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Abstract

For creating robots that are capable of human like performance in

terms of speed, energetic properties, and robustness, intrinsic compli-

ance is a promising design element for achieving this. In this thesis

we investigate its capabilities referring to robot basketball dribbling.

As for this task the ball can only be controlled during contact phase,

an elastic hand mounted on a manipulator extends the contact time

of the process. This also implicates the advantage of storing potential

energy during contact and releasing it at beneficial time instances. We

present the analysis and experimental validation with a seven degree

of freedom Cartesian impedance controlled DLR lightweight robot for

the stability and the control of this task. This work serves also as a

preliminary investigation for the new DLR Hand Arm System. As a

human is able to dribble blindly, we decided to develop a ball observer

that takes only the measured contact forces into account, i.e. no

vision system is needed for our approach.
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Zusammenfassung

Ein vielversprechender Ansatz im Roboterdesign der es voraus-

sichtlich erlaubt in Bereichen wie Geschwindigkeit, energetischen

Eigenschaften und Robustheit ähnliche gute Leistungen wie ein Men-

sch erbringen zu können, ist intrinsische Nachgiebigkeiten im Ge-

lenkdesign zu verwenden. Diese Eigenschaft wird in der vorliegen-

den Arbeit mit Bezug auf Roboter Basketball untersucht. Da der Ball

dabei nur während der kurzen Kontaktphase beeinflusst werden kann,

wird eine elastische Hand zur Verlängerung der Kontaktzeit verwen-

det. Diese Elastizität bietet ausserdem den Vorteil, dass potentielle

Energie während des Kontaktes zwischengespeichert werden kann.

Dafür werden in dieser Arbeit Analysen der Stabilität und der Regelung

dieses Prozesses, sowie eine experimentelle Validierung mit einem DLR

Leichtbauroboter mit sieben Freiheitsgsraden präsentiert. Diese Ar-

beit dient insbesondere auch als Voruntersichung für das neue, am

Deutschen Zentrum für Luft- und Raumfahrt gebaute Hand-Arm Sys-

tem, das vollständig mit variabler Steifigkeitsaktuierung ausgerüstet

ist. Da ein Mensch in der Lage ist blind zu prellen, haben wir uns

dafür entschieden einen Ballbeobachter, der nur die gemessenen Kon-

taktkräfte des Handkontakts nutzt, zu benutzen, so dass keine bild-

verabeitenden Methoden von Nöten sind.
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1
Introduction

In this thesis we present the analysis of an elastic dribbling robot for a

full spatial motion of the ball. This is an interesting problem in order

to further understand how intrinsic elasticity can be used to achieve

high-performance and energy efficiency during dynamic and repeti-

tive tasks as e.g. throwing [HWWAS11], walking [YNT98] and batting

[OBN02]. We consider the problem of a rather stiff joint torque con-

trolled lightweight arm that is equipped with an intrinsically compliant

hand. With this device we intend to sustain a longer ball contact and

a more robust control of the ball compared to an intrinsically very stiff

robot. The work presented in this thesis intends to lay ground on a fu-

ture work for full Variable Impedance Actuation (VIA) arms. Recently,

a full seven degree of freedom (DoF) VIA arm [GASB+11] has been built

at the German Aerospace Center (DLR), for which the extension of the

methods developed in the present thesis is certainly the next step to

take.

Robot dribbling was first introduced in a seminar work in 2001, cf.

[Sti] (see. Fig. 1.1). The authors used an industrial robot with a half-

cylindrical tube for mapping the system to a 2-D system. The control

is reactive and pushes the ball downwards if a contact is detected. For

the stabilizing of the lateral ball motion they apply a spin to the ball.

[SNI05] utilizes a high-speed multi-fingered hand for dribbling a ping-

pong ball (see Fig. 1.2). This experiment served for evaluation of their

high-speed vision for ball tracking. They used a hard small plate at the

finger tip for dribbling. Besides, they developed a strategy for control-

ling the ball but did not analyze its stability.

[BSWB09] introduces a basketball playing industrial robot, utilizing

a solid plate as hand (see Fig. 1.3). The control relies mainly on the

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dribbling Puma 560.

ball tracking vision system and achieves stability of the cycle. They

also investigated stability for this model by using a Poincaré map.

In experiments they achieved with vision system infinite stable drib-

bling cycles and without vision system about 20 stable dribbling cy-

cles. In [MSBW10] the authors used an elastic element for prolonging

the contact time and storing elastic energy in the system based on

an optimal control trajectory. Later in [BMS+10] they made experi-

ments with a spring in the hand. In particular, they applied transverse

linearization[BH95] for controlling the ball during contact.

Closely related to dribbling is the classical juggling task. [BKK88] in-

vestigated this first. the authors used a mirrored and scaled version

of the ball trajectory, which means that the ball has to be tracked over

the entire cycle. In [RLS07] the first blindly juggling robot was pre-

sented. [RD09] used only a linear motor for juggling without the need

of active ball tracking, as the lateral motion is stabilized by the shape

of the juggling paddle. A stability analysis is given as well.

This thesis provides two main contributions.

Figure 1.2: Highspeed multifingered hand.
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Figure 1.3: Dribbling industrial robot.

The first one is to blindly achieve a stable dribbling cycle with the DLR

Lightweight robot III (LWR III). For this, we develop an observer that is

capable to estimate the ball state by contact force measurement only.

The second question we treat concerns the stabilization of the dribbling

task. We present a stability analysis of the vertical ball motion for a

sinusoidal hand trajectory together with stabilizing controllers for the

lateral ball motion.

The thesis is organized as follows. In Chapter 2 we describe three

different models with rising complexity, which are the basis for our

analysis and control. The first one describes only a vertical motion

and is used for basic analysis of the dribbling task. In the other two

models the basketball is able to perform planar and spatial motions. It

is used for deriving stabilizing controller actions.

In Chapter 3 we investigate the stability and control of the dribbling

task. We present the analytic solution of the model with the vertical

motion and a condition for its stability. Furthermore, an observer that

can be used for the ball is shown along with a stability analysis for it.

Please note that this is achieved although the force measurement is

only available during hand contact. For the planar and spatial model

we also provide extensions for the observer and a controller for the

horizontal translations.

In Chapter 4 we show results obtained from simulations of the pre-

mentioned models and from experiments carried out on an LWR III.
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Chapter 5 concludes the thesis by recapitulating the achieved results

and provides an outlook on future work.



2
Modeling

In this chapter we present the models that were used for investigating

basketball dribbling with a robot. Three models with increasing DoF

are applied.

• The first model consists only of a vertical DoF. With this we con-

duct some fundamental stability analysis of the corresponding

limit cycle in Chapter 3. Furthermore, we present an observer for

the ball position in Sec. 3.1.3. We use this approach to obtain a

basic understanding of the ball dribbling process.

• Besides the vertical motion the second model includes also a hor-

izontal and a rotational DoF. Hence, the ball and the robot are

able to move freely in a plane. This model is especially used for

analyzing the spin of the ball.

• In the third model we remove all constraints from the ball and

the robot hand. Hence, in terms of end-effector coordinates they

can move in their natural 6 DoF. In this model we also take the

dynamics of the robot into account.

2.1 1 DoF Model

In this section we describe the considered model for analyzing the peri-

odic dribbling task in 1 DoF. Furthermore, we introduce the used hand

trajectory.

Figure 2.1 depicts a schematic illustration of the considered system.

The ball is modeled as a point mass mB and radius rB that is able to

perform vertical movements denoted by the ball height zB. The hand

5



6 CHAPTER 2. MODELING

position is denoted by z(t). Furthermore, we consider the hand to be

elastic and having zero mass. The associated stiffness KH is attached

to the hand. We use this simplified robot model for studying the es-

sential elements of the vertical elastic dribbling cycles. Furthermore,

as the spring is considered to be much more compliant than the robot,

we may assume the robot to be a perfect position actuator.

Figure 2.1: Model of the considered 1 DoF dribbling task.

The ball motion is composed of the three phases free flight, hand con-

tact and floor contact. Thus, it is convenient to use a hybrid automaton

for modeling, which is defined as follows.

Definition 1 (Hybrid Automaton, cf. [LLL09])

A hybrid automaton H is a tuple

H = (Q,V,f , Init, Inv,Θ,G,R,Σ, λ) (2.1)

where:

• Q = {q1, . . . , qk} is a finite set of discrete states (control locations);

• V = {x1, . . . , xn} is a finite set of continuous variables;

• f : Q× R
n → R

n is an activity function;

• Init ⊂ Q× R
n is the set of initial states;

• Inv : Q → 2R
n

describe the invariants of the locations;

• Θ ⊆: Q×Q is the transition relation;

• G : Θ → 2R
n

is the guard condition;
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• R : Θ× 2R
n → 2R

n
is the reset map1;

• Σ is a finite set of synchronization labels;

• λ : Θ → Σ is the labeling function.

The automaton H describes a set of (hybrid) states (q,x) ∈ H = Q×R
n.

In Fig. 2.2 we find a thermostat as an example for a hybrid automa-

ton taken from [Lyg] a thermostat. It consists of the two discrete states

heating on and off and one continuous variable x denoting the temper-

ature in [◦C]. On the left side the directed graph of the system and on

the right side the analytical description of the system are depicted. The

heating is switched from off to on if the temperature falls below 18 ◦C.

The switch from on to off is activated if the temperature rises above

22 ◦C. The system can be initialized in every possible state. Those are

for the on state the temperature less than 22 ◦C and for the off state

above 18 ◦C.

Figure 2.2: Thermostat as an example of a hybrid system.

For the 1 DoF dribbling model we will use two discrete states:

1. free flight (FF),

2. hand contact (HC).

Furthermore, we use in all discrete states the continuous state vector

zB := [z1B z2B ]
T = [zB żB ]

T . In the following, we derive the activity

1At this place there is a small typing error in [LLL09]: R : Θ → 2
R
n

× 2
R
n

is

incorrect.
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functions and define the remaining part of the hybrid automaton that

represents our model.

2.1.1 Free Flight

In the free flight phase there acts only the gravity force on the ball. We

obtain the activity function for free flight as

żB = f1(zB) =

[
z2B
−g

]

. (2.2)

2.1.2 Hand Contact

The hand contact phase is characterized by the linear spring, which

anchor point is moving with the desired position z(t) of the hand.

Hence, during hand contact zB is described by the activity function

żB = f2(zB, t) =

[
z2B

KH

mB
(z1B + rB − z(t)) − g

]

. (2.3)

Based on the instantaneous ball position, the hybrid system switches

between the free flight and the hand contact state. Finally, if the con-

dition

z1B + rB ≥ z(t) (2.4)

is fulfilled, the ball is in contact with the hand.

2.1.3 Floor Contact

The floor contact is modeled by a transition in the hybrid system, as

the position before and after ground contact remains practically the

same, and the velocity changes its sign while loosing magnitude. The

ground contact is typically in the range of 0.015 s (for a drop height of

1 m), i.e. compared to the overall dribbling cycle negligible [Fon06].

