
                                                                          

University of Dundee

DOCTOR OF MEDICINE

Genetic and non-genetic determinants of drug response in type 2 diabetes

Dawed, Adem Yesuf

Award date:
2017

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Apr. 2022

https://discovery.dundee.ac.uk/en/studentTheses/b4c75bd1-f09f-48f1-8ff2-6b813b6d29b4


 

       

Genetic and non-genetic determinants 

of drug response in type 2 diabetes 

Adem Yesuf Dawed (M.P.H., M.Sc.) 

For the Partial Fulfilment of the Degree of 

Doctor of Philosophy in Medicine  

University of Dundee  

August 2017 



i 
 

TABLE OF CONTENTS 

TABLE OF CONTENTS ................................................................................................. i 

LIST OF TABLES ......................................................................................................... viii 

LIST OF FIGURES .......................................................................................................... x 

LIST OF ABBREVIATIONS ......................................................................................... xii 

ACKNOWLEDGEMENTS ........................................................................................... xix 

DECLARATION OF THE CANDIDATE .................................................................... xxi 

DECLARATION OF THE SUPERVISORS ................................................................. xxi 

SUMMARY .................................................................................................................. xxii 

1. INTRODUCTION ................................................................................................... 2 

1.1. History of pharmacogenomics ............................................................................ 2 

1.2. Fundamentals of pharmacogenetic studies ......................................................... 2 

1.3. Heritability of traits ............................................................................................ 4 

1.4. Concepts in population genetics and association tests ....................................... 5 

1.5. Issues in case-control genetic association studies .............................................. 5 

1.6. Type 2 diabetes, epidemiology and treatment .................................................... 6 

1.7. Challenges in the study of drug response in diabetes ......................................... 7 

1.7.1. Study design and confounders .................................................................... 8 

1.7.2. Selection of genes/SNPs ............................................................................. 8 

1.7.3. Sample size and power ................................................................................ 9 

1.7.4. Choice and definition of end points .......................................................... 10 

1.7.5. Obesity and related comorbidities ............................................................. 10 

1.7.6. Drug–drug interactions.............................................................................. 11 

1.8. Current state of evidence .................................................................................. 11 

1.8.1. Metformin ................................................................................................. 11 

Pharmacokinetics ................................................................................................. 11 

Pharmacodynamics .............................................................................................. 12 



ii 
 

Metformin and gastrointestinal intolerance ................................................................. 14 

Pharmacogenetics ................................................................................................. 14 

1.8.2. Sulphonylureas .......................................................................................... 19 

Pharmacokinetics and pharmacodynamics .......................................................... 19 

Pharmacogenetics ................................................................................................. 21 

1.8.3. Meglitinides .............................................................................................. 24 

1.8.4. Thiazolidinediones .................................................................................... 24 

Pharmacogenetics ................................................................................................. 27 

1.8.5. Incretins ..................................................................................................... 28 

1.8.6. SGLT-2 inhibitors ..................................................................................... 31 

1.9. Gaps in knowledge addressed by this thesis .................................................... 31 

1.10. Thesis aims ................................................................................................... 32 

2. METHODOLOGY ................................................................................................ 34 

2.1. Description of cohorts ...................................................................................... 34 

2.1.1. The DIRECT study ................................................................................... 34 

General description .............................................................................................. 34 

Genetic data .......................................................................................................... 38 

2.1.2. The GoDARTS study ................................................................................ 40 

General description .............................................................................................. 40 

Genetic data .......................................................................................................... 40 

2.1.3. The DCS study .......................................................................................... 41 

2.2. Statistical analyses ............................................................................................ 41 

2.3. Power calculations in genetic association studies ............................................ 43 

2.4. Genetic analysis ............................................................................................ 43 

Candidate gene analysis ....................................................................................... 44 

GWAS analysis .................................................................................................... 44 

2.4.1. Downstream analyses ................................................................................ 45 



iii 
 

Rare variant burden test ....................................................................................... 45 

Pathway analysis .................................................................................................. 45 

3. THE INFLUENCE OF METFORMIN THERAPY ON CIRCULATING GLP-

1 LEVELS IN INDIVIDUALS WITH AND WITHOUT TYPE 2 DIABETES ...... 48 

3.1. Abstract ............................................................................................................ 48 

3.2. Introduction ...................................................................................................... 49 

3.3. Aims of the study ............................................................................................. 50 

3.4. Research design and methods ........................................................................... 50 

3.4.1. Sample assays ........................................................................................... 52 

3.4.2. Ethics and consent ..................................................................................... 52 

3.4.3. Statistics .................................................................................................... 53 

3.5. Results .............................................................................................................. 55 

3.5.1. DIRECT results: Association of metformin with GLP-1 levels ............... 56 

3.5.2. CAMERA results: Metformin increases total GLP-1 over 18 months ..... 59 

3.6. Discussion ........................................................................................................ 61 

3.7. Conclusions ...................................................................................................... 65 

4. VARIATION IN THE PLASMA MEMBRANE MONOAMINE 

TRANSPORTER GENE PMAT (SLC29A4) IS ASSOCIATED WITH 

GASTROINTESTINAL INTOLERANCE TO METFORMIN IN TYPE 2 

DIABETES .................................................................................................................... 67 

4.1. Abstract ............................................................................................................ 67 

4.2. Introduction ...................................................................................................... 68 

4.3. Aims of the study ............................................................................................. 68 

4.4. Research design and methods ........................................................................... 69 

4.4.1. Study population ....................................................................................... 69 

4.4.2. Definition of metformin intolerance ......................................................... 69 

4.4.3. Definition of metformin tolerance ............................................................ 70 

4.4.4. Clinical covariates ..................................................................................... 70 



iv 
 

4.4.5. Concomitant medications .......................................................................... 70 

4.4.6. Genotyping ................................................................................................ 71 

4.4.7. Single nucleotide polymorphism selection ............................................... 71 

4.4.8. Statistical methods .................................................................................... 71 

4.5. Results .............................................................................................................. 72 

4.5.1. Phenotypic differences between tolerant and intolerant subjects ............. 72 

4.5.2. Concomitant medications and intolerance ................................................ 72 

4.5.3. Genetic variation in the gut metformin transporters and metformin 

intolerance ................................................................................................................ 74 

4.5.4. rs3889348 is associated with altered PMAT expression in the gut .......... 77 

4.6. Discussion ........................................................................................................ 77 

4.7. Conclusions ...................................................................................................... 80 

5. THE KCNJ11-E23K AND COMMON VARIANTS NEAR THE LHFPL3 

GENE ARE ASSOCIATED WITH GLYCAEMIC RESPONSE TO 

SULPHONYLUREAS .................................................................................................. 83 

5.1. Abstract ............................................................................................................ 83 

5.2. Introduction ...................................................................................................... 84 

5.3. Aims of the study ............................................................................................. 85 

5.4. Research design and methods ........................................................................... 85 

5.4.1. Description of study cohorts ..................................................................... 85 

5.4.2. Definition of variables............................................................................... 86 

5.4.3. Definition of response and model development ....................................... 87 

5.4.4. Genotyping and quality control ................................................................. 87 

5.4.5. Statistical analysis ..................................................................................... 88 

5.4.6. Pathway analysis ....................................................................................... 88 

5.5. Results .............................................................................................................. 89 

5.5.1. Characteristics of study populations ......................................................... 89 

5.5.2. Association of the E23K variant with glycaemic response to SUs ........... 89 



v 
 

5.5.3. GWAS meta-analysis results..................................................................... 93 

5.5.4. Association of LHFPL3-rs11535279 with SU induced insulin secretion . 99 

5.5.5. The Insulin/IGF pathway-mitogen activated protein kinase/MAPK cascade 

pathway is enriched for SU response ..................................................................... 100 

5.6. Discussion ...................................................................................................... 103 

5.7. Conclusions .................................................................................................... 106 

6. CYP2C8 AND SLCO1B1 VARIANTS AND THERAPEUTIC RESPONSE TO 

THIAZOLIDINEDIONES IN PATIENTS WITH TYPE 2 DIABETES .............. 109 

6.1. Abstract .......................................................................................................... 109 

6.2. Introduction .................................................................................................... 109 

6.3. Research design and methods ......................................................................... 112 

6.3.1. Sample ascertainment.............................................................................. 112 

6.3.2. Drug outcome definitions ........................................................................ 113 

6.3.3. Genotyping .............................................................................................. 114 

6.3.4. Statistical analysis ................................................................................... 114 

6.4. Results ............................................................................................................ 114 

6.5. Discussion ...................................................................................................... 121 

6.6. Conclusions .................................................................................................... 124 

7. MISSENSE MUTATIONS IN GLP-1 RECEPTOR GENE ARE ASSOCIATED 

WITH MARKED IMPAIRMENT IN GLYCAEMIC RESPONSE TO GLP-1 

RECEPTOR AGONISTS ........................................................................................... 126 

7.1. Abstract .......................................................................................................... 126 

7.2. Introduction .................................................................................................... 127 

7.3. Aims  of the study .......................................................................................... 129 

7.4. Research design and methods ......................................................................... 129 

7.4.1. Description of the cohorts ....................................................................... 129 

DIRECT ............................................................................................................. 129 

PRIBA ................................................................................................................ 130 



vi 
 

GoDARTS .......................................................................................................... 130 

PROMASTER .................................................................................................... 130 

7.4.2. Genotyping and quality control ............................................................... 130 

7.4.3. Statistical analysis ................................................................................... 131 

7.4.4. Gene based burden test on low-frequency and rare variants................... 132 

7.5. Results ............................................................................................................ 132 

7.5.1. Participant characteristics........................................................................ 132 

7.5.2. Models in each cohort ............................................................................. 132 

7.5.3. Association of GLP-1R variants with glycaemic response to treatment . 136 

7.5.4. Association of a genetic risk score derived from the two candidate GLP-1R 

variants with glycaemic response .......................................................................... 137 

7.5.5. Gly168Ser is cis eQTL with GLP-1R gene in the pancreas .................... 139 

7.5.6. Gene-based association analysis ............................................................. 140 

7.6. Discussion ....................................................................................................... 144 

7.7. Further works ................................................................................................. 146 

7.8. Clinical implications ....................................................................................... 147 

8. GENERAL DISCUSSION .................................................................................. 149 

8.1. Introduction .................................................................................................... 149 

8.2. Summary of the main findings ....................................................................... 150 

8.2.1. Metformin and the gut ................................................................................ 150 

8.2.2. Thiazolidinediones ...................................................................................... 151 

8.2.3. Insulin secretaguges .................................................................................... 151 

8.3. Measuring drug efficacy in diabetes............................................................... 153 

8.4. Pharmacogenomic perspectives of on-target and off-target effects of drugs . 154 

8.5. Pharmacogenomics to understand drug biology and drug discovery ............. 154 

8.6. Future directions ............................................................................................. 155 

8.7. Clinical translations of the findings ................................................................ 157 



vii 
 

BIBLIOGRAPHY ......................................................................................................... 158 

LIST OF APPENDICES ............................................................................................... 186 

Appendix I: Summary of studies on gene-drug interaction in type 2 diabetes ......... 186 

Appendix II: List of publications .............................................................................. 205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

LIST OF TABLES 

Table 2.1 Investigated candidate SNPs and their genomic coordinate according to genome 

reference consortium (grch) 37/hg 19. ............................................................................ 44 

Table 3.1 Recruitment by centre. .................................................................................... 51 

Table 3.2 Characteristics of the DIRECT participants.................................................... 55 

Table 3.3 Characteristics of the CAMERA participants. ................................................ 56 

Table 3.4 Linear regression models for fasting and post meal incremental GLP-1 

measures in the DIRECT consortium. ............................................................................ 58 

Table 3.5 Change in GLP-1 and leptin levels on metformin vs placebo over 18 months in 

CAMERA. ....................................................................................................................... 60 

Table 3.6 Effects of metformin on total GLP-1 without and with on-treatment adjustments 

for changes in weight, HOMA-IR, HbA1c, leptin and all these variables at 6, 12 and 18 

months respectively. ........................................................................................................ 61 

Table 4.1 Recruitment by centre. .................................................................................... 69 

Table 4.2 Baseline characteristics of metformin tolerant and intolerant subjects........... 72 

Table 4.3 Number of subjects treated concomitantly with metformin transporter inhibiting 

drugs in metformin intolerant and tolerant groups. ......................................................... 73 

Table 4.4 Logistic regression model of metformin intolerance. ..................................... 74 

Table 4.5 Population characteristics by rs3889348 genotype. ........................................ 75 

Table 4.6 Joint effect of PMAT genotype and PMAT interacting drugs on metformin 

intolerance. ...................................................................................................................... 75 

Table 5.1 Maximum daily dose of sulphonylureas according to the BNF...................... 87 

Table 5.2 HbA1c response model in the GoDARTS patients starting sulphonylureas. . 90 

Table 5.3 Characteristics of the samples by KCNJ11-E23K genotype in the GoDARTS 

cohort............................................................................................................................... 91 

Table 5.4 Characteristics of participants by drug group in the GoDARTS cohort. ........ 92 

Table 5.5 Multivariate linear regression model for HbA1c reduction in sulphonylurea 

treated subjects from the GoDARTS and the DCS cohorts. ........................................... 93 

Table 5.6 Overview of GoDARTS population characteristics per rs11535279 genotype.

 ......................................................................................................................................... 98 

Table 5.7 Overview of the DCS population characteristics per rs11535279 genotype. . 98 

Table 5.8 Top meta-GWAS loci (p < 1 × 10-05) associated with HbA1c reduction after 1 

year of SU treatment. ...................................................................................................... 99 



ix 
 

Table 5.9 Top ten significant biological pathways or gene sets associated with SU 

response. ........................................................................................................................ 101 

Table 5.10 Genes within the Insulin/IGF-mitogen activated protein kinase/MAPK 

cascade pathway associated with SU response. ............................................................ 102 

Table 6.1 Baseline characteristics of the participants by CYP2C8*3 and SLCO1B1 521 

T>C genotypes. ............................................................................................................. 115 

Table 6.2 Multiple linear regression models for HbA1c reduction and weight gain in all 

TZD treated patients. ..................................................................................................... 116 

Table 6.3 Baseline characteristics of the participants by agent. ................................... 117 

Table 6.4 Multiple linear regression models for HbA1c reduction and weight gain in 

rosiglitazone treated patients. ........................................................................................ 118 

Table 6.5 Multiple linear models for HbA1c reduction and weight gain in pioglitazone 

treated patients. ............................................................................................................. 118 

Table 6.6 Genetic effect of CYP2C8 and SLCO1B1 variants on HbA1c reduction and 

weight gain (additive genetic model). ........................................................................... 119 

Table 6.7 Stratified analysis of CYP2C8*3 and SLCO1B1 genetic effect on rosiglitazone 

response by treatment dose. .......................................................................................... 121 

Table 7.1 Candidate missense variants in the GLP-1R gene. ....................................... 131 

Table 7.2 Characteristics of participants in cohorts included in the meta-analysis. ..... 134 

Table 7.3 Clinical models in each cohort. ..................................................................... 135 

Table 7.4 Participants characteristics by GLP-1R variants allele count. ...................... 139 

Table 7.5 The most significant gene-based test results from the meta-analysis. .......... 142 

Table 7.6 Clinical characteristics of carriers of the rare variants at ARRB1. ................ 143 

 

 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

Figure 1.1 Plasma isoniazid concentrations six hours after oral drug administration in 320 

families. ............................................................................................................................. 3 

Figure 1.2 Distribution of PC20 (a measure of airway responsiveness) response over time.

 ........................................................................................................................................... 4 

Figure 1.3 Transport of metformin by organic cation transporters. ................................ 12 

Figure 1.4 AMPK and non-AMPK mediated mechanisms of metformin action in the liver.

 ......................................................................................................................................... 13 

Figure 1.5 The molecular mechanism of action of sulphonylureas in the pancreatic β-

cells. ................................................................................................................................ 20 

Figure 1.6 Molecular mechanisms of PPARγ mediated response to thiazolidinediones.

 ......................................................................................................................................... 26 

Figure 1.7 The incretin effect and diabetes; the shaded area illustrates the total post 

prandial insulin response termed as the incretin effect. .................................................. 28 

Figure 1.8 Summary of GLP-1 mediated insulin secretion on the surface of the pancreatic 

βbeta-cells. ...................................................................................................................... 29 

Figure 1.9 Structure of biologically active GLP-1 and its inactive metabolites. ............ 30 

Figure 2.1 Pert diagram describing interrelated work packages in the DIRECT 

consortium. ...................................................................................................................... 35 

Figure 3.1 Histograms of A) original data and B) natural log-transformed fasting active 

GLP-1 levels in the DIRECT consortium. ...................................................................... 54 

Figure 3.2 Association of metformin therapy vs lifestyle treatment with fasting active 

GLP-1, fasting total GLP-1 and incremental total GLP-1 in the DIRECT study. .......... 57 

Figure 3.3 Total GLP-1 levels on metformin vs placebo over 18 months in the CAMERA 

study. ............................................................................................................................... 59 

Figure 4.1 Association of individual PMAT inhibiting drugs with intolerance. ............ 73 

Figure 4.2 Association of a genetic risk score derived from PMAT and OCT1 with 

metformin intolerance. .................................................................................................... 76 

Figure 4.3 Boxplot of association between rs3889348 and PMAT expression in the gut, 

colon transverse (left side) and terminal ilium of the small intestine (right side)........... 77 

Figure 5.1 Forest plot of the meta-analysis of the association of HbA1c reduction with 

the KCNJ11-E23K variant after SU treatment as add on therapy to metformin in the 

GoDARTS and the DCS cohorts..................................................................................... 90 



xi 
 

Figure 5.2 Forest plot of the meta-analysis of the association of HbA1c reduction with 

the KCNJ11-E23K variant after SU treatment (as monotherapy) in the GoDARTS and the 

DCS cohorts. ................................................................................................................... 92 

Figure 5.3 Genome-wide results from single marker association with glycaemic response 

to sulphonylureas using an additive genetic model adjusted for age at diagnosis, baseline 

HbA1c, sex, drug group, dose and BMI in a meta-analysis consisting of 2,905 T2D 

subjects from the GoDARTS and DCS.  Upper panel: The chromosomal distribution of p 

values (Manhattan plot). Lower panel: The relationship between observed and expected 

p values (Q-Q plot) (λ = 0.995). ...................................................................................... 95 

Figure 5.4 Regional association plots around the LHFPL3 locus at chromosome 7 for the 

linear regression analysis. ............................................................................................... 96 

Figure 5.5 Association of the top SNP (LHFPL3-rs11535279) with HbA1c reduction to 

SU treatment across the discovery and replication cohorts. ........................................... 97 

Figure 6.1 Pharmacogenetic effect of CYP2C8 and SLCO1B1 on TZDs pharmacokinetics 

and pharmacodynamics. ................................................................................................ 111 

Figure 6.2 Sample ascertainment flow. ......................................................................... 113 

Figure 6.3 Rosiglitazone response by SLCO1B1 and CYP2C8 genotypes. .................. 120 

Figure 7.1 Pharmacogenetic impact of Gly168Ser (left) and Pro7Leu (right) on HbA1c 

reduction following GLP-1RA treatment in 1, 235 participants of European ancestry from 

the four cohorts. ............................................................................................................ 137 

Figure 7.2 Pie chart of patients based on the number of risk allele counts from the two 

candidate GLP-1R variants (Gly168Ser and Pro7Leu) rounded up to the nearest 

percentage of all the participants................................................................................... 138 

Figure 7.3 Bar plot of HbA1c post GLP-1RA therapy stratified by the GRS from 

candidate GLP-1R variants (Gly168Ser and Pro7Leu). ................................................ 138 

Figure 7.4 eQTL of GLP-1R variants, rs10305501 (left panel) and rs6923761 (right 

panel), on GLP-1R expression in the pancreas (Box plots generated from GTEx portal).

 ....................................................................................................................................... 140 

Figure 7.5 Manhattan (left) and Q-Q (right) plots of the gene level meta-analysis using 

low-frequency and rare variants from the DIRECT and PRIBA cohorts. .................... 141 

Figure 7.6 Association of mutational burden of low-frequency and rare variants in ARRB1 

with HbA1c reduction to GLP-1RA treatment across the DIRECT and PRIBA cohorts.

