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Abstract— For autonomous navigation tasks it is important
that the robot always has a good estimate of its current
pose with respect to its starting position and – in terms of
orientation – with respect to the gravity vector. For this, the
robot should make use of all available information and be robust
against the failure of single sensors. In this paper a multisensor
data fusion algorithm for the six-legged walking robot DLR
Crawler is presented. The algorithm is based on an indirect
feedback information filter that fuses measurements from an
inertial measurement unit (IMU) with relative 3D leg odometry
measurements and relative 3D visual odometry measurements
from a stereo camera. Errors of the visual odometry are
computed and considered in the filtering process in order to
achieve accurate pose estimates which are robust against visual
odometry failure. The algorithm was successfully tested and
results are presented.

I. INTRODUCTION

Mobile robots are built with the goal that they will be
able to perform tasks in environments which are dangerous
for humans. For example, they should explore the surface
of other planets, climb into caves or provide information
from disaster sites. While for most of these tasks a certain
degree of autonomy is beneficial, it is absolutely necessary
for robots on planetary surfaces because long signal round
trip times forbid remote control of the robot. A basic skill of
an autonomous robot is the robust estimation of its current
pose. For this, the robot should not depend on external
information because in some applications GPS or a priori
maps are not available. Thus, the robot should be able to
estimate its pose using only its own sensors, for example
wheel encoders, joint sensors, visual and inertial sensors.
However, when GPS or other additional information become
available, the robot should use them.

The DLR Crawler [1] (ref. Fig. 1) is a six-legged ac-
tively compliant walking robot which was developed as a
prototype of an autonomous robot for rough terrain. Its
legs are equipped with joint angle sensors that allow the
computation of a leg odometry in six degrees of freedom
(DOF). Furthermore, it has a stereo camera head for per-
ceiving its environment and an inertial measurement unit
(IMU) to measure accelerations and angular velocities. For
autonomous navigation it needs accurate and robust position
and orientation estimates. Since each kind of sensor has
disadvantages under certain conditions, the information of
all available sensors must be combined so that robust pose
estimation is possible.

A. Chilian, M. Görner, H. Hirschmüller are with the Institute of Robotics
and Mechatronics, DLR German Aerospace Center, Oberpfaffenhofen, Ger-
many annett.chilian@dlr.de

Fig. 1. DLR Crawler in the gravel testbed

Many authors have addressed the problem of sensor data
fusion. Often IMU data is combined with GPS readings
because of their complementary properties. A multisensor
Kalman filter is presented by Caron et al. for fusing IMU
and GPS data [2]. Dissanayake et al. presented an indirect
information filter for fusing GPS, IMU and wheel encoder
data [3].

Other authors do not use GPS data but combine iner-
tial measurements with visual and/or odometry information.
Konolige et al. show a data fusion method for correcting
visual odometry measurements by IMU roll and pitch angle
measurements with respect to the gravity vector and by
IMU angular rate measurements for the yaw angle using an
extended Kalman filter [4]. Helmick et al. use the indirect
extended Kalman filter formulation to fuse IMU measure-
ments with relative measurements from visual odometry and
vehicle odometry [5]. Lamon and Siegwart used an extended
information filter for fusing data from an inertial navigation
system and a three-dimensional rover odometry [6].

In this paper, a multisensor data fusion algorithm is
presented which uses an indirect information filter for fusing
inertial measurements of an IMU with relative translation and
rotation measurements from a 3D visual odometry and 3D
leg odometry. An error estimate for each visual odometry
measurement is computed and used in the fusion process to
assign a lower weight to the measurement when the visual
conditions are bad.

II. SENSOR MEASUREMENTS

A. Inertial Measurements

The DLR Crawler uses an XSens IMU which consists
of three accelerometers and three gyroscopes measuring the
accelerations in x, y, z direction and the angular velocities
around the three axis, respectively. IMU data is received at
a rate of 120 Hz. Since the accelerometers also sense the
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gravity, absolute roll and pitch angles can be derived. The
accelerations and angular velocities can be integrated over
time to get the velocity, position and orientation of the IMU.
However, since the accelerometer and gyroscope measure-
ments are biased, the errors in position and orientation will
grow unbounded due to the integration. For this, an IMU
cannot be used solely to give good pose estimates but it
needs to be corrected by other sensors with less drift.