Hence, we introduce a coefficient of restitution (COR) that is defined

as

COR := −z+2B
z−2B

, (2.5)

with z−2B being the velocity before and z+2B the velocity after contact,

see [MMS05]. This instant takes place if the ball reaches the height

z1B = rB. The parameter COR is chosen to be 0.85 according to the

official rules of basketball [Fé], where the inflation of the ball based on

the rebounded height is defined.
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2.1.4 Hand Trajectory

In [BKK88] the authors used a mirrored trajectory of the ball for robot

juggling, which is essentially a parabola. Furthermore, negative ac-

celeration seems desirable, as it was shown to lead to stable juggling

cycles [RD09]. However, instead of a parabola we select a sinusoidal

excitation motion of the hand, since during contact the considered sys-

tem is a second order mass-spring complex. In addition, a positive sine

half-wave has also negative acceleration but this changes sign at the

end so that the reversal can be carried out faster. This imposes smaller

velocity and acceleration requirements on the robot. Lastly, a sine

half-wave is also a good approximation for a parabola. In this thesis

we compose the hand trajectory from a fast and a slow sine half-wave,

which frequency relation is 1 : 4.

The hand trajectory is described by the three parameters amplitude A,

offset z0, and period time T , respectively the frequency ω = 5π/(4T ).
Hence, z(t) is

z(t) =

{

A sin
(
5π
4T t

)
+ z0 for t ∈

[
0; 45T

]

−1
4A sin

(
5π
T t

)
+ z0 for t ∈

]
4
5T ;T

[
,

(2.6)

which is two times continuously differentiable. In fig. 2.3 this trajec-

tory is depicted.

z0 − 1

4
A
z0

z0 +A

0
1

5
T 2

5
T 3

5
T 4

5
T T

z

-Aω

0

Aω

0
1

5
T 2

5
T 3

5
T 4

5
T T

ż

-Aω2
0

4Aω2

0
1

5
T 2

5
T 3

5
T 4

5
T T

z̈

t

Figure 2.3: Trajectory for the robot hand.
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2.1.5 Summary

Summarizing, we can define the remaining elements of the automaton.

With the condition for hand contact (2.4) we obtain

Q = {HC,FF}, (2.7)

V = {z1B , z2B}, (2.8)

f(HC,zB) = f2(zB , t), (2.9)

f(FF,zB) = f1(zB), (2.10)

Init = {(FF,zB)|z1B > rB ∧ (2.11)

z1B < z(0)− rB} ,
Inv =

{
(HC,zB ∈ R

2|z1B + rB ≥ z(t)), (2.12)

(FF,zB ∈ (rB , z(t) − rB))} ,
Θ = {(HC,FF ), (FF,HC), (FF,FF )} , (2.13)

G(HC,FF ) = {zB ∈ R
2|z1B < z(t)− rB}, (2.14)

G(FF,HC) = {zB ∈ R
2|z1B ≥ z(t)− rB}, (2.15)

G(FF,FF ) = {zB ∈ R
2|z1B < rB}, (2.16)

R(HC,FF,zB) = R(FF,HC,zB) = zB , (2.17)

R(FF,FF,zB) = [z1B − CORz2B]
T , (2.18)

Init = {FF,zB ∈ R
2| (2.19)

z1B ∈ (rB , z(0) − rB)}.

As there are no hybrid automata running in parallel, no synchroniza-

tion labels and labeling functions are defined.

Overall, the described model can also be represented by the directed

graph depicted in Fig. 2.4.

In the following we present models with increasing DoF for the hand

and ball.

2.2 3 DoF Model

In the 1 DoF case we used a very simplified model. In the next step we

want to extend this to a planar motion. Therefore, we take in addition

to the vertical motion spin and a horizontal motion into account. For

the 3 DoF model we use the same assumption as in the 1 DoF case:

The robot shall be a perfect position actuator.

For the 1 DoF model a very strict model approach was applied in order

to study fundamental properties of basketball dribbling. For the re-

maining higher order models we do not use this strict model approach,

as it would not lead to a better insight to the system. Hence, we define

a general ball model, which is excited by a force input in the hand and

floor contact.
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Figure 2.4: Directed graph of the 1 DoF hybrid dribbling model.

The proposed model is depicted in Fig. 2.5. In the upper right corner

the robot used for ball dribbling is depicted. Its position is denoted

by the 3 DoF x = [x(t) z(t) α(t)]T . The finger is mounted directly with

a rotational bearing and a rotational spring to the robot. It is there-

fore described by one rotational DoF, denoted by β. Furthermore, it is

associated to a mass mH and an inertia tensor IH .

Figure 2.5: Model of the considered 3 DoF dribbling task.
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Figure 2.5 shows two relevant frames. One is the world frame {W} and

the other is the body fixed finger frame {H}. In the following, nearly

all vectors are expressed in {W}. Hence, we drop the index unless

specified otherwise.

In our first experiments we used a hand with three rigid beams and

rotational springs as depicted. However, we did not achieve the de-

sired performance with them as the reflected mass of the fingers was

simply to high for obtaining significant elastic energy storage or re-

lease. Hence, we used in later experiments only the leaf springs and

achieved a much better performance. This modeling approach for the

spring without mass is presented in Sec. 2.3. However also the mass

based finger approach is presented, as the same controller can be used

regardless whether the beam is rigid or not.

As the hand contact is quite significant in length we model it contin-

uously. We also use this model for the floor contact. In the following,

we first present the ball model with a force input and then the floor

contact model. Furthermore, we derive a model for the finger motion

and the hand contact force.

2.2.1 Ball Model

In Fig. 2.5 the ball is depicted below the hand and is described by the

three coordinates xB = [xB zB αB ]
T together with the respective veloci-

ties. As the ball is a completely unbounded system there are only forces

acting on its perimeter. Apart from gravity g, a force FB = [F1B 0 F3B ]
T

due to the contact with the hand or the floor is acting directly on the

perimeter of the ball. This yields the model equation





ẍB
z̈B
α̈B



 =






F1B

mB
F3B

mB
− g

1
IB

ey(rB × FB)




 , (2.20)

with rB as the vector from the center of the ball to the point of contact

and ey(rB × FB) as the mapping of the torque vector rB × FB to the y
axis.

2.2.2 Floor Contact

As we have to define a continuous model for the hand contact that

takes the spin of the ball into account, we also use this model for the

floor contact instead of the discrete model approach from Sec. 2.1.

The ball is in floor contact if

zB ≤ rB. (2.21)
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The contact force consists of two components. FFCn is the normal force

and in the floor contact case collinear with the z-axis. FFCt is the force

tangential to the floor plane.

Normal Force

The normal force is calculated by a Hunt-Crossley Model [HC75] that

is chosen to be

FFCn = −KF (zB − rB)−DF (zB − rB)żB , (2.22)

with KF being the stiffness and DF the damping constant.

Tangential Force

The physical effect caused by the tangential force is that due to friction

the relative velocity between ball and floor fades away over the contact.

This is taken into account by a lumped LuGre model [CT99], which is

given as

ṡ = vFCr −
σ0vFCr

g(vFCr)
s (2.23)

FFct = (σ0s+ σ1ṡ+ σ2vFCr)FFCn , (2.24)

with

g(vFCr) = µc + (µs − µc)e
−|vFCr/vs|ν . (2.25)

s is the slip between ball and floor, σ0 the rubber longitudinal lumped

stiffness, σ1 the rubber longitudinal lumped damping, σ2 the viscous

relative damping, µc the normalized Coulomb friction, µs the normal-

ized static friction, vs the Stribeck relative velocity, Fn the normal force

and vFCr the relative velocity. The steady-state friction/slip character-

istic is captured by ν. The relative velocity for this case is given by

vFCr = ẋB − rBα̇B . (2.26)

Therewith, we obtain the force vector of the hand contact by (2.22) and

(2.23) as

FB =





FFCt

0
FFCn



 . (2.27)

In addition, the vector from the ball center to the contact point

rB =





0
0

−rB



 (2.28)

is given. In the following section we present the derivation of the hand

model and the hand contact calculation.
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2.2.3 Hand Model

For obtaining the equations of motion for the hand we use the Newton-

Euler method that is outlined in the appendix A or can be found in

[SE04]. We first calculate the kinematics and derive from that the

dynamics of the hand. The generalized coordinate is, as mentioned

before, β.

Translational Kinematics

According to Fig. 2.5 we can calculate the position vector of the center

of mass expressed in the depicted world frame as

xH =





x(t)− lH
2 cβ

0

z(t) + lH
2 sβ



 , (2.29)

with lH being the length of the finger. Therefore, we assume that the

mass in the finger is uniformly distributed and the cross section is not

changing along its length. Furthermore, we consider a rigid body as

the spring gains the deformation energy that is introduced by the ball

contact. cβ and sβ are used as abbreviations for the cosine and sine.

With (2.29) we can obtain the velocity by differentiating with respect to

time t

vH =





lH
2 sβ
0

lH
2 cβ





︸ ︷︷ ︸

=:JT

β̇ +






dx(t)
dt
0

dz(t)
dt






︸ ︷︷ ︸

=:vH

, (2.30)

with the Jacobian of translation JT and the generalized velocities vH .

The accelerations are obtained by a further differentiation

aH = JT β̈ +






lH
2 β̇2cβ + d2x(t)

dt2

0

− lH
2 β̇2sβ + d2z(t)

dt2






︸ ︷︷ ︸

=:aH

, (2.31)

with the generalized accelerations aH .

Rotational Kinematics

We also define the rotation of the body, which is the rotation from the

world frame {W} to the body fixed finger frame {H}. This yields the

rotation matrix

WRH =





cβ 0 sβ
0 1 0

−sβ 0 cβ



 . (2.32)
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The rotational velocity is then

ωH =





0
1
0





︸ ︷︷ ︸

=:JR

β̇ (2.33)

with the Jacobian of rotation JR. By differentiating (2.33) with respect

to time t we obtain the rotational acceleration as

αH = JRβ̈. (2.34)

Dynamics

For obtaining the equations of motion we set up the according Newton-

Euler equations. For this we define

• the global mass matrix M = diag{mHI IH},

• the global Jacobian J = [JT JR]
T ,

• the global Coriolis force vector qc = [mHaH ω̃HIHωH ]T .

In the global Coriolis force vector the tilde operator of a vector a =
[a1 a2 a3]

T is used, which is defined as

ã :=





0 −a3 a2
a3 0 −a1
−a2 a1 0



 . (2.35)

This maps the cross product of two vectors a1 × a2 to a matrix vector

product ã1a2.

For the global vector of active forces we have to take into account the

force due to gravity, the torque applied by the spring and the contact

force. The contact force is calculated similarly to the floor contact force

in Sec. 2.2.2. We cover this after the derivation of the hand dynamics.

Hence, we assume that we know the contact force FHC that is com-

posed of a tangential FHCt and a normal component FHCn . These are

shown in the free body diagram of the hand contact in Fig. 2.6. The

contact position is denoted by δ. For simplicity we assume the finger

to be rather thin, so that the forces are directly acting on their center

line. The spring depicted in Fig. 2.6 is relaxed for α = β.

Hence, we obtain the vector of applied forces as

qe =












WRH





FHCt

0
FHCn



+





0
0

−mHg





0

KH(β − α) +
(

δ − lH
2

)

FHCn

0












. (2.36)
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Figure 2.6: Free body diagram of the 3 DoF hand contact.