 ....................................................................................................................................... 143 

 



xii 
 

LIST OF ABBREVIATIONS 

Abbreviation  Full form 

5-HTTLPR  5-Hydroxy Tryptamine (serotonin) Transporter Linked 

Polymorphic Region 

ABCC8 ATP Binding Cassette sub-family C member 8 

ABCD Association of British Clinical Diabetologists  

ADA American Diabetes Association  

AIR Acute phase Insulin Response 

AMHR2 Anti-Mullerian Hormone Receptor type 2  

AMP Adenosine Mono-Phosphate 

AMPK Adenosine Mono-Phosphate-activated Protein Kinase 

ANOVA Analysis of Variance  

ARRB1 Arrestin, beta-1  

AUC Area Under the concentration–time Curve  

BMI Body Mass Index  

BNF British National Formulary  

CAMERA Carotid Atherosclerosis: Metformin for insulin ResistAnce 

cAMP Cyclic Adenosine Mono-Phosphatee 

CDK2 Cyclin-Dependant Kinase 2  

CeACAD10 Caenorhabditis elegans ortholog of Acetyl Coenzyme A 

Dehydrogenase 10 

CI Confidence Interval  

Cmax Maximum Plasma Concentration 

CTRB1/2 Chymotrypsinogen beta 1/2  

CV Coefficient of Variation 



xiii 
 

CYP2C19 Cytochrome P450, family 2, subfamily C, polypeptide 19   

CYP2C8 Cytochrome P450 family 2, subfamily C, polypeptide  8  

CYP2C9 Cytochrome P450 family 2, subfamily C, polypeptide 9   

DAO Diamine Oxidase  

DARTS Diabetes Audit and Research in Tayside Scotland  

DCCT Diabetes Control and Complications Trial 

DCS Diabetes Care System West-Friesland  

DIRECT DIabetes REsearCh on patient straTification  

DNA Deoxyribonucleic acid  

DPP Diabetes Prevention Program  

DPP-4 Dipeptidyl peptidase-4 

DREAM Diabetes REduction Assessment with ramipril and rosiglitazone 

Medication 

EASD European Association for the Study of Diabetes 

EDTA Ethylenediaminetetraacetic acid  

EFPIA European Federation of Pharmaceutical Industries and 

Associations  

eGFR Estimated Glomerular Filtration Rate  

eQTL Expression Quantitative Trait Loci 

FA Fanconi Anaemia  

FANCF Fanconi Anemia Complementation group F  

FPG Fasting Plasma Glucose 

GCTA Genome-wide Complex Trait Analysis 

GEFII Guanine Nucleotide Exchange Factor II 



xiv 
 

GI Gastro Intestinal  

GLINT Glucose Lowering in Non-Diabetic Hyperglycaemia Trial  

GLP-1RA Glucagon Like Peptide-1 Receptor Agonist 

GLUT2 Glucose Transporter 2  

GO Gene Ontology  

GoDARTS Genetics of Diabetes Audit and Research Tayside  

GRANVIL Gene- or Region-based ANalysis of Variants of Intermediate and 

Low frequency 

grch  Genome Reference Consortium 

GRS Genetic Risk Score  

GSEA Gene-Set Enrichment Analysis  

GTEx Genotype Tissue Expression 

GWAMA Genome-Wide Association Meta-Analysis 

GWAS Genome-Wide Association Study  

h2 liability 

HbA1c Glycated Haemoglobin 

HIC Health Informatics Centre  

HLA Human Leukocyte Antigen  

HNF4α Hepatocyte Nuclear Factor 4, alpha  

HNMT Histamine N-Methyltransferase  

HOMA-IR Homeostatic Model Assessment estimated Insulin Resistance  

HWE Hardy–Weinberg Equilibrium  

IBD Identity By Descent  

IDF International Diabetes Federation 



xv 
 

IMI Innovative Medicines Initiative  

INS Insulin 

IQR Inter Quartile Range  

ITE Index Tolerance Episode  

IV Intravenous 

IVGTT Intravenous Glucose Tolerance Test  

KATP ATP-sensitive Potassium Channel  

KCNJ11 Potassium Voltage-Gated Channel Subfamily J Member 11  

KCNQ1 Potassium Channel, Voltage Gated KQT-Like Subfamily Q, 

Member 1  

KEGG Kyoto Encyclopedia of Genes and Genomes  

Kir6.2  Inwardly Rectifying Potassium Channel 6.2   

LD Linkage Disequilibrium  

LDL Low Density Lipoprotein  

LHFPL3 Lipoma High-mobility Group Isoform C Fusion Partner-like 3  

MAF Minor Allele Frequency 

MAGENTA Meta-Analysis Gene-set Enrichment of variaNT Associations 

MATE Multidrug and Toxin Extrusion  

MDRD Modification of Diet in Renal Disease 

MetGen Metformin Genetics 

MMT Mixed Meal Test  

MR Modified Release  

MRI Magnetic Resonance Imaging  



xvi 
 

NFATC2 Nuclear Factor of Activated T-cells, Cytoplasmic, Calcineurin-

Dependent 2 

NAT2 N-acetyltransferase-2 

NF-kB Nuclear Factor-kB 

NHS National Health Service  

NPC Nuclear Pore Complex  

OATP1B1 Organic Anion Transporting Polypeptide 1B1  

OCT Organic Cation Transporter  

OHA Oral Hypoglycaemic Agent  

PANTHER Protein Analysis Through Evolutionary Relationships  

PCA Principal Component Analysis 

PC1/3 Prohormone Convertase 1/3  

PCOS Polycystic Ovary Syndrome  

PCSK9 Proprotein Convertase Subtilisin/kexin type 9  

PD Pharmacodynamics  

PGx Pharmacogenetics/Pharmacogenomics 

PK Pharmacokinetics 

PKA Protein Kinase A  

PMAT Plasma Membrane Monoamine Transporter  

PPARα Peroxisome Proliferator-activated, alpha  

PPARγ Peroxisome Proliferator-activated, gamma 

PPI Proton Pump Inhibitor  

PRIBA Predicting Response to Incretin Based Agents in Type 2 Diabetes 



xvii 
 

PROMASTER PROspective Cohort MRC ABPI STratification and Extreme 

Response Mechanism in Diabetes 

RECORD Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of 

Glycaemia in Diabetes  

RXR Retinoid X Receptor  

SCI-DC Scottish Care Information–Diabetes Collaboration  

SD Standard Deviation 

SGLT-2 Sodium Glucose Transporter-2 

SLC22 Solute Carrier Family 22  

SLC2A2 Solute Carrier Family 2 member 2 

SLCO1B1 Solute Carrier Organic Anion Transporter Family, Member 1B1  

SNP Single Nucleotide Polymorphism  

SP Specificity Protein  

SU Sulphonylurea 

SUR1  Sulphonylurea Receptor 1  

t1/2 Plasma half-life  

T2D Type 2 Diabetes 

TCA Tricyclic Antidepressant 

TCF7L2 Transcription Factor 7-like 2  

TZD Thiazolidinedione 

UCPCR Urinary C-Peptide/Creatinine Ratio  

UCSC University of California, Santa Cruz 

UGT Uridine Diphosphate Glucuronosyl Transferase 

UKPDS UK Prospective Diabetes Study  



xviii 
 

WFS1 Wolfram Syndrome 1  

WP Work Package 

λ Lambda  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xix 
 

ACKNOWLEDGEMENTS 

First and foremost, I thank God almighty for giving me the strength, patience and 

blessings to complete this thesis.  

 

This PhD would have been simply unimaginable without my enthusiastic supervisors 

Professor Ewan Pearson and Dr. Kaixin Zhou. The joy, dedication and vision they have 

for research and science was contagious and inspiring to me. It has been an honour to be 

mentored by them and I could not have imagined having a better advisor and mentor for 

my PhD study. I hope that I could be as lively, enthusiastic, and intelligent as Ewan and 

someday be able to be a good leader as he can. Kaixin’s scientific advice, insightful 

discussions and suggestions were amazing. Thanks! 

 

I am grateful for the DIRECT consortium for funding and providing the opportunity to 

pursue my PhD. I thank Dr. Ian Forgie for his support in coordinating all the collaborative 

work within DIRECT. I thank Caroline Glen for her unreserved help and ‘finding ways’ 

whenever I needed. 

 

I would like to acknowledge my thesis monitoring committee, Professors: Colin Palmer, 

Rory McCrimmon and Christopher Barratt, for their constructive feed-back in this 

project.  

 

Members of the Pearson and Palmers group have contributed immensely to my personal 

and professional life in Dundee. Dr. Mike Lonergan was always there to help whenever I 

fell down in statistics and R. Laura, Moneeza, Abirami, Cyrielle, Enrique, Alexsi, Alison, 

Louise and Mustafa were knowledgeable, helpful, and friendly colleagues who made me 

love the office environment throughout my study. I enjoyed fresh coffee brewing and 

accompanied discussions, thanks Moneeza!   

 

I will forever be thankful to my former supervisor, Professor Paul Franks who helped me 

find my graduate school carrier.   



xx 
 

My time in Scotland was enjoyable due to friends that became part of my life. Moges and 

Debela were good weekend buddies. Gelila and Geme were generous to cook my 

favourite traditional food “Injera”. You guys were perfect remedies for my homesickness.  

Ahmad and Abdrazag were always with me.  

 

Finally, but by no means least, my special thanks go to my family (dad, mum, sisters and 

brothers). Dad and mom had the courage to open the door for my education regardless of 

their lack of literacy. Your support, encouragement, and constant love have sustained me 

throughout my life. 

 

This doctoral thesis is lovingly dedicated to my late grandmother, Ansha Ahmed, who 

always believed in me, even when I didn’t believe in myself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxi 
 

DECLARATION OF THE CANDIDATE 

I declare that this thesis is based on results obtained from investigations which I have 

carried out in the Division of Molecular and Clinical Medicine, University of Dundee, 

between October 2014 and July 2017 using funding provided by the DIRECT consortium 

(European Commission, FP7) and the Wellcome Trust. I declare that the entire thesis is 

my own composition. Any work other than my own is clearly stated in the test and 

acknowledged with reference to the relevant investigators or contributors. This thesis has 

never been presented previously, in whole or in part, for the award of any higher degree. 

I have consulted all the references cited within the text of this thesis. 

Signed: _________________________ 

Adem Yesuf Dawed 

Date: 10 August 2017 

 

DECLARATION OF THE SUPERVISORS 

I certify that Adem Yesuf Dawed has completed the equivalent of 9 terms of experimental 

research and that he has fulfilled the conditions of the University of Dundee, so that he is 

qualified to submit this thesis in application for the degree of Doctor of Philosophy. 

Signed: ________________________ 

Professor Ewan Robert Pearson  

Date: 30 August 2017 

 

I certify that Adem Yesuf Dawed has completed the equivalent of 9 terms of experimental 

research and that he has fulfilled the conditions of the University of Dundee, so that he is 

qualified to submit this thesis in application for the degree of Doctor of Philosophy. 

Signed: ________________________ 

Dr. Kaixin Zhou  

Date: 10 August 2017 

 



xxii 
 

SUMMARY 

Background: Approximately 415 million people live with diabetes worldwide. Type 2 

diabetes (T2D) accounts for 85%–95% of the cases. Despite the availability of several 

drugs, considerable interindividual variation in response to medications results in 

unnecessary treatment failure. In addition to non-genetic factors, genetic factors are 

thought to contribute to such variability.   

Aim: This thesis attempts to investigate genetic and non-genetic factors underlying the 

variability in response to commonly used drugs in T2D. 

Methods: We assessed drug response as efficacy and/or adverse effect following 

treatment using data gathered from medical records mainly from the Diabetes Research 

for Patient Stratification (DIRECT) consortium and the Genetics of Diabetes Audit and 

Research Tayside Study (GoDARTS). Genetic data was obtained using chip-based arrays 

followed by imputation and TaqMan genotyping. Subsequent candidate gene and genome 

wide association (GWAS) analyses were conducted using linear and logistic regressions 

followed by meta-analyses. In addition, downstream rare variant burden test and pathway 

analyses were performed.  

Results: We showed robust association of metformin use with fasting glucagon like 

peptide-1 (GLP-1) levels in diabetic and non-diabetic subjects. Gastrointestinal (GI) 

irritation is the most common side effect of metformin. Concomitant administration of 

metformin with gut metformin transporter inhibiting drugs such as tricyclic 

antidepressants, proton pump inhibitors and codeine increased the odds of GI intolerance. 

Moreover we showed association of the G allele at rs3889348-SLC29A4 (PMAT) with 

increased odds of intolerance.  In the GoDARTS study performed on subjects who have 

been taking sulphonylureas (SUs) as an add-on therapy to metformin, carriers of the K 

allele at E23K-KCNJ11 had greater HbA1c reduction and this was replicated in another 

study using data from the Diabetes Care System West-Friesland (DCS) study. We also 

identified a novel locus, rs11535279-LHFPL3, associated with glycaemic response to 

SUs. Further analysis revealed enrichment of the insulin/IGF pathway-mitogen activated 

protein kinase/MAPK cascade in glycaemic response to SU treatment suggesting the role 

of the post insulin secretion pathway in glycaemic response to SUs. In a study 

investigating joint effect of variants in transporter (SLCO1B1 521T>C) and metabolizing 

(CYP2C8*3) proteins with HbA1c reduction and weight gain to thiazolidinediones 
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(TZDs), we showed a large clinical impact on the therapeutic response to rosiglitazone.  

Lastly, in a meta-analysis consisting of 1,235 T2D subjects treated with GLP-1RAs, 

carriers of two or more variant alleles derived from GLP-1R variants (Gly168Ser and 

Pro7Leu) had significantly reduced efficacy compared to homozygous carriers of the 

parent alleles. In addition, rare variant analysis revealed suggestive evidence of 

association of the mutational load of variants in genes previously implicated in GLP-

1/glucose stimulated insulin secretion with glycaemic response to GLP-1RAs.  

Conclusions: In this thesis, we have identified clinical and novel genetic factors 

underlying treatment efficacy and adverse effects related to drugs used to treat in T2D. 
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1. INTRODUCTION 

1.1. History of pharmacogenomics 

The possibility that genetic variation may have a role in modulating the effect of 

exogenously administered substances was first proposed by an English physiologist, Sir 

Archibald E. Garrod in 1902 (1). The term pharmacogenetics was first coined by Friedrich 

Vogel of Heidelberg in 1959 and it has been defined as the genetic attributes of an 

individual that lead to variable responses to drugs. However, the history of 

pharmacogenetics stretches as far back to 510 B.C. with the observation, made by 

Pythagoras, of fatal reactions related to ingestion of fava beans in some but not in others 

(2). Several landmark discoveries have been made since then. The first experimental 

study was carried out by L.H. Snyder in 1932 in 800 families on the ability to detect the 

bitter taste of phenylthiocarbamide; he noted that the phenotype was inherited in an 

autosomal-recessive trait (3). Pharmacogenetics achieved numerous successes in the 

1950’s. These included: Genetic defects in glucose 6-phosphate dehydrogenase and 

primaquine induced haemolytic anaemia; and population differences in acetylation 

capacity of the anti-tuberculosis drug, Isoniazid, due to genetic variants in N-

acetyltransferase-2 (NAT2). In a further example of pharmacogenetics, prolonged apnoea 

following the use of succinylcholine, a muscle relaxant used as an adjuvant to anaesthesia 

was also reported in carriers of defective variants in the gene encoding the enzyme 

pseudocholinesterase. Whilst pharmacogenetics is largely used in relation to candidate 

genes encoding metabolising enzymes, pharmacogenomics came into play in the 1990s 

with rapid developments in molecular genetics and genotyping technologies that let 

interrogating a broader range of genes for drug response beyond drug metabolism.   

 

1.2. Fundamentals of pharmacogenetic studies  

There is notable interindividual difference in drug response. Environmental and genetic 

factors, as well as their interaction, have been proposed to contribute to this variation. 

Different sets of genes can determine the manner in which a particular phenotype is 

expressed. The two main forms are monogenic and polygenic inheritance. While 

monogenic traits are derived from variations in a single gene, polygenic traits involve 

multiple genes. The overall population phenotype in monogenic inheritance manifests as 

bimodal or trimodal distributions. For example, a bimodal distribution can be seen when 

looking at drug plasma levels after administration of isoniazid; sub-populations can be 
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categorized into slow and fast acetylators according to the NAT2 genotype (4) (Figure 

1.1). By contrast, polygenic traits do not show these discontinuous distributions. Rather, 

continuous unimodal distributions are observed. For example, drug response as defined 

by forced expiratory volume after administration of steroids to treat asthma exhibits a 

broad distribution without a clear discontinuation (5). This type of near normal 

distribution suggests involvement of multiple factors (Figure 1.2).  

 

 
Figure 1.1 Plasma isoniazid concentrations six hours after oral drug administration in 320 families.  

While fast acetylators cluster together to the left side of the histogram, slow acetylators had relatively higher 
plasma concentration and cluster to the right of the distribution. Adapted from Evan et al (6). 
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Figure 1.2 Distribution of PC20 (a measure of airway responsiveness) response over time.  

Distribution of PC20 (a measure of airway responsiveness) response over time. The 4-year change in airway 
responsiveness in Childhood Asthma Management Program, as measured by log-transformed PC20, to 
inhaled corticosteroid therapy varies by individual and is approximately normally distributed. This finding 
suggests that factors other than treatment, including genetics, may have contributed to the treatment 
response. Adapted from Tantisira et al (5). 

 

1.3. Heritability of traits 
A trait or phenotype is an observable or measurable condition to be determined by 

genetics. It could be drug metabolism, efficacy or adverse drug outcomes in PGx studies. 

The proportion of a total variance of a given phenotype attributable to genetic factors is 

regarded as heritability (7). It is estimated based on the assumption that liability (h2) of 

the underlying phenotype is normally distributed. There are several ways of estimating 

heritability, each with their own pros and cons. Estimation of heritability based on 

correlation of trait status in pairs of related individuals from a random sample of a 

population is regarded as the general method (8). This method does not account for the 

contribution of dominance and common environmental factors. Therefore, estimates of 

h2 are inflated.  The twin method that compares resemblance between monozygotic and 

dizygotic twins is reported to overcome the above problem. This method assumes total 

environmental and total variation are equal in monozygotic and dizygotic twins (9, 10). 

The limitation of this method is incomplete ascertainment of the twin concordance rates. 

The third method, regarded as the Falconer’s method, is based on selection theory (8). In 
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this method, correlation in h2 between the incidence of the trait of interest in the general 

population and relatives of index cases. The above three methods require structured 

pedigrees and defined families. Mixed linear model is a population based heritability 

estimate with more flexible approach that can handle complex pedigrees of different 

structure and size (11). This method can be fitted using maximum likelihood or Bayesian 

approaches to estimate genetic variance components in a population (11).  

 

1.4. Concepts in population genetics and association tests 
Population genetics is the application of genetic association studies at the level of a 

population, with the aim to identify one or more genotypes within a population that co-

occur with a given phenotype more often than would be expected by chance. Single 

nucleotide polymorphisms (SNPs) are the most common type of genetic variation among 

individuals in a population. When a mutation occurs in a population for the first time, it 

is in perfect correlation with neighbouring variants and this is known as linkage. Due to 

their physical proximity linked variants in a single chromosome tend be inherited 

together.  Non-random association of alleles in adjacent loci is termed linkage 

disequilibrium (LD).  LD is known to decay in successive generations due to multiple 

reasons including recombination, natural selection, genetic drift and admixture. Another 

important concept in population genetics is Hardy-Weinberg equilibrium (HWE). HWE 

states that allele or gene frequencies remain constant from generation to generation under 

the assumption of random selection, no mutation, no migration, no genetic drift and 

random selection of mates. In order to be in HWE, all these conditions need to be met by 

a given study population. However, there are deviations from HWE and allele frequencies 

change from generation to generation. In population genetics association studies, 

deviation from HWE may indicate unreliability of the genotyping or significant 

population stratification. Therefore HWE needs to be evaluated in a control population 

and markers that show significant deviation should be removed using an appropriate p-

value threshold.  

 

1.5. Issues in case-control genetic association studies  
The case-control association study is the most common population based study design for 

qualitative (disease present/absent) traits. In these types of study, genotype frequencies 

are compared between cases and suitable controls. In such a study, cases and controls are 

mostly selected from a population with the same ethnic background. Like other 
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epidemiological studies, case-control studies are not immune from bias and confounding 

factors. It is important to recruit new incident cases than prevalent cases in which the later 

may indicate disease progression and severity rather than disease development (12). 

Disease penetrance among carriers of different genotypes is usually expressed as relative 

risk. However, this is only applicable in cohort studies where exposed and unexposed 

groups are followed to ascertain who develops the disease. Since it is not possible to 

determine relative risk in case-control studies, odds-ratios are used to measure strength 

of association. For diseases with low penetrance, relative risk and odds ratio estimates are 

very close to each other (13).  

 

A common source of confounding in population based case-control association is the 

“founder effect” or “population stratification”. It arises when cases and controls are 

sourced from genetically different populations. When population stratification is not 

properly dealt with, spurious genetic associations will be observed from the sampling 

differences rather than the phenotype of interest. Confounding by population stratification 

can be controlled by recruiting cases and controls from the same ethnic group or by 

matching cases and controls according to their ethnicity. Population stratification in 

GWAS is usually controlled using a method called principal components analysis (PCA) 

(14). PCA is a statistical method that ranks correlation structures between multiple 

variables and gives principal components according to their rank; the first one being that 

explains maximum possible variance. EIGENSTRAT is the most common software used 

to perform PCA (15). In the absence of geographic information, the use of a method 

known as “genomic control” is common. This method assumes uniform inflation of 

association statistics by a certain constant factor called lambda (λ) that is higher median 

than expected. Lambda is calculated by dividing the observed median than expected 

assuming there is no population stratification. If λ is greater than 1, this may indicate 

population stratification and the association statistics need to be divide to λ.  

 

1.6. Type 2 diabetes, epidemiology and treatment 

T2D is a complex disease characterized by persistent hyperglycaemia as a result of 

insufficient insulin secretion, usually in the context of reduced insulin action. Frightening 

trends in morbidity and mortality of the disease are being observed. According to a recent 

estimate, approximately 415 million adults live with diabetes, increasing to 642 million 
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by 2040 (16, 17). T2D accounts for 85%–95% of the cases. According to the International 

Diabetes Federation (IDF), diabetes is the fifth leading cause of death, and it consumes 

∼12% of the global health care spending (16). Following initial dietary and lifestyle 

changes, the most common treatment for T2D is the addition of oral hypoglycaemic 

agents (OHAs), with a progressive addition of agents over time before insulin treatment 

is required to maintain glycaemia at target. Currently available treatments include 

biguanides, SUs, meglitinides (glinides), TZDs, α-glucosidase inhibitors, glucagon-like 

peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase (DPP)-4 inhibitors, and 

sodium glucose transporter (SGLT)-2 inhibitors. Despite the availability of several 

OHAs, only 53% of patients achieve a target glycated haemoglobin (HbA1c) of, 7.0% 

(18).  

 

There is a considerable interindividual variability in drug response, measured in terms of 

efficacy or adverse drug outcomes, in T2D. A complex interaction of biological and non-

biological factors could explain this variability. While adherence to prescribed treatment, 

access to health care, and prescribing practice are some of the non-biological factors (19), 

biological factors could be either genetic or non-genetic. Non-genetic biological factors 

influencing response to hypoglycaemic agents are related to intestinal, hepatic, or renal 

function in addition to age, sex, and body weight. Pharmacogenetics/pharmacogenomics 

(PGx) is the study of genetic factors affecting efficacy or undesired effects of drugs. In 

this chapter, I assess the published evidence for the presence of gene–drug interactions in 

T2D and appraise the usage of such evidence to understand pharmacokinetics (PK) and/ 

or pharmacodynamics (PD) of diabetes drugs and predict therapeutic response or adverse 

drug outcomes. In addition, gaps in knowledge which need to be filled with aims of this 

thesis will be discussed. 