The advantage of the IMU is that it only depends on
the present gravity and apart from that is independent of
environmental conditions.

B. Visual Odometry

1) Computation of Visual Odometry: The stereo camera
permits the ego-motion estimation of a robot from the
images, which is known as visual odometry. The advantage
of it in mobile robotics is, that it is independent of wheel
or leg slip. The used stereo visual odometry [7] is based on
depth images that are available, since they are also required
for other tasks like obstacle avoidance, mapping, etc. Depth
images are computed by the Semi-Global Matching (SGM)
method [8], which is very accurate at fine structures and in
weakly textured terrain. A GPU implementation runs with
4-5 Hz on VGA sized images with 128 pixel disparity range.
Assuming the environment is static, corresponding feature
points are detected in subsequent images using a corner
detector, followed by feature point matching. The disparity
image is used for 3D reconstruction of all feature points.
Thereafter, a robust algorithm is used for removing outliers
in the correspondences using the rigidity constraint. Finally,
the 6 DOF to register the point clouds of the previous and
current image frame are determined in closed form as initial
ego-motion estimate [7].

2) Visual Odometry Error: Regardless of the exact
method for determining the initial ego-motion estimate,
a visual odometry method typically performs non-linear
optimization for minimizing either the reprojection error
of reconstructed features or another error model as fast
approximation of the reprojection error [9]. We used x =
[tx, ty, tz, n1, n2, n3]

T as parametrization of the transforma-
tion with t = [tx, ty, tz]T as translation, n = [n1, n2, n3]T

as rotation axis and α = |n| as rotation angle. Let y =[
p′1x − p1x, . . . , p

′
ny − pny

]T
be the reprojection error vector

that is the difference between the feature point locations pi
in the image and the corresponding projected locations of
their reconstructions p′i. The function to be minimized (e.g.
by Levenberg-Marquardt) is then y = f(x) with y0 = f(x0)
as solution with the lowest reprojection error.

Assuming that the correspondences are outlier free, εp =
0.5 pixel is a typical error in feature point localization. The
propagation of this error into the parameters results in the
parameter error εx. For computing this error, the function
f(x) must be inverted. Since it is not invertible in closed
form (otherwise a non-linear optimization would not be
needed), a linearization is computed at x0 as approximation

y = f(x) ≈ J0(x− x0) + y0, (1)

with J0 as Jacobi matrix at the solution x0. The Levenberg-
Marquardt optimization computes the Jacobi matrix inter-
nally, which may be reused, or it can be computed from
scratch by numerical forward differentiation of f(x0). For
small values x−x0, the linearization is a good approximation
of the original function. The function can now be inverted
by x − x0 = J+

0 (y − y0), with J+
0 as pseudo inverse of

the Jacobian, computed by singular value decomposition. In
this formulation, the error εp can be propagated individually,
corresponding to each element of y, by εix = J+

0 ε
i, with εi

as null vector with only element i set to εp. If independent
errors are assumed, then the individually propagated errors
are simply the square root of the sum of squares according to
the rules of error propagation. This is effectively the same as
multiplying the pixel error with the L2 norm over the rows
of the inverse Jacobian, i.e.

εxi = εp
∣∣J+

0i

∣∣ , (2)

with J+
0i as the i-th row of J+

0 . It is important to understand
that the estimation of the visual odometry error εx implicitly
includes all sources of errors due to bad conditioned scenes
with weak texture or low contrast, like low number of
correspondences, feature points that are clustered in an image
area, etc. Therefore, it is a very good value for judging the
quality of visual odometry for fusion with other ego-motion
sensors.