Therewith, the Newton-Euler Equations is given as

MJβ̈ + qc = qe +Qqr (2.37)

with Q denoting a distribution matrix and qr denoting the reaction

forces. Those can be canceled out by applying D’Alembert’s Principle

[SE04]. We multiply (2.37) with J
T

from the left. This yields the equa-

tion of motion for the finger.

mH l2H
3

︸ ︷︷ ︸

=:M

β̈ +
lHmH

2

(

sβ
d2x(t)

dt2
+ cβ

d2z(t)

dt2

)

︸ ︷︷ ︸

=:k

=

− lHmHg

2
cβ +KH(α(t)− β) + δFHCn

︸ ︷︷ ︸

=:q

.

(2.38)

2.2.4 Hand Contact

For the hand contact we use a similar model as for the floor contact de-

scribed in Sec. 2.2.2. Since we assume the absence of damping in the

normal direction of the hand contact, we set the damping parameter of

the Hunt Crossley contact model to zero. This yields

FHCn = KHC (HzB + rB). (2.39)

Therefore, we use the ball coordinates w.r.t. the finger coordinate sys-

tem. Hence, the condition for hand contact is

HzB ≥ −rB. (2.40)

The LuGre model for the tangential force FHCt is the same as in

Sec. 2.2.2. The only difference is the calculation of the relative velocity.

The complete relative velocity vector vR is obtained from the velocities
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vBp and vHp of the two contacting bodies at the contact point p

vR =vHp − vBp = (vH + ωH × rH,C)− (vB + ωB × rB)

=





δsβ + dx
dt

0

δsβ + dz
dt





−









ẋB
0
żB



+





0
α̇B

0



×



WRH





0
0
rB











 ,

(2.41)

with rH,C being the position vector from the center of mass of the finger

to the contact point, vB and ωB being the translational and rotational

ball velocity and HrB = [0 0 rB ]
T being the vector from the ball center to

the contact point. The desired tangential relative velocity is obtained

by mapping vR to the x-axis of the {H} frame, which is

vRt = vR
Hex. (2.42)

The normal direction can be fed directly into the equation of motion for

the finger, as there is no vectorial quantity needed. Furthermore, as

the tangential force is acting directly on the bearing of the finger, it is

not needed in the finger model.

For the ball model we use the unit vectors of the {H} frame as the

direction of the tangential and normal forces. This yields

FB = WRH





FHCt

0
FHCn



 (2.43)

as the force vector that is acting on the ball.

2.3 6 DoF Model

In this section we outline the ball and hand model suitable for 6-DoF

dribbling task. The dynamic model for the robot is taken as granted.

The Cartesian impedance control will be introduced in Sec. 3.3.3.

Therefore, we first consider the end effector of the robot only and as-

sume it as a virtual driving input for position, rotation and velocity. A

schematic view of the model is depicted in Fig. 2.7. In reality we use

three fingers that are mounted along one common plane, cf. Fig. 2.8.

The fingers are made of spring steel, while for impact damping issues

thin foam is glued onto them.

In the modeling part, we assume the fingers to be massless and use

only their respective spring characteristics, cf. Fig. 2.7. Both bodies

are described by their respective position and orientation. The relevant

frames are the effector frame {EE}, the world frame {W} (located on
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Figure 2.7: Model of the considered 6 DoF dribbling task.

the floor), and the base frame {0} (above the world frame). The spring

mounting is translated into the {EE} frame by the offsets δz and δx.

In the following, we derive a suitable ball model and then show how

to obtain the relevant forces acting on the ball. All vectors will be

expressed in {W} unless specified otherwise. Hence, we drop the index

for the frame.

2.3.1 Ball Model

The ball is modeled as a free body with the gravity vector g and the

force FB acting on its perimeter. Therefore, it is described by three

translational coordinates xB = [xB yB zB ]
T , the respective velocity ẋB,

the quaternion ξB = [q0 q1 q2 q3]
T , and three rotational velocities ωB =
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Figure 2.8: Elastic dribbling hand used for the experiments with the DLR Lightweight-Robot III.

[αB βB γB ]
T about the axes of {W}. This yields





ẍB

ξ̇B
ω̇B



 =





1
mB

FB + g
1
2Q(ξB)ωB

I−1
B (rB × FB)



 , (2.44)

with rB being the vector from the ball center to the force application

point, and IB denoting the ball inertia tensor, which is diagonal due to

the ball’s rotational symmetry. As we assume the ball to be a spherical

shell we obtain [GF04]

IB =





2
3mBrB 0 0

0 2
3mBrB 0

0 0 2
3mBrB



 . (2.45)

Q(ξB) is a matrix that maps Cartesian velocities ωB to quaternion ve-

locities [SE04]

Q(ξB) =







−q1 −q2 −q3
q0 q3 −q2
−q3 q0 q1
q2 −q1 q0






. (2.46)

The calculation of the force FB for the different phases is derived in

the following paragraphs.

For the control presented later it is useful to have the translational

coordinates also in cylindrical coordinates xBC
= [ϕB dB zB ]

T , see Fig.

2.7. These are obtained via

xBc =





ϕB

dB
zB



 =






arctan 2(−xB , yB)√

x2B + y2B
zB




 , (2.47)
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with arctan 2(−xB , yB) as the arctangent function that takes all quad-

rants into account.

2.3.2 Floor Contact

For the floor contact in the 6 DoF model we can use the same LuGre

model as the one for the 3 DoF model in Sec. 3.2.2. The normal force

points again in the z direction. For the tangential force we have to

calculate the relative velocity between ball and floor. This yields

vFCr = [0 ey ez] ẋB +





0
0

−rB



× ωB . (2.48)

(2.48) provides also the direction of the tangential force, as it acts in

opposite direction to the relative velocity direction. The vector from the

ball center to the contact point is the same as in the 2 DoF model, cf.

(2.28).

2.3.3 Hand Model

The robot end-effector will later be commanded via a desired frame

(actually position and unit quaternion) in Cartesian impedance control

(see Sec. 3.3.3). The rotation matrix is described by a well chosen set

of Euler angles, whose rotation order is depicted in Fig. 2.9.

The first coordinate system {C} is collinear to the base frame. The first

rotation acts around the y-axis and is later used for controlling the ball

along the dB coordinate. It is obtained as

C
eyRC′(β) =





cβ 0 sβ
0 1 0

−sβ 0 cβ



 . (2.49)

Thereafter, the coordinate system is rotated around the new z-axis,

which will be used for controlling the ball along the ϕB coordinate.

This yields

C′

e′z
RC′′(γ) =





cγ −sγ 0
sγ cγ 0
0 0 1



 . (2.50)

The last rotation is around the z-axis of the base frame and is used

for tracking the ball position. To obtain this rotation matrix we first

calculate the unit vector ez expressed in the {C ′′} coordinate system,

which is

C′′

ez =
C′′

RC
Cez =

(
C
eyRC′(β)C

′

e′

z
RC′′(γ)

)T
Cez =





−sβcγ
sβsγ
cβ



 . (2.51)
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Figure 2.9: Rotation order for commanding the orientation of the robot hand.

The rotation matrix is then obtained from, cf. [SE04],

C′′

ez
RC′′′(ϕ) = I +C′′

ẽzsϕ +C′′

ẽz
C′′

ẽz (1− cϕc) (2.52)

with the tilde operator defined according to (2.35). Hence, we get the

overall rotation matrix as

C′′′

RC = C
ey
RC′(β) C′

e′z
RC′′(γ) C′′

ez
RC′′′(ϕ)

=





−sϕsγ − cβcγcϕ −cγsϕ − cβsγcϕ sβcϕ
cϕsγ + cβcγsϕ cγcϕ − sβsγsϕ sβsϕ

−sβcγ sβsγ cβ



 .
(2.53)

We can also calculate the rotational velocity vector, cf. [SE04]

ω̃ = ṘRT . (2.54)

This yields

ω =





γ̇sβcϕ − β̇sϕ
γ̇sβsϕ + β̇cϕ

ϕ̇+ γ̇cβ



 . (2.55)
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2.3.4 Hand Contact

The hand contact is calculated similarly to the floor contact. Therefore,

it is advantageous to use the position vector of the ball expressed in

{EE}. The condition for hand contact is

EExB ≥ δx − rB. (2.56)

We assume that there is no damping present in the hand, as the fingers

are made of spring steel. Hence, we get

EEFHCn = −K(xB , E, Iy)(+
EExB − δx + rB) (2.57)

for the normal direction of the contact. The stiffness K(xB, E, I) is

calculated from the linear theory on Bernoulli beams, see Fig. 2.10.

The beam is firmly clamped on the left side with the two reactions MR

and N . F denotes the force that is applied by the ball. This causes the

bending line w(z), which is calculated by [MMS05]

EIy
d2w(z)

dz2
= −My(z). (2.58)

E is the modulus of elasticity, Iy is the geometrical moment of inertia

around the y-axis, and My is the bending moment around y, which is

obtained as

My(z) = FzF
︸︷︷︸

=MR

− F
︸︷︷︸

=N

z +

{

0 for z ≤ zF

F (z − zF ) for z > zF
. (2.59)

Figure 2.10: Calculation of spring stiffness K seen at the contact point.

By evaluating (2.58) at zF we obtain a relation between the force and

the bending at zF as

F =
EIy
3z3F
︸︷︷︸

=:K

w(zF ). (2.60)

Therewith, the stiffness K seen at the contact point is known. In

Fig. 2.11 the stiffness over the length of the hand is depicted. As the

stiffness decreases by 1/z3 for increasing z we have a high stiffness for

small distances.
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Figure 2.11: Reflected stiffness as a function of contact position.

The tangential direction of the force FHCt is calculated analogously to

Sec. 2.3.2 by utilizing a LuGre model. The required relative velocity is

vR =vP − vBp = (ẋ+ ω × rEE,C)− (ẋB +ωB × rB)


ẋ+ ω ×



WREE



EExB +





rB
0
0

















−



ẋB + ωB ×



WREE





rB
0
0













(2.61)

with rEE,C as the position vector from EE to the contact (see below

(2.65)) andEErB := [rB 0 0]T as the vector from the ball center to the

point of contact. The tangential relative velocity is obtained by mapping

vR to the plane of the fingers which is described by the y and z direction

of the {EE} frame. This yields

EEvRT
=





0 0 0
0 1 0
0 0 1



 EERWvR. (2.62)

For the LuGre model we use the norm of the tangential relative velocity.

This yields the complete contact force

FB =W REE





FHCn

0
0



− vRT

|vRT
|FHCT

. (2.63)
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This contact force is also applied to the robot as an external contact

wrench by moving the wrench FHC = [F T
B 0]T into the {EE} frame by

Fext =

[
I 0

−r̃C,EE I

]

FHC , (2.64)

with r̃C,EE being the matrix obtained from applying the tilde operator

from (2.35) to the position vector from the contact point to the origin of

EE which is

rC,EE = −rEE,C = −WREE

(
EExB +EE rB

)
. (2.65)

For the 6 DoF model we want to take the full dynamic model and

control of a Cartesian impedance controlled robot into consideration.

Therefore, we introduce the underlying set of equations describing the

robot dynamics next. The controller is outlined in Sec. 3.3.3.