 

1.7. Challenges in the study of drug response in diabetes 

In designing, conducting, and interpreting PGx studies, there are a number of factors that 

should be considered, including how drug response is defined, what covariates are 

included in the model, and how to account for difference in baseline HbA1c, the need for 

large sample size, comorbidities, and drug interactions. The field of PGx is plagued with 

many positive but very small studies that cannot be replicated, with only a few consistent 
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findings. For SUs, the most robust findings are for cytochrome P450, family 2, subfamily 

C, polypeptide 9 (CYP2C9) and transcription factor 7-like 2 (TCF7L2), and for 

metformin, they are for ataxia telangiectasia mutated (ATM), Glucose transporter 2 

(GLUT2), and possibly for multidrug and toxin extrusion (MATE) 1, with no consistent 

variants associated with response to glitazones, DPP-4 inhibitors, SGLT-2 inhibitors, or 

GLP-1RAs– in part because no large studies have been done in these areas. In this chapter, 

I will first highlight the challenges in the study of drug response in diabetes before 

reviewing the literature in relation to genetic variation in the PK and PD of commonly 

used diabetes treatments. I highlight the key findings and whether they replicate or not. 

 

1.7.1. Study design and confounders 

Prospective genotype blind studies are optimal for PGx studies. However, they require a 

large sample size and are costly and time consuming. Therefore, the majority of published 

studies are either retrospective or case–control in design and therefore at risk of selection 

bias and confounding. The association between genetic variants and drug response may 

be confounded by multiple factors. Baseline HbA1c has a strong effect on response and 

should be considered in any model of glyceamic response (20, 21). Other factors, such as 

dose, drug group, and kidney and liver function tests, may alter magnitude and direction 

of reported effect sizes. Furthermore, adherence, estimated to range from 36%–93% in 

diabetic patients, could also be an important confounder (22). While it is a reasonable 

assumption that most covariates that alter response are not correlated with genotype, care 

should be taken to evaluate these covariates in any PGx response models. 

 

1.7.2. Selection of genes/SNPs 

To date, most PGx studies of OHAs adopted a candidate gene approach. Based on the PK 

and PD knowledge of the agents, genetic polymorphisms in transporter genes, 

metabolizing enzyme genes, and target genes were investigated. Apart from the largely 

consistent associations observed between CYP2C9*2/*3 and TCF7L2 for response to SU, 

no other PGx impact has been robustly established by these candidate gene studies. The 

existence of gene–gene interaction, as suggested by a few recent PGx studies of 

metformin response, could be the explanation for some of the replication failure as the 
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marginal impact of each individual variant would be much smaller and difficult to detect 

than in a true interaction model.  

 

The genetic architecture of drug response, which encompasses the frequency, number, 

and effect size of genetic variants, has rarely been addressed for any commonly prescribed 

drug. A recent study showed that many common variants with small-to-moderate effect 

sizes together account for 20%–30% of the variance in glyceamic response to metformin 

(23). Given that these variants are likely to be distributed across the genome, a hypothesis-

free GWAS approach holds the potential to reveal more metformin response variants. 

Indeed, GWAS studies on OHAs published to date reported a robust association between 

glyceamic response to metformin and variants at the ATM and solute carrier family 2 

member 2 (SLC2A2) loci, which harbour no established candidate genes (24, 25). With 

the ever reducing cost of genotyping on microarrays, more drug response GWAS analyses 

are expected to reveal novel mechanistic insights and/or genetic markers that could 

predict an efficacy or safety of drugs in diabetes. 

 

1.7.3. Sample size and power 

When considering drug efficacy, the general disappointing lack of consistent replication 

in the candidate gene studies reviewed here suggests that none of the variants examined 

so far has a large impact on clinical outcomes. If the genetic architecture of treatment 

efficacy by other OHAs is similar to that of metformin, which is contributed by many 

common variants with small-to-moderate effect sizes, large sample sizes will be essential 

to provide an adequate statistical power to uncover the variants. Moreover, when multiple 

variants are examined in a single study, such as the gene–gene interaction or GWAS 

analyses, even larger sample sizes, typically in the range of a few thousand, are required 

to compensate the statistical penalty associated with multiple testing. Most of the studies 

reviewed here used a few hundred individuals or less (column 4 or 6 in Appendix I, Tables 

A1–A5), which have probably resulted in the inconsistent reports, with an over 

representation of positive results due to the winners’ curse and publication bias (26). 
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However, it is worth noting that when considering more severe adverse reactions of drugs, 

such as metformin-induced lactic acidosis, a small sample size may be sufficient. This is 

seen most clearly in relation to drug-induced severe liver injury where the large impact 

causal variants were identified with just a few dozen samples (27, 28). Therefore, genetic 

screening of rare severe adverse reactions with small samples is still warranted, provided 

that power calculations are presented to inform the range of effect sizes that could be 

excluded by the study design. 

 

1.7.4. Choice and definition of end points 

The phenotype for drug response is often variably defined depending on the available 

data that can make comparing the findings across the studies difficult. A linear term for 

HbA1c reduction or blood glucose reduction, or a dichotomous variable defined as 

achieving therapeutic target (HbA1c < 7%) over a specified period of time, is the most 

commonly used end point in diabetes. Genetic determinants of safety and efficacy to the 

same drug might vary. However, some safety and efficacy measures may overlap and 

thus be associated with the same genes, for example, extreme response to SUs and 

hypoglycaemia. The availability of multiple end points could increase the chance of 

selective outcome-reporting bias in PGx studies. Therefore, consistent and functionally 

relevant response definitions where possible publishing a protocol in advance may be 

helpful. 

 

1.7.5. Obesity and related comorbidities 

Suboptimal glyceamic control is usually associated with greater comorbidities, including 

hypertension and dyslipidemia. The fact that obesity and T2D are strongly linked led to 

the investigation of obesity as a clinical predictor of efficacy to OHAs. The first-line drug 

metformin showed similar efficacy in obese and nonobese T2D individuals (29, 30). 

However, the C allele at rs8192675-SLC2A2 (GLUT2) is associated with greater absolute 

HbA1c reduction in obese people (25). In another study, body mass index (BMI) was not 

significantly associated with glycaemic response to rosiglitazone, but responders had 

higher body fat percentage than non-responders (31). Those with greater waist-to-hip 

ratio also showed a better reduction of fasting plasma glucose (FPG) and HbA1c when 

rosiglitazone was added to metformin and/or SUs (32). 
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1.7.6. Drug–drug interactions 

To achieve adequate glyceamic control and treat concurrent pathologies, diabetic patients 

are often on polypharmacy, therefore there is a risk of drug–drug interactions (33). The 

concomitant administration of organic cation transporter (OCT) 1-inhibiting drugs with 

metformin is reported to increase the gut concentration of metformin and GI side effects 

(34). Co-administration of CYP-inhibiting drugs with insulin secretaguges risks 

potentiating hypoglycaemia. In healthy volunteers, simultaneous administration of 

gemfibrozil, a lipid-lowering drug that inhibits cytochrome P450 family 2 subfamily C 

member 8 (CYP2C8), and repaglinide resulted in an eightfold increase in the area under 

the concentration–time curve (AUC) of repaglinide that could prolong its hypoglycaemic 

effect and warn precaution while prescribing (35). Therefore, in designing drug-response 

studies, common comorbidities and drug interactions should be considered. 

 

1.8. Current state of evidence 

1.8.1. Metformin 

Metformin is the most widely prescribed first-line drug to treat T2D. There is a 

considerable interindividual variability in metformin’s glucose-lowering ability with 

approximately one-third of metformin users defined as poor responders (36). The 

mechanism for this variability, and indeed for the mechanism of action of metformin, 

remains uncertain. Metformin is also poorly tolerated by some individuals with up to 30% 

of patients experiencing some metformin-induced GI symptoms leading to 5%–10% 

premature discontinuation (37). 

 

Pharmacokinetics 

Metformin is positively charged at physiological pH that renders it hydrophilic, resulting 

in limited passive diffusion. Therefore, metformin disposition is dependent on active 

transportation by OCTs (solute carrier family 22 [SLC22]) to cross the biological 

membranes. Plasma membrane monoamine transporter (PMAT), OCT1 (38), and OCT3 

are involved in the apical uptake of metformin into enterocytes (Figure 1.3).  In addition, 

a recent in vitro study identified a possible role of serotonin and choline transporters (39). 

In the liver, OCT1 transports metformin to the hepatocytes (40) with biliary excretion 
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probably via MATE1 (41). In the kidney, OCT2 is highly expressed in the basolateral 

membrane of the distal tubules of the kidney facilitating renal uptake (42) whereas 

MATE1 and MATE2, expressed in the apical membrane of the renal epithelial cells, are 

involved in the renal secretion of metformin (43). 

 

Figure 1.3 Transport of metformin by organic cation transporters. 

OCT: organic cation transporter; MATE: multi-drug and toxin extrusion antiporter; PMAT: plasma 
membrane monoamine transporter. 

 

Pharmacodynamics 

Metformin is believed to lower blood glucose level by reducing hepatic glucose 

production and increasing insulin-mediated peripheral glucose utilization. Even though 

the molecular mechanisms of how metformin exerts its hypoglycaemic action are still 

elusive. Metformin enters the hepatocytes via OCT1 and inhibits mitochondrial complex 

I, preventing mitochondrial adenosine triphosphate (ATP) production, and thus resulting 

in decreased ATP, and increased adenosine monophosphate (AMP) levels. AMP activates 

adenosine monophosphate-activated protein kinase (AMPK) (44), and this had been 

thought to improve insulin receptor function, glucose transport and reduce fatty acid 

synthesis (Figure 1.4). This improves hepatic insulin sensitivity. However, a preserved 

glucose-lowering effect of metformin has been reported in AMPK knockout mice studies 

(45). Recently, non-AMPK mechanisms have been proposed. One mechanism involves 

AMP to the “P-site” of adenylate cyclase and inhibits its activity. This disrupts 

downstream cAMP-PKA signalling upon stimulation of the glucagon receptor (Fig…). 

This inhibits binding of AMP to adenylate cyclase by metformin, inhibiting its response 

to glucagon and disrupting downstream cAMP-PKA signalling. This inhibits enzymes of 
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the gluconeogenic pathway in favour of glycolysis (46). An additional mechanism 

recently reported suggests that metformin inhibits mitochondrial glycerophosphate 

dehydrogenase enzyme with a subsequent augmentation of cytosolic redox state thereby 

reducing hepatic gluconeogenesis (47). Although AMPK is no longer believed to be 

required for glucose lowering, the lipid lowering and any potential cancer beneficial 

effects of metformin are probably mediated via this kinase (44). In another recent study 

performed on Caenorhabditis elegans, Wu et al identified two new targets of metformin 

action, the nuclear pore complex (NPC) and C. elegans ortholog of acetyl-CoA 

dehydrogenase 10 (CeACAD10) (48). 

 

 
Figure 1.4 AMPK and non-AMPK mediated mechanisms of metformin action in the liver.  

OCT1 (SLC22A1) mediate metformin uptake to the hepatocytes. Once in the liver, metformin inhibits 
mitochondrial complex I, preventing ATP production thereby increasing AMP production. These changes 
activate AMPK leading to improved insulin sensitivity via improved insulin receptor function and enhanced 
glucose transport and reduced fat synthesis. The increased AMP:ATP ratio also inhibits adenylate cyclase 
leading to reduced generation of glucagon induced cAMP. This results in inhibition of PKA and 
downstream pathways. Adapted from Pernicova and Korbonits (44).  
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On the other hand, emerging evidence is suggesting the gut as the major site of metformin 

action. Greatly reduced blood glucose level is reported when metformin is given orally 

than IV (49). In addition, better effectiveness of low dose of metformin with delayed 

release formulation than similar dose of the more bioavailable extended release provided 

evidence that the lower bowel might be the main site of metformin action (50). 

Furthermore, marked alterations in gut microbiota favouring growth of some species and 

reduction of other bacterial populations in both rodents and humans following metformin 

therapy has been reported (51-56). This is beautifully shown to mediate the glucose 

lowering effect of metformin in a recent study by Wu et al (57) adding impetus to the 

hypothesis. Other gut mediated mechanisms such as: its effect on GLP-1 secretion (see 

Chapter 3) has also been reported (58).  

 

Metformin and gastrointestinal intolerance 
Although metformin is the first-line drug to treat T2D, a large proportion of patients suffer 

from GI side effects manifested mainly as diarrhoea and nausea. Other symptoms such as 

vomiting, flatulence, indigestion and abdominal discomfort are reported. The underlying 

mechanism for how metformin causes GI side effects is not well understood and there is 

little evidence on approaches to manage this side effect. Metformin’s effect on 

composition and function of gut microbial flora (54, 55, 59, 60), GLP-1 level (61) and 

bile acid turnover (50, 55, 59) are suggested as potential mechanisms.  

  

Intestinal accumulation of metformin at a concentration greater than 300 times compared 

to plasma concentration is reported by Bailey et al (62). Given the intestinal mucosa is a 

site for metformin induced anaerobic utilization of glucose, increased lactate production 

is reported (62) in animal studies. This was speculated to contribute to metformin induced 

GI side effects. However, there are no previous studies testing this hypothesis. Changes 

in metformin related gut bacterial species favoring the growth of some species (eg 

Akkermansia) have been reported (55). This is proposed to modulate glycaemic efficacy 

(55) and may explain part of metformin’s GI side effects (63).  
 

Pharmacogenetics 

There is a considerable interindividual variation in metformin PK, PD, and adverse 

effects. The majority of genetic studies have focused on variation in the metformin 
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transporters (64) with more recent studies investigating the transcription factors (TCFs) 

that regulate these transporters (36) and candidate genes in metformin PD. While 

substantial progress has been made to understand the detrimental effect of polymorphisms 

in transporter genes on PK, this does not robustly translate into drug response with 

inconsistent results being reported across many small studies (Appendix I, Table A1). 

 

OCT1 and metformin efficacy: Nonsynonymous variants in the highly polymorphic 

SLC22A1 gene that encodes OCT1 have been reported to affect functionality (44). Studies 

in healthy and diabetic Caucasians showed the association of reduced function variants 

of OCT1 (G401S, R61C, 420del, and G465R) with a higher maximum plasma 

concentration (Cmax) and AUC, lower oral volume of distribution, increased pattern of 

renal secretary clearance (65), and decreased trough steady-state concentration (66). 

Several studies have been conducted in an effort to link OCT1 variants to the clinical 

efficacy of metformin. In an oral glucose tolerance test study carried out in 20 healthy 

volunteers (eight having reference OCT1 and 12 with at least one reduced-function OCT1 

allele), subjects carrying OCT1 variants had a significantly higher (p = 0.004) glucose 

AUC compared to those with the reference genotype after metformin treatment (67). A 

study carried out by Christensen et al showed individuals carrying the reduced function 

OCT1 alleles to have a significantly greater absolute HbA1c reduction during the 

initiation as well as maintenance period of treatment compared to carriers of the reference 

genotypes. However, the decrease became insignificant when adjusted for baseline 

HbA1c (66). The GoDARTS is the largest reported study to investigate OCT1 variants 

and glyceamic response to metformin (68). The GoDARTS investigators studied the two 

most common loss-of-function OCT1 variants, R61C and 420del in 1,531 T2D patients 

treated with metformin. They showed no effect on a number of outcomes, including 

HbA1c reduction, odds of achieving treatment target, and hazard of monotherapy failure. 

Davis et al also showed no association of these variants with absolute change in HbA1c 

(69). The Rotterdam study that investigated eleven tagging SNPs in SLC22A1 gene could 

not find any significant association with response to metformin (70). The Diabetes 

Prevention Program (DPP) study evaluated the protective role of metformin on the 

incidence of diabetes in 990 high-risk participants (71). The major allele of the missense 

SNP in OCT1, rs683369 encoding L160F, showed a significant protective effect (HR 
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=0.69, 0.53–0.89, p = 0.004). However, this variant is not reported to affect OCT1 

functionality or in linkage disequilibrium (LD) with previously associated SNPs. 

 

OCT1 and metformin intolerance: Tarasova et al screened the effect of seven variants 

in genes encoding transporter proteins in relation to GI side effects of metformin in 53 

intolerant and 193 tolerant patients (72). Cases were defined as those with the presence of 

at least one of diarrhoea, flatulence, abdominal pain, asthenia, and vomiting while being 

treated with metformin. Two OCT1 variants, rs628031 (M408V) and rs36056065 (8 bp 

insertion), that are in strong LD showed a protective effect (odds ratio [OR] = 0.389 [95% 

confidence interval CI = 0.186–0.815], p = 0.012 and OR =0.405 [95% CI =0.226–

0.724], p = 0.002, respectively). In this same study, two of the loss-of-function OCT1 

variants, rs12208357 (R61C) and rs34059508 (G465R), showed no significant 

association with intolerance. However, a recent GoDARTS study conducted on 2,166 

(251 severely intolerant and 1,915 tolerant) T2D patients showed reduced activity OCT1 

variants (rs12208357 [R61C], rs55918055 [C88R], rs34130495 [G401S], rs72552763 

[M420del], and rs34059508 [G465R]) to be important determinants of metformin 

intolerance (34). Carriers of two reduced function alleles had 2.4 times higher odds (95% 

CI =1.48–3.93, p = 0.001) of developing GI side effects. The concomitant use of other 

drugs known to inhibit OCT1 transport increased this risk to an OR of 4 (2.09–8.16, p < 

0.001). In this study, cases were patients who have been on immediate release metformin 

for 6 months and switched to another OHA (including modified release metformin) within 

6 months after stopping the immediate release metformin; controls were defined as those 

patients who were on at least 2 g of metformin for 6 months.  

 

OCT2: OCT2 is reported to account for ∼80% of metformin’s renal clearance (42). 

Studies in healthy and diabetic individuals showed an association of reduced function 

OCT2 variants (T199I, T201M, and A270S) with an increased plasma concentration and 

a reduced renal clearance of metformin (73-76). However, other studies showed no 

association (65, 77). Studies that aimed to link OCT2 variants with response to metformin 

have been focused on the A270S variant. Most of the reported studies do not show any 

association of this variant with response to metformin modelled as a dichotomous trait 

(75), linear HbA1c reduction (70), or GI side effect (72). However, a recent study in 209 
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newly diagnosed patients treated with 1500 mg daily metformin for 1 year showed a 

greater HbA1c reduction (−2.2% vs −1.1%, p < 0.05) in Chinese diabetic patients who 

were heterozygous for the minor allele than the wild type after adjusting for baseline 

HbA1c, exercise, and diet (74). 

 

MATEs: Nonsynonymous MATE1 and MATE2 variants with a reduced in vitro transport 

function have been reported (78, 79). In a study of Chinese patients, homozygous carriers 

of the intronic MATE1 variant (rs2289669 G>A) had a greater AUC and a lower 

clearance (p < 0.01) of metformin than carriers of the wild type (80). Several studies 

reported a link between this SNP with HbA1c reduction by metformin. Carriers of the 

minor allele at rs2289669 showed a significantly greater HbA1c reduction in both the 

dominant and the recessive models (80-82). In the DPP study, the T allele of a SNP 

(rs8065082 C>T) in LD with rs2289669 (r2 = 0.8) showed a protective effect against the 

incidence of diabetes in high-risk individuals (71). Finally, rs12943590, a promoter 

variant for MATE2, has been associated with PK of metformin in healthy individuals 

(83). This difference has also been seen in HbA1c reduction (69) and successfully 

replicated in another study (78).  

 

In conclusion, while a number of variants have been reported in the metformin transporter 

genes, on the whole, there have been no definitive signals for these variants on glyceamic 

response to metformin. Indeed, a recent meta-analysis of most published studies, in up to 

8,000 metformin treated T2D subjects from the Metformin Genetics (MetGen) 

consortium, showed putative pharmacogenetic variants in five transporter genes had no 

significant impact on glycaemic response to metformin (84). 

 

Gene–gene interaction: Although variants in transporter genes showed an association 

with metformin response, individual variants explain only a small fraction of the 

variation. Given that multiple transporters are involved in the disposition of metformin 

and localization of uptake and efflux transporters in the same organ (Figure 1.3), joint 

investigation could give a better understanding. Interaction between the OCT2 variant, 

c.808 G>T (rs316019), and MATE1 variant, g.−66 T>C (rs2252281), in relation to the 
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PK of metformin was reported by Christensen et al (77). The c.808 G>T alone showed no 

effect on either secretory or renal clearance of metformin. However, an increased 

clearance was observed with carriers of the c.808 G>T variant that are homozygous for 

g.−66 T>C. In the Rotterdam study, interaction between the intronic MATE1 and OCT1 

SNPs, rs2289669 and rs622342, respectively, was investigated. A more pronounced 

glucose-lowering effect of rs2289669 in MATE1 was reported in metformin users with 

CC genotype than AA genotype for OCT1 (85). Gene–gene interaction between g.−66 

T>C/rs2252281 and g.−130 G>A/rs12943590 promotor variants of MATE1 and MATE2, 

respectively, was reported by Stocker et al (83). Carriers of both variants showed a greater 

renal and secretary clearance. This clearly signifies the role of gene–gene interaction and 

the importance of complex network/pathway analysis to better understand the PK and PD 

of metformin. 