C. Leg Odometry

Using joint angle and joint torque measurements, a 6 DOF
odometry of the DLR Crawler is computed. It estimates
relative pose changes of the robot based on matching point
clouds, which are represented by the positions of the sup-
porting feet. The algorithm assumes rigidity of the config-
urations, which implies a no slip condition for the feet.
Hence, the quality of the relative leg odometry measurements
depends on the ground conditions. Since the basic odometry
is subject to strong drift of the pitch and roll angles, the joint
torque sensors are used to compute an estimate of the earth
gravity direction which allows to stabilize the absolute roll
and pitch angles using an error state Kalman filter.

D. Summary of the Sensors

The IMU is independent from environmental conditions
and provides measurements at a high frequency. Since it
has a strong drift in position and orientation, it must be
aided by other sensors that do not suffer from drift. Aiding
measurements are provided by leg odometry and visual
odometry. These are relative measurements which are drift-
free. Furthermore, leg odometry and visual odometry can be
considered as complementary because usually rough terrain,
where leg odometry is prone to slip, has good texture and
allows accurate visual odometry measurements, and vice
versa.

III. FILTER CHOICE FOR MULTISENSOR DATA FUSION

To combine the measurements of IMU, visual and leg
odometry, a multisensor data fusion algorithm has been
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implemented. Usually probabilistic estimators such as the
Kalman filter or its inverse formulation, the information
filter, are used for such applications. In this application, an
indirect feedback information filter is used. The information
filter has the advantage that fusing measurements of multiple
sensors at the same time can be achieved very easily. The
indirect or error state form works on an error state vector
which contains the errors of the actual state rather than
the state variables themselves. The advantage is that no
model of the usually nonlinear robot dynamics is required
but the filter is based on linear equations describing the error
propagation in the inertial system. The feedback formulation
means that the estimated error is fed back into the IMU
navigation equations to correct the current position, velocity
and orientation estimates. For this, the estimated error states
are kept small and small angle approximations in the filter
equations are possible. That also means that the error state
can be predicted as zero for each new filter step. Furthermore,
the indirect filter formulation allows the filter to be run at a
lower frequency than the inertial navigation equations. For a
more detailed discussion of the different filter formulations
the reader is referred to Roumeliotis et al. [10].

The information filter is numerically equivalent to the
Kalman filter but has inverse mathematical properties. To
transform the indirect Kalman filter into the information
form, the information matrix Y and the error information
vector ∆y are defined as

Y = P−1 and ∆y = Y ·∆x, (3)

where P is the estimation covariance matrix and ∆x is the
error state vector. Transforming the Kalman filter equations
so that Y and ∆y are estimated results in the prediction step

Y −t = (AtY
−1
t−1A

T
t +Qp

t )−1 (4)

∆y−t = Y −t (AtY
−1
t−1∆yt−1), (5)

where At is the state transition matrix and Qp
t is the process

noise matrix. In the feedback form, the prediction (5) can be
simplified to ∆y−t = 0 because it is assumed that the error
is corrected after each filter step. The update step of the
information filter becomes

Y t = HT
t (Qm

t )−1Ht + Y −t (6)

∆yt = HT
t (Qm

t )−1zt + ∆y−t , (7)

where Ht is the measurement matrix and Qm
t is the

measurement noise matrix. In the indirect formulation, the
measurement vector zt is the difference between the IMU
measurements and the measurements of an aiding sensor.
The update step can be written as

Y t = It + Y −t , with It = HT
t (Qm

t )−1Ht, (8)

∆yt = it + ∆y−t , with it = HT
t (Qm

t )−1zt. (9)

The term It is the amount of information in the measurement
and it is the contribution of the measurement zt to the
state vector [3]. If there are several measurements zk,t at

a timestep t we get

It =

n∑
k=1

HT
k,t(Q

m
k,t)
−1Hk,t =

n∑
k=1

Ik,t (10)

it =

n∑
k=1

HT
k,t(Q

m
k,t)
−1zk,t =

n∑
k=1

ik,t. (11)

The simplicity of the update stage of the information filter
originates from the fact, that the measurements of the single
sensors are conditionally independent. Hence, the informa-
tion form of the Kalman filter has computational advantages
for multisensor data fusion. The routines for computing Ik,t
and ik,t for each measurement are independent of each
other and independent of Y −t and ∆y−t and can run in
parallel and on distributed systems. The disadvantage is, that
a matrix inversion is required to obtain the error state vector
∆xt from the information vector ∆yt. However, the more
external sensors are used, the higher the profit when using
the information filter.