2.3.5 Elastic Joint Robot Model

Due to the lightweight design of the LWR-III it is not sufficient to model

the robot by a second-order rigid body model. The non negligible joint

elasticity between motor and link inertia caused by the Harmonic Drive

gears and the joint torque sensor has to be taken into account into the

model equation. For such a robot the following flexible joint model can

be assumed [Spo87]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ a + τ ext (2.66)

Bθ̈ + τ a = τm − τ f (2.67)

τ a = τ +DK−1τ̇ (2.68)

τ = K(θ − q) (2.69)

with q being the link side position, θ the motor position, τ the elastic

joint torque, τ f the friction torque in the motor, τm the motor torque,

M(q) the mass matrix, C(q, q̇) the centripetal and Coriolis vector, g(q)
the gravity vector, K = diag{Ki} the diagonal positive definite joint

stiffness matrix, and B = diag{Bi} the diagonal positive definite motor

inertia matrix.

The external joint torque is generated by the ball contact wrench mea-

sured in the wrist sensor via τ ext = JTEEFext, with J being the {EE}
Jacobian of the manipulator.



3
Control

In the preceding chapter we introduced the models that are used for

the analysis and control of robotic dribbling in this chapter. Ana-

logue to Chapter 2 we first analyze the 1 DoF dribbling. Thereafter,

we present the extension of the observer and control schemes from

the 1 DoF model to the 3 DoF model. With a further extension the

control and observer for the whole 6 DoF model is given. Finally, we

shortly summarize the Cartesian impedance control that is used for

controlling the robot.

3.1 1 DoF Model

In this section we present some fundamental investigations on the sta-

bility of a dribbling limit cycle. First, we give a condition if an initial

condition for the ball zB(0) in conjunction with a hand trajectory de-

fined by its amplitude A, height z0 and period time T yields a stable

cycle. Furthermore, we present the analysis of the limit cycle stabil-

ity. As we only use proprioceptive information, we need an observer for

being able to track the ball on the dribbling cycle. For this we derive

a suitable observer structure and give a proof for its convergence and

stability.

3.1.1 Analytic Solution for the Limit Cycle

Figure 3.1 depicts the time instants at which the hybrid system

changes its state node. State vectors at these time instants are de-

noted with a Roman number and are depicted at the top of the figure.

25
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The states between these time instants are indicated red in the figure.

Figure 3.1: State and notion convention.

At tI = 0 s the hand contact is over and the initial ball state is zBI :=
zB(0) = [z1BI z2BI ]

T . The velocity is defined to be negative so that the

first phase of the ball is free flight. This is described by zFF1(t). t−II
denotes the time instant at which the ball impacts the floor. The ball

state at this time instant is z−
BII . As the floor contact is assumed to be

a transition in the directed graph of Fig. 2.4 we use t+II = t−II as the time

instant after floor contact and z+
BII as the ball state. The next relevant

time instant is tIII that denotes the beginning of the hand contact with

the corresponding ball state zBIII . The last interesting time instant is

the end of the period, denoted by tIV = T and the ball state zBIV .

For the free flight phase we simply get

zFF1(t) =

[
−1

2gt
2 + z2BI t+ z1BI

−gt+ z2BI

]

. (3.1)

The time instant t−II at which the ground contact occurs can be ob-

tained by intersection of z1FF1(t) with the straight z = rB. We label this

as the state z−
BII = zB(t

−
II). The floor contact is then characterized by

z+
BII =

[
z−1BII

−COR z−2BII

]

(3.2)
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and the solution for the second free-flight phase is

zFF2(t) =

[

−1
2g

(
t− t+II

)2
+ z+2BII

(
t− t+II

)
+ z+1BII

−g
(
t− t+II

)
+ z+2BII

]

. (3.3)

The next time instant that has to be calculated is the start of the

hand contact. As this corresponds to the intersection of a sine with

a parabola, no analytic solution can be provided. Therefore, we ap-

proximate the sine of the hand motion by a parabola

zappr(t) = a+ b
(

t− π

2ω

)2
≈ z(t), (3.4)

where the parameters a, b are selected such that they minimize the

error criterion

J =

∫ π
ω

0
(zappr − z(t))dt, (3.5)

which yields
[
a
b

]

=

[
1
π3

(
−3Aπ2 + 60A+ z0π

3
)

1
π5

(
60ω2A(π2 − 12)

)

]

. (3.6)

In addition, the cycle begins and consequently ends with the separa-

tion of the hand contact. Hence, the hand trajectory needs to be shifted

along the time axis such that z(T ) = z1BI + rB, which can be found as

t := t+ ωT −
arcsin

(
rB−z0+z1I

A

)

ω
︸ ︷︷ ︸

toff

. (3.7)

With (3.4) both, the time tIII and the state zBIII := zFF2(tIII) are cal-

culated. Therewith, it is possible to obtain the analytic solution for the

hand contact, cf. appendix B,

zHC(t) = Φ









sin
(√

KH

mB
(t− tIII)

)

cos
(√

KH

mB
(t− tIII)

)

sin (ω(t− tIII))
cos (ω(t− tIII))









, (3.8)

with Φ being a [2× 4] matrix depending on zBIII , the parameters of the

hand trajectory, mB, and KH . With the relation zHC(T )
!
= zBI we may

inspect whether the chosen parameters result in a valid cycle.

In the next section we analyze the stability of the open loop system.

3.1.2 Stability Analysis for Limit Cycle

For investigating the stability properties of the system, we use a sim-

ilar method to the one described in [RD09]. For the analysis we sup-

pose that we have found parameters for a closed cycle according to the

model shown in Sec. 2.1.
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By perturbing the initial conditions of the cycle we elaborate a mapping

of the error at the cycle start to its end. For this, we use an iterative

method, which is summarized in Fig. 3.2. The overall error mapping
IV MI is constructed from the concatenation of the partial mappings
iMj.

Figure 3.2: Error mapping over one cycle.

Free flight

For free flight we define a new perturbed initial condition

z
p
BI = zBI + eI , (3.9)

where eI = [e1I e2I ]
T is the initial perturbation. Using the new initial

condition (3.9) for the free flight we get a perturbed state z
p−

BII at the

nominal floor contact time t−2 . As we assume to have small errors, we

may take the linearization around the nominal unperturbed solution

z
p−

BII = z
p−

BII

∣
∣
∣
eI=0

︸ ︷︷ ︸

z−

BII

+
∂zp−

BII

∂eI

∣
∣
∣
∣
∣
eI=0

︸ ︷︷ ︸

=:II−MI

eI

︸ ︷︷ ︸

e−
II

= z−
BII + e−II .

(3.10)

The matrix II−MI thereby maps the error eI at t1 to the error e−II at t−2
and is found to be

II−MI =

[
1 t−2
0 1

]

. (3.11)
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Floor contact

Since the nominal contact time is not the real one anymore, we have to

calculate the perturbed contact time. Therefore, we take the perturbed

free flight trajectory from the initial value defined in (3.10), which is

obtained as

z
p
FF1 =

[

−1
2gt

2 + zp
−

2BII t+ zp
−

1BII

gt+ zp
−

2BII

]

(3.12)

and calculate a new intersection time ∆tp1. With the trajectory of error

defined after nominal floor contact

eFC(t) = zFF2(t− t−II)− z
p
FF1(t) (3.13)

we are able to calculate the error at this time instant. Therefore, we

have to consider that the perturbed trajectory is also performing a floor

contact, which yields

eFC(∆tp1) = zFF2(∆tp1 − t−II)−
[

−1
2g∆t2p1 + zp

−

2BII∆tp1 + zp
−

1BII

g∆tp1 + zp
−

2BII

]

. (3.14)

We obtain for the linearization of eFC(∆tp1) at e−II = 0

elinFC(∆tp1) = eFC(∆tp1)|e−
II
=0

︸ ︷︷ ︸

=0

+
∂eFC(∆tp1)

∂e−II

∣
∣
∣
∣
e−
II
=0

︸ ︷︷ ︸

=:II+M
II−

e−II (3.15)

with the error mapping matrix

II+MII− =

[
COR 0

g(COR+1)

z−
2BII

COR

]

. (3.16)

Free flight

The second free flight phase is calculated from the time instant of the

perturbed floor contact t−2 + ∆tp1. We take a new initial condition for

the free flight as

z
p+
BII = zFF2(t

−
2 +∆tp1) + e+II . (3.17)

In the second free flight phase we obtain the same mapping as for the

first free flight phase. This yields

z
p
BIII = z

p
BIII

∣
∣
e+
BII

=0

︸ ︷︷ ︸

zBIII

+
∂zp

BIII

∂e+BII

∣
∣
∣
∣
e+
BII

=0

︸ ︷︷ ︸

=:IIIM
II+

e+II

= zBIII + eIII

(3.18)
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The transition matrix is therefore

IIIMII+ =

[
1 t3 − t−2
0 1

]

. (3.19)

With the argument from the calculation of the mapping for the floor

contact we would have to calculate a new intersection point of the

hand trajectory with the ball trajectory. However, this case is already

included in (3.19). This is because the linearization of the trajectories

at the intersection point have the same state and derivative, we would

only get a small additional time increment in element {1, 2} of the ma-

trix IIIMII+ in (3.19). Since we suppose to have small errors we neglect

this additional time increment.

Hand contact

By inserting the new initial conditions (3.18) at t3 into (3.8) we obtain

the perturbed solution for the hand contact. The linearization at tIV
yields

IV MIII =

[
cos (c∆t) 1

K sin (c∆t)
−K sin (c∆t) cos (c∆t)

]

(3.20)

with ∆t = tIV − tIII and c =
√

KH/mB.

Summary

Combining (3.11), (3.16), (3.19) and (3.20) we construct the mapping

of the error eIn of cycle n to the initial error eIn+1
of the next cycle

n+1 by multiplication of the error mapping matrices. This yields to the

difference equation

eIn+1
= IV MIII

IIIMII+
II+MII−

II−MI
︸ ︷︷ ︸

IV MI

eIn . (3.21)

By analyzing whether the absolute value of the eigenvalues of the ma-

trix IV MI remains below 1 we can conclude the stability of the cycle.

Together with the eigenvalues we also get an approximation of the con-

vergence rate of the system.

In the following section we show how the ball can be tracked by a

hybrid observer that relies on force sensing only and does not require

additional vision information.

3.1.3 Ball Observer

In order to perform the dribbling task with a real robotic system it is

important to be able to track the ball position. As we want to fully
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exploit the capabilities of proprioceptive sensing in order to support

e.g. a vision system with a very robust controller it can rely on, we

use a nonlinear observer that is able to reliably track the ball based

on contact forces only. Then, we give a stability proof for the observer

over the full cycle, for which we assume that the ball is initially in

contact with the elasticity (otherwise the system is unstable and no

measurement would be available).

