on the robot. yastl

€y €z

Fig. 1. Model of the consideret-DoF dribbling task.

state space equation of motion for free flight as sine half-wave is also a good approximation for a parabola.
) 208 In this paper we compose the hand trajectory from a fast
= = . 1) i i ionl i
zp = f1(zB) —g ( and a slow sine half-wave, which frequency relationl is

) ' _ 4. The hand trajectory is described by the three parameters
The state node during hand contact is characterized by thenplitude 4, offset 2y, and period timeT’, respectively the

linear spring, which anchor point is moving with a desiredrequencyw = 57/(4T). Hence,z(t) is

position z(t). Hence, during hand contaetz is described

by A(t) = {Asin (i’—;t) + 29 fort e [0; %T] @)
. z T 1 —1Agin (3= 4.
20 =120 = | _suy it ) | @ pdsn (i) +20 forielghiTl,

which is two times continuously differentiable.

Based on the instantaneous ball position, the hybrid system|p, the next subsection we derive an analytic, approximated
switches between these two state nodes. Finally, if theution for the stable cycle of the ball.

conditionz, g + rp > z(t) is fulfilled the ball is in contact
with the hand. C. ANALYTIC SOLUTION

The floor is modeled by a transition in the hybrid system, Figyre 3 depicts the time instants at which the hybrid
as the position before and after ground contact remaiRgsiem changes its state node. State vectors at these time
practically the same, while the velocity changes its sig afpstants are denoted with a Roman number and are depicted
looses magnitude. The ground contact is typically in thg; the top of the figure. The timely evolution of these states
range of0.015 s (for a drop height offt m), i.e. negligible petween the characteristic time instants are indicateédn r

compared to the overall dribbling cycle [11]. Hence, we At — (s the hand contact vanishes and the initial value
introduce a coefficient of restitution (COR) that is defineds , . ".— 25(0) = [z181 2251)T. The velocity is defined to

as " be negative so that the first phase of the ball is free flight.
COR = _ZQTB, (3) For the free flight phase we get
%2B 142
—59t° + zoprt + 2
with z,, being the velocity before and, the velocity after zrri(t) = [ 29 —gt iBZIQBI e } : ®)

contact, see [12]. This instant takes place if the ball reach
the heightz, 3 = r5. The parameteCOR is chosen to be  The time instant; at which the ground contact occurs
0.85 according to the official rules of basketball [13], wher can be obtained by intersection af; (¢) with the straight
the inflation of the ball is defined based on the reboundaghe » = 5. We label this as the state,,; == zppi(ty)
height. . The floor contact is then characterized by

Overall, the described model can be represented by the
directed graph depicted in Fig. 2. For convenience, the ball e Z1BII ©6)
is initialized in free flight state. BII = —CORzyp5;;
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In the next section we analyze the stability of the open

N
loop system.
I1l. STABILITY ANALYSIS FOR LIMIT CYCLE
- Clearly, the system is stable for a ball lying on the floor. As

we are only interested in the stability properties of driipl
i (T ) limit cycles we exclude this case. For investigating stghil
o 7\ 4 o we use a similar method to the one described in [8]. First,

e el % we suppose that we have found parameters for a closed cycle

zppa(t)

according to Sec. Il. By perturbing the initial conditions o
) the cycle we elaborate a mapping of the error from the cycle
@ @ @ @ @ start to its end. For this, we use an iterative method, which
idea is summarized in Fig. 4. The desired overall mapping
o 4 i IV My is constructed from the concatenation of the partial
" mappings' M;.