IV. STATE VECTOR AND STATE TRANSITION MODEL

For implementing the information filter we chose to use
a state vector consisting of 15 variables: The position p (3),
the velocity v (3), the orientation Euler angles ϕ (3), the bias
of the gyroscopes bg (3) and the bias of the accelerometers
ba (3). In the indirect formulation the error state vector

∆x = (∆p,∆v,∆ϕ,∆bg,∆ba)T (12)

is used. The position p and velocity v variables are given in
world coordinates with the origin located at the IMU origin
at the beginning of the data fusion process. The Euler angles
ϕ are the angles of the rotation matrix that turns a point from
the IMU coordinate system to the world coordinate system.
The bias values bg and ba are given in IMU coordinates.

The discrete time error state propagation originates from
the inertial error dynamics [11] as

∆x−t = At ·∆xt−1 (13)

At = I−


0 −I 0 0 0
0 0 R−t b(at − b−a,t)×c 0 R−t
0 0 0 R−t 0
0 0 0 0 0
0 0 0 0 0

∆t

(14)

bo×c =

 0 −oz oy
oz 0 −ox
−oy ox 0

 , (15)

where I is the identity matrix (not to confuse with the infor-
mation amount It), at = (atx, aty, atz)T is the acceleration
measured by the IMU, b−a,t is the predicted accelerometer
bias, R−t is the propagated rotation from the IMU coordinate
system into the world coordinate system and ∆t is the time
difference between t− 1 and t.
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Fig. 2. Overview of the multisensor data fusion process

V. THE MULTISENSOR DATA FUSION PROCESS

An overview of one time step of the data fusion process is

given in Fig. 2. First, the accelerations at and angular veloc-

ities ωt measured by the IMU are fed into a strapdown algo-

rithm. Considering the state vector xt−1 from the previous

filter step, this algorithm integrates the IMU measurements

to velocity v−

t , position p−

t and orientation Euler angles ϕ−

t .

These values are the predicted state variables. The bias values

b−a,t and b−g,t are predicted to be equal to the bias values of

the last filter step. Every time one or more measurements of

the aiding sensors are available, the indirect information filter

is run and gives an estimated error state vector ∆xt. This

error state vector is then subtracted from the predicted state

vector x−

t to feedback the error. The result is the corrected

state vector xt. If no measurements of the aiding sensors

are available, the error state vector is zero and the corrected

state will be the predicted state. The strapdown block and

the information filter block are described in more detail in

the following sections.

A. The Strapdown Algorithm

The accelerations and angular velocities of the IMU are

measured in the IMU coordinate system. Since the IMU

moves, the accelerations have to be transformed into the

world coordinate system before integrating them. For this,

the rotation matrix Rt, which turns a vector from the IMU

coordinate system into the world coordinate frame, has to be

computed.

The rotation matrix can be propagated using the gyroscope

measurements ωt. Assuming a high sampling rate (∆t is

small), the propagation of the rotation matrix can be per-

formed as follows [12]:

R−

t = Rt−1R∆,t (16)

R∆,t = I+
sin |φt|

|φt|
⌊φt×⌋+

1− cos |φt|

|φt|
2

⌊φt×⌋2 (17)

|φt| =
√

φ2
x,t + φ2

y,t + φ2
z,t (18)

φt = (ωt − b−g,t)∆t. (19)

R−

t is the propagated rotation matrix, which is computed

from the rotation matrix Rt−1 of the last time step and a

differential rotation R∆,t. The variable φt is the rotation

vector.