 

TCF variants: Rather than studying transporter variants per se, a study explored variants 

in TCFs that potentially regulate the expression of these transporter genes (36). They 

studied variants in specificity protein (SP) 1, which regulates the expression of a number 

of these transporter genes; activating enhancer-binding protein 2, which represses 

MATE1 expression; and the TCFs, hepatocyte nuclear factor 4, alpha (HNF4α) and 

peroxisome proliferator-activated, alpha (PPARα). They reported five variants in or near 

SP1 and one variant in activating enhancer-binding protein 2 that showed association with 

metformin elimination and HbA1c change. Of these, those homozygous GG at rs784892 

(intronic SNP of anti-Mullerian hormone receptor type 2 (AMHR2), downstream gene to 

SP1) achieved a 1.1% lower HbA1c and 98 mL/min lower secretory clearance of 

metformin than AA homozygotes. Up to 24% reduction in apparent clearance was also 

reported in patients’ homozygous GG at rs784888, a downstream variant to SP1. This 

SNP was associated with HbA1c reduction with β coefficient of −0.36% per G allele (p 

= 0.01 before Bonferroni correction). Variants in HNF4α and PPARα were associated 

with HbA1c reduction, but their effect could not be explained by the PK of metformin 

suggesting that further investigation of other mechanisms is required.  

 

Polymorphisms in the PD pathway: Genetic variants affecting the PD of metformin are 

not well studied. There are few candidate gene studies that reported nominal associations 
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with metformin efficacy (Appendix I, Table A1). An elegant GWAS study performed on 

10,577 T2D participants of European ancestry from the MetGen consortium identified 

association of an intronic SNP (rs8192675) to SLC2A2, a gene that encodes GLUT2, with 

glycaemic response to metformin. Carriers of the C allele at this locus had greater 

reduction in HbA1c compared to T allele carriers and this effect is more pronounced 

among obese individuals (25). Previous GWAS on metformin response in 1,024 T2D 

incident users from the GoDARTS revealed an association of rs11212617, a SNP near 

ATM gene, with glyceamic response to metformin as a linear reduction in HbA1c or 

achieving treatment target (HbA1c, 7%) (24). This finding was further replicated in two 

independent cohorts from Scotland and the UK with sample sizes of 1,783 and 1,113, 

respectively (86). A meta-analysis of three other studies separately or in combination with 

previous bigger studies confirmed the association of the variant with treatment success 

(86). This finding was also replicated in a Chinese population (87). However, the DPP 

could not find any effect of rs11212617 on the efficacy of metformin in delaying 

progression to diabetes (87). 

 

1.8.2. Sulphonylureas 

SUs were first introduced into clinical practice in the 1950s and have long been a 

cornerstone of treatment in T2D. Currently, they are used as an add-on therapy to other 

OHAs, usually metformin and sometimes as first-line agents. About a quarter of newly 

diagnosed patients initiate therapy with SUs (88). Each drug in the group varies in their 

PK parameters, insulin secretory potency, and onset and duration of action. 

 

Pharmacokinetics and pharmacodynamics 

The polymorphic CYP2C9 isoenzyme catalyses the biotransformation of SUs in the liver. 

Catalytic function of the enzyme is reported to be affected by the type of inherited amino 

acid substitution (89). Substitution of arginine with cysteine at amino acid position 144 

(Arg144Cys) and isoleucine with leucine at position 359 (Ile359Leu) gives rise to mutant 

alleles, CYP2C9*2 and CYP2C9*3, respectively. The mutant alleles are known to have 

a reduced catalytic activity than the wild-type CYP2C9*1. Involvement of cytochrome 

P450, family 2, subfamily C, polypeptide 19  (CYP2C19) in the metabolism of SUs is 

also reported (90). CYP2C19*2 (681 G>A) and CYP2C19*3 (636 G>A) are variants that 
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encode a non-functional CYP2C19 enzyme. Individuals with either of the variants are 

labelled as poor metabolizers (90). The *3 variant is most common in Asians with a 

frequency of 10%–25% compared to that of 2%–6% in Caucasians. SUs induce glucose-

independent insulin release from the pancreatic β-cells by binding to the ATP-sensitive 

potassium (KATP) channel (Figure 1.5) (91). The channel is composed of four subunits of 

the SU receptor (SUR) 1 and four subunits of the potassium inward rectifier channel (Kir) 

6.2. Two SU-binding sites have been reported in the channel. The A site resides 

exclusively on the SUR1 and the B site is available on both subunits of the KATP channel. 

Binding of SUs to these receptors induces the closure of KATP channels and increases 

intracellular K+ ion and hence membrane depolarization with subsequent opening of 

voltage-gated Ca2+ channels that increase intracellular Ca2+ followed by the release of 

insulin-containing granules. 

 
Figure 1.5 The molecular mechanism of action of sulphonylureas in the pancreatic β-cells.  

Binding of SU to KATP channels expressed on the surface of the pancreatic β-cells prevent efflux of 
potassium, leading to depolarization of the cell membrane. Depolarization opens voltage gated Ca2+ 
channels and thus increased intracellular Ca2+ level, leading to contraction of the filaments of actomyosin 
to facilitate insulin exocytosis. Adapted from sola et al (92).  
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Pharmacogenetics 

Interindividual variability in SU response exists. Following SU initiation, an estimated 

10%–20% of patients will have, 20 mg/dL (1.1 mmol/L) FPG reduction (37). Clinical 

factors, such as baseline glucose, duration of diabetes, β-cell function, and degree of 

insulin resistance, affect response to SUs (37). Variants in genes encoding proteins 

involved in the PK and PD are widely reported to influence therapeutic outcome of SUs.  

 

CYPs: Several studies investigated the effect of mutant alleles of the rate-limiting 

CYP2C9 on the PK and PD and the safety of SUs in healthy and T2D individuals. 

Reduced drug-metabolizing activity has been reported in individuals carrying either the 

CYP2C9*2 or the CYP2C9*3 variants, *3 being more profound (93). Compared to wild-

type carriers, healthy male volunteers homozygous for CYP2C9*3 and CYP2C9*2 had a 

50% and 10% lower oral clearance of glyburide, respectively (94). In line with this, a 

significant increase in AUC and plasma half-life (t1/2) of glyburide has been reported for 

heterozygous CYP2C9*3 than *1/*1 carriers (95). A similar result was also reported for 

tolbutamide (96). The impact of CYP2C9 on the PK of the second generation SUs was 

also studied. Wang et al reported 40% and 30% more mean AUC of glimepiride for *3/*3 

and *3/*1 carriers, respectively, compared to the wild type (97). 

 

Reduced function CYP2C19 variants also influence metabolism of SUs. More than 

threefold increase in AUC and prolonged t1/2 of gliclazide were reported among male 

healthy Chinese volunteers with reduced CYP2C19 variants compared to carriers of the 

wild type (98). Influence of CYP variants on efficacy to SUs has been widely studied. The 

largest study based on retrospective data on 1,073 incident users of SUs from the 

GoDARTS showed that carriers of loss-of-function CYP2C9*2 or CYP2C9*3 alleles 

were 3.4-fold more likely to achieve therapeutic target than carriers of the wild type, 

resulting in 0.5% greater HbA1c reduction (99). In the Rotterdam study, Becker et al 

defined response in terms of maintenance dose achieved among the incident SU users 

(100). In a subgroup of 172 patients who were on tolbutamide, a lower dose was needed 

to regulate glucose in the carriers of CYP2C9*3 than in the carriers of the wild type. A 

reduction in HbA1c in carriers of CYP2C9*1/*3 was also reported among Japanese 

patients who have been on glimepiride (101). These consistent findings are some of the 
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most robust PGx findings in the diabetes field and could potentially translate into 

genotype-guided therapy in SUs. However, prospective studies in T2D patients are 

required before translating into clinical practice. The role that CYP2C19 could play in the 

metabolism of gliclazide is documented (90). However, studies to link this with glyceamic 

response are lacking. 

 

Polymorphisms in mechanistic targets: Following the identification of SU-binding sites 

SUR1 and Kir6.2 (encoded by ATP-binding cassette sub-family C member 8 (ABCC8) 

and Potassium Voltage-Gated Channel Subfamily J Member 11 (KCNJ11), respectively), 

variants in these genes have been the subjects of many PGx investigations. Rare 

pathogenic mutations in these genes lead to neonatal monogenic diabetes (102). Due to 

the low levels of insulin and ketoacidosis, insulin has been the typical treatment in 

neonatal diabetes. Successful transition from long-term insulin to SU treatment has been 

reported by Pearson et al in 2006 (103). Following this, a number of studies investigated 

two strongly linked nonsynonymous common variants in the ABCC8 (S1369A, 

rs757110) and KCNJ11 (E23K, rs5219) in patients with T2D.  

 

ABCC8/KCNJ11: The E23K and S1369A variants form a haplotype. While 

KATP channels containing the K23/A1369 haplotype are more sensitive to inhibition by 

gliclazide, they are less sensitive to inhibition by tolbutamide, chlorpropamide, and 

glimepiride (104). Association of S1369A with glycaemic control in 115 Chinese patients 

who have been on gliclazide for 8 weeks was reported (105). Carriers of minor allele had 

a greater HbA1c reduction than carriers of the wild type (1.60%±1.36% vs 

0.76%±1.70%, p = 0.04). Another larger study also showed an association of the minor 

allele with a greater reduction in fasting (p < 0.001) and 2-hour (p < 0.003) glucose levels 

(106). Association between the KCNJ11-E23K and efficacy to SUs was reported in 

Chinese patients by Li et al (107). In this study, 108 newly diagnosed T2D individuals 

have been treated with gliclazide modified release (MR) for 16 weeks. Homozygous KK 

carriers had a lower FPG and were more likely to achieve the target FPG of 7.0 mmol/L 

(plog rank = 0.03) than E allele carriers. In another study carried out in 101 T2D 

Caucasians treated with SUs after metformin therapy, homozygous KK carriers showed 

a greater HbA1c reduction than EE homozygous after 6 months of therapy (1.04%±0.10% 
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vs 0.79%±0.12%, p = 0.04) (108). However, other studies could not replicate the above 

findings. The UK Prospective Diabetes Study (UKPDS) investigated response to SUs in 

363 individuals based on FPG measured at two time points in a 1-year period (109). No 

significant association between E23K and FPG was observed. This finding could 

probably be confounded by continual dose adjustment carried out in the UKPDS. In a 

study conducted on 525 Caucasians who have been on glibenclamide and metformin, 

carriers of the K allele showed 1.69 ([95% CI =1.02–2.74], p = 0.04) times higher odds 

of secondary treatment failure, defined as FPG > 300 mg/dL (16.7 mmol/L), than those 

who were homozygous for the reference allele (110). Since metformin was used as an 

add-on therapy, the failure is for the combination rather than SU alone. Moreover, this 

secondary failure phenotype is more likely to reflect diabetes progression associated with 

the K allele than SU response. Another study carried out in 176 (92 experienced 

hypoglycaemia and 84 not) T2D patients showed no association of the E23K variant with 

a mild hypoglycaemia (111). This study might be confounded by an incomplete definition 

of mild hypoglycaemia as it relies on patients’ self-report. 

 

TCF7L2: TCF7L2 harbours the strongest T2D risk variants among the 120 GWAS-

established loci. It encodes T-cell TCF4, an important downstream target of the WNT 

signalling pathway (112). Reduced insulin secretion has been reported in relation to two 

intronic variants, rs7903146 and rs12255372, in the TCF7L2 gene and hence 

hypothesized to affect SU response (113). GoDARTS is the largest study conducted on 

901 Scottish patients to link TCF7L2 variants with SU response (114). Patients 

homozygous for the minor allele of rs12255372 G>T were nearly twofold less likely to 

achieve therapeutic target after 3–12 months of SU treatment than homozygous carriers 

of the reference allele. Similar result was reported for rs7903146. Three other independent 

groups also showed a consistent result (Appendix I, Table A2) (115-117). 

In conclusion, notable findings have been reported in the PGx of SUs. Robust associations 

between variants in the CYP2C9 and TCF7L2 are reported with conflicting findings for 

KCNJ11/ABCC8. More comprehensive assessments of these associations will be 

necessary to translate this genetic information into clinical utility. 
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1.8.3. Meglitinides 

Meglitinides (glinides) are short acting non-SU secretaguges that lower postprandial 

glucose excursions preferentially by stimulating early phase insulin secretion. They act 

by regulating potassium channels in the pancreatic β-cells via a distinct mechanism from 

that of SUs. They are not commonly used in the UK. After oral administration, glinides 

are absorbed rapidly with the peak plasma drug levels reached within 1 hour. Organic 

anion transporting polypeptide 1B1 (OATP1B1), encoded by solute carrier organic anion 

transporter family, member 1B1 (SLCO1B1), mediates their transport into the liver (118), 

where more than 95% of the oral dose get metabolized by the CYP family isozymes (89). 

Association of genetic variants in the SLCO1B1, CYP2C9, and CYP2C8 genes with the 

PK and/or efficacy of glinides has been reported. In healthy individuals, carriers of the 

variant allele c.521 T>C in the SLCO1B1 had a reduced transport and an increased plasma 

concentration of repaglinide and nateglinide (119-122). The *1B/*1B haplotype in the 

same gene was also associated with a reduced transport of glinides (123). Association of 

the *3 variant in CYP2C8 and CYP2C9 with the PK of nateglinide and repaglinide has 

also been reported (121, 123, 124). 

 

In a study carried out in 100 Chinese patients, He et al investigated the effect of KCNJ11 

genotype on the efficacy of repaglinide after 24 weeks of treatment (125). Carriers of the 

K allele of E23K showed a greater HbA1c reduction (EE: 1.52%±1.03%, EK: 

2.33%±1.53%, and KK: 2.65%±1.73%, p = 0.02). However, this result could be 

confounded by baseline effect as carriers of the variant allele had higher HbA1c at 

baseline than carriers of the wild type. Studies pertaining to the PGx of glinides are 

confounded by small sample sizes (most of them < 100). PD investigations are available 

for repaglinide only, and most of the PK studies are limited to healthy volunteers 

(Appendix I, Table A3). Therefore, further studies with bigger sample sizes, 

methodological diversities, and replication are required. 

 

1.8.4. Thiazolidinediones  

TZDs, also known as glitazones, are OHAs that act as insulin sensitizers in different 

tissues, including the liver, muscle, and adipose tissue. Glitazones act via the activation 

of Peroxisome proliferator-activated receptor gamma (PPARγ) that regulates the 



25 
 

transcription of multiple downstream genes involved in glucose and lipid metabolism. 

PPARγ is a member of a family of nuclear receptors encoded by the PPARγ gene (126). 

Binding of TZDs to PPARγ will lead to specific conformational changes of PPARγ that 

results in recruitment of one or more co-activator proteins (126). These conformational 

changes are reported to regulate transcription of downstream genes in Deoxyribonucleic 

acid (DNA) dependant (transactivation) and DNA independent (transrepression) 

mechanisms (Figure 1.6). Transactivation involves dimerization of PPARγ with retinoid 

X receptor (RXR) and thereby recognize specific response elements in promotor regions 

of downstream genes resulting transcription of target genes. Transrepression represses 

transcription of downstream genes by negatively interfering with signal transduction 

pathways such as the nuclear factor-kB (NF-kB) pathway. Genes encoding adiponectin, 

tumor necrosis factor α, resistin and 11β-hydroxysteroid dehydrogenase 1 are some of 

PPARγ target genes regulated by TZDs (127). PPARγ is predominantly expressed in 

adipose tissues (126). TZDs enhance insulin sensitivity by promoting uptake and storage 

of fatty acids in adipose tissues thereby sparing insulin sensitive tissues such as the liver, 

skeletal muscle and pancreatic beta cells from lipotoxicity (128).  

 

https://en.wikipedia.org/wiki/Gene
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Figure 1.6 Molecular mechanisms of PPARγ mediated response to thiazolidinediones.  

TZDs activate PPARγ in DNA dependent (transactivation) and DNA independent (Transrepression) 
mechanisms. In Transactivation, PPARγ forms a heterodimer with RXR and recognizes specific response 
elements in the promotor regions of downstream target genes resulting in enhanced transcription. In 
transrepression, PPARγ repress gene expression by interfering other signal transduction pathways. Adapted 
from Yki-Järvinen (128).  

 

TZDs reduce HbA1c by ∼0.5%–1.4% (129). There are three glitazones that have been 

licensed: rosiglitazone, pioglitazone, and troglitazone. While troglitazone was withdrawn 

from the global market in 2000 due to idiosyncratic hepatotoxicity, marketing 

authorization for rosiglitazone has been withdrawn in Europe and put under restrictions 

in the USA due to the potential cardiovascular risks. France and Germany have suspended 

pioglitazone due to an increased risk of bladder cancer. However, recent multipopulation 

studies showed no association of pioglitazone or rosiglitazone with the risk of bladder 

cancer (130, 131). 
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Pharmacogenetics 

CYP2C8 and SLCO1B1: Hepatic uptake of TZDs is mediated by OATP1B1 (132) with 

metabolism mostly by CYP2C8. Genetic variants in genes encoding these proteins have 

been investigated for their possible impact on the PK of TZDs in healthy volunteers. The 

homozygote carriers of CYP2C8*3 had 36% lower rosiglitazone plasma concentration 

and 39% higher weight-adjusted oral clearance compared to carriers of the wild type (133, 

134). Similar trends have been reported for pioglitazone in two other studies (135, 136). 

For SLCO1B1, despite in silico modelling, PK studies in healthy Caucasians found no 

association between loss-of-function 521 T>C variant of SLCO1B1 and plasma 

concentrations of rosiglitazone and pioglitazone (133, 135-137). It is worth noting that 

these studies had small samples that could limit statistical power to detect moderate 

genetic effects. 

 

PPARγ: PPARγ, the mechanistic target of TZDs, is an obvious candidate for PGx 

investigations. Association of the common variant, rs1801282 (P12A) with risk of T2D 

has been reported (138). The most robust study that showed an association between P12A 

and response to pioglitazone was carried out in 250 Chinese patients (139). Carriers of 

the minor allele (Ala) showed 2.32 ([95% CI =1.10–4.87], p = 0.03) times higher odds of 

being a responder than carriers of the wild type. In this study, responders were defined as 

those with >15% decrease in HbA1c levels or >20% decrease in FPG levels (or both) 

after 24 weeks of pioglitazone treatment. Association of the same variant with a linear 

reduction in HbA1c and FPG after pioglitazone therapy was replicated in an independent 

cohort of 67 patients (140). Similar trend has been reported in 198 Korean patients treated 

with 4 mg rosiglitazone daily for 3 months (141). 

 

Adverse outcomes: Adverse effects induced by TZD therapy have been investigated in 

relation to genetic variants. Watanabe et al studied association of troglitazone induced 

hepatotoxicity with the 68 polymorphic sites of 51 candidate genes in 110 Japanese 

patients (25 cases and 85 controls) (28). The strongest correlation was observed for 

combined null genotype of glutathione S-transferase theta-1 and glutathione S-transferase 

mu-1 (OR =3.7 [95% CI =1.4–10.1], p = 0.008). In another Japanese study, association 

of troglitazone induced liver injury with mutations in CYP2C19 was reported (27). In the 
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Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) 

trial, a higher rate of rosiglitazone induced oedema (OR =1.89 [95% CI =1.47–2.42], p = 

0.017) was reported for patients’ homozygous CC for rs6123045, a variant at the Nuclear 

Factor of Activated T-cells, Cytoplasmic, Calcineurin-Dependent 2 (NFATC2) locus 

(142) (Appendix I, Table A4). 

 

1.8.5. Incretins 

There is a greater insulin secretory response to oral than IV glucose load despite the same 

glucose concentrations at the level of the β-cell; this is termed as the incretin effect and 

has been attributed to the incretin peptides: GLP-1 and gastric inhibitory polypeptide 

(143). Markedly diminished incretin effect in diabetic patients as compared to non-

diabetic subjects is previously reported (144) (Figure 1.7).  

 

Figure 1.7 The incretin effect and diabetes; the shaded area illustrates the total post prandial insulin 
response termed as the incretin effect. 

 

Binding of GLP-1 or its analogues to the GLP-1 receptor, abundantly expressed on the 

surface of β-cells, causes activation of adenylate cyclase resulting in the generation of 

cAMP (145). Subsequent activation of PKA and guanine nucleotide exchange factor II 

(GEFII) leads to increased intracellular calcium levels and exocytosis of insulin 
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containing granules (146) (Figure 1.8). Activation of PKA by GLP-1 may also close 

KATP channels of the βbeta-cells via phosphorylation of S1448 subunit in the SUR1 

resulting in enhanced exocytosis (147). A direct influence of the cAMP generated from 

activation of GLP-1R by GLP-1 or its analogues on insulin exocytosis has also been 

reported by Holst et al (145). The latter is estimated to account for about 70% of GLP-1 

mediated insulin secretion (145). 

 
Figure 1.8 Summary of GLP-1 mediated insulin secretion on the surface of the pancreatic βbeta-cells.  

Binding of GLP-1 to GLP-1R activates adenylate cyclase with subsequent increase in cAMP level that lead 
to activation of PKA and cAMP-GEFII. These proteins mediate a plethora of molecular events that lead to 
secretion and exocytosis of insulin molecules. Adopted from Holst JJ (148).    

 

GLP-1 is derived from post-translational modification of proglucagon by the enzyme 

prohormone convertase 1/3 (PC1/3) (149). It is a glucoincretin hormone secreted from 

the enteroendocrine L cells within the crypts of the intestinal mucosa principally in two 

major active molecular forms, as GLP-1(7-36) amide and GLP-1(7-37) (150) (Figure 

1.9). GLP-1(7-36) amide is the major biologically active peptide available in the blood 

circulation. It has a t1/2 of 1–2 minutes due to rapid degradation by the enzyme DPP-4 and 



30 
 

thus limited therapeutic potential (148). DPP-4 degrade the active peptide at position 2 

giving the inactive peptides, GLP-1 (9-36) amide and GLP-1 (9-37) (151) (Figure 1.9).  