Fig. 3. State and notion conventions for the ball and hand tivee are as
follows. t1, z g are the startmg time and statg., 2, ; the time and state G
for starting floor contactt2

for the end of floor contacts, zp 1 o e
are the time and state at hand[contact startand g7y at its end. "y, tﬁ’;, s ",

and the solution for the second free-flight phase is or=zpter
t=tr t=1t7;+ Aty

2
zppo(t) = [ 39 (t—1t3) +Z§E§U (tIt;)—i_Z?—Bll ] A
~g(t—13) +23p1; vy A,
7 L ® @
The next time instant that has to be calculated is the start Wi
of the hand contact. As this corresponds to the intersecfion t=t o | £ 1111
a sine with a parabola no analytic solution can be provided.
Therefore, we approximate the sine of the hand motion by a Fig. 4. Error mapping over one cycle.
parabola
T A. Free flight
Zappr(t) = a +b (t - %) ~ 2(1), (8)  For free flight we define a new perturbed initial condition
with the parameters, b being selected such that they mini- z%, = zpr +ey, (12)
mize the error criterion
= wheree; = [e1; ex7]T is the initial perturbation. Using the
J = /“’ (Zappr — 2(t)) dt. (9) new initial condition (12) for the free flight we obtain a
perturbed state’},; at the nominal floor contact timsg . As

In addition, the cycle begins and consequently ends witfye assume to have small errors, we may take the linearization
the separation of the hand contact. Hence, the hand traject@round the nominal unperturbed solution
needs to be shifted along the time axis such th&t) =

i p
z181 + B, Which can be found as = _ _p 2%,

ZBII = ZBII|, o Ther €r

T arcsin (LB=29+211) 10 —_ I le=o0

= - . — N————’

t=t+w - (10) o - 13)
=117 My
—
tofs

e
With (8) both, the time; and the state s ;7 := 2 ppa(ts) "
are calculated. Therewith, it is possible to obtain the wial

solution for the hand contact

=zprrteér-

The Matrix /1 M; thereby maps the errer; att, to the

sin ( [ B (p — t3)) errore;; att, and is found to be
sin (w(t — t3))
cos (w(t —t3)) B. Floor contact

with @ being a[2 x 4] matrix depending orxz;;; and the Since the nominal contact time is not the real one anymore,
parameters of the hand trajectomB, and K. With the we have to calculate the perturbed contact time. As we
relation = s;c(T)) L Jo (Where_ denotes “having to be &ssume small errors, the first order approximation of the

equal to”) we may inspect whether the chosen parametd?€rturbed analytic solution

result in a valid cycle. Therewith, together with the foliogy § - -

stability analysis we are able to build regions for the set of zi};ll (t) = Zoprrt + 21prr (15)
stabilizing trajectory parameters, see Sec. V-D. 2o



may be taken at the nominal contact tifje The time offset The transition matrix is therefore
Aty is then calculated by intersection with the floor 1 ta— o
N = { 302 } : (22)

0 1

lin |
21 pp1 (Atp1) =75. (16)
_ . _ With the argument from Sec. 11I-B a new intersection point
The error after this small time offseht,, is calculated of the hand trajectory with the ball trajectory needs to be
by the difference of the first orderl‘apprommatlon of theaiculated. However, this case is already included in (28),
nominal solution after floor contact;:,(t) and the first on1y 4 negligible time increment would be added in element
order approximation of the perturbed solutiefi ., (¢). This  {1,2} of the matrix// M+ in (22).
yields the error of the perturbed trajectory after the floob
contact (see Fig. 5) - Hand contact
By inserting the new initial conditions (21) & into (11)
Lin we obtain the perturbed solution for the hand contact. The

ef; = 2o (Atyr) — 25 1) (Atyr) linearization att, yields
Z;BHAt_fl + 2B } _ | #piAtp + 21pyg ' VAL = cos (.CAt) 7 sin (cAt) (23)
253811 CORZE,,, —Kpsin (cAt)  cos(cAt)
17 .
) with At =ty —t3 andc = \/KH/mB.
E. Summary
— reference Combining (14), (19), (22) and (23) we construct the
— - reference linearized mapping of the erroe;, of cyclen to the initial errorey,, ., ,
ZB — pg;“ﬁ’:ﬁ of the next cyclev+1 by multiplication of the error mapping
. - P linearized matrices. This yields to the difference equation
P
“1BITI

ey ="V M M M- T Myer,.  (24)

+ IV M,y

e
By analyzing whether the absolute value of the eigenvalues
of the matrix /Y M; remains below 1 we can conclude

“1p11 N J/ + the stability of the cycle. The eigenvalues also provide an
-~ 2@1 approximation of the convergence rate of the system.
" In the following section we show how the ball can be

tracked by a hybrid observer that relies on force sensing
only and does not require additional vision information.