Knowing the rotation matrix, the IMU velocity v−

t and

position p−

t can be computed. The acceleration measure-

ments at have to be compensated for bias b−a,t, transformed

into the world frame using R−

t and the gravity vector g =
(0, 0,−9.80665)T must be compensated:

v−

t = vt−1 + (R−

t (at − b−a,t) + g)∆t (20)

p−

t = pt−1 + vt−1∆t+ 1
2 (R

−

t (at − b−a,t) + g)∆t2. (21)

B. The Indirect Information Filter

Within the indirect information filter relative and absolute

measurements are used to compute the estimated error state

vector. Relative measurements contain a difference between

the current system state and a previous state. Since Kalman

filter theory assumes that a measurement only depends on

the current state of the system, the state vector and co-

variance matrix have to be augmented to also contain the

previous state which is part of the relative measurement.

This approach was described by Roumeliotis et al. [13]. This

method introduces the correlations between the current and

the previous state and allows to estimate a correct covariance

matrix, which grows with time if only relative measurements

are available.

To keep the augmented covariances small, we chose to

only clone the covariances associated to the states pt and

ϕt, because only relative position and rotation measurements

are used. At each time t = tStart when at least one relative

measurement starts, the covariance matrix is augmented as

follows:

x̌t =

[

pt

ϕt

]

P̌ t = Cov(x̌t, x̌t) (22)

P
aug
t =

[

P̌ tStart
Cov(x̌tStart

,xt)
Cov(xt, x̌tStart

) P t

]

, (23)

where Cov(xt, x̌tStart
) is the covariance between the states

at time t and the cloned states at tStart. Since the covariance

P̌ tStart
must not change during prediction of the filter, the

system matrix A
aug
t and the process noise matrix Q

p,aug
t

become

A
aug
t = blkdiag [I,At] (24)

Q
p,aug
t = blkdiag [0,Qp

t ] , (25)

where blkdiag [U ,V ] stands for a block diagonal matrix

with the matrices U ,V on its main diagonal.

Since in the information filter the inverse covariance is

used, it must be ensured that in the prediction step (4)

A
aug
t P

aug
t (Aaug

t )T + Q
p,aug
t is invertible. For that reason,

if two different relative measurements start at the same

time, cloning is applied only once to keep the covariance

matrix invertible. If measurements start at different times,

the covariances between the measurements also have to be

cloned correctly. At the end of each relative measurement, the

corresponding covariances are deleted from the augmented

covariance matrix. However, in this application, usually a

relative measurement starts at the same time the previous

measurement ends.
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Fig. 3. Overview of the multisensor data fusion information filter

The data flow within the indirect information filter for mul-

tisensor data fusion is shown in Fig. 3. First, the augmented

information matrix is predicted. Then, for each available

sensor measurement k at time step t the values for i
aug

k,t

and I
aug

k,t are computed using the differences between the

strapdown algorithm results and the sensor measurements.

Then, all available information amounts I
aug

k,t and information

contributions i
aug

k,t are summed up and the update equations

are performed. In the end, the resulting information vector is

transformed into an error state vector from which the cloned

states are deleted. These steps are described in more detail

in the following sections.

1) Prediction: Using the state transition matrix A
aug
t

as given in (14) and (24), the information matrix Y
aug−
t

is predicted using (5). The prediction of the information

vector simply becomes ∆y
aug−
t = 0 because in the indirect

feedback information filter the error is corrected after each

filter step.

2) Absolute Roll and Pitch Angle Measurements: Since

the accelerometers of the IMU sense the gravity, which

is known in size and direction with respect to the world

frame, it is possible to determine the absolute roll and

pitch angles γabs and βabs of the acceleration measurement

a = [ax, ay, az]
T as follows:

γabs = atan2(ay, az), (26)

βabs = atan2(−ax, ay sin γabs + az cos γabs). (27)

From the absolute roll and pitch angles, an absolute rotation

matrix Rabs can be computed using

Rabs =





cβcα sγsβcα− cγsα cγsβcα+ sγsα

cβsα sγsβsα+ cγcα cγsβsα− sγcα

−sβ sγcβ cγcβ





sϕ = sinϕabs cϕ = cosϕabs (28)

For this, the yaw angle αabs is set to be equal to the yaw

angle of the propagated rotation matrix R−

t because it cannot

be determined from the acceleration measurements.