The biologically active GLP-1 stimulate insulin secretion and insulin biosynthesis in a 

glucose dependant manner. In addition, it inhibits secretion of glucagon, delay gastric 

emptying, reduce gut motility and promote early satiety (152-154). Two therapeutic 

strategies were developed to overcome rapid degradation of the active GLP-1– oral agents 

that inhibit DPP-4 (known as gliptins) and injectable agents that are resistant to 

breakdown by DPP-4 (GLP-1RAs).  

 

 

Figure 1.9 Structure of biologically active GLP-1 and its inactive metabolites. 

1: GLP-1 extended form, 2: GLP-1 active form, 3: inactive GLP-1. 

PGx studies on GLP-1RAs and gliptins are limited. A pilot study on healthy Caucasians 

showed differences in the insulinotropic response to exogenous GLP-1 in relation to two 

variants (rs6923761 G>A (Gly168Ser) and rs3765467 C>T (Arg131Glu)) in the GLP-1R 

gene (155). Association of 168Ser allele with poor response to treatment with gliptin is 

shown by Javorski et al in 140 T2D subjects of Caucasian origin (156). ’t Hart et al 

reported significant association between a variant near the Chymotrypsinogen beta1/2 

(CTRB1/2) gene (rs7202877) and glyceamic response to gliptins. CTRB1/2 encodes 

chymotrypsin, and the G allele at rs7202877 variant was associated with an increased 

faecal chymotrypsin activity. Carriers of the G allele at this SNP showed 0.51%±0.16% 

lower HbA1c reduction compared to TT genotype (p = 0.0015) after being on gliptins for 

at least 3 months (157). Association of variants in other T2D-related genes, such as 
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Potassium Channel, Voltage Gated KQT-Like Subfamily Q, Member 1 (KCNQ1), 

TCF7L2, and Wolfram Syndrome 1 (WFS1), with GLP-1RA response have also been 

reported (Appendix I, Table A5). 

 

1.8.6. SGLT-2 inhibitors 

SGLT-2 inhibitors are a new class of OHAs that inhibit SGLT-2-mediated renal 

reabsorption of glucose thereby increase glycosuria, resulting in a reduction of 

hyperglycaemia independent of β-cell function (158). After oral administration, SGLT-2 

inhibitors show a bioavailability of 65%–78% with a t1/2 ranging 10–13 hours allowing 

once a day administration (158). They are mainly eliminated through O-glucuronidation 

by uridine diphosphate glucuronosyl-transferases (UGTs) (159). A recent study carried 

out in 134 healthy and T2D subjects showed involvement of UGT1A9 and UGT2B4 in 

the metabolism of canagliflozin (159). Carriers of reduced function variants, UGT1A9*3 

and UGT2B4*2, had an increased plasma concentration of canagliflozin than carriers of 

the parent allele. SGLT-2 inhibitors reduce HbA1c by 0.58%–1% when used as a mono- 

or an add-on therapy (160). Individual variation in response to SGLT-2 inhibitors has 

been reported, and part of this variation could be attributable to genetic variation. 

Nonsense and missense mutations in the SLC2A5 gene that result in the loss of SGLT-2 

function cause familial renal glycosuria and are associated with the reduced circulating 

glucose levels (161, 162).  

 

1.9. Gaps in knowledge addressed by this thesis 

In this chapter, I investigated more than 120 published studies pertaining gene–drug 

interaction in diabetes (Appendix I, Tables A1–A5). Even though well-powered, and 

successfully replicated findings are emerging, small studies that lack replication 

predominate. Genetic-guided therapy is now mainstream in the case of maturity onset 

diabetes of the young and neonatal diabetes (103, 163). To further translate PGx research 

into clinical practice, in this thesis I aimed to conduct more well-designed studies with 

sufficiently large sample size and well-characterized phenotypes and, in most of the cases, 

meta-analysis across studies were undertaken to provide robust evidence for an 

association.  
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1.10.  Thesis aims   

Centrally, this thesis explores determinants of efficacy and adverse effects of most 

commonly used hypoglycaemic agents in T2D using data from multiple cohorts. It 

encompasses five specific studies with the broad aim of identifying genetic variants 

associated with drug response in T2D. At present, there are only few studies that robustly 

establish genetic variants associated with response to T2D drugs and those explain tiny 

proportion of the heritability indicating presence of additional variants yet to be 

identified. We hypothesised that there are genetic determinants that are associated with 

glycaemic efficacy and adverse effects of drugs in T2D with specific aims to: 

1. Explore the role of metformin in GLP-1 levels in diabetic and non-diabetic 

subjects. 

2. Examine clinical and genetic factors associated with metformin related GI side 

effects. 

3. Examine association between genetic factors with glycaemic response to SU 

therapy, and seek replication. 

4. Examine the role of variants in SLCO1B1 and CYP2C8 to glycaemic response and 

weight gain in relation to TZD therapy. 

5. Perform a meta-analysis on association between candidate GLP-1R variants and 

Glycaemic response to GLP-1RAs.  

 

I begin by describing the study population, genotypic data generation and methods of 

statistical analyses used in chapter 2 followed by investigating the role of metformin to 

blood GLP-1 levels in chapter 3. Chapter 4 focuses on clinical and genetic factors related 

to GI intolerance following metformin therapy in subjects with T2D. In chapter 5, results 

from candidate gene, GWAS and pathway analyses for glyceamic response to SU were 

presented. Chapter 6 examines the role of variants in genes that encode transporter and 

metabolizing proteins for TZD response. In chapter 7, missense variants in GLP-1R gene 

were investigated for glycaemic response to GLP-1RAs followed by exome-wide burden 

test. Finally, a general discussion that reflects upon the findings in this thesis in the 

context of the overall picture of PGx in T2D is explained in chapter 8.  
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CHAPTER 2. METHODOLOGY 
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interpretation, drafting and critical revision of this chapter. 
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2. METHODOLOGY 

The purpose of this methodology chapter is to give an overview on description of the 

study population used in this thesis and to explain the methods used to generate genotypic 

data. In addition, principles of statistical methods utilized in subsequent chapters have 

also been explained. Candidate based, GWAS and downstream burden test and pathway 

analyses methods are subsequently explained. 

 
2.1. Description of cohorts  

2.1.1. The DIRECT study  

General description  

DIRECT is a pan-European consortium established with the overarching aim to identify 

and validate biomarkers that address current bottlenecks in diabetes drug development 

and to develop a stratified medicines approach to the treatment of T2D with either existing 

or novel therapies. DIRECT involves investigators, expertise and clinical resources from 

20 academic institutions and 5 European Federation of Pharmaceutical Industries and 

Associations (EFPIA) in synergistic partnership. It has received support from the 

Innovative Medicines Initiative (IMI) Joint Undertaking under grant agreement n° 

115317, resources of which are composed of financial contribution from European 

Union`s Seventh Framework programme (FP7/2007-2013) and EFPIA companies´ in 

kind contribution. Detailed description of the design of the DIRECT consortium is 

previously published by Koivula et al (164). This thesis explains briefs of the DIRECT 

data used for our analysis. 

 

DIRECT is a 7-year project designed with nine interrelated work packages (WPs), with 

WP1 and WP9 carrying out the activities of project management and providing 

administrative oversight. While WP2 & WP3 generated phenotypic data, WP4 & WP5 

were focused on data repository and analysis. Identified biomarkers will be assayed and 

validated (WP6) followed by validation through prospective clinical trials (WP7 & WP8) 

(Figure 2.1). This thesis uses data from WP2 and WP3 of the DIRECT consortium. 
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Figure 2.1 Pert diagram describing interrelated work packages in the DIRECT consortium. 

 

WP2 aims to discover biomarkers that identify those groups of individuals who are likely 

to have rapid deterioration in glycaemia (either prior to developing diabetes or following 

a diagnosis of diabetes), and to identify surrogate biomarkers of glycaemic deterioration 

and beta-cell degeneration, to enable targeted therapy in these subgroups. Two pan-

European multi-centred prospective cohort studies comprising of Caucasian ancestors 

were established. A comprehensive array of risk factors, intermediate phenotypes, and 

metabolic outcomes has been repeatedly assessed using cutting-edge technologies. 

 

Study 1 in WP2 enrolled a total of 2,351 people at high risk of developing T2D from 

existing prospective cohort studies screened using the DIRECT-DETECT risk algorithm 

(164, 165). Participants aged between 35 and 75 years with no diagnosis of diabetes 

and/or no treatment with antidiabetic drugs were recruited. To be included in this study, 

subjects should have FPG < 10 mmol/L at baseline visit with no history of previous FPG 

≥ 7.0 mmol/L or 2 hour glucose > 11.0 mmol/mol or HbA1c ≥ 6.5% (48 mmol/mol). 

Other exclusion criteria include: pregnancy, lactation or plans to conceive within the 

study period, use of pacemaker or any other significant medical reason for exclusion as 
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determined by the investigator.  Deep phenotypic data and bio-specimens were collected 

at baseline and after 18 and 36 months of follow-up. 

 

Study 2 in WP2 aimed to identify predictive biomarkers of glycaemic deterioration in 

people who have recently been diagnosed with T2D. 836 participants recently diagnosed 

with T2D were identified through general practice and other registries from or nearby 

each of the following European cities: Malmö, Sweden; Amsterdam, the Netherlands; 

Copenhagen, Denmark; Exeter, UK; Newcastle, UK; Dundee, UK.  Participants had to 

fulfil the following criteria at the time of recruitment: white European, aged between 35 

and 75 diagnosed with T2D not less than 6 months and not more than 24 months and 

management by lifestyle with or without metformin therapy and HbA1c < 7.6% (60 

mmol/mol) within previous 3 months and estimated glomerular filtration rate (GFR) > 50 

mL/min. Subjects with prior history of treatment with any antidiabetic agent other than 

metformin or previous HbA1c > 9.0% (75 mmol/mol) or BMI < 20 or > 50 kg/m2 were 

excluded from the study. Women who were pregnant, lactating or have had plans to 

conceive within the study period were also excluded.  Deep phenotyping and bio-samples 

were collected at baseline, 9 and 18 months of follow. Data from this study is used in 

chapter 3.  

 

WP3 aimed to discover biomarkers that predict underlying variability in glycaemic 

response or side effect to certain therapeutic interventions (pharmacological and surgical) 

in T2D. Five treatment response cohorts were developed under this WP. Data from two 

of these cohorts, WP3.2 and WP3.3, was used for this thesis.  

 

WP3.1 has established a cohort of extreme responders and non-responders to metformin 

and SU by combining a number of existing cohorts available to the consortium across 

five European clinical centres with the objective to identify predictive biomarkers for 

extreme response to these drugs.  A total 841 and 669 participants have been recruited for 

metformin and SU response studies, respectively.  
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WP3.2 has established a cohort of subjects with T2D who have extreme GI intolerance 

to metformin with the aim to understand the biology of metformin intolerance that could 

lead to development of agents that protect against GI intolerance, or to the development 

of alternative ‘metformin like’ agents, or simply the ability to avoid metformin in patients 

predicted to be intolerant. These subjects were identified from recent prescribing data 

(within the last 2 years) as being prescribed no more than 500 mg metformin before being 

switched to an alternative agent (e.g. SU, TZD, DPP4 inhibitor or Metformin MR).  

Patients have filled out a questionnaire about their side effects with metformin. A total of 

300 extreme GI intolerant subjects were recruited from five participating centres.   These 

were compared with a cohort of 1,230 metformin tolerant T2D subjects, where GWAS is 

available, identified from existing data as those taking more than or equal to 2 g of 

metformin for more than a year. Anthropometric, clinical, biochemical and concomitant 

medication data were collected for both groups.  In addition, blood and urine samples 

were collected from intolerant subjects.  

 

WP3.3 aimed to collect a cohort with intensive phenotyping of users of GLP-1RAs to 

determine why patients have highly variable response to these agents. They were recruited 

when a clinician decides to commence GLP-1RAs as part of their routine diabetes control. 

Participants were also identified from existing research databases where subjects have 

given permission to be contacted about further research projects via primary or secondary 

care. Where potential recruits are identified from existing research databases, the patient 

invitation letter were sent by the appropriate member of the research team.  Patients could 

be on any of the combinations of antidiabetic drugs and/or insulin at GLP-1RA initiation.  

A total of 402 subjects were recruited from secondary and primary cares across four 

DIRECT participating clinical centres in the UK: Dundee, Exeter, Newcastle and Oxford. 

Clinical parameters including age, diabetes duration, sex, weight, BMI, HbA1c, lipid 

profile, liver function tests, renal function, bio-impedance and co-medication were 

recorded. In addition to the deep phenotyping and genetic data, proteomics and 

metabolomics data were available for about one third of the participants. Moreover a 

standardized mixed meal test (MMT) were carried out at baseline and 6 months (with and 

without GLP-1RA) with measurement of glucose, insulin, C-peptide, GLP-1 and 

glucagon, and a 2-hour post-prandial Urinary C-Peptide/Creatinine ratio (UCPCR) 

measured. To assess liver fat, pancreatic fat, visceral and subcutaneous fat distributions, 
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102 and 18 participants had magnetic resonance imaging (MRI) measures at baseline and 

6 months of follow up, respectively. Additional samples from GoDARTS, Predicting 

Response to Incretin Based Agents in Type 2 Diabetes (PRIBA) and PROspective Cohort 

MRC ABPI STratification and Extreme Response Mechanism in Diabetes 

(PROMASTER) made up the final sample size to more than 1,000.  

 

WP3.4 aimed to understand measures of beta-cell function in humans. It collates existing 

resource on the acute insulin secretory response to IV beta-cell secretagogues. These data 

were used to assess genomic predictors of acute response to tolbutamide (SU), GLP-1, 

and the physiological measures of acute insulin response to glucose and arginine (a 

measure of functional beta-cell mass).  

 

WP3.5 collected a cohort of patients undergoing obesity surgery prospectively with the 

aim to understand the mechanisms of diabetes remission in order to highlight particular 

mediators or pathways that might be targets for therapeutic intervention and/or 

biomarkers of therapeutic response. 

 

Genetic data  

Genetic data used in this thesis were from WP3.2 and WP3.3 of the DIRECT consortium. 

DNA extraction was carried out using Maxwell 16 Blood DNA purification kits and a 

Maxwell 16 semi-automated nucleic acid purification system (Promega, UK). DNA 

samples from participating centres in WP3.2 and WP3.3 were routed to partner University 

of Oxford (UOXF) and The National Center for Scientific Research (CNRS), 

respectively.  Genotyping and imputation of the DIRECT genotyping data was performed 

by Dr Mickaël Canouil, Dr Loïc Yengo from CNRS, and Dr Neil Robertson and Dr 

Anubha Mahajan from UOXF. DNA samples from the PRIBA and the PROMASTER 

studies, replication cohorts used in WP3.3, were also processed in CNRS with DIRECT 

samples.  Genotypes were generated using the Illumina Human Core Exome chip v1.1 

(HCE24 v1.0). Genotype calling for both common and low-frequency variants was 

performed using the GenCall algorithm in the GenomeStudio software supplied by 

Illumina. Data were subjected to a series of standard quality control analyses in order to 

highlight poorly performing genetic markers and samples prior to imputation.  
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Genotype call rate and heterozygousity checks are measures of DNA quality to avoid 

DNA sample contamination or inbreeding. Samples of poor DNA quality are reported to 

have below average call rate and excessive or reduced proportion of heterozygote 

genotypes. The call rate was evaluated using the --missing command in PLINK (v1.07) 

(166). Individuals that had a call rate lower than 97% were excluded. The heterozygosity 

rate per sample was calculated using the formula (number of non-missing genotypes N 

(NM) - Number of homozygous genotypes O (Hom)) / N (NM). N (NM) and O (Hom) 

were obtained using the --het command in PLINK (v1.07) (166). Cut-off for exclusion of 

outliers was 4 standard deviations from the mean heterozygosity rate.  

 

Gender check helps to detect discrepancies between ascertained sex and genotypic 

information (167). This is carried out by calculating the homozygosity rate across the X-

chromosome using the --check-sex command in PLINK (v1.07) (166). Typically male 

samples are expected to have a homozygosity rate of 1 and female samples to have a 

homozygosity rate less than 0.2. Individuals with discordant sex information were 

removed.  

 
In order to avoid bias from duplicates and related individuals, estimates of pairwise 

identity by decent (IBD) were generated using the --genome command in PLINK (v1.07) 

(166). Prior to analyses, the dataset was pruned to exclude high-LD-regions. Among the 

related samples, IBD > 0.2, the one with the lowest call rate was excluded.  

 
Population stratification is the major source of confounding in population based genetic 

association studies. To identify possible ethnical outliers, PCA was performed using the 

genotype data from the studied population using the publicly available 1,000 Genomes 

project database. Principal components (PCs) were calculated with the Genome-wide 

Complex Trait Analysis (GCTA) software (v1.24.7) (168) using the 1000 Genomes 

samples as a reference.  

 

Further filtration was performed to remove: non-autosomal markers, duplicate markers 

(sharing the same positions), markers with minor allele frequency (MAF) < 1%, HWE p-

value < 0.0001, call rate < 98% and SNPs in high LD. Imputation to the 1000 Genomes 

Phase 3 CEU reference panel was performed with ShapeIt (v2.r790) (169) and Impute2 
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(v2.3.2) (170). A final data set was deposited on the DIRECT server in preparation for 

analysis. 

 

2.1.2. The GoDARTS study  

General description  

GoDARTS is a longitudinal cohort study established to study the genetics of T2D. Over 

18,000 participants were enrolled between December 1998 and August 2012, of whom 

half of them are diagnosed with T2D and the remaining age and sex matched non-diabetic 

controls identified from general practice records in Tayside, Scotland (171). 

Comprehensive electronic medical records history dating back to 1990 including 

anthropometric, clinical, prescription and biochemistry is available for each participant 

through a unique anonymised community health index number provided by the Health 

Informatics Centre (HIC) in partnership with the University of Dundee and the National 

Health Service (NHS).  Previous analysis from the GoDARTS has delivered crucial PGx 

findings in diabetes and related traits (23, 25, 34, 99, 114, 172-176). The GODARTS 

study was approved by the Tayside Committee for Medical Research Ethics and written, 

informed consent was obtained from each participant.  

 

Genetic data  

Array based genotyping 

A single time point blood sample was collected from each participant for DNA extraction 

and genotyping. DNA extraction, quality control and genotyping were performed by 

members of the Pearson’s and Palmer’s laboratory staff, Ms. Fiona Carr, Dr. Roger 

Tavendale and Ms. Karen Wilson. Genetic data generated using high-density arrays and 

TaqMan SNP genotyping assays were used in this thesis. Each of the Illumina Omni-

express (Illumina, San Diego, USA) and the Affymetrix 6.0 SNP (Affymetrix, Santa 

Clara, USA) genotyping arrays were used to genotype 4,000 participants with T2D. After 

standard quality control of the genotypic data, haplotypes were estimated using ShapeIt 

(v2.r790) (169) and imputation of the missing genotypes was performed using the 1000 

Genomes Phase 3 CEU reference panel with Impute2 (v2.3.2) (170). Missing alleles were 

imputed by running a forward-backward algorithm with a certain probability. Genotype 

imputation for the GoDARTS dataset were performed by Mr. Phillip Appleby.  
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TaqMan 

Genotype data from directly typed candidate SNPs in the CYP2C8 gene were used in 

chapter 6. Genotype data for these SNPs were generated using commercial TaqMan 

assays according to the procedure supplied by the vendor, Applied Biosystems (Carlsbad, 

CA). Genotyping assays were run in 384-well plates using 10-20 ng of DNA in 2 μL 

reaction volumes using Universal TaqMan master mix (Applied Biosystems, Carlsbad, 

CA). Assays were plated using a DEERAC Equator GX microdispenser (Labcyte, 

Sunnyvale, CA) and thermal cycling was performed in H20BIT high throughput thermal 

cycler (KBiosystems, Basildon, Essex). End point fluorescence was measured and 

genotypes were called using an ABI7900HT sequence detection system (Applied 

Biosystems, Carlsbad, CA). The TaqMan assay was performed by Ms. Fiona Carr and 

Dr. Roger Tavendale.  

 

2.1.3. The DCS study 

The DCS is a population based observational study from the West-Friesland region in the 

Netherlands established with the aim to improve diabetes care through empowerment and 

education. Details of the DCS is described elsewhere (177, 178).  Patients visit their local 

DCS centre annually and longitudinal prescribing, biochemistry and health data are 

available for more than 6,000 T2D subjects of Caucasian ancestry. Each participant has 

consented to participate in the study and Ethical approval was obtained from the Medical 

Ethics Committee of the VU Vrije Universiteit Medical Center.  

 

2.2. Statistical analyses  

Statistical tests used to make inferences about data used in this thesis are described in 

each result chapter. Multiple logistic and linear regression analyses are the main methods 

utilized to determine association between the outcome variables and explanatory 

variables.  Single SNP association test scanning the whole genome is carried out using 

SNPTEST v2.536 (179) followed by downstream pathway analysis using Meta-Analysis 

Gene-set Enrichment of variaNT Associations (MAGENTA) in chapter 5 (180). In 

addition, rare variant analysis using gene instead of a variant as a unit of association is 

performed in chapter 7.  

 

Linear regression 
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The relationship between a quantitative dependant variable and one or more explanatory 

independent variable (s) that could be quantitative or categorical is modelled using linear 

regression. Linear regression relies on the following assumptions:  

a) Linearity:  the relationship between the independent and dependent variables is linear.   

b) Homoscedasticity: error terms along the regression are constant and are independent 

of the value of the explanatory variables.  

c) Independence of errors: residuals of the explanatory variables are normally 

distributed. 

d) Lack of multicollinearity: there is little or no dependency between explanatory 

variables. 

The relationship between each explanatory variable (xi) and the dependant variable (y), 

given other explanatory variables held constant is estimated by the effect estimates (β). 

The beta estimate (βi) indicates the expected change in the outcome variable (y) for each 

unit change in the independent variable (xi). 