IV. BALL OBSERVER

We obtain for this error the linearization arouag, = 0 In order to perform the dribbling task with a real robotic
system it is important to be able to track the ball position.
_ As we want to fully exploit the capabilities of propriocei
sensing in order to support e.g. a vision system with a very
err=0 (18)  robust controller it can rely on, we use a nonlinear observer
that is able to reliably track the ball based on contact ferce
~ only. Then, we give a stability proof for the observer over
with the error mapping matrix the full cycle, for which we assume that the ball is initially
in contact with the elasticity (otherwise the system is not
oty [ -1 0 } (19) maintaining a stable cycle and no measurement would be
I—=1 0 COR |- available).

Fig. 5. Visualization of the linearized floor contact.

Jrlin . 4
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C. Free flight A. Observer structure

The second free flight phase is calculated from the time Sinceé we are only measuring the forces acting during the
instant of the perturbed floor contagt + At,,. Therefore, contact phase, we lack a continuous measurement. Hence, we

we take a new initial condition for the free flight as require an observer that converges in finite time during the
contact phase. A sliding mode observer is proposed in [14],

P+ _ - 4lin that satisfies our requirement. Given a general autonoumous
Zpr = Zrra(ly + Atp) tepp (20) nonlinear system of the form
In the second free flight phase we get the same mapping &= f(z), z € R"

as for the first free flight phase, see Sec. IlI-A. This yields (25)

y=h(z), yeR.
0211 flin

T €rr
deprr el =0 (21)

=N, . (0H()
e ox

In (25) u (the input) is dropped for simplicity. The observer

p D
z ==z |+ _
BIIIT BIIT =0 4 .
Nkl 2L for such a system is defined as

ZBIIT

—1
) M@sav(o) - H@), (@)

=:zprir +ejyjrs



W|th tS . tl tg

errr, eI,

. [lerrr||=¢ = Er
H(z) = [h(@) Lyh(z) ... L} *h(@)]" el =< el =
M e 0
M(&) = diagmi(&) ... mu,(&)) (27) ' ‘
V(t) = [vi(t) ... va(D)]F. ’
O \ \ \
The coefficientsy; result from the available measurement | levi< =0 - fien<o=n o |led<o
and are defined as R S 0 A O N
v = y(t), _ _
(28) Fig. 7. e and¢ regions for the proposed observer.

Vit1 = mi(ilA:)Sgl'(Ui(t) — hz(ii‘)), 1= 1(1)7’L —1.

[14] provides a proof that the observer converges for _ .. .
bounded errors in finite time depending on the gain matrig€finition 1 (Lyapunov stability cf. [15])
M (). With the force acting on the robot hand, its position,' € equilibrium pointe = 0 of (25) is
and the known spring stiffness of the hand we calculate the « stable if, for eacl > 0, there iy = §(¢) > 0 such that
ball position and obtain the quanti that acts as the
obsenver input quantityz 12(0)|| < & = ||@(t)]| <&, VE>0. (31)

In the following we analyze only the time before hand
yp(t) = o — 15 + 2(1), (29)  contact, as the sliding mode observer itself is stable. The
H idea is to show the boundedness of the error mapping during
with F' being the measured force. Therewith, the observeron-contact phase. For this we construct¢h& bounds that
equation during hand contact is directly represent definition 1.
OH (2) 1 As we treat a linear system only, we may refer to the
3 _ 5 z 5 5 analysis from Sec. llI-A to Sec. IlI-C for the evaluation of
z=fa510)+ < 0% ) M(2)sgr(V (t) — H(2)). observer error dynamics. First, we obtain a mapping from
(30) the initial error (ball leaves hand contact) to the errorhat t
For the ball being in the free flight phase, we use atart of the next hand contact by calculating
prediction step based on the model equations shown in N _
Fig. 2. The overall hybrid observer structure, represeated errr ="My M- Mper. (32)
a directed graph is depicted in Fig. 6.