However, if the IMU is in motion, there are additional

accelerations which disturb the computation of the absolute

orientation. From the propagated rotation matrix R−

t as

computed in (17)-(19), the roll and pitch angles can also

be determined but these values suffer from a drift. By

bringing Rabs and R−

t together, the roll and pitch Euler

angles can be determined quite accurately. The difference

rotation matrix between the propagated rotation R−

t and the

absolute rotation Rabs is computed as

Rdiff = R−

t ·RT
abs. (29)

Using the equations

α = atan2(R(2,1),R(1,1))

β = atan2(−R(3,1),R(2,1) sinα+R(1,1) cosα)

γ = atan2(R(1,3) sinα−R(2,3) cosα,

−R(1,2) sinα+R(2,2) cosα) (30)

to extract Euler angles from the elements R(i,j) of a rotation

matrix, the angle differences γdiff and βdiff can be computed

from Rdiff which give the measurement vector zEuler,t:

zEuler,t =

[

γdiff

βdiff

]

(31)

The Euler angle gimbal lock problem can be neglected

because such orientations will not be reached by the robot.

The measurement matrix HEuler,t which projects the state

vector xt onto the measurement vector zEuler,t is

HEuler,t =
[

02×6 I2×2 02×7

]

(32)

For the augmented state vector, the measurement matrix has

to be augmented with zeros to

H
aug
Euler,t =

[

0 HEuler,t

]

, (33)

because the measurement does not depend on any previous

states but is absolute. The measurement noise matrix Qm
Euler,t

contains the variances of the absolute roll and pitch angle

measurements and can be found by filter tuning.

Knowing zEuler,t,H
aug
Euler,t,Q

m
Euler,t the information contri-

bution i
aug
Euler,t and the information amount I

aug
Euler,t are com-

puted using (8)-(9).

3) Relative Translation and Rotation Measurements: The

relative motion measurements provided by visual and leg

odometry have to be fused with the relative rotations and

translations computed by the strapdown algorithm within the

same time period. A relative measurement, thus, has two

timestamps tstart and tend at the beginning and the end of

the relative motion. Furthermore, for fusing relative rotations

and translations, all values must be represented in the same

coordinate system. That means, the relative measurements of

all sensors have to be transformed into relative measurements

in the IMU coordinate frame in order to be fused with IMU

measurements. That also means, that the transformations

between the different sensor coordinate frames must be

known, either by design or by calibration.

The differences between the relative motion given by the

strapdown algorithm in the time interval from tstart to tend

and the relative motion measured by the odometry sensor

give the measurement vector zrel,t. In order to compute the

difference between two relative rotations RI
rel measured by

the IMU and RS
rel measured by an odometry sensor, an

absolute rotation matrix has to be computed. To preserve the

relative character of the measurements, both relative rotations
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have to be multiplied with the same absolute rotation matrix
Rtstart to get pseudo-absolute rotation measurements. This
absolute rotation matrix Rtstart should be the best estimate
of the rotation from the IMU into the world frame at time
step tstart:

RI
tend

= RtstartR
I
rel, RS

tend
= RtstartR

S
rel. (34)

Now the rotational difference matrix can be computed as

Rdiff = RI
tend
· (RS

tend
)T . (35)

The measurement vector zrel,t contains the differences pdiff
between the two relative translations and the angle differ-
ences ϕdiff computed from Rdiff using (30):

zrel,t = [pdiff,ϕdiff]
T
. (36)

The augmented measurement matrix Haug
rel,t which projects

the augmented state vector ∆xaug
t onto the measurement

vector zrel,t is

Haug
rel,t =

[
−H rel,tStart H rel,t

]
. (37)

H rel,t =

[
I3×3 03×3 03×3 03×6

03×3 03×3 I3×3 03×6

]
. (38)

The matrix H rel,tStart contains an identity matrix in the
columns corresponding to the location of the cloned covari-
ance of time tStart and zeros everywhere else.