Observer structure

Since we are only measuring the forces acting during the contact

phase, we lack a continuous measurement. Hence, we require an

observer that converges in finite time during the contact phase. In

[Dra92] a sliding mode observer is proposed, that satisfies our require-

ment. For a general nonlinear system of the form

ẋ = f(x), x ∈ R
n

y = h(x), y ∈ R,
(3.22)

the observer

˙̂x =

(
∂H(x̂)

∂x

)−1

M(x̂)sgn(V (t)−H(x̂)) (3.23)

with

H(x) = [h(x) Lfh(x) . . . Ln−1
f h(x)]T

M(x̂) = diag(m1(x̂) . . . mn(x̂))

V (t) = [v1(t) . . . vn(t)]
T

(3.24)

is described. The coefficients vi result from the available measurement

and are defined as

v1 = y(t),

vi+1 = mi(x̂)sgn(vi(t)− hi(x̂)), i = 1(1)n − 1.
(3.25)

[Dra92] provides a proof that the observer converges in finite time de-

pending on the gain matrix M(x̂). With the force acting on the robot

hand, its position, and the known spring stiffness of the hand we cal-

culate the ball position and obtain the quantity yB that acts as the

observer input:

zB(t) =
F

KH
− rB + z(t), (3.26)

with F being the measured force. Therewith, the observer equation

during hand contact is

˙̂z = f2(ẑ, t) +

(
∂H(ẑ)

∂ẑ

)−1

M(ẑ)sgn(V (t)−H(ẑ)). (3.27)
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For the ball being in the free flight phase, we use a prediction step

based on the model equations shown in Fig. 2.4. The overall hy-

brid observer structure, represented as a directed graph is depicted

in Fig. 3.3.

Figure 3.3: Directed graph of the ball observer.

In the next subsection we present a stability analysis of the hybrid

observer for the entire dribbling cycle based on the Lyapunov stability

definition (up to now only the convergence during contact phase is

available).

Stability proof for the observer

For the observer stability we consider the typical ε, δ definition of Lya-

punov stability that can be found in every standard nonlinear control

textbook (e.g. [Kha02]).

Definition 2 (Lyapunov stability cf. [Kha02])

The equilibrium point x = 0 of (3.22) is

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

||x(0)|| < δ ⇒ ||x(t)|| < ε, ∀ t ≥ 0. (3.28)

As [Dra92] gives a proof for the finite time convergence of the sliding

mode observer, it is sufficient to analyze only the time before hand

contact for proofing stability. The idea is to show the boundedness of
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the error mapping during non-contact phase. For this we construct

the ε, δ bounds that directly represent definition 2.

As we treat a linear system only, we may refer to the analysis from

Sec. 3.1.2 for the evaluation of observer error dynamics. First, we

obtain a mapping from the initial error (ball leaves hand contact) to

the error at the start of the next hand contact by calculating

eIII =
IIIMII+

II+MII−
II−MI

︸ ︷︷ ︸
IIIMI

eI . (3.29)

Our interest in (3.29) is the mapping of balls at tIII (beginning of next

hand contact) defined as

BIII = {x ∈ R
2 | ||x||2 ≤ ε} (3.30)

back to tI (ball leaves previous hand contact). Let us analyze the map-

ping of the border of BIII to tI by building the scalar product of eIII
with itself, defining that BIII is the border of eIII . This yields to

eTIIIeIII = eTI
IIIMT

I
IIIMI

︸ ︷︷ ︸

=:Mobs

eI = ε2 (3.31)

Equation (3.31) with the matrix Mobs corresponds to a quadric that can

be transformed by a main axis transformation to an ellipse EI of the

form

eTI

[ 1
ε2a2

1
(COR,tIII ,t

−

II
,z−

2BII
)

0

0 1
ε2a2

2
(COR,tIII ,t

−

II
,z−

2BII
)

]

eI = 1, (3.32)

where εa1 and εa2 are the lengths of the semi axes of the ellipse. With-

out loss of generality let εa1 denote the smaller semi axis. Therewith,

we can define a ball at tI with

BI = {x ∈ R
2 | ||x||2 ≤ εa1}, (3.33)

which is a region at tI. By mapping the border of this ball back to tIII
via IMIII, we construct an ellipse that lies inside BIII . This curve has

two contact points at the major semi axis with the border of BIII. By

taking the radius from BIII as ε and the radius from BI as δ we get the

function

δ(ε) = εa1. (3.34)

This approach is valid, as the region of the open set for BI is a subset

of the obtained ellipse from the first mapping of BIII. Furthermore, the

open set resulting from the mapping from BI forward is also a subset

of BIII . Therefore, the system is stable.

Fig. 3.4 illustrates this approach. The left image shows the region of

the circle BIII. For the given example we choose ε = 1. By mapping this



34 CHAPTER 3. CONTROL

Figure 3.4: ε and δ regions for observer.

region forward via IIIMI we obtain the black ellipse EI (middle plot).

The blue and red circle BI is the inscribed circle of the ellipse and

represents δ. By mapping this via IMIII , we obtain the red and blue

ellipse (right plot). Finally, the hatched, blue region lies completely in

the black circle, which represents ε.

In the following section we present how the parameters for the hand

trajectory are chosen.

3.1.4 Height Control

Until now we did not consider varying the parameters A, z0 and T ,

which describe the hand trajectory. As it is not desirable to control

all three simultaneously it would be useful to describe these parame-

ters by a single variable. A possible choice would be the desired apex

height of the ball or the desired impact velocity on the floor. However,

interesting to notice is that all these basically refer to the ball energy

and hence, we select the energy Ed after hand contact as a suitable

variable.

The approach we choose for the period time T is depicted in Fig. 3.5.

T is composed of

1. The time t2 that a ball needs to fall from the apex height defined

by the energy Ed.

2. The time t1 for moving from the floor to the apex height is defined

by the energy COR2Ed, which describes the energy after floor con-

tact.

This time can be interpreted as the average over the two times derived

from a floor to floor motion on the two energy levels Ed and COR2Ed.

Therefore, an approximation for the period time.

From the simulations presented later in Chapter 4 it can be deduced

that the remaining parameters A and z0 are linearly depending on the
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Figure 3.5: Calculation of the period time.

desired energy Ed. Hence, we make the ansatz





T
A
z0



 =






(COR+ 1)
√

2Ed

g2mB

A1 +A2Ed

z01 + z02Ed




 (3.35)

with A1, A2, z01 and z02 as constants that are to be found.

Unfortunately, a proof for the correctness of this parameter choice is

still to be done. However, a clear hint is given by the energy of the hand

trajectory. This can be found to be

EH = mBg



 z0
︸︷︷︸

∼Ed

+ A
︸︷︷︸

∼Ed

sin(ωt)



 +
1

2
mB







Aω
︸︷︷︸

∼ Ed√
Ed

cos(ωt)







2

.

︸ ︷︷ ︸

∼Ed

(3.36)

Hence, with the chosen hand trajectory parameters (3.35) the hand

trajectory behaves proportional to the desired energy.

For changing the desired energy online we filter the amplitude A and

the height z0 by a PT2-element. This leads to two times continuous

differentiability. The period time T is also filtered by a PT2, but is

used as a discrete variable that is updated in the trajectory generator

at every period start. Furthermore, we use a discrete PID control as an

additional summand ∆A on the amplitude with the energy error ∆E as

an input, which is [Lun06b]

∆An = KP∆En +KD(∆En−1 −∆En) +KI

n∑

i=0

∆Ei (3.37)

with Kp,KD and KI as control parameters.
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3.1.5 Summary

In Fig. 3.6 the block diagram of the control for the 1 DoF model is

depicted. The desired Energy Ed is the input. The hand trajectory z

is calculated from (2.6) and (3.35) in ΣTraj. Besides ΣTraj is also fed

with ∆A from the height control (3.37). G represents the model with

the ball state zB and the measured force F as respective output. F is

fed into the observer ΣObs, from which we obtain the energy level after

hand contact. This, in turn, is used in the PID for the hand amplitude.

ΣObs

PID

ΣTraj G

E

−

∆E

∆A

Ed
z

zB

F

Figure 3.6: Overall block diagram of the 1 DoF controller structure.

3.2 3 DoF Model

For the control of the vertical motion of the 3 DoF model we use the

same structure as for the 1 DoF model. vertical motion. Hence, we

present only the extension for the horizontal motion.

3.2.1 Observer

For the additional translational DoF we can use the same prediction

observer structure as for the 1 DoF case. Hence, the position of the

ball from the measured reaction forces needs to be calculated. These

can be obtained by using (A.22) and the Newton-Euler equations from

Sec. 2.2, which yields

G =













Fx

Fz

Fy













=















mH

(
1
2 β̇

2lH cos(β) + d2x(t)
dt2

)

−FHCn sin(β)− FHCt cos(β)

mH

(

−1
2 β̇

2lH sin(β) + d2z(t)
dt2

)

+mHg

+FHCt sin(β)− FHCn cos(β)

KH(α(t)− β)















. (3.38)
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In (3.38) Fx and Fz denote the reaction forces in x and z direction and

Fy the reaction moment about the y axis.

The ball contact position is denoted by δ and has to be calculated from

(2.38). The required hand contact force FHCn can then be calculated

with the ansatz

Fx sin(β) + Fz cos(β), (3.39)

which yields

FHCn =− Fx sin(β) − Fz cos(β)+

mH

(
d2x(t)

dt2
sin(β) +

d2z(t)

dt2
cos(β) + g cos(β)

)

.
(3.40)

For the calculation of FHCn the deflection of the spring β via an observer

needs to be obtained. However, the real 6 DoF model does not have a

spring with mass and thus, does not require such an observer. Hence,

we take β and its derivatives for granted. This yields the ball position

used for the ball observer

xobs
B =





x(t)− δ cos(α)− rB sin(α)
0

z(t) + δ sin(α)− rB cos(α)



 . (3.41)

Therewith, we can use the same observer as in the 1 DoF model for the

vertical and the horizontal translation. Until now the rotation is not

taken into account for the observer.

3.2.2 Control

For the ball height control we use the scheme from Sec. 3.1.4. Hence,

we discuss only the control of the vertical ball motion in this section,

leaving only two remaining DoF are left in the hand.

It is obvious that we have to track the vertical ball position with the

vertical hand position, as otherwise no hand contact would be present

and, hence, no stable dribbling would be possible. The desired vertical

position of the hand is

xd = x̂B + δx, (3.42)

with the observed position x̂B, and δx being an offset so that the ball is

kept at the middle of the finger.

With the remaining DoF we want to drive the ball to a steady state xBd
.

Therefore, we use a PID controller with the following structure:

αd = KPα(xd − x̂B(t))

+KIα

∫ t

0
(xd − x̂B(τ))d τ

+KDα(ẋd − ẋB(t)),

(3.43)

with Kxα as control parameters. The αd signal is filtered by a PT2

element for obtaining twice continuous differentiability.
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3.2.3 Summary

In Fig. 3.7 the overall block diagram of the control structure is de-

picted. Basically, it is the same closed loop as in Sec. 3.1.5 for the

desired energy Ed. In addition, the observer provides the vertical po-

sition x̂B, which is used for the vertical position, cf. (3.42), and the

rotation, cf. (3.43).

ΣObs

PID PID

ΣTraj G

Ed

x

G

xB

∆A

∆E

E−

x̂B

α(t)

Figure 3.7: Overall block diagram of the 3 DoF model controller structure.

In the following section we present the 6 DoF control structure.

3.3 6 DoF Model

As outlined in Sec. 2.3 we use a full dynamic flexible joint model for

the robot and also the full 6 DoF for the ball. Therefore, we present

first an observer for the translational DoF of the ball and then the used

control. At the end of this section the Cartesian impedance control for

the LWR III is shortly summarized.