IIIM]

This results in

hand contact (HC)

2=[2i]=f2(2s7t)+(%)qﬂff(%)ng(V(t)*H(i)) iy —01 —fgg}gs , 33)

Zip+71B > 2(t)

Our interest in (33) is the mapping of ballstat(beginning
of next hand contact) defined as

Z1p+ 1B < 2(t) Zip +1B > 2(t)
. B ={z e R* | ||zl < ¢} (34)
free flight (FF)
: _[As s %8 . . i back tot; (ball leaves previous hand contact). Let us analyze
= [ Ea ] =iz = [ g ] b1 € Irpi#(0) ~ vl the mapping of the border @&;;; to ¢, by building the scalar

. i . . product ofe;;; with itself, defining thatB;;; is the border
b > 5 A B1p ¥ < 2(0) of e;;7. This yields to

{ 1B :| L |: 1B :| Zip<rB
2 | —COR 2 T T IIT T IIT 2
ZB Zp err€errr = ej M; Mper=c¢
1 COR t3 (35)

T _ 2
< € [COR ts COR*(1+13) ]ef—g-

Fig. 6. Directed graph of the ball observer.

In the next subsection we give a stability analysis of Equation (35) corresponds to a quadric that can be trans-
the hybrid observer for the entire dribbling cycle basedormed by a main axis transformation to an elligse of the
on the Lyapunov stability definition (up to now only theform

convergence during contact phase is available). 1 0
eT E2a21(COR.,t3) er = 1 (36)
B. Stability proof for the observer ! 0 ZLI(CORE) ’

As the sliding mode observer provides convergence for
bounded errors in finite time depending on the chose i Without | f ity | d h I
gain matrix, there is no general need for a stability proofPSe. Without loss of generality let; denote the smaller
However, as the observer converges with a constant sloﬁém' axis. Therewith, we can define a ballt atwith
it needs to be proven that during the non-observed part the Br = {z e R? | ||z|2 < ea1}, (37)
observer remains within a bounded region.

For this we consider the typical § definition of Lyapunov which is a region at,. By mapping this circle back té;;;
stability that can be found in every standard nonlinearrmdnt via /A7, we construct an ellipse that lies insidgy;;.
textbook (e.g. [15]). This curve has two contact points at the major semi axis. By

hereca; andcas are the lengths of the semi axes of the



taking the open set fronB;;; ase and the open set from B. Human dribbling
By asé we get the function

d(e) = eay. (38) 1.2

This approach is valid, as the region of the open seBpr 08 [ e/ K"“('EE
is a subset of the obtained ellipse from the first mapping of £ o6} "/ ‘v e/ Ball center -
Byyy. Furthermore, the open set resulting from the mapping = 04
from B; forward is also a subset dB;;;. Therefore, the 0.2
system is stable. 35
Fig. 7 illustrates this approach. The left image shows the
region of the circleB;;;. For the given example we choose
¢ = 1. By mapping this region forward vif{! M; we obtain
the black ellipseE; (middle plot). The blue and red circle
By is the inscribed circle of the ellipse and represeéntBy
mapping this vial M;;;, we obtain the red and blue ellipse T
(right plot). Finally, the hatched, blue region lies coniplg 3.5 4 45
in the black circle, which represents ts
In the following section we show human dribbling mea-_. . d velocity f e dribbli p
surements, simulations for our dribbling model includihg t E(Ie%ﬁi?bro homan piayer. 0 for & sample dribbling meagst of a
observer behavior (results from Sec. II-IV), and intergsti
considerations concerning the effect of varying the hand
stiffness. The application of the presented concept to la f
robotic system is presented in [16]. There, we also u
the observer to reactively adapt the robot motion duringr
consecutive dribbling cycles.