 

 y = β1x1 + β2x2 + . . . + βixi + ε 

 

Logistic regression 

Logistic regression is used when the outcome variable is categorical with explanatory 

variables being continuous or categorical. It examines the influence of independent 

variables on the outcome by estimating the probability of the event’s occurrence. Binary 

logistic regression analysis is performed to determine associations in metformin 

intolerance in chapter 4 of this thesis. Unlike linear regression, logistic regression does 

not assume linearity, homoscedasticity and independence of errors. Reliability of 

estimation from logistic regression gets better with sample size.  

Beta estimates (β) from logistic regression indicate the size of the contribution of each 

subsequent strata compared to the reference category of a variable modifying the 

likelihood of occurrence of the outcome variable.  

 

y = β1x1 + β2x2 + . . . + βixi + ε  

Where y is categorical variable, it is either 0 or 1 in binary logistic regression model.  

 

https://en.wikipedia.org/wiki/Homoscedasticity
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2.3. Power calculations in genetic association studies  

The power of any genetic association study is the probability of rejecting a false null 

hypothesis when a genuine association exists between the marker and the phenotype. A 

type I error occurs when a true null hypothesis is rejected (false positive) whereas type II 

error refers to a failure to reject the null hypothesis when it is false (false negative).  

 

In the design and planning of a genetic association study, a power calculation is a crucial 

component to make sure that the study has a true chance of discovering associations (181). 

There are several assumptions that need to be decided in order to perform a power 

calculation. These include the frequency and effect size of the risk factor, the phenotype 

prevalence, the study sample size, the statistical test to be performed and type I error rate. 

The genotype platform coverage is also an important factor in a GWAS power calculation 

(182). Common variants (MAF >5%) identified by GWAS have tend to have small effect 

sizes (relative risk less than 1.5). The sample size required for a GWAS study is inflated 

by the need for multiple testing correction due to testing of multiple SNPs, multiple genes, 

and multiple phenotypes. Larger samples are required to detect association for low-

frequency and rare variants. For a single marker test, the conventional type I error rate (α) 

is set to be 0.05. However, this need to be corrected for multiple hypothesis testing.   

 

The most common method to correct for multiple testing is the family-wise error rate 

using the Bonferroni or permutation methodology. The Bonferroni method penalizes the 

significance level based on the number of independent tests performed. For n independent 

tests, the significance p-value threshold is set to be α = 0.05/n. The main drawback of this 

method is its conservativeness when the tests are correlated. Permutation is the alternative 

when a huge number of test are performed. It considers correlation between phenotypes 

or genotypes and is hence less conservative than the Bonferroni method. The traditionally 

accepted genome-wide significant p-value threshold for GWAS is 5 × 10−08. 

 

2.4. Genetic analysis 

Genetic association studies can be performed using the candidate gene approach that 

depends on priori hypothesis or the hypothesis free GWAS that scan the entire genome. 

Both approaches of genetic association analyses are used in this thesis.  
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Candidate gene analysis 

The candidate gene approach requires priori biological, physiological or functional 

knowledge of the gene on the phenotype of interest. Careful selection of mutations that 

result in functional change in genes of interest is important. The limited number of genes 

and variants tested reduce the statistical penalty and hence keep sufficient power to detect 

association in candidate gene analyses. Given that the genetic architecture of complex 

diseases is not yet well understood, prior knowledge to identify the right candidates might 

be limited and the likelihood to discover previously unknown genes is hampered. In 

addition, variation in study design and population stratification might obscure the 

observed findings. Therefore, proper criteria to define phenotypes and replication in 

follow-up studies are important. We used the candidate gene approach with meticulous 

selection of candidate genes advised by the PK or PD parameters of hypoglycaemic drugs 

in chapters 4-7 (Table 2.1).  

Table 2.1 Investigated candidate SNPs and their genomic coordinate according to genome reference 
consortium (grch) 37/hg 19. 

Gene  dbSNP ID Minor 

allele/Majo

r allele 

Amino acid 

change 

Chromosom:

Position  

Location in the 

gene 

SLC29A4 rs3889348 A/G Intronic  7:5338475 Intron 6 

KCNJ11 rs5219 T/C Lys/Glu 11:17409572 Exon 1  

CYP2C8 rs10509681 C/T Arg139Lys 10:96798749 Exon 8  

SLCO1B1 rs4149056 C/T Val174Ala 12:21331549 Exon 5  

GLP-1R rs6923761 A/G Gly168Ser 6:39034072 Exon 5  

rs10305420 C/T Pro7Leu 6: 39016636 Exon 1  

 

GWAS analysis 

Unlike candidate gene studies, GWAS offers an unbiased scan of variants across the 

entire genome, interrogating common variants for association as such can detect novel 

regions that can advance our understanding of the phenotype. GWAS have advantages 

over traditional linkage-based analysis. GWAS can be done on case-control and does not 

require family based approach. So cheaper and easier; especially for PGx traits. Unlike 

disease phenotypes, GWAS on PGx outcomes usually suffer from small sample size as 

they need to include both disease and properly defined drug response phenotypes which 

can limit the size of the study population. Given GWAS has little power to detect 

significant associations with low-frequency variants due to available small sample sizes 
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and hence low number of minor allele carriers for rare variants, selection of common 

genetic variants with MAF > 0.05 is commonly applied. There is therefore a risk for 

potential bias ignoring low-frequency and rare variants that might be causal. GWAS 

analysis is utilized in chapter 5 of this thesis. 

 

 

2.4.1. Downstream analyses  

Rare variant burden test 

GWAS that investigate common genetic variants, have been helpful to dissect the genetic 

architecture of complex diseases including T2D (183). However, much of the variability 

remains unexplained. Low-frequency and rare variants may contribute to the missing 

heritability. Indeed, deleterious mutations are predicted likely to be rare due to genetic 

selection (184, 185).  Single marker association tests for rare variants of moderate effect 

sizes are less powerful due to sample size constraints. Aggregation tests that evaluate the 

combined effect of multiple low-frequency and rare genetic variants within a gene or 

genomic region as a unit of association is likely to improve power (186). In chapter 7 of 

this thesis we performed gene based burden test using Gene- or Region-based ANalysis 

of Variants of Intermediate and Low frequency (GRANVIL) (187). GRANVIL models 

the phenotype of an individual as a function of the mutational load they carry in a 

generalized linear regression in an additive model. It gives equal weight to each of the 

rare variants in a given gene. Gene boundaries were identified based on the University of 

California, Santa Cruz (UCSC) human genome database (build 37). 

 

Pathway analysis 

A stringent GWAS significant threshold (of p < 10-8) is helpful to appraise robustness of 

a genetic association. However, such a rigorous threshold can result in false negative 

findings. Therefore, a statistical test that considers a gene as a functional unit and 

collectively analyses prior defined sets of genes that function in a common pathway may 

shed additional light to our understanding of biology. In chapter 5 of this thesis we used 

GWAS summary data to perform gene-set enrichment analysis (GSEA) using 

MAGENTA (180). 
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MAGENTA uses SNP association p-values and chromosome positions from the GWA 

summary data as input. Each gene was scored by the most significant p-value among all 

of the SNPs located within the gene or -110 kb upstream and +40 kb downstream (to 

capture regulatory and coding variants) from the gene. Gene scores were obtained after 

applying a step-wise multiple linear regression analysis corrected for gene size (kb), 

number of SNPs per kb, number of independent SNPs per kb, number of recombination 

hotspots per kb, LD units per kb and genetic distance. It tests whether the distribution of 

gene p-values in a given gene set is skewed towards low p-values compared with equal 

sized 10,000 randomly sampled gene sets. Significant skewness below a given p-value 

cut off (enrichment cut off) suggests enrichment of the gene set. The human leukocyte 

antigen (HLA) region was excluded from the analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

CHAPTER 3. METFORMIN AND CIRCULATING GLP-1 

LEVELS 
This Chapter is published as: 

 

The influence of metformin therapy on circulating GLP-1 levels in individuals with 

and without type 2 diabetes. 
Preiss D1, Dawed AY2, Welsh P3, Heggie A4, Jones AG5, Dekker J6, Koivula R7, Hansen TH8, Stewart 

C3, Holman RR9, Franks PW7, Walker M4, Pearson ER2, Sattar N3; DIRECT consortium group. 

 
1MRC Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, 

Nuffield Department of Health, University of Oxford, Oxford, UK. 
2Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, 

Dundee, UK. 
3BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, 

University of Glasgow, Glasgow, UK. 
4Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK. 
5NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK. 
6Department of Epidemiology and Biostatistics, VU Medical Center, Amsterdam, The Netherlands. 
7Department of Clinical Sciences, Genetic and Molecular Epidemiology, Lund University, Malmö, 

Sweden. 
8Section of Metabolic Genetics, Faculty of Health Sciences, Novo Nordisk Foundation Centre for Basic 

Metabolic Research, University of Copenhagen, Copenhagen, Denmark. 
9Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK. 

 
Diabetes Obes Metab. 2017 Mar;19(3):356-363 

 

 

 

 

 

 

 

 

Statement of contribution: I analysed and interpreted the DIRECT data, 

contributed to the manuscript and revised the article. 



48 
 

3. THE INFLUENCE OF METFORMIN THERAPY ON CIRCULATING GLP-1 

LEVELS IN INDIVIDUALS WITH AND WITHOUT TYPE 2 DIABETES 

3.1. Abstract 

Objective: There are small, short studies that investigated the effect of metformin therapy 

on circulating GLP-1 in individuals with and without T2D. The results are inconsistent 

and the effect of other variables have not been well investigated. Therefore well powered 

large studies are required. We aimed to investigate basal and post-meal GLP-1 levels in 

recently diagnosed subjects with T2D using cross-sectional data from the DIRECT study. 

In addition, we investigated whether this effect is sustained, related to changes in 

glycaemia or weight, and generalizable in the Carotid Atherosclerosis: Metformin for 

insulin ResistAnce (CAMERA) trial (NCT00723307) in subjects without diabetes.  

Research design and methods: In DIRECT, we examined active and total fasting GLP-

1 and 60-minute post-meal total GLP-1 levels in 775 people recently diagnosed with T2D 

treated with metformin or diet, using student’s t-tests and linear regression. CAMERA 

was a double-blinded randomized placebo-controlled trial of metformin in 173 

participants without diabetes. Using six-monthly fasting total GLP-1 levels over 18 

months, we evaluated metformin’s effect on total GLP-1 with repeated-measures and 

analysis of covariance.  

Results: In the DIRECT study, metformin use was associated with higher fasting active 

(39.08% [21.3% - 56.4%]) and fasting total GLP-1 (14.1% [1.2 - 25.9%]) but not post-

meal incremental GLP-1, compared to those not using metformin. These changes were 

independent of potential confounders including age, sex, adiposity and HbA1c. In 

CAMERA, metformin increased fasting total GLP-1 at 6 (+20.7% [4.7-39.0%]), 12 

(+26.7% [10.3-45.6%]) and 18 months (+18.7% [3.8-35.7%]), an overall increase of 

23.4% (11.2-36.9%; p<0.0001) versus placebo. Adjustment for changes in glycaemia and 

adiposity, individually or combined, did not attenuate this effect.  

Conclusions: Metformin-treated patients with T2D have higher fasting GLP-1 levels. In 

people without diabetes, metformin increases fasting total GLP-1 in a sustained manner.  

These effects were independent of weight and glycaemia. Further mechanistic studies are 

required to understand the molecular mechanism. 

 

 

 

https://clinicaltrials.gov/ct2/show/NCT00723307
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3.2. Introduction 

Metformin is recommended as first-line therapy for the majority of individuals with T2D  

(188). Its relative safety, efficacy to lower blood glucose and cheaper price make 

metformin the most prescribed pharmacotherapy to treat T2D. In addition, its capacity to 

maintain or reduce weight and beneficial effects for cardiovascular mortality (44, 189) 

have been reported. In the UKPDS, metformin monotherapy led to a 39% reduction in 

the risk of myocardial infarction compared to conventional dietary therapy over 10 years 

(190). Metformin has also been shown to reduce the risk of developing T2D. In the DPP 

study, metformin therapy reduced new-onset diabetes by 31% and also led to 2.1 kg 

weight loss compared to placebo over 2.8 years (191, 192).  

 

However, its mechanism of action is poorly understood. Suppression of hepatic glucose 

production via AMPK-dependant (193-195) and independent (45-47) pathways have 

been previously reported.  Recent evidences suggest that metformin might also act in the 

gut (59, 196). In a study conducted on rats, metformin showed a more pronounced glucose 

lowering action when given orally than IV (49). In addition, in a short term PK studies, 

Buse et al showed the gut to be the primary site of glucose lowering action of metformin 

(50). These suggest that metformin related hormonal changes in the gut might contribute 

to the glucose lowering and other benefits of metformin. 

 

The GLP-1 axis remains at the forefront of T2D and cardiovascular research. Active GLP-

1 is secreted by gastrointestinal L-cells in response to the presence of nutrients in the 

small intestine leading to an increase in glucose stimulated insulin secretion and 

suppressed glucagon secretion. GLP-1 also delays gastric emptying and promotes satiety. 

This bioactive form of the hormone is rapidly metabolized by the enzyme DPP-4 with the 

result that its t1/2 in the circulation is less than two minutes (Figure 1.9). Understanding 

the incretin pathway led to the development of related medications, namely GLP-1 

receptor agonists (incretin mimetics) and DPP-4 inhibitors (incretin enhancers) (197), 

which are designed to directly or indirectly increase the in vivo activity of GLP-1.  

 

Major outcome trials of these agents in T2D patients have thus far shown significant 

glucose reduction and cardiovascular benefit (198-204). Of note, results from a 

Mendelian randomization study of a GLP-1R genetic variant (Ala316Thr; rs10305492) 

that is strongly associated with lower FPG levels was associated with a lower risk of 
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cardiovascular disease, supporting the concept that GLP-1 may have protective effect 

against cardiovascular disease, a desired benefit beyond glycaemic control (205). In 

addition, GLP-1RAs can yield modest weight loss (206) and blood pressure reduction, 

important goals in the management of T2D.  

 

Given the benefit of metformin to glycaemic control, weight loss and cardiovascular 

outcomes, it is not yet clear if these effects are mediated (in part) by GLP-1. There are 

multiple small studies that investigated the effect of metformin therapy on circulating 

GLP-1 levels in individuals with and without T2D (206-213). While results have been 

inconsistent, some have shown increases in active GLP-1 and total GLP-1 in both the 

fasting and postprandial states. These studies were carried out for short duration with 

relatively smaller sample sizes. In addition, the effect of other variables were not well 

accounted. To date, however, no suitable studies have been conducted to investigate 

robustly whether metformin therapy influences circulating GLP-1 levels in individuals 

with and without T2D, whether any observed effect is sustained in the longer term (i.e., 

beyond a few weeks), and whether any effect is related to changes in other variables that 

metformin is known to influence, such as weight and glycaemia. To address these 

questions, we performed two complementary studies using cross-sectional data from the 

DIRECT consortium (164) (see Chapter 2) and an ancillary study using data from a 

randomized placebo-controlled repeated-measures study with 18 months’ follow-up, 

from the CAMERA study (214). 

 

3.3. Aims of the study  

In this chapter, we aimed to examine association of metformin use with fasting and 

postprandial GLP-1 levels using cross-sectional data from the DIRECT consortium in a 

large cohort of recently diagnosed T2D patients that are maintained on either lifestyle or 

metformin treatment. In addition, we investigated the sustained effect of metformin on 

fasting total GLP-1 level in non-diabetic subjects using clinical trial data from the 

CAMERA study. 

 

3.4. Research design and methods  

The DIRECT study is explained in chapter 2. As part of WP2, which aimed to identify 

predictive biomarkers of glycaemic deterioration, deep phenotyping and biochemical 
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assays were performed in 836 people recently diagnosed with T2D who were receiving 

either metformin or lifestyle therapy alone at baseline and 18-months of follow-up. For 

this study, complete cross-sectional data were analysed from the baseline visit in 775 

participants from all six clinical centres (Table 3.1). 
 

  

Table 3.1 Recruitment by centre. 

DIRECT Partner Centre n 

UNIVDUN 155 

UCPH 57 

ULUND 105 

UNEWCASTLE 138 

UNEXE 158 

VUMC 162 

Total  775 

UNIVDUN: University of Dundee, UCPH: University of Copenhagen, ULUND: University of Lund, 
UNEWCASTLE: University of Newcastle upon Tyne, UNEXE: University of Exeter, VUMC: Vanderbilt 
University Medical Centre. 
 

The CAMERA study was a randomized double-blind placebo controlled trial designed to 

investigate the effect of metformin on surrogate markers of cardiovascular disease in 

patients without diabetes, aged 35 to 75 years, with established coronary heart disease 

and a large waist circumference (≥94 cm in men, ≥80 cm in women; NCT00723307). 

This single-centre trial enrolled 173 adults who were followed up for 18 months each. 

Patients attended the research centre every 6 months in a fasting state. A detailed 

description of the trial and its results has been published previously (214). Participants 

were randomized 1:1 to 850 mg metformin or matched placebo twice daily with meals, 

although they could reduce the dose to once daily based on side effects for the duration 

of the trial. Weight was measured in light clothing using a bio-impedance scale. While 

bio-impedance body fat results were available from the trial, we opted to measure 

circulating leptin levels as a better marker of body fat. All the analysis for the CAMERA 

study was performed by Dr. David Preiss and Prof Naveed Sattar at the University of 

Oxford and University of Glasgow, respectively.  
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3.4.1. Sample assays 

For the DIRECT study, blood samples were collected in the morning after a 10-hour 

overnight fast. Metformin was stopped for the 24 hours preceding the study visit and 

restarted immediately thereafter. For the MMT, participants drank 250 mL Fortisip liquid 

drink (18.4 g carbohydrate/100 mL) over 2 to 5 minutes. Blood samples were taken 

immediately prior to the drink (time 0) and then every 30 minutes up to 120 minutes. 

Samples for GLP-1 measurement were collected using P800 (for active GLP-1; Becton 

Dickinson, Oxford, UK) and Ethylenediaminetetraacetic acid (EDTA) tubes (for total 

GLP-1; Becton Dickinson, Oxford, UK) at 0 and 60 minutes. The same commercial kits 

were used to measure GLP-1 levels in CAMERA. In DIRECT, the mean intra- and inter-

assay coefficient of variations (CVs) for active GLP-1 were 9% and 10%, respectively. 

For total GLP-1, these CVs were 6% and 9%, respectively. 

 

In CAMERA, participants attended 6-monthly visits after overnight fasts and before 

taking their morning dose of metformin. Blood samples collected during the trial were 

centrifuged at 4°C soon after sampling, separated and stored at −80°C at the Western 

Infirmary’s Clinical Research Facility, Glasgow, for subsequent analyses. As previously 

described (214) 6-monthly fasting plasma glucose, fasting insulin and HbA1c levels were 

analysed. We calculated updated homeostasis model assessment for insulin resistance 

(Homeostatic model assessment estimated insulin resistance (HOMA2-IR)) index values 

using the HOMA Calculator (v2.2.3, https://www.dtu.ox.ac.uk/homacalculator/). Using 

available stored EDTA plasma samples, 6- monthly fasting total GLP-1 levels (Meso 

Scale Diagnostics, Rockville, Maryland) were measured with commercially available 

electrochemiluminescence assay (Meso Scale Diagnostics). Leptin levels were measured 

with a commercially available enzyme-linked immunosorbent assay (R&D Systems, 

Abingdon, UK). For total GLP-1, the mean inter- and intra-assay CVs were 2.6% and 

17.3%, respectively. For leptin, the mean intra- and inter-assay CVs were 6.3% and 

10.1%. All time points for an individual participant were run on the same plate, blinded 

to treatment arm. 

 

3.4.2. Ethics and consent 

All participants provided written informed consent for participation in both studies. For 

the CAMERA study, this included permission for biochemical assays that were not 

https://www.dtu.ox.ac.uk/homacalculator/
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planned at the time of the trial. The CAMERA trial was approved by the Medicines and 

Healthcare Products Regulatory Agency and West Glasgow Research Ethics Committee. 

In DIRECT, each partner clinical centre obtained approval from their respective research 

ethics review boards. 

 

3.4.3. Statistics 

Normality was assessed for all variables, and non-normally distributed data were 

transformed using the natural log value where relevant (specifically for active GLP-1, 

total GLP-1, leptin and HOMA2-IR). Classical parametric hypothesis testing using 

statistical techniques assumes a normal distribution of the response of interest. If this 

assumption is not true, subsequent inferences made, such as statistical p-values and 

confidence intervals, are not valid. The alternative is to transform the data to another scale 

in which valid inferences can be drawn. There are several ways to transform data. 

Logarithmic transformation is one way by which continuous and non-negative positively 

skewed data (see Figure 3.1) can be transformed into a normal distribution. Descriptive 

statistics such as arithmetic mean and confidence intervals can be calculated from the log-

transformed data. However, to aid interpretation, these need to be back transformed into 

their original scale by exponentiation. The back transformed logarithmic mean is termed 

the geometric mean. The geometric mean has an advantage of being less affected by 

extreme values compared to arithmetic mean.  

 

In the DIRECT study, fasting active and total GLP-1, and 60- minute post-meal total 

GLP-1 levels were compared between metformin and lifestyle groups using Student’s t-

tests. Anthropometric measures (age, sex, waist–hip ratio, BMI), lifestyle factors 

(smoking and alcohol use), HbA1c, fasting glucose and centre were investigated 

regarding any influence of metformin on GLP-1 levels using linear regression models. 