3.3.1 Observer

The observer structure presented in Sec. 3.1.3 is used for all three

translational DoFs. For this we have to obtain the ball position from

the measured forces. This measurement is obtained by a JR3 6 DoF

force/torque sensor [JR3] mounted in the robot wrist. Since this signal

is overlaid by noise, forces due to the acceleration of the hand mass,

and also the oscillating springs we have to correct this signal. In the

following, we first show how the position is obtained and then how the

signal is filtered.

Since we assume negligible contact moments, we can use the principle

of solidification for calculating the ball position, i.e. there has to be a

straight line on which no moments are acting [MMS05]. This straight
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line EErS(λ) can be found by solving

EEM ext =
EE rS(λ)×EE F ext (3.44)

for EErS(λ), with λ being the curve parameter of the straight line.

Therewith, the contact point EErc is obtained from the intersection

of EErS(λ) with the finger plane EEx = −δx.
EEM ext is the measured

contact moment and EEF ext the measured force vector. With EErC and

(2.60) we obtain the reflected stiffness at the contact point. Hence,

with the direction of the straight line, which is given by EEF ext the ball

position position is

EErB =EE rC +
EEF ext

|EEF ext|

(

−rB +
|EEF ext|

K(EErC , E, Iy)

)

. (3.45)

This quantity takes the ball radius rB and the spring bending into

account. As the sliding mode observer tends to scattering, we filter

the observed ball position with a PT3 element prior to using it in the

feedback loop (see Sec. 3.3.2). Therewith, we get a reference that is

three times continuously differentiable, i.e. only jerk scatters.

The measured force signal contains not only contact forces, but also

high frequency noise, disturbances due to the oscillations of the in-

trinsically compliant fingers, and inertial effects of the load seen by

the sensor while performing the dribbling motion. Therefore, we need

to compensate the most significant effects for reliably estimating the

contact position of the ball. In order to eliminate the high-frequency

noise, we simply filter the raw signal with a PT2 element. As the finger

oscillations have only a small amplitude and the associated frequency

is very close to the frequency spectrum of the contact force, we ne-

glect this effect. Because the desired dribbling motion demands very

high acceleration, inertial forces due to the load mass are the most sig-

nificant disturbance. Since acceleration cannot be obtained from cur-

rently available position sensors via twice numerical differentiation, we

need an appropriate method to observe the Operational space acceler-

ation of the robot flange.

In order to get a reliable acceleration estimate, we use a nonlinear

disturbance observer according to [Had11]. It is defined as

ˆ̈q = M−1(τ − n(q, q̇)−KO(ˆ̇q − q̇)), (3.46)

where q̂ denotes the observed joint position, n(q, q̇) = C(q, q̇)q̇ + g(q),
and KO is the observer gain matrix. With this we get an observation

of q̈ that relies on the measurement of the joint position and velocity

only. Figure 3.8 depicts the according signal flow diagram.

With the observed joint accelerations ˆ̈q we can easily obtain the Carte-

sian accelerations and consequently also the forces due to load accel-

erations via
ˆ̈x = J̇ ˆ̇q + J ˆ̈q. (3.47)
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Figure 3.8: Velocity disturbance observer.

3.3.2 Control

In general, we intend to stabilize the ball at a steady point xBd
(in

fact at a projection on the horizontal plane). For the vertical motion

we refer to the methods presented in Sec. 3.1.4. For stabilizing the

lateral motion, the hand needs to follow the observed ball position from

Sec. 3.3.1. Since we want to control the ball in cylindrical coordinates

(see Fig. 2.7), the desired position is





xd
yd
ϕd



 =





−(dB − δH)− sin(ϕB)
(dB − δH) cos(ϕB)

ϕB



 , (3.48)

with δH being an offset from the {EE} coordinate system to the middle

of the finger. For attracting the ball to xBd
we use a simple PID control

for the two remaining hand rotations:

βd = KPβ(dBd
− dB(t))

+KIβ

∫ t

0
(dBd

− dB(τ))d τ

+KDβ(ḋBd
− ḋB(t)),

(3.49)
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γd = KPγ(ϕBd
− ϕB(t))

+KIγ

∫ t

0
(ϕBd

− ϕB(τ))d τ

+KDγ(ϕ̇Bd
− ϕ̇B(t)),

(3.50)

with Kxx being the respective gains for the PID control.

In the following the Cartesian impedance control that is used for the

robot control is explained in more detail.

3.3.3 Cartesian impedance control

Based on the elastic joint model described in Sec. 2.3.5 a cascaded

control structure is used. The inner control loop is closed about the

motor dynamics given by (2.67). For this the LWR III has torque sen-

sors integrated in the joints. The outer control loop implements the

Cartesian impedance control on the robot dynamics given by (2.66).

An Overview on this can be found in [ASOH07].

Joint torque control

The joint torque control for the LWR III is presented in [OASK+04]. An

exact linearization is applied on (2.67) by choosing a new input v for

the system, which yields a Brunovsky normal form [Kha02]

v = θ̈. (3.51)

This is obtained by choosing the motor torque as

τm = Bv + τ +DK−1τ̇ = Bv + τ a. (3.52)

For the double integrator in (3.51) [OASK+04] proposes the desired

dynamical system

Bθθ̈ + τ +DSK
−1τ̇ = u (3.53)

with a new diagonal motor inertia matrix Bθ and a new diagonal gain

matrix for the derivative feedback DS. This leads to the feedback for

the Brunovsky normal form (3.51)

v = B−1
θ

(
u− τ −DSK

−1τ̇
)
. (3.54)

Hence, we obtain the overall torque feedback by inserting (3.54) into

(3.52), which yields

τm = BB−1
θ u+ τ a

−BB−1
θ (τ +DSK

−1τ̇ ).
(3.55)

With this control law, a PD torque controller is implemented for each

joint. Its benefit is that the desired motor inertia and the derivative

feedback can be chosen freely. In practice a value between 4 and 6 is

selected for the ratio BB−1
θ [ASOH07].
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Cartesian impedance control

Impedance control was first mentioned by [Hog85]. The extension of

this control framework to a passivity based Cartesian impedance con-

trol was made in [ASOH04]. With [Hog85] we may choose an outer loop

controller to be, cf. [ASOH07],

u = −J(q)T (Kxx̃(q) +Dxẋ) + g(q) (3.56)

with J(q) being the manipulator Jacobian and x̃ = x− xd which is the

Cartesian error of the desired position xd and the current position x. x

is calculated by the forward kinematics x = f(q) and g(q) is a gravity

compensation term for the static case.

The dynamical system of the robot (2.66)-(2.69) is passive to its pair

of inputs and outputs {τ a + τ ext, q̇} with the storage function Sq =
1/2q̇TM(q)q̇ + Vg(q) where Vg is a potential function dependent on the

g(q). However,it lacks this property when using the prementioned con-

trol law (3.56). Generally passivity is a property that is desirable, as it

also leads to stability. To achieve it, a one to one mapping of the motor

side and link side positions at equilibrium points θ0 and q0 is used,

which is given by [ASOH07]

θ0 = h(q0) = q0 +K−1l(q0) (3.57)

with l(q0) = −J(q0)
TKxx̃(q0) + g(q0). (3.58)

With this mapping The joint positions q in (3.56) can be replaced by

the motor side positions θ together with the inverse mapping of (3.57)

q(θ) = h−1(θ). This yields

u = −J(q)T (Kxx̃(q) +DxJ(q)θ̇) + g(q) (3.59)

with x̃ = f(q) − xd. Furthermore, the velocity in the derivative part of

(3.56) is also replaced by its equivalent on the motor side position. in

the static case (3.59) and (3.56) are equivalent. Now (3.59) leads to the

desired passivity property with respect to {θ̇,−u}.
This control is implemented on the LWR III running at a rate of 1 kHz.

In the basketball case we further use a velocity feed forward term in the

derivative part of (3.59), to achieve a better tracking performance. In

this thesis we use Kx = diag{1500 1500 1500 200 200 200} (translational

stiffness in N/m and rotational stiffness in Nm/rad).

3.3.4 Summary

Figure 3.9 depicts the overall structure of the controller. We use the

same control loop for the desired energy Ed as in Sec. 3.1.4. Further-

more, we feed the observed ball position x̂B into the trajectory genera-

tor, which is used for ball tracking, cf. (3.48). x̂B is also used for the

PID control that is acting on the two rotations βd, γd. the force signal

for the observer is filtered by Σfil.
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Figure 3.9: Overall block diagram of the 6 DoF control structure.
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4
Simulations and Experiments

Until now we described the used models and the control for achieving

a stable dribbling robot. In this chapter we show results obtained

from simulations and experiments. As there is no straight forward way

to obtain the constraints acting on the ball in reality, we show only

full DoF experiments. However, in order to understand the effect of

the controllers on the reduced DoF problem, the simulation results

are described first and then measurements obtained from experiments

with an LWR III and an unconstrained ball. Overall, the proposed

control laws ensure very robust and stable elastic dribbling.

4.1 Simulations

In the following some results obtained from simulations are presented.

4.1.1 1 DoF Model

A sample simulation is shown in Fig. 4.1. The black plot depicts the

hand trajectory z, which is displaced by an offset −rB, so that the

hand contact becomes clear. During the first 0.5 s we use a 5th order

polynomial to reach the stimulating trajectory (2.6). The blue curve

depicts the ball motion zB. It starts after the 0.5 s lasting starting

motion of the hand. From looking at the apex height it becomes clear

that the ball stabilizes its height after some cycles. The dashed red plot

denotes the ball observer position ẑB. Its initial position is set to the

ball position, while its velocity has a significantly larger value than the

true ball velocity. Despite this significant initial discrepancy, it can be
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Figure 4.1: Position and velocity for the ball, ball observer and hand in a simulation with the 1
DoF Model. The hand is initialized by a polynomial in the first 0.5 s. The ball and observer are
started after this time.

seen that the observer converges during the first contact phase.
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Figure 4.2: Energy for the simulation of the 1 DoF Model with and without PID control for the
height. After 1 s a step is performed in the reference Energy from 6 J to 8 J.
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In Sec. 3.1.4 we described a control structure for the dribbling height.

A sample simulation for such a reference change in the desired energy

is depicted in Fig. 4.2. There, we see the reference energy marked red.

At t = 1 s a step from Ed = 8 J to Ed = 10 J is performed. The blue

trajectory depicts the PT 1 filtered reference energy that is used for the

parameters as we do not want to have fast changes in the parameter

signal. With the given continuous control law these certainly lead to

instability due to the loss of hand contact. In magenta and black two

ball trajectories are depicted. The magenta one is the model without

additional PID control (3.37) acting on the amplitude, the other one

with. From this, we see that the performance with and without control

is nearly the same. However, the clear benefit of using control is the

convergence due to the integral part. Furthermore, the used parame-

ters for the height control are deduced from simulation and certainly

not perfect.