The measurement noise matrix Qm
rel,t is computed from

the standard deviations of the relative position and rotation
measurements. For leg odometry, the measurements errors
depend on how much the feet of the robot slip on the
ground. On homogeneous ground the amount of slippage
can be assumed constant and found by filter tuning. Using
visual odometry, assuming constant standard deviations for
the relative motion measurements is not appropriate for
environments with changing light or texture conditions. Thus,
the estimated standard deviations of each visual odometry
measurement (ref. Sec. II-B.2) are transformed into the IMU
coordinate system using error propagation and then fed into
the measurement noise matrix.

Knowing zrel,t,H
aug
rel,t,Q

m
rel,t the information contribution

iaug
rel,t and the information amount Iaug

rel,t are computed using
(8)-(9).

4) Update: At every time step, iaug
k,t and Iaug

k,t of each
available sensor measurement are computed. In the final
step of the multisensor information filter, these values are
summed and used to update the predicted information vector
and information matrix using (8)-(9). Finally, the resulting
information vector ∆yaug

t is transformed into an error state
vector ∆xaug

t . After deleting the augmented states from this
vector, ∆xt is obtained, which contains the estimated errors
of the single robot states. By inverting the resulting informa-
tion matrix Y aug

t and deleting the augmented covariances, the
covariance matrix P t can be computed if required.

C. Error State Feedback

To correct the position, velocity and bias values of the
predicted state vector x−t , the corresponding error estimates
from the error state vector ∆xt are subtracted. For feeding
back the estimated rotation angle error ∆ϕt, a rotation
matrix Rcorr has to be computed from ∆ϕt using (28) and
correction is performed as

Rt = RT
corr ·R

−
t . (39)

From Rt the corrected Euler angles can be extracted via
(30).

VI. FILTER INITIALIZATION

In the beginning of the data fusion process the robot is
motionless in its starting position. This phase can be used
for filter initialization.

From the very first IMU measurement, the starting orienta-
tion Rt0 with respect to the gravity vector is estimated from
the acceleration measurements at0 as shown in (26)-(27).
Furthermore, the bias estimates ba,t0 and bg,t0 are initialized
using the starting orientation, the known gravity vector g and
the gyroscope measurements ωt0 . Good starting values for
the sensor biases are

ba,t0 = at0 +RT
t0 · g (40)

bg,t0 = ωt0 . (41)

From the following IMU measurements, the estimates of
the bias values and the starting orientation can be refined
exploiting the fact that the robot does not move. Hence,
position, velocity and orientation measurements with the
value of zero and small noise matrices are fed into the
information filter. As a result the bias value estimation
stabilizes. Furthermore, the absolute roll and pitch angle
measurements from the accelerations are fused with the
orientation measurements from the gyroscopes as descibed in
section V-B.2. The initialization phase is finished when the
change in the bias estimates drops below a threshold. This
process usually takes a few seconds. Once the information
filter is initialized, the robot can start moving and visual
odometry and leg odometry measurements are used.

VII. EXPERIMENTAL RESULTS

For evaluating the performance of the multisensor data
fusion filter, the Crawler was steered along a rectangular path
through a 2×2 m testbed filled with gravel. It was controlled
manually via a 6 DOF space mouse generating the commands
“walk forward”, “turn left/right” and “walk sideways to the
left/right”. Its walking speed was approximately 0.04 m/s.
The estimated trajectories measured by visual odometry and
leg odometry, as well as the trajectory estimated by fusing
inertial, visual and leg odometry data were recorded. Addi-
tionally, a reflecting target body was mounted on the Crawler
and tracked by an infrared tracking system. The trajectory
of the target body provided a ground truth measurement.