Incremental total GLP-1 levels were modelled as natural log transformed 60-min total 

GLP-1 adjusted for natural log transformed fasting total GLP-1. Because of the natural 

log transformation for GLP-1 measures, results are presented as the percentage 

differences in geometric means of GLP-1 measures on metformin vs placebo or 

metformin vs lifestyle to aid interpretation. The same approach was taken to present leptin 

results. Statistical analyses were carried out using R (version 3.0.1) and the statistical 

packages SPSS (version 22, SPSS Inc., Chicago, Ill) for the DIRECT and CAMERA 
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studies, respectively. A two-sided p value of 0.05 was used as the threshold for statistical 

significance. In the CAMERA study, analyses were performed for the modified intention-

to-treat population (i.e., participants with a baseline total GLP-1 and at least one 

subsequent total GLP-1 result). The effect of metformin on total GLP-1 was investigated 

using two different approaches. First, repeated-measures analysis was carried out, 

allowing a comparison of metformin- and placebo-treated participants over the entire trial 

(assuming a general covariance structure). Repeated measures analyses were only 

performed after demonstrating that there was no significant treatment-by-visit interaction 

(i.e., that any observed effect was stable over the trial). Secondly, analyses of covariance 

were carried out to determine the effect of metformin vs placebo on total GLP-1 levels at 

6, 12 and 18 months, respectively. Additional on-treatment analyses were performed to 

assess whether any change in total GLP-1 attributable to metformin was related to 

simultaneous changes in weight, HOMA2-IR, HbA1c, leptin, or all four variables 

combined, by adding these as cofactors.  

 

 
Figure 3.1 Histograms of A) original data and B) natural log-transformed fasting active GLP-1 levels 
in the DIRECT consortium.  

While the distribution of the original data is right-skewed, the log-transformed data approximately follow 
the normal distribution. 
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3.5. Results  

Baseline characteristics of the participants in the DIRECT and CAMERA studies are 

summarized in Table 3.2 and Table 3.3, respectively. In the DIRECT study, there was no 

significant difference in age, sex, BMI, duration of diabetes or HbA1c between the 

metformin and non-metformin treated groups. Metformin-treated individuals had a higher 

fasting glucose level (p < 0.001) and a slightly higher waist–hip ratio than those on no 

treatment (p = 0.045). It was previously reported that metformin led to falls in HbA1c 

level (0.13% or 1.4 mmol/mol), fasting insulin level (21%), HOMA-IR value (26%) and 

weight (3.2 kg) compared with placebo over 1.5 years in the CAMERA study (214).  

 
Table 3.2 Characteristics of the DIRECT participants. 

Characteristics  Metformin ( n = 270) Lifestyle (n = 505) p 

Men, n (%)  151 (55.9%) 295 (58.4%) 0.70 

Age (years) median (range) 63 (35-75) 64 (35-75) 0.064 

Duration of diabetes (years) 1.18 (0.82) 1.25 (0.75) 0.10 

Weight (kg) 88.9 (16.7) 89.7 (17.0) 0.53 

BMI (kg/m2) 30.1 (4.7) 30.7 (5.1) 0.11 

Waist-hip-ratio 0.97 (0.08) 0.96 (0.08) 0.045 

HbA1c (%) 6.40 (0.60) 6.34 (0.59) 0.20 

HbA1c (mmol/mol) 46.44 (6.57) 45.81 (6.390) 0.20 

Fasting plasma glucose (mmol/L) 7.49 (1.47) 6.94 (1.37) <0.001 

Fasting active GLP-1 (pmol/L) † 0.14 (0.12-0.16) 0.11 (0.10-0.12) <0.001 

Fasting total GLP-1 (pmol/L) † 2.39 (2.20-2.59) 2.09 (1.95-2.23) 0.0097 

60-min total GLP-1 (pmol/L) † 4.87 (4.51-5.25) 4.34 (4.05-4.65) 0.031 

Data presented as mean (SD) or n (%) except where indicated (†geometric mean and 95% CI). 
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Table 3.3 Characteristics of the CAMERA participants. 

Characteristic Metformin (n = 86) Placebo (n = 87) 

Men, n (%) 70 (81%) 63 (72%) 

Age (years) 63 (8) 64 (8) 

Weight (kg) 87.9 (14.1) 86.8 (15.0) 

BMI (kg/m2) 30.2 (4.0) 30.5 (4.4) 

Fasting plasma glucose (mmol/L) 5.4 (0.6) 5.3 (0.5) 

HOMA2-IR* 1.36 (1.23-1.51) 1.40 (1.25-1.56) 

HbA1c (%) 5.6 (0.3) 5.6 (0.3) 

HbA1c (mmol/mol) 38.7 (3.6) 38.2 (3.3) 

Fasting leptin (ng/mL)* 16.1 (13.6-19.1) 18.7 (15.8-22.1) 

Fasting total GLP-1 (pg/mL)* 11.6 (10.1-13.3) 12.4 (10.9-14.2) 

Data presented as mean (SD) or n (%) except where indicated (*geometric mean and 95%CI).  
 
 
3.5.1. DIRECT results: Association of metformin with GLP-1 levels 

The geometric mean for total fasting GLP-1 level was 2.39 pmol/L (7.88 pg/mL) in 

metformin recipients and 2.09 pmol/L (6.89 pg/mL) in lifestyle-treated patients. 

Metformin users had higher basal fasting active GLP-1 levels (+25.5%, 95% confidence 

interval [CI] 17.0-35.5; p < 0.001) and fasting total GLP-1 levels (+14.5%, 95% CI 8.4-

21.0; p = 0.0097) than individuals who were receiving no diabetes therapy (Table 3.2 and 

Figure 3.2). These differences persisted after controlling for anthropometric measures 

(age, sex, waist–hip ratio, BMI), lifestyle factors (smoking, alcohol), study centre and 

HbA1c for both fasting active and fasting total GLP-1 (+39.1%, 95% CI 21.3-56.4; p = 

1.35×10-05 and +14.1%, 95% CI 1.2- 25.9, p = 0.03, respectively). The model for fasting 

active and fasting total GLP-1 was: 

 

 log (GLP-1 measure) ~ age + sex + duration of diabetes + waist-to-hip ratio (BMI) + 

smoking status + alcohol status + HbA1c (fasting glucose) + metformin use + centre  

 

Replacing HbA1c with fasting glucose in these models did not materially alter these 

results.  

 

There was no difference in the 60-minute total GLP-1 concentration between metformin 

users and non-metformin users after adjusting for these covariates and baseline total GLP-

1 (4.4%, 95% CI −0.5 to 9.4; p = 0.27). The model for incremental total GLP-1 was: 
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log (60-mintotal GLP-1 measure) ~ log (fasting total GLP-1 measure) + age + sex + 

duration of diabetes + waist-to-hip ratio (BMI) + smoking status + alcohol status + HbA1c 

(fasting glucose) + metformin use + centre 

 

Table 3.4 shows full models derived using each GLP-1 measures as an independent 

variable. Older age was associated with reduced fasting active GLP-1 level and greater 

meal induced total incremental GLP-1. Compared to men, women had greater fasting 

total GLP-1 but reduced incremental total GLP-1.  

 

 
Figure 3.2 Association of metformin therapy vs lifestyle treatment with fasting active GLP-1, fasting 
total GLP-1 and incremental total GLP-1 in the DIRECT study. 

Data are shown as geometric mean (95% CI). Brown bars are for those on metformin and blue bars are for 
those maintained on lifestyle alone.  While the scale on the left hand side indicates either the fasting total 
or incremental total GLP-1 in pg/mL, the right hand scale indicates fasting active GLP-1 in pg/mL.  
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Table 3.4 Linear regression models for fasting and post meal incremental GLP-1 measures in the DIRECT consortium. 

  log (fasting active GLP-1)  log (fasting total GLP-1)  log (60-min GLP1) 

Variable  β [SE] p β [SE] p β [SE] p 

log (fasting total GLP1)  - - - - 0.772 [0.026] <0.001 

Duration of diabetes (years)  -0.045 [0.049] 0.35 0.062 [0.024] 0.07 0.009 [0.023] 0.69 

Age (years)  -0.012 [0.005] 0.01 -0.002 [0.003] 0.63 0.005 [0.002] 0.02 

Sex  Women - - - - - - 

Men  -0.072 [0.088] 0.42 0.294 [0.062] <0.001 -0.112 [0.043] 0.01 

WHR  -0.281 [0.572] 0.62 0.416 [0.404] 0.30 -0.400 [0.277] 0.15 

BMI (kg/m2) Normal  - - - - - - 

Obese  -0.059 [0.131] 0.65 0.174 [0.091] 0.06 -0.115 [0.062] 0.07 

Over weight  -0.009 [0.123] 0.94 0.106 [0.085] 0.21 -0.100 [0.058] 0.08 

Smoking status  Never - - - - - - 

Current smoker 0.185 [0.119] 0.12 -0.030 [0.083] 0.71 -0.035 [0.056] 0.53 

Ex-smoker 0.304 [0.083] <0.001 0.069 [0.058] 0.23 0.059 [0.040] 0.14 

Alcohol status Never - - - - - - 

regularly -0.104 [0.108] 0.33 -0.067 [0.075] 0.37 -0.042 [0.052] 0.41 

Occasionally  -0.187 [0.120] 0.12 -0.034 [0.085] 0.69 -0.108 [0.057] 0.06 

HbA1c (%)  0.005 [0.007] 0.46 0.012 [0.005] 0.01 0.006 [0.003] 0.09 

Fasting glucose (mmol/L)  0.024 [0.028] 0.40 0.080 [0.019] <0.001 0.001 [0.013] 0.92 

Metformin use   0.391 [0.084] <0.001 0.141 [0.058] 0.03 0.044 [0.045] 0.27 

BMI is categorised into normal weight (BMI < 25kg/m2), over weight (≥25 kg/m2 & < 30 kg/m2), obese (>30kg/m2). WHR: waist-to-hip ratio, BMI: body mass index.
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3.5.2. CAMERA results: Metformin increases total GLP-1 over 18 months  

The geometric mean for total GLP-1 was 3.52 pmol/L (11.6 pg/mL) in metformin 

recipients and 3.76 pmol/L (12.4 pg/mL) in placebo recipients at baseline. Metformin 

therapy led to significant increases in fasting total GLP-1 levels compared with placebo 

at each of the 6, 12 and 18-month study visits (Figure 3.3 and Table 3.5). The increases 

in total GLP-1 levels at these visits were 21% (p = 0.010), 27% (p = 0.001) and 19% (p 

= 0.012), respectively. In repeated measures analysis, metformin increased total GLP-1 

level by 23.4% (p < 0.0001) across the entire duration of the 18-month follow-up, with 

no evidence of heterogeneity among the study visits (p = 0.74). Leptin levels fell with 

metformin treatment, in keeping with a reduction in body fat (Table 3.5). Overall, 

metformin therapy reduced leptin by 25% (p < 0.0001) compared with placebo, with 

similar changes observed at each visit. Adjustment for the observed changes in weight, 

HOMA2-IR, HbA1c and leptin at each visit, whether individually or combined, did not 

attenuate metformin’s effect on total GLP-1 level (Table 3.6). Adjusted comparisons (for 

all four variables) at 6, 12 and 18 months showed an increase in total GLP-1 level of 32% 

(p = 0.001), 35% (p ≤ 0.001) and 26% (p = 0.002), respectively, for metformin compared 

with placebo therapy. 

 

 
Data presented as geometric mean (1 standard error). 

Figure 3.3 Total GLP-1 levels on metformin vs placebo over 18 months in the CAMERA study. 
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Table 3.5 Change in GLP-1 and leptin levels on metformin vs placebo over 18 months in CAMERA. 

 Visit 
(number of 
paired 
samples) 

Metformin vs 
Placebo1 

Average treatment effect 
(Metformin – Placebo)2 

p for 
interaction 
across 
visits 

 Effect (95% CI) p 

GLP-1, 
natural log 
units 

6 months 
(n =150) 

0.188 (0.046, 0.329) 0.210 (0.106,0.314) <0.0001 0.74 

12 months 
(n =146) 

0.237 (0.098, 0.376)   

18 months 
(n = 157) 

0.172 (0.038, 0.305)   

GLP-13  
(%) 

6 months 
(n = 150) 

20.7% (4.7, 39.0%) 23.4% (11.2,36.9)   

12 months 
(n = 146) 

26.7% (10.3, 45.6%)   

18 months 
(n = 157) 

18.7% (3.8%, 35.7%)   

Leptin  
(natural 
log units) 

6 months 
(n = 152) 

-0.262 (-0.403,-0.120) -0.286 (-0.419, -0.153) <0.0001 0.80 

12 months 
(n = 146) 

-0.293 (-0.467,-0.118)   

18 months 
(n = 157) 

-0.237 (-0.405,-0.069)   

Leptin3  
(%) 

6 months 
(n = 152) 

-23.1% (-33.2,-11.3) -24.9% (-34.2,-14.2)   

12 months 
(n = 146) 

-25.4% (-37.3,-11.1)   

18 months 
(n = 157) 

-21.1% (-33.3,-6.7)   

1Analysis of covariance for visits at 6, 12 and 18 months respectively. 
2Repeated measures analysis for the overall treatment effect over 18 months. 
3Percentage difference in geometric means. 
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Table 3.6 Effects of metformin on total GLP-1 without and with on-treatment adjustments for 
changes in weight, HOMA-IR, HbA1c, leptin and all these variables at 6, 12 and 18 months 
respectively. 

Variable Adjustment Metformin-Placebo 

Mean % change (95%CI) 

p  

GLP-1, 6 months No adjustment 20.7 (4.7, 39.0) 0.010 

 Weight 25.0 (7.6, 45.3) 0.004 

 HOMA2-IR  24.6 (8.0, 43.7) 0.003 

 HbA1c  26.1 (8.4, 46.8) 0.003 

 Leptin 22.9 (6.4, 41.9) 0.005 

 Combined* 32.4 (13.0, 55.1) 0.001 

GLP-1, 12 months No adjustment 26.7 (10.3, 45.6) 0.001 

 Weight 35.0 (15.9, 57.3) <0.001 

 HOMA2-IR  27.2 (10.4, 46.7) 0.001 

 HbA1c  28.7 (11.0, 49.2) 0.001 

 Leptin  33.0 (15.7, 53.0) <0.001 

 Combined* 35.4 (15.8, 58.1) <0.001 

GLP-1, 18 months No adjustment 18.7 (3.8, 35.7) 0.012 

 Weight  23.5 (7.0, 42.5) 0.004 

 HOMA2-IR  21.4 (6.2, 39.0) 0.005 

 HbA1c 20.9 (5.3, 38.8) 0.007 

 Leptin  20.8 (5.6, 38.2) 0.006 

 Combined* 26.0 (9.1, 45.6) 0.002 

Results are shown as percentage change in geometric mean (95% CI). Unadjusted result at each time point 
is provided, followed by the result adjusted for changes in weight, HOMA2-IR, HbA1c and leptin 
respectively; this is followed by the result adjusted for all these variables combined (indicated by*).  
 
 

3.6. Discussion 

We have investigated the relationship between metformin therapy and circulating GLP-1 

levels in two complementary studies. In people with recently diagnosed T2D, metformin 

treatment was associated with higher fasting active and fasting total, but not incremental, 

GLP-1 levels. We also showed that daily metformin therapy for 18 months led to a 25% 

increase in circulating total GLP-1 levels in individuals without diabetes but with elevated 

waist circumferences, and this increase was sustained across the entire duration of the 

study and did not appear to be related to any changes in glycaemia or adiposity.  
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In both studies, these differences in GLP-1 levels occurred despite the previous dose of 

metformin having been taken the day before each visit (>24 hours in the DIRECT study), 

suggesting metformin might not be causing an acute rise in GLP-1 due to metformin 

exposure post dosing in the jejunum/ileum. The effect could be due to residual metformin 

in the colon, where the highest abundance of GLP-1 expressing L-cells reside (215-217). 

Interestingly, accumulation of metformin in the intestine and the colon beyond 24 hours 

of post dosing have been previously reported (218).  

 

Previous small studies with various designs have produced mixed, often neutral, results 

but some have suggested that metformin therapy increases circulating GLP-1 levels by 

various mechanisms (61). In a study of 10 obese participants without diabetes and 10 

control subjects who were given metformin 2.55 g/d for 2 weeks, GLP-1 levels at 30 and 

60 minutes after a glucose load were increased though baseline GLP-1 levels (and leptin) 

and were unchanged on metformin (206). An uncontrolled study of metformin therapy (2 

g/d) in 40 women with polycystic ovarian syndrome (PCOS) over 8 months, albeit with 

substantial loss to follow-up, with only 22 women completing metformin therapy, 

produced similar findings to our own, with a 25% increase in AUC of GLP-1 levels over 

180 minutes during oral glucose loading compared with baseline (210). In a crossover 

study 10 individuals with T2D were given 3 single-dose interventions on 3 different days, 

1 week apart (either metformin 1 g plus placebo subcutaneous injection or placebo tablet 

plus subcutaneous GLP-1 or metformin 1 g plus subcutaneous GLP- 1) (207). Glucose 

was infused to achieve a concentration of ~15 mmol/L. Analyses showed that metformin 

therapy inhibited DPP-4 activity and also increased active GLP-1 levels. In a further 

crossover study conducted in 20 participants with T2D who were treated for 6 days with 

each of four respective regimens (placebo or metformin or sitagliptin or the combination) 

with washout periods in between interventions, metformin therapy led to an increase in 

fasting and post-challenge total GLP-1 levels, although there was no change in intact 

GLP-1 levels (212). Furthermore, in a crossover study of 12 participants with T2D treated 

with placebo or metformin for 7 days, respectively, and then investigated during 

intraduodenal catheter infusion of glucose, DPP-4 activity fell modestly while intact and 

total GLP-1 levels rose at baseline and during the infusion after metformin (213). By 

contrast, a crossover study of 16 participants with T2D treated for 4 weeks respectively 

with placebo, metformin, sitagliptin and combined metformin/sitagliptin yielded no 
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increase in active GLP-1 level on metformin (209). Other studies have suggested no effect 

on DPP-4 activity. In a study of 8 drug-naïve participants with T2D treated with 

metformin for 3 months, the AUC for active GLP-1 over 6 hours after a standard mixed 

meal increased, although DPP-4 activity was unchanged (211). It is therefore apparent 

that most studies in this area have been limited by small sample size (and therefore 

reduced power) and that most have focused on the acute effect of metformin therapy as 

opposed to its longer-term effects. Animal studies have produced similarly mixed results, 

including evidence of an acute increase in GLP-1 with metformin treatment and of DPP-

4 inhibition in some studies but not all (219-221). 

 

By contrast, the present studies have examined the relationship of metformin with 

circulating GLP-1 in large cohorts with and without T2D and addressed long-term effects 

of metformin over 18 months in individuals without diabetes.  

 

In individuals without diabetes, our finding that the increase in GLP-1 was not related to 

the observed 3.2 kg decrease in weight or the 25% improvement in insulin sensitivity is 

in keeping with a direct effect of metformin on the incretin axis. The sustained nature of 

the GLP-1 increase suggests that metformin may in part provide cardiometabolic benefit, 

even in a population without diabetes and beyond reducing the risk of developing T2D, 

by increasing exposure of treated individuals to GLP-1 in the longer term. This is 

supported by findings from both recently completed outcomes trials of GLP-1 receptor 

agonists (199, 200) and by a Mendelian randomization study of a GLP-1 receptor variant 

associated with lower fasting glucose levels, which was also associated with lower risk 

of coronary heart disease (205). It also provides a further rationale to test these potential 

benefits of metformin in a population without diabetes. The Glucose Lowering in Non-

Diabetic Hyperglycaemia Trial (GLINT; ISRCTN34875079) is studying whether 

metformin reduces cardiovascular risk as well as cancer and other outcomes in 

participants without diabetes.  

 

The present studies have several strengths. Although it was cross-sectional and therefore 

unable to directly address causality, DIRECT is the largest study to investigate the 

association of metformin with GLP-1 levels in individuals with T2D, and was able to 

adjust for a range of potential confounding factors. The CAMERA study is by far the 

largest and longest trial to address the question of the impact of metformin on circulating 
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GLP-1 levels and its randomized design minimizes the possibility of unmeasured or 

unaccounted for confounding. The CAMERA trial was specifically conducted in 

participants without T2D (although with elevated waist circumferences), which enabled 

us to avoid the potential effects of other glucose-lowering agents and also to provide novel 

data on a group at high risk of T2D in whom metformin is being investigated in a major 

trial, GLINT. Samples were available at 6- month intervals, providing data on the 

sustained effect of metformin on GLP-1 levels. An important weakness of the CAMERA 

trial was that we did not have access to suitably prepared samples to allow the 

measurement of active GLP-1 levels and only fasting samples were available; however, 

in the DIRECT study in which we had access to both active and total fasting GLP-1 levels, 

metformin recipients demonstrated clearly higher levels of both, in particular active GLP-

1. Notably, however, in both studies, higher GLP-1 levels were observed despite the last 

metformin dose having been taken the day before blood sampling, which, in the context 

of the limited bioavailability of metformin (<60%), suggests that some of this effect may 

reflect the impact of the drug in the distal small intestine and colon, as highlighted in 

other studies (50). Consistent with this, the apparent impact of metformin in the DIRECT 

study was on fasting GLP-1 rather than meal-stimulated GLP-1 levels. In addition, the 

fact that some participants in the CAMERA study reduced their metformin dose and, in 

some cases, stopped trial medication suggests that our results are likely to be an 

underestimation of the true effect of metformin on fasting total GLP-1 in this population. 

Another limitation of both studies is that the 30- minute GLP-1 levels that show early 

secretion were missing in both studies. 

 

These complementary studies showed robust association of metformin use with increased 

GLP-1 levels. Further studies are needed to determine the longitudinal effect of 

metformin on GLP-1 levels in individuals with diabetes. In addition, the mechanism how 

metformin increases GLP-1 need to be investigated. Previous studies in mice showed 

metformin to increase expression of upstream precursor proteins including pre-

proglucagon and proglucagon that are involved in the biosynthesis of GLP-1 (208) and 

this is believed to be mediated through a β-catenin–TCF7L2 mechanism (222, 223). 