4.1.2 3 DoF Model

Figure 4.3 depicts the resulting ball, observer, and hand motion for

the 3 DoF model. In the upper plot the lateral position is shown. The

steady state point of the ball is located at xB = 0. The shift of the hand

plot with respect to the ball plot is founded in the fact that the posi-

tion of the bearing is plotted. Clearly, the ball stabilizes at the desired

position. In the lower plot the vertical position is depicted. Also in this

direction we obtain a stable cycle for the ball motion. Furthermore,

we see that the observer converges within two cycles towards the true

ball trajectory. Even though we have a rotational and not a transla-

tional spring in this model the vertical motion is very similar to the one

from Fig. 4.1. Please note that in Fig. 4.1 the hand trajectory is trans-

lated downward by the ball radius to visualize the contact. This is less

meaningful because of the rotation of the hand in the 3 DoF model.

4.1.3 6 DoF Model

The simulation results in this subsection consider the full dynamic

model of the LWR-III (see Sec. 2.3.5) that is controlled via Cartesian

impedance control (see Sec. 3.3.3).

Figure 4.4 depicts the ball and hand position expressed in {W}, again

for a regulation dribbling task, however, for a full simulation of robot

and impedance controller. Please note that the same y-axis offset as for

the 3-DoF simulation is present. As one can see the motion converges

quickly to the desired stable dribbling cycle in all three axes. Figure

4.5 shows the contact forces expressed in {EE}. The maximal contact

force is ≈ 20 N along the x-axis. The forces in the z-axis are caused by

the ball friction.
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Figure 4.3: Position of the ball, ball observer and robot hand in a simulation with the 3 DoF
Model. The ball and observer are started after the 0.5 s lasting initialization trajectory of the
hand.
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Figure 4.4: Positions of the ball and hand of a sample simulation of the 6 DoF model.

Figure 4.6 shows that it is possible also to vary the lateral set-point

and desired distal point online. A change in the reference is per-
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Figure 4.5: Measured and filtered forces in the hand. The impact force can be seen in the x
direction. The forces in the z direction are evoked by the friction of the ball during contact.

formed, therefore, at t = 31 s from [dB ϕB ]
T = [0.84 m 0]T to [dB ϕB ]

T =
[0.77 m π/4]T . In other words, with the designed controller the robot is

able to follow a desired dribbling trajectory [dB(t), ϕB(t)] without desta-

bilization.
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[0.84 m 0]T to [dB ϕB]T = [0.77 m π/4]T .
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4.2 Experiments

In this section we present experimental results for dribbling with a

Cartesian impedance controlled LWR III. Due to time reasons, some

conceptual features developed in this thesis and verified in all sim-

ulations were not fully transferred to the full experimental system.

Nonetheless, the successful regulation dribbling shows very promis-

ing results. The missing features in the experimental control, obser-

vation of the vertical motion, cf. Sec. 3.1.3, and the height control, cf.

Sec. 3.1.4 will be included in a near future work.

J1J2J3J4J5J6J7

Intrinsically
compliant

hand

Basketball 6 DoF force torque sensor

EEex
EEey

EEez
0ex

0ey

0ez

Wex
Wey

Wez

Figure 4.7: Experimental setup for basketball dribbling with the LWR III.

In Fig. 4.7 the experimental setup is depicted. The seven revolute joints

of the LWR III are denoted by J1 - J7. The three coordinate systems are

world {W}, base {0} and end effector {EE}. They are placed according

to the 6 DoF model, cf. Fig. 2.7. Hence, the robot base is collinear with

the world frame and parallel to the floor. This configuration is very

suitable for our control approach: The vertical motion is mainly per-

formed by the joints 2, 4 and 6. The tracking of the ball in cylindrical

coordinates is mainly performed by joint 1 for the angle ϕB and joints

2, 4 and 6 for the radius dB. The remaining rotations for the control βd
and γd are mainly done joints 6 and 7.

The JR3 6 DoF force-torque sensor and the dribbling hand are directly

mounted to the robot flange.

The electronics of the robot as e.g. power electronics and sensors is
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Figure 4.8: Image series of ball initialization. The time difference between two pictures is
1/24 s ≈ 41, 7 ms.

completely integrated articulated structure. Overall, the manipulator

needs only 24 V voltage as current supply. The real-time control op-

erating the low-level control and also the dribbling control runs on a

VxWorks [Riv] computer at a computation rate of 1 kHz. As already

mentioned the robot has seven joints and, hence, one additional DoF

apart froe the ones that are needed to provide the three positions and

three rotations of the end effector. In Operational space control (e.g.

Cartesian impedance control) this additional DoF can be described in

terms of the nullspace of the task Jacobian, cf. [Ott08]. In our case

it is controlled by a virtual force acting on the elbow of the robot that

points upwards.

At the start and the end of the robot motion we use a 5th degree poly-

nomial to reach vertical trajectory (2.6) and the end steady state re-

spectively. The observed ball starts motionless lying on the ground at

the starting position of the robot. To get the dribbling cycle started

a human dribbles manually the ball into the dribbling motion of the

robot. In Fig. 4.8 an image series for bringing the ball into the drib-

bling process is depicted.

Figure 4.9 shows an image series of successful elastic dribbling cycles

with the LWR III. The utilization of the elastic fingers can be clearly

observed. In Fig. 4.10 an image series from a front view of a successful
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Figure 4.9: Image series of a successful dribbling cycle. The time difference between two pictures
is t = 1/24 s ≈ 41.7 ms.

dribbling cycle is depicted. In the beginning, the hand is not centered

above the ball. It can be seen that over the image series the hand

centers by moving to the right above the ball, thus maintaining a stable

dribbling cycle.

A sample measurement of the dribbling is depicted in Fig. 4.12 and

Fig. 4.11. In the first figure the ball position is shown in cylindrical co-

ordinates dB and ϕB respectively. In the second figure the disturbance

compensated end-effector forces are visualized. The maximal force in

the upper plot is in a similar range as for the 6 DoF simulation, see

Fig. 4.5. Furthermore, the finger oscillations can be observed mainly

in x-direction of {EE}. Overall, the robot is able to quickly stabilize the

ball motion.
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Figure 4.10: Front view series of a successful dribbling cycle. The time difference between two
pictures is t = 1/24 s ≈ 41.7 ms.
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5
Conclusion and Outlook

In this thesis we developed the theoretical foundation for blind drib-

bling with an intrinsically elastic robot. We derived models with dif-

ferent degrees of freedom of which each captures different aspects sig-

nificant for achieving stable dribbling. For the one-degree-of-freedom

model we obtained the analytic solution for a dribbling cycle and also

elaborated a stability condition. An observer that is suitable to reliably

estimate the ball motion even for the only partially observable cycle

with force sensing only was derived. In other words, it makes it pos-

sible to dribble the ball without the need of vision information. The

observer is also extended to a full DoF ball model and then used in

the experiment with a full 7 DoF articulated robot arm. For the lateral

adaptation motion, a PID controller is used.

In the subsequent simulations and experiments our approach is veri-

fied and a stable dribbling cycle is achieved. Overall, the robot is able

to reactively adjust its lateral position and rotation such that it can

cope with system errors as e.g. ball, robot and sensing uncertainties.

In the presented experiments, we did not yet include the height control

and the observer for the vertical ball motion from yet. By using these

features in a future work, it should be also possible to experimentally

change the dribbling height online.

A further improvement could be the selection of more human like and

rapidly changing excitation trajectories. This could lead to similar dy-

namic dribbling performance that humans are capable of.

The change of apex height and of the reference point is introduced as a

slowly changing system via a PT1-element. A human, in comparison, is

much more dextrous and is able to quickly change the overall dribbling

behavior. To achieve such dexterity, a kind of planing feed-forward
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control could be derived from the analytical solution. With this it could

also be possible to achieve two handed dribbling.



A
Newton-Euler Method

An important part of model based control is to find sufficiently ac-

curate models to describe the system behavior. To accomplish this,

there are numerous approaches proposed in literature [SE04], [SK08]

or [Sha98]. The most common method is Lagrange’s second equa-

tion. Alternatively one may use D’Alembert’s principle. The advantage

of D’Alembert’s principle is that the model can be accomplished by

knowledge of the geometrical connections, the active forces and the

mass and inertia properties. Hence, D’Alembert’s principle is used in

this thesis.

A short overview on the scheme is given for example in [SGS06]. More

on this topic can be found in [SE04] or [Sha98]. The following sections

are mainly related to [SE04].

A.1 Kinematics

Kinematics is used to describe the position of bodies in space. They are

characterized by the relation of position, velocity and acceleration. The

cause of motion is described in the dynamics section. In this thesis

we assume that no deformations in the bodies take place (rigid body

dynamics). This assumption is valid as the springs in the hand absorb

the main part of the deformation energy applied by the bouncing ball.

A rigid body is able to move in 6 DoF, three translational and three

rotational, if it is not subject to any constraints. In the next section

the translational DoFs are described. Afterwards, there is a short in-

troduction to the kinematics of rotation.
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A.1.1 Translational Kinematics

In a Cartesian coordinate system C = {0;eα}, α ∈ {x; y; z} the posi-

tion of a body i from a system of nb bodies can be described by the

translational vector

Cpi(t) = ri1(t)ex + ri2(t)ey + ri3(t)ez, i = 1(1)nb. (A.1)

Depending on the objective a non-cartesian coordinate system C ′, as

e.g. cylindrical or spherical coordinates, may be used. Therefore, a

position vector C′

pi(t) can be introduced. The cartesian translational

vector can be expressed in this coordinates as

Cpi(t) =
Cpi

(
C′

pi(t)
)

= Cpi

(
C′

pi

)

, i = 1(1)nb. (A.2)

In technical systems bodies are often subject to kinematic constraints

so that they have only nf and not their full DoF available for motion.

The nq constraints can be written as algebraic, mostly nonlinear (nq×1)
vector equation in implicit or in explicit form as

φ(x(t)) = 0 resp. x = x(q, t), (A.3)

with q as the (nf × 1) vector of generalized coordinates. These coordi-

nates can also be brought in a relationship with the Cartesian coordi-

nates Cp(q).

The velocity is defined as the derivative of the position vector pi with

respect to time t as

Cvi(t) =
C ṗi(q(t)) =

∂Cpi

∂q
︸ ︷︷ ︸

JTi(q,t)

q̇(t) +
∂Cpi

∂t
︸ ︷︷ ︸

vi(q,t)

, i = 1(1)nb, (A.4)

with JTi
being the (3 × nf ) Jacobian matrix of translation and vi as

the generalized translational velocities. The second derivative of the

position vector is the acceleration, described by

Cai(t) = JTi
(q, t)q̈ + J̇Ti

(q, t)q̇ +
dvi

dt
︸ ︷︷ ︸

ai(q,q̇,t)

, i = 1(1)nb, (A.5)

where ai are the generalized translational accelerations.

A.1.2 Rotational Kinematics

The rotation of the i-th rigid body can be described by the (3 × 3) ro-

tation tensor CRC′

i
(t), which denotes the rotation from the Cartesian

coordinate system {C ′} into {C}. The column vectors or CRC′

i
are unit
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vectors that are the new directions of the rotated system {C ′} expressed

in {C}. Consequently, CRC′

i
is an orthogonal tensor and its determi-

nant equals one. Therefore CRC′

i
belongs to the special orthonormal

group SO(3).