In one run, the lighting conditions and the texture of the
gravel were very good. Fig. 4(a) shows the test setup with
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the robot in its starting pose and the approximate steered
path. Fig. 4(b) shows the ground truth trajectory measured
by the tracking system, the fusion result and the different
odometry trajectories which were obtained by summing
the relative measurements of the respective sensors. The
trajectory computed using only the IMU measurements is
not shown here because its enormous drift leads to an error
of more than 100 m after 60 s runtime. The visual odometry
trajectory is quite accurate apart from a small drift of the yaw
angle. The leg odometry trajectory shows that yaw angles
are overestimated because of slip in the gravel (ref. Fig.
4(d)). The fusion trajectory is very close to the ground truth
path. Fig. 4(c) shows plots of the z-coordinates. While visual
odometry and leg odometry drift due to roll and pitch angle
errors, the estimated z-coordinate of the fusion result remains
close to the ground truth curve because of absolute roll and
pitch angle measurements from the accelerometers. Fig. 4(e)
shows the standard deviations of the position estimates com-
puted from the estimation covariance matrix. As can be seen,
the standard deviations grow with time since no absolute
position measurements are available. The detailed plot in this
figure illustrates the influence of the relative measurements
on the covariance: Visual odometry measurements usually
have lower uncertainty than leg odometry measurements
and, thus, reduce the estimation covariance more than the
leg odometry measurements. However, during turning in the
corners of the testbed, the errors of the visual odometry
measurements are higher. The reason for that is the texture
of the testbed walls which is worse than the texture of the
gravel. Hence, the covariances increase stronger during these
periods.

In another test, poor visual conditions were simulated.
For this, one corner of the testbed was illuminated by a
very bright light source (ref. Fig. 5(a)) and the camera
was set to fixed exposure so that images taken from the
illuminated area were overexposed and nearly white while
all other images were well exposed. Sample images taken
by the Crawler’s camera are shown in Fig. 5(b). Fig. 5(c)-
(d) show the recorded trajectories. Leg odometry suffers
from a yaw angle error (ref. Fig. 5(e)) and overestimates
forward translation. Visual odometry is very accurate in areas
with good lighting. However, large visual odometry errors
occur in the illuminated corner. These errors cause the visual
odometry trajectory to continue in a wrong direction because
of the summation of relative measurements. Since the error
of the visual odometry measurements was estimated to be
very high in this region, the data fusion filter put a lower
weight on these measurements. Hence, the fusion result is
not affected by the large visual odometry errors and is very
accurate.

To achieve more general information about the perfor-
mance of the data fusion filter, we computed the end point
errors of the recorded trajectories as the distances to the
ground truth trajectory end points. The results for 9 runs
along a rectangular path in the gravel testbed with different
lighting conditions are shown in Fig. 6. As can be seen, the
fusion result is always significantly better than using only

visual odometry or leg odometry. The average endpoint error
of the fusion trajectory is 1.1 % in relation to the average path
length of 5.6 m.

(a) Test setup and steered trajectory
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(e) Standard deviations computed from the estimation covariance matrix

Fig. 4. Test run with good visual conditions

VIII. CONCLUSION AND FUTURE WORK

In this paper, a multisensor data fusion algorithm for
combining inertial data with relative leg odometry and visual
odometry measurements has been presented. It is based on
an indirect feedback information filter whose special prop-
erties make it well suited for this application. Estimates of
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(a) Test setup

(b) Sample images
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Fig. 5. Test run with poor lighting conditions

Fig. 6. End point errors of fusion, visual and leg odometry trajectories.
Good visual conditions only in runs 4, 6 and 9.

visual odometry errors are used to weight the measurements
differently according to the current visual conditions.

Experimental results show that the data fusion algorithm
improves robustness as well as accuracy of the pose estimate
compared to using only a single sensor. The gravity vector
allows an absolute roll and pitch angle measurement which
limits the drift in the position estimate. The visual odometry
error estimate reliably detects ill-conditioned measurements
as caused by bad visual conditions and the data fusion
filter puts a lower weight on those measurements. Using the
leg odometry measurements, the robot is able to overcome
visually poor areas with a good accuracy.

However, it can also be seen, that the position estimate
still suffers from a drift caused by summing up translational
and yaw angle errors in the relative motion estimates. This
error can only be eliminated by using absolute measurements
such as compass or GPS data (where available) or landmark
positions. In future, we would also like to develop an error
model for the leg odometry so that incorrect odometry mea-
surements are assigned lower weights in the fusion process.
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