Wrist
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Figure 9 depicts a measurement of human dribbling. The
osition and velocity were obtained with Vicon, a passive
arker tracking system. The system consists of eight cam-
as running ati80 Hz and several markers on the human
arm and ball ensured the observability over the full cycle

V. SIMULATIONS, ENERGY CONSIDERATIONS, [16]. Overall, it can be seen that the curves from Sec. V-A
AND HAND STIFFNESS ANALYSIS and the human measurement look qualitatively the $ame

In this section we show simulation results for the propose@. Energy and power considerations for varying hand stiff-
model and observer, as well as provide a hand stiffnesgss

analysis. Furthermore, we compare our results with SomeApart from achieving a stable dribbling motion it is an

dlrlbbllng measurements of a semi-pro human basketoglloeting question, which hand stiffness should be used
player. in order to minimize peak power or increase robustness

A. Simulation of the cycle. The last aspect is especially important for
real-robots, which are generally deviating from the debire
motion (in particular for such highly dynamic motions). $hi

R is particularly true for impedance controlled robots [16].

arn _— . .
Ball —— In order to analyze the effect of different hand stiffnesses

Observer - 1 we take a closer look at the system with the trajectory used in

N AA AAARAAAAAAA Fig. 8 and varying hand stiffnesses. In Fig. 10(a) we find the

0.5 i i i o
0 j ‘ v 7 V \// v v \// \f/ \// ball position for varying stiffnesses over one cycle begign

and ending at the floor contact (after the system has already
0 1 9 3 1 5 6 7 reached a stable cycle over time). The used hand trajectory
is defined byAd = 0.17 m, zp = 0.6 m, and7 = 0.52 s2
Obviously, increasing hand stiffness leads to a decreasing
N\ apex height and therewith, also to a decrease in energy level
NN AN NN NN see Fig. 10(b). As expected, the contact time increases with
decreasing stiffness. This is a significant benefit one obtai
\ from the elastic properties: more time to control the robot
during hand contact. The experimental performance of this
approach can be found in [16].

Interesting to notice is the energetic system behavior in
Fig. 8. Position and velocity for a sample dribbling simidat terms of energy flow. We therefore consider a system, which

A sample simulation is shown in Fig. 8. The black plo order corresponds to the spring bearing. Hence, we obtain

depicts the hand trajectory, which is shifted by an offset two eneargy tﬁnkg IIIn the _system.f One ener_g)ll po(;t%@ .
. Fort < 0.5 s we use & order polynomial to reach is stored in the ball, consisting of its potential and kioeti

the stimulating trajectory (4). The blue curve depicts th# b €N The secolnd one is stored in the _spring as potential
motion zg. It gtartjs forty>( 0).5 s. From the apexpheights it energy Es, see Fig. 11 (the energy flow is also depicted).

becomes clear that the ball stabilizes its height after sonfa€nerally, thzre are t\évtnllene(;gy flows: Egs betwﬁ??]t.he
cycles. The dashed red plot denotes the ball observerositiVO Storage devices ball and spring, and @7, which is

“B; It-s initial pOS.,ItIQI”.I is set to the ball position, while its IPlease note that the offset is not subtracted, as for humasurement
velocity has a significantly larger value than the true bal| ;" exactly Known. :

velocity. Despite this large initial discrepancy, it cand®®n  2pjease note that in Fig. 10(a) the hand trajectory is displdly —r; =
that the observer converges during the first contact phase~0.121 m.
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(a) Dribbling cycle for the saméb) Energy for one cycle and differ- Kp [N/m|
hand trajectory with different hanent hand stiffnesses.
stiffnesses. Fig. 13. Power as a function of hand stiffne&gy

Fig. 10. Ball trajectory and energy for different hand sef§ses at constant
excitation motion (a).

D. Stability considerations for varying hand stiffness

. . . Apart from the preceding energy and power analysis, we
the work coming from outside the system (i.e. the robot) anghyestigate which hand trajectories lead to a stable piriod
acts on the spring. cycle and their relation to hand stiffness. Figure 14 depict

the simulation analysis results for varying 7', and Ky at
s W a constant heighty. The stability check for obtaining the
AA Vel plotted regions was done by applying the equations for the
periodic cycle of Sec. II-C and the according stability anal
ysis from Sec. lll. For higher hand stiffnesses we generally
o Bs need smaller amplitudes and period times.