The rotation tensor has nine parameters, even though only three pa-

rameters are needed to describe the complete rotation. The redundant

parameters are defined by the properties of the SO(3) group. Another

possibility is to introduce generalized coordinates q as for the transla-

tional kinematics. Possible choices of generalized coordinates are e. g.

quaternions, Rodriguez’s parameters or Cardan angles.

By differentiating the rotation tensor CRC′

i
, the [3 × 3] tensor of rota-

tional velocity

Cω̃i(t) =
C ṘC′

i
(q, q̇, t)CRC′

i

T (q, t), i = 1(1)np (A.6)

can be derived. This tensor has the special property that it is skew-

symmetric. With the tilde operator defined in (2.35) it is possible to

obtain a rotational velocity with vector characteristics

Cω(t) =
[
ω̃23(t) ω̃31(t) ω̃12(t)

]T
. (A.7)

ω may also be expanded to

Cω(t) = JRi
(q, t)q̇(t) + ω(q, t), (A.8)

with ω as the generalized rotational velocity and JRi
as the (3 × nf )

Jacobian of rotation.

The rotational acceleration vector can be calculated by differentiating

the rotational velocity vector, leading to

Cα(t) = JRi
(q, t)q̈(t) + J̇Ri

(q, t) · q̇(t) + ω̇i(q, t)
︸ ︷︷ ︸

αi(q,q̇,t)

(A.9)

with the generalized rotational acceleration.

A.2 Dynamics

Section A.1 describes the description of rigid body motion. The cause

of movement, cartesian forces f and torques τ , and the derivation of

the dynamic equation of motion is described in this section. The forces

f and the torques τ together are called Cartesian force-moment vector

F = [fTτ T ]T , or wrench.

A.2.1 Classification of Forces

According to [SE04] forces can be classified with respect to the border

of the system into internal forces F i
i and external forces Fo

i . Another
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possibility classifies them into active forces Fa
i and reaction forces Fr

i .

Active forces are forces that are evoked by active elements as springs

or actuators or physical effects as the force due to gravity. Reaction

forces are the reactions to active forces in the joints and bearings of a

system. Their values can be lumped to the (nq×1) vector of generalized

reaction forces and torques

Gr = [g1 g2 . . . gnq ]
T . (A.10)

The direction nik of a generalized reaction force gk is always orthogonal

to the possible movement direction. It can be specified with the implicit

constraint equation (A.3) as

nik =
∂φk

∂x

∂x

∂pi

, i = 1(1)np, k = 1(1)nq . (A.11)

These direction vectors can be lumped together to the (3np × nq) distri-

bution matrix

Q =








n11 n12 . . . n1q

n21 n22 . . . n2q
...

...
. . .

...

np1 np2 . . . npq







=








F1

F2
...

Fp







. (A.12)

The reaction forces can also be written component-by-component as

fr
i = Fi · Gr, i = 1(1)p. (A.13)

A.2.2 Newton-Euler Equations

The application of forces to a rigid body is described by the second law

of Newton as

mi
Cai = mi

dCvi

dt
= Cf i. (A.14)

with mi being the mass of the i-th body. For application of torques to

a body, the Euler equation

CImi

Cαi +
C ω̃i

CImi

Cωi =
C τ i (A.15)

has to be applied as well. In (A.15) CImi
is the moment of inertia of

the i-th body. For the Euler equations it is important with respect to

which reference frame they are applied. A reasonable choice is the

center of mass of the body. By applying Newton’s second law and the

Euler equation to a system of np rigid bodies and regarding equations

(A.5) and (A.9) we obtain the Newton-Euler equations

MJ ÿ + qc = qe +Q · Gr. (A.16)

With
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• M = diag{m1I m2I . . .mpI
CI1 . . .

C Ip} as the global mass matrix,

• J = [JT
T1 JT

T2 . . . J
T
Tp JT

R1 . . . J
T
Rp]

T as the global Jacobian matrix,

• qc =
[

f cT
1 f cT

2 . . . f cT
p τ cT

1 . . . τ cT
p

]T
as the global vector of Coriolis

forces,

• qa =
[

faT
1 faT

2 . . . faT
p τ aT

1 . . . τ aT
p

]T
as the global vector of active

forces.

The equations (A.16) represents 6np coupled ordinary differential equa-

tions (ODE) for nf generalized coordinates and nq reaction forces. Due

to their differential algebraic characteristic Newton-Euler Equations

are not trivially solvable. Reducing these differential algebraic equa-

tions to a system of ordinary differential equations is done by applying

D’Alembert’s principle which is described in the next section.

A.2.3 D’Alembert’s Principle

According to D’Alembert’s principle the mechanical work of movements

done by reaction forces f r
i that are compatible with the mechanical

constraints equals zero [Sha98]. This yields

δW r =

np∑

i=1

f r
i
T δpi = 0 (A.17)

for a system of np bodies. (A.17) implies that the possible movement

directions are always orthogonal to the reaction forces.

Inserting (A.13) into (A.17) and regarding that

δpi(y) =
∂pi

∂y
δy = JT iδy, i = 1(1)np, (A.18)

(A.17) can be written as

np∑

i=1

(FiG
rJT iδy) =

np∑

i=1

(

G
rTFiJT iδy

)

= 0. (A.19)

As the generalized reaction forces Gr and the virtual displacements δy
do not become zero in general, the scalar product

∑np

i=1 FiJT i has to

become zero. However this sum does not have any differences to the

scalar product of the two matrices Q (cf. eq. (A.12)) and J (cf. eq.

(A.16)). This yields to the orthogonality relation

Q
T
J = J

T
Q = 0. (A.20)
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A.2.4 Equations of Motion

By applying the orthogonality relation in equation (A.20), the reaction

forces in the Newton-Euler Equations can be cancelled. In order to

achieve this (A.16) is multiplied from the left with J
T
. This yields to

M(y, t)ÿ(t) + k(y, ẏ, t) = q(y, ẏ, t). (A.21)

(A.21) are nf ODEs describing the equations of motion of concatenated

rigid bodies without the unknown reaction forces. The corresponding

relations are

• M(y, t) = J
T
MJ as the mass, matrix,

• k(y, ẏ, t) = J
T
qc as the generalized Coriolis, forces,

• q(y, ẏ, t) = J
T
qe as the generalized active forces.

The application of the orthogonality relation can also yield the reaction

forces. Therefore, the Newton-Euler equations are multiplied from the

left with the term Q
T
M

−1
. The reaction forces equation transforms to

Q
T
M

−1
Q

︸ ︷︷ ︸

N(y,t)

G
r(t) = Q

T
M

−1
qc

︸ ︷︷ ︸

k̂(y,ẏ,t)

−Q
T
M

−1
qe

︸ ︷︷ ︸

q̂(y,ẏ,t)

. (A.22)



B
Solution for the Hand Contact

In Sec. 3.1 we used the analytical solution of the hand contact in the

1 DoF case. In the following we derive this. The equation of motion for

the hand contact in (2.3) can be written as

żB =

[
0 1

−K 0

]

︸ ︷︷ ︸

=:A

zB +

[
0
1

]

︸ ︷︷ ︸

=:b

(−g −K(rB − z0 −A sin(ωt+ ϕ))
︸ ︷︷ ︸

=:u(t)

(B.1)

with K = KH/mB. The initial condition is assumed to be zB0 =
[z1B0 z2B0]

T at t = 0. The free motion of this equation is calculated

as

zBfree
= eAtzB0 =

[

cos(
√
Kt) 1√

K
sin(

√
Kt)

−
√
K sin(

√
Kt) cos(

√
Kt)

]

zB0. (B.2)

For obtaining the motion that is imposed by the input u(t), we may

split u(t) into a constant

u1 = −g −KrB −Kz0 (B.3)

and a time dependent part

u2(t) = −KA sin(ωτ + ϕ). (B.4)

The constant part yields [Lun06a]

zBfor1
=

∫ t

0
eA(t−τ)b u1dτ

= u1

[
1
K

(

1− cos(
√
Kt)

)

1√
K
sin(

√
Kt)

]

.

(B.5)

65
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For the forced motion due to the time variant part of the input u2(t),
we are only calculating the first component of the state vector, as the

second component is simply the time derivative of the first. We obtain

therefore [Lun06a]

zBfor2
=

∫ t

0
eA(t−τ)b u2(τ)dτ

⇒ z1Bfor2
=

∫ t

0

√
KA sin(

√
K(t− τ))

︸ ︷︷ ︸

=:f1(t−τ)

sin(ωτ + ϕ)
︸ ︷︷ ︸

=:f2(τ)

dτ
(B.6)

which is a folding of f1 and f2 presentable as [Lun06a]

z1Bfor2
=

√
KA (f1(t− τ) ⋆ f2(τ)). (B.7)

This folding can be expressed as a multiplication in the Laplace

domain[Lun06a]

f1(t− τ) ⋆ f2(τ) c sF1(s)F2(s) (B.8)

The Laplace transforms of these two functions f1 and f2 can be found

in [BSMM01] as

f1(t− τ) c s F1(s) =

√
K

s2 +K
, (B.9)

f2(τ) c s F2(s) =
ω cos(ϕ) + s sin(ϕ)

s2 + ω2
. (B.10)

Therewith, we get [BSMM01]

Z1Bfor2
(s) = F1(s) F2(s) (B.11)

=
kA

(s2 +K)(s2 + ω2)
[ω cos(ϕ) + s sin(ϕ)] (B.12)� �

z1Bfor2
(t) = kA

[

cos(ϕ)

√
K sin(ωt)− ω sin(

√
Kt)√

K(k − ω2)
(B.13)

+sin(ϕ)
cos(ωt)− cos(

√
Kt)

K − ω2

]

.

The overall solution considering (B.2), (B.5) and (B.13) is then

zB(t) =

[
Φ11 Φ12 Φ13 0
Φ21 Φ22 0 Φ24

]

︸ ︷︷ ︸

=:Φ









sin
(√

KH

mB
t
)

cos
(√

KH

mB
t
)

sin(ωt+ ϕ)
cos(ωt+ ϕ)









+

[
− gmB

KH
− rB + xH0

0

]

(B.14)
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with

Φ11 = xB20

√
mB

KH
−

√
KHAω cos(ϕ)

√
mB

(
KH

mB
− ω2

) (B.15)

Φ12 = xB10
+

gmB

KH
+ rB − xH0 −

KHA sin(ϕ)

mB

(
KH

mB
− ω2

) (B.16)

Φ13 =
KHA

mB

(
KH

mB
− ω2

) (B.17)

Φ21 = −Φ12

√

KH

mB
(B.18)

Φ22 = Φ11

√

KH

mB
(B.19)

Φ24 = gΦ13ω. (B.20)
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[ASOH07] ALBU-SCHÄFFER, A. ; OTT, C. ; HIRZINGER, G.: A Unified

Passivity Based Control Framework for Position, Torque

and Impedance Control of Flexible Joint Robots. In: The

International Journal of Robotics Research 26 (2007), S.

23 – 39

[BH95] BANASZUK, A. ; HAUSER, J.: Feedback linearization of

transverse dynamics for periodic orbits. In: Systems and

Control Letters 26 (1995), S. 95 – 105
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D.: Ball Dribbling with an Underactuated Continuous-

Time Control Phase. In: Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation. Anchorage,

Alaska, 2010, S. 4669 – 4674
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