Fig. 11. Energy flow of a system consisting of a ball and a gprin
0.9

Hence, we can write the overall system energy balance as 08

t 0.7
Ep(t)+ Es(t) — Eo = | Ws(t)dt = Ws(t) (39) o
to )
for calculating the work to be put into the systefy. denotes [
the initial system energy. 04
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Fig. 14. Areas with stable cycles for different stiffnesses
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(a) Work for one cycle and differer{b) Power for one cycle and different . .
stiffnesses. stiffnesses. As the areas from Fig. 14 are not uniquely comparable

) ) ) . w.rt. their size and position, we inscribe a circle in each
El%ieli}itryvxglrd%s %F;%‘érgt%fzn(gg)sggwep s (Figure 12(b)) for the dribbling - yagion, see Fig. 15. These circles can be interpreted as a
y ying ' robustness area when considering real robotic systemshwhi
) o ) ) can suffer non-negligible tracking and sensor errors.

. The workWys is shown in Fig. 12(a). An interesting aspect Taple | summarizes the aforementioned results for the
is that for small stiffnesses the energy flows first out of thgiyen example. It lists the positiom¢ and7.) and radius
system before raising. This is due to the initial upwardsthan,. - of the circle, the maximal robot velocity:c _ and
motion at the start of the hand contact (see Fig 10(a)), Wh'cgtcelerationicmz (resulting from the center of the circle),
extracts potential energy from the system. Knowing the workng the maximal poweP, .. and forceF,,,. for the cycles

of the system we can obtain the power from Fig. 10(a) in case of different stiffnesses. Clearhg t
. second large benefit of intrinsically elastic robots beceme
P, =W, (40) clear: The significant reduction of contact forces, whicide

to a load reduction for the physical robot.
that flows into the system. The power flow for the different Until now, the trajectory height, remained the same. We
stiffnesses is depicted in Fig. 12(b). It is obvious by lawki examined mainly the case of dribbling at a given height.
at the apexes of the curves that a stiffness with minimanother interesting aspect is the dribbling at a desiredl bal
power consumption exists. This property is depicted in Figenergy level that is related to the ball height and velocity.
13. Looking at the relation between power apex and harfigure 16(a) shows two ball trajectories for a cycle that
spring stiffness, it is clear that an optimal hand stiffness  starts on the same energy level but with different stiffeess
be selected that leads to a minimum power consumption f@learly, we need a significantly faster hand trajectory fier t
a given trajectory. high stiffness case compared to an elastic (compliant)trobo



TABLE |

COMPARISON
Kp INml | Ac[m] | To[s] | feHZ] | re | @cp,, [MS] | @cyy, (MSP] | Pras (W] | Finas [N]
50 0.2027 | 0.5200 | 2.4040 | 0.0538 1.5305 11.5590 13.6918 12.7022
100 0.1715 | 0.4606 | 2.7137 | 0.0756 1.4617 12.4620 10.4531 11.4802
200 0.1348 | 0.4045| 3.0905 | 0.0767 1.3086 12.70533 10.5489 12.8450
500 0.1474 | 0.4102 | 3.0470 | 0.0805 1.4113 13.5093 12.9995 17.0401
1000 0.1045 | 0.3574 | 3.4972 | 0.0650 1.1485 12.6185 16.5415 22.2808
5000 0.0583 | 0.3200 | 3.9066 | 0.0296 0.7153 8.7794 32.9895 44,7021
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Fig. 16. Dribbling at the same energy level with two differdrand
stiffnesses. Figure 16(a) shows the position of hand and Biglure 16(b)
depicts the energy trajectory for both systems.
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VI. CONCLUSION

In this paper we developed a theoretical foundation fo[r1 U
dribbling with an intrinsically elastic robot. We show thel12]
stability of a limit cycle with a perturbation approach anqm]
the cycle stability for a finite-time convergence slidingaeo
observer. This scheme is suitable to observe the ball motion
even for the partially observable cycle with force sensingM]
only, i.e. no vision information is necessary for our apgtga
though it could be easily integrated. Finally, we derivet?15
significant beneficial effects of intrinsic elasticity inites of 1
required peak power, impact force, and robustness comparesl
to stiff actuation.

A video showing the application of the developed
methods using a full7 DoF robot equipped with an
intrinsically elastic hand is accessible from www.safe-
robots.com/dribbling.html. The according theory is given
[16]. Future work will extend the approach to two handed
dribbling.
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