Comparison of intestinal expression profile of genes involved in this pathway (GCG, 

TCF4, PC1, CTNNB1, TCF7L2, CCND1, GSK3β, IRS2, CAMK2, CREB, SGLT1) in 

metformin treated and non-treated individuals may give further understanding of the 

molecular mechanism. In addition, undertaking Gene*metformin interaction studies in 
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candidate pathways and genome-wide association studies can be helpful to identify new 

players in metformin induced GLP-1 secretion. However, the power of such studies will 

be limiting at this stage. Indirect mechanisms via metformin’s many other effects in the 

GI tract, such as altering the microbiome or decreasing bile acid reabsorption may also 

play an important role (59). Additional research to clearly understand the mechanism by 

which metformin increases GLP-1 would be useful. 

 

PGx studies could help to advance our understanding of the biological mechanisms of 

metformin on GLP-1 secretion. A study by Kim et al reported activation of the insulin 

and WNT signalling pathways by metformin in L-cells suggesting direct stimulation of 

the L-cells to produce GLP-1 (222). Mutations in genes encoding cation transporter 

proteins expressed in the intestine are reported to affect the PK of metformin, which could 

affect its concentration in the gut (65-67). Therefore, investigating genes involved in 

candidate pathways may shed light on the molecular mechanism of metformin action on 

GLP-1. Previous studies have identified reduced function or cis-eQTL variants in genes 

encoding for metformin transporters in the gut including SLC22A1, SLC22A9, 5-HTTLPR 

and SLC5A7. Deriving a genetic risk score from these genes and investigating its 

association with GLP-1 levels may also give extra insight into the mechanism. This is 

possible in the DIRECT cohort where genotypic data is available for all the participants. 

 

3.7. Conclusions  

In summary, we report evidence from 2 major studies showing that metformin therapy is 

associated with increased fasting active and fasting total GLP-1 levels in people with 

diabetes, independently of weight and glycaemia. In addition, metformin treatment leads 

to a sustained and long-term increase in circulating total GLP-1 levels in individuals 

without diabetes. These complementary findings support a potential direct role for the 

incretin axis in the antihyperglycaemic and cardiometabolic benefits of metformin. 
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CHAPTER 4. VARIATION IN THE PLASMA MEMBRANE 

MONOAMINE TRANSPORTER GENE PMAT (SLC29A4) 

IS ASSOCIATED WITH GASTROINTESTINAL 

INTOLERANCE TO METFORMIN IN TYPE 2 DIABETES. 
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4. VARIATION IN THE PLASMA MEMBRANE MONOAMINE 

TRANSPORTER GENE PMAT (SLC29A4) IS ASSOCIATED WITH 

GASTROINTESTINAL INTOLERANCE TO METFORMIN IN TYPE 2 

DIABETES 

4.1. Abstract 

Aims: Metformin therapy is often associated with GI side effects that negatively affect 

quality of life and adherence to prescribed medication.  20-30% of metformin treated T2D 

subjects experience GI side effects leading to premature discontinuation in 5-10% of the 

cases. GI intolerance may reflect localised high concentrations of metformin in the gut 

enterocytes (62). We hypothesized that reduced transport of metformin via the PMAT 

could increase risk of severe GI side effects. 

Methods: The study included 286 severe metformin intolerant and 1,228 tolerant T2D 

individuals from the DIRECT consortium. We assessed the phenotype, co-medication 

with gut metformin transporter inhibiting drugs, and the burden of mutations in the 

SLC29A4 (PMAT) and SLC22A1 (OCT1) genes on odds of intolerance using a logistic 

regression model.   

Results: Women (p < 0.001) and older people (p < 0.001) are more likely to develop 

metformin intolerance. Concomitant use of gut metformin transporter inhibiting drugs 

increases the odds of intolerance by more than 70% (OR = 1.72 [1.26-2.32], p < 0.001). 

In a logistic regression model adjusted for age, sex, weight and concomitant medication, 

the G allele at rs3889348 (PMAT) was associated with GI intolerance (OR = 1.30[1.04-

1.62], p = 0.02). rs3889348 is the top cis-eQTLs for SLC29A4 in the gut tissue where 

carriers of the G allele had reduced expression of SLC29A4 in the transverse colon (β = -

0.54, p = 1.1×10-06) and the terminal ilium of the small intestine (β = -0.54, p = 5.7×10-

03). Homozygous carriers of the G allele treated with interacting drugs had over three 

times higher odds of intolerance (OR = 3.23 [1.71-6.39], p < 0.001). We then derived a 

genetic risk score (GRS) using the PMAT (rs3889348) and previously reported reduced 

function OCT1 (M420del, R61C, G401S) genotypes. Intolerance was over two times 

more likely to develop in individuals who carry three or more risk alleles (OR = 2.15 

[1.20-4.12], p = 0.01).   

Conclusion: Our results suggest that intestinal metformin transporters could play an 

important role in GI side effects of metformin.  
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4.2. Introduction 

Metformin therapy is often associated with GI side effects that negatively affect quality 

of life and adherence to prescribed medication. 20-30% of metformin treated T2D 

subjects experience GI side effects leading to premature discontinuation in 5-10% of the 

cases (224, 225). This poses difficulty in optimizing glucose lowering therapy and 

unnecessary treatment switch depriving a very effective diabetes therapy. GI side effects 

are usually manifested as nausea, vomiting, diarrhoea, flatulence, indigestion, bloating, 

abdominal discomfort and stomach ache. Despite its clinical importance, the underlying 

pathophysiology of metformin intolerance is not yet clearly known. However multiple 

possible hypothesises have been proposed including high intestinal metformin 

concentration (62, 218), its effect on the gut microbiota (60) and altering transport of 

serotonin or direct serotonergic effect (226) and reduced ileal absorption of bile acid salts 

(223).   

 

At physiologic pH, metformin is hydrophilic due to the presence of a quaternary 

ammonium group that results in a net positive charge. Therefore, it is unable to efficiently 

diffuse across the biological membranes and thus requires carrier mediated transport 

process. Multiple solute carrier transporters expressed in membranes of the enterocytes, 

hepatocytes and the kidney are reported to be involved in the absorption, distribution and 

elimination of metformin. Metformin requires the entire length of the small intestine to 

be absorbed (227):  around 20% of the administered dose is absorbed in the duodenum 

and 60% in the jejunum and ileum. The remaining 20% would reach the colon and 

unabsorbed. OCT1 and PMAT are reported to play the major role in the gut absorption 

of metformin (39) (see Figure 1.3). While PMAT is expressed in the apical membrane of 

the epithelial lining, intestinal localization of OCT1 is ambiguous (38-40). Previously, 

association between reduced function OCT1 variants and concomitant use of OCT1 

inhibiting drugs with metformin intolerance has been shown (34, 174). Interaction 

between OCT1 and Serotonin Transporter (SERT) have also been shown to play 

important role in the pathophysiology of metformin intolerance (174). 

 

4.3. Aims of the study 

While PMAT shares extensive substrate and inhibitor overlap with OCTs (228), there are 

no studies investigating its role in metformin intolerance. Therefore, we hypothesized that 
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reduced transport of metformin by PMAT could increase intestinal metformin 

concentration and subsequent increased risk of GI side effect. To address this, we used 

prescribing, biochemistry and clinical data from 286 metformin intolerant and 1,228 

tolerant T2D individuals from the DIRECT consortium.   

 

4.4. Research design and methods 

4.4.1. Study population 

As part of WP3 in the DIRECT consortium (see Chapter 2) that aimed to identify 

predictive biomarkers of therapeutic response to antidiabetic medications, 286 extreme 

metformin intolerant and 1,128 metformin tolerant subjects were identified from recent 

prescribing data from 5 participating centres across Europe (Table 4.1).  

All metformin intolerant (cases) and metformin tolerant (controls) have/are: Type 2 

diabetes diagnosed clinically, White European, Aged not less than 18 or over 90 years at 

recruitment, Creatinine clearance (MDRD) ≥ 60mL/min at metformin exposure. 

   

Table 4.1 Recruitment by centre. 

DIRECT Partner Cases (n) Controls (n) 

UULM 49 0 

LUMC 84 665 

UNEXE 37 0 

UNIVDUN 98 463 

ULUND 18 0 

Total 286 1128 

UULM: Ulm university, LUMC: Leiden university medical centre, UNEXE: university of Exeter, 
UNIVDUN: university of Dundee, ULUND; university of Lund. 

 

4.4.2. Definition of metformin intolerance  

Metformin intolerance phenotype was defined in two ways: Either as individuals who 

switched to an alternative agent within 6 months of stopping metformin (including 

modified release metformin) after having had at most up to 1000 mg daily metformin for 

up to 6 weeks, and either report GI side effects on the metformin tablet as the reason for 

switching or GI side effects are clearly documented in the clinical record as a reason for 

transfer. Alternatively, intolerant individuals are defined as those who could not increase 
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their metformin immediate release dose above 500 mg daily despite an HbA1c > 7% (53 

mmol/mol) and either report GI side effects on more than 500 mg, or GI side effects are 

clearly documented in the clinical record as a reason for transfer.  

Where patient recall was relied upon to establish side effects, the intolerant event was 

limited to be within the last 5 years; if side effects can be documented from clinical 

records then there is no time limit. Subjects who do not recall being on metformin or 

having side effects were excluded (unless clearly documented in clinical records).   

 

4.4.3. Definition of metformin tolerance 

Metformin tolerant individuals were defined as those treated with ≥ 2000 mg of 

metformin per day for more than a year (excluding modified release formulations of 

metformin).  

 

4.4.4. Clinical covariates  

Weight, BMI and creatinine were defined as the closest measured values within 180 days 

prior to the index tolerance episode (ITE). The ITE was defined as the date when patients 

report GI symptoms of metformin intolerance for cases and for controls it is the date when 

patients start 2000 mg of metformin. Daily dose was the last dose during ITE for cases 

and it was determined as the mean dose of prescriptions encashed during the first six 

months of metformin therapy for controls.  

 

4.4.5. Concomitant medications 

Gut metformin transporters have strong substrate and inhibitor overlap (229). Therefore, 

we identified medications prescribed with metformin previously reported to inhibit the 

PMAT and/or OCTs, proteins that mediate transmembrane trafficking of their target 

molecules, and are required for metformin absorption in the gut. Accordingly the use of 

any of the following medications with metformin were investigated: tricyclic 

antidepressants (TCAs) (230, 231), proton pump inhibitors (PPIs) (232), citalopram 

(231), verapamil (230, 231), diltiazem (231), doxazosin (230, 231), spironolactone (230, 

231), clopidogrel (233), rosiglitazone (118), quinine (231), tramadol (231, 234), codeine 

(235), dysopyramide (236), quinidine (118), repaglinide (118), propafenone (230), 
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ketoconazole (230), morphine (234, 235), tropisetron (237), ondasetrone (237), 

antipsychotic agents (230) and tyrosine kinase inhibitors (238). 

 

4.4.6. Genotyping 

DNA samples from participating centres were routed to partner university of Oxford 

(UOXF) for GWAS analysis using the HumanCoreExome chip v1.1. Genotyping and 

quality control procedures are widely explained in chapter 2.  

 

4.4.7. Single nucleotide polymorphism selection  

While there are no functionally characterised common nonsynonymous SNPs in the 

SLC29A4 gene, tagging intronic SNPs, rs3889348 and rs2685753 (that are in complete 

LD with each other, r2 = 0.57, D’ = 1) showed association with trough steady state 

metformin concentration previously (66).  Therefore, we have extracted rs3889348 G>A 

from the existing GWAS data. 

 

4.4.8. Statistical methods 

Qualitative characteristics are presented as frequency (percentage) and continuous 

variables as mean ± SD, if normally distributed or as median and inter quartile range 

(IQR) otherwise. Students T-test and Mann-Whitney U test were used to estimate 

differences in quantitative variables distributed normally or not, respectively. 

Comparison of categorical variables between cases and controls were carried using X2 

test. Logistic regression models were used to estimate association of independent 

variables with metformin intolerance. An exact HWE test was carried out with SNPTEST 

(version 2.5.2) (179). Multivariate logistic regression analyses of metformin intolerance 

were performed under the additive genetic model with all the covariates included. A two-

tailed p-value less than 0.05 was considered statistically significant. 

 

The 286 cases of intolerance were compared with 1,228 metformin tolerant controls in a 

logistic regression analysis. Assuming intolerance occurs in 5% of metformin treated 

patients, in a candidate gene analysis for SLC29A4-rs3889348 with a minor allele 

frequency of 38%, we will have 80% power to detect an odds ratio of 1.3 at p < 0.05. 
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With the current sample size there will be only 37% power to detect an odds ratio of 2.0 at 

a usual GWAS significance level (p < 5 × 10-08) and MAF of 10%.  

 

4.5.Results 

4.5.1. Phenotypic differences between tolerant and intolerant subjects 

The characteristics of tolerant and intolerant subjects are presented in Table 4.2. Women 

(p < 0.001) and older people at diagnosis or at ITE (p < 0.001) are more likely to be 

metformin intolerant. Compared to tolerant subjects, metformin intolerant individuals had 

lower weight (p < 0.001), lower creatinine clearance (p = 0.036) and were treated with 

lower metformin dose (p < 0.001).  

 

Table 4.2 Baseline characteristics of metformin tolerant and intolerant subjects. 

Variable  Metformin Tolerant  

(n = 1,128) 

Metformin Intolerant  

(n = 286) 

p 

Age at diagnosis (years) 55.88 ± 9.44 58.62 ± 10.65 <0.0001 

Age at ITE (years) 60.73 ± 9.84 64.63 ± 9.91 <0.0001 

Males/female (male %) 696/433 (61.7%) 117/172 (40.5%) <0.0001 

Weight (kg) 94.57 ± 18.91 88.84 ± 17.75 <0.0001 

BMI (kg/m2) 32.11 ± 6.01 31.60 ± 5.95 0.19 

Creatinine (µmol/dL) 79.89 ± 16.09 78.41 ± 19.33 0.25 

Creatinine clearance (mL/min) 85.17 ± 19.36 82.23± 29.44 0.04 

Dose (mg)* 1000 (1000-1500) 1000 (500-1000) <0.0001 

Duration of diabetes (years) 4 .0 (1.7-7.0) 4.0 (2.0-9.0) 0.09 

Use of interacting drugs 274 (24.29%) 95 (40.08%) <0.0001 

*Median (IQR). 

 

4.5.2. Concomitant medications and intolerance  

This analysis was performed on 233 metformin intolerant and 1,128 tolerant subjects that 

have complete data on history of concomitant medications. Forty percent of metformin 

intolerant subjects were taking one or more cation transporter inhibitory drugs. This 

figure is only 24% in the tolerant arm (p < 0.0001) (Table 4.2). In a logistic regression 

model adjusted for age and sex, concomitant use of these drugs increase the odds of being 

intolerant by 70% (OR = 1.70 [1.24-2.29],  p < 0.001).  
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When the individual drug or drug groups are explored, concomitant use of metformin 

with either PPIs, TCAs or codeine increased the odds of metformin intolerance 

significantly. This is illustrated in Table 4.3 and Figure 4.1.  

 

Table 4.3 Number of subjects treated concomitantly with metformin transporter inhibiting drugs in 
metformin intolerant and tolerant groups. 

Drug/Drug class Cases (   n = 233) Controls (n = 1,128) p 

PPI 58 (24.9%) 156 (13.8%) <0.001 

TCAs 17 (7.3%) 33(2.9%) 0.01 

Codeine 22 (9.4%) 35(3.1%) <0.001 

Clopidogrel 5 (2.2%) 14(1.2%) 0.40 

Tramadol 10 (4.3%) 18(1.6%) 0.05 

Verapamil 3 (1.3%) 8(0.7%) 0.50 

Spironolactone 3 (1.3%) 9 (0.8%)  0.60 

Quinine  2 (0.9%) 14 (1.2%) 0.60 

Diltiazem  2 (0.9%)  24 (2.1%) 0.08 

Doxazosin  2 (0.9%) 20 (1.8%) 0.20 

 

 

Figure 4.1 Association of individual PMAT inhibiting drugs with intolerance. 
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4.5.3. Genetic variation in the gut metformin transporters and metformin intolerance 

Next we explored the association of an intronic SLC29A4 (PMAT) SNP (rs38899348 

G>A) with metformin intolerance. In a logistic regression model, carriers of the G allele 

had 1.39 [1.15-1.69, p < 0.001] times higher odds of being intolerant to metformin 

(unadjusted). When the PMAT SNP was added to a model adjusted for age, sex, weight 

and concomitant medication, the presence of the parent G allele was independently 

associated with metformin intolerance (OR = 1.30[1.04-1.62], p = 0.02) (Table 4.4). 

 

Table 4.4 Logistic regression model of metformin intolerance. 

Variable  OR [CI] p 

Age at ITE (years) 1.04[1.03-1.06] 7.44×10-08 

Gender  2.31[1.72-3.10] 2.52×10-08 

Weight (kg) 1.00[0.99-1.00] 0.20 

Use of interacting drugs 1.72[1.26-2.32] 5.17×10-04 

rs3889348  1.30[1.04-1.62] 0.02 

Gender coded as women vs men. 

We further tested if this finding could be confounded by other baseline characteristics. 

No significant difference in any of the phenotypes by genotype was observed (Table 4.5) 

suggesting the result is unlikely to be confounded by baseline population characteristics.    

 

Since the controls are only from two centres, UNIVDUN and LUMC, we carried out a 

sensitivity analysis stratified by these centres. Carriers of the G allele at rs3889348 had 

significantly higher odds of being intolerant after adjusting for age, sex, weight and 

concomitant administration of interacting drugs in the UNIVDUN subjects (OR = 

1.51[1.07-2.15], p = 0.0003). rs3889348 was not significantly associated with intolerance 

in the LUMC samples (OR = 1.10[0.78-1.55], p = 0.60). To make sure that the observed 

difference was not from systematic population structure and ethnic outliers, we carried 

out PC analysis. The result remained the same after removing ethnic outliers and adjusting 

for the first ten PCs. While the inconsistency could be due to reduced power by 

stratification, there might be other unseen centre specific factors. 

 

 



75 
 

Table 4.5 Population characteristics by rs3889348 genotype. 

  

  

rs3889348 genotype p 

AA (n = 205) GA (n = 681) GG (n = 532)   

Age at ITE (years) 61.03 ± 10.50 61.34  ± 10.0 61.94  ± 9.73 0.21 

Age at diagnosis (years) 55.97 ± 10.32 56.31 ± 9.67 56.78 ± 9.65 0.27 

Gender (women %) 36.6% 42.6% 45.1%  0.11* 

Weight (kg) 97.21 ± 19.39 92.53 ± 18.22 93.15 ± 19.43 0.06 

BMI (kg/m2) 32.77 ± 6.02 31.89 ± 6.09 31.88 ± 5.96 0.15 

Height (m) 1.72 ± 0.10 1.71 ± 0.10 1.71 ± 0.10 0.29 

Creatinine (µmol/dL) 80.51 ± 15.57 79.09 ± 16.29 79.90 ± 17.80 0.95 

Creatinine clearance (mL/min) 84.75 ± 18.95 84.98 ± 18.55 84.04 ± 20.80 0.52 

HbA1c (%) 8.21 ± 1.59 8.18 ± 1.62 8.39 ± 1.75 0.11 

Diabetes duration (years)† 4 [1.16-7.00]  4 [2.00-7.19] 4 [1.78-7.00] 0.78‡ 

Dose (mg)†  1000 (1000-1500) 1000 (1000-1500)  1000 (1000-1500)  1.00‡ 

Drug naïve (%) 44.1% 51.7% 51.4%  0.14* 

Use of interacting drugs (%)  22.4%  27.6%  28.8%  0.27* 

*chi-square test for independence, ‡kruskal-Wallis one-way analysis of variance, †Median (IQR). 

We then grouped subjects based on the combination of SLC29A4 genotype and 

concomitant use of metformin interacting drugs. Taking those with no risk allele and not 

treated with interacting drugs as a reference, carriers of one and two risk alleles treated 

with interacting drugs had more than two and three fold higher odds of intolerance, 

respectively, after adjusting for age, sex and weight (Table 4.6). 

  

Table 4.6 Joint effect of PMAT genotype and PMAT interacting drugs on metformin intolerance. 

  Intolerant/Tolerant OR [95% CI] p 

Carries no risk allele and not treated 

with PMAT inhibiting drugs 

  

15/141 

  

1 

  

--- 

Carries one risk allele and treated 

with PMAT inhibiting drugs 

  

44/137 

  

2.44 [1.30-4.78] 

  

0.007 

Carries two risk allele and treated 

with PMAT inhibiting drugs 

  

43/100 

  

3.23 [1.71-6.39] 

  

< 0.001 

 

The association between SLC22A1 (OCT1) genotype and metformin intolerance has been 

previously reported (34, 239). We carried out analysis on the association between reduced 

function SLC22A1 (OCT1) SNPs and metformin intolerance using a combined genotype 
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based on the three loss of function alleles (M420del, R61C, G401S). In a logistic 

regression model adjusted for age, sex, weight and concomitant use of interacting drugs, 

the OCT1 genotype was directionally consistent but not significantly associated with 

metformin intolerance (OR = 1.35 [0.84-2.12], p = 0.21). 

A GRS was then generated using the intronic SLC29A4 (rs3889348G>A, MAF = 38%, G 

is the risk allele) and OCT1 M420del (rs72552763, MAF = 18.5%, 420Del is the risk 

allele), R61C ((rs12208357 C>T, MAF = 7.2%, 61C is the risk allele), G401S 

(rs34130495G>A, 3.0%, 401S is the risk allele)) variants by summing the number of risk 

alleles. We explored association of the GRS with metformin intolerance in a logistic 

regression model. Compared to those with no risk allele, metformin treated T2D subjects 

having two risk alleles had nearly two fold increased odds of GI intolerance. Those who 

carry 3 or more risk alleles had more than twice the odds of intolerance (Figure 4.2). 

 

 

OR: odds ratio; GRS: genetic risk score. 

Figure 4.2 Association of a genetic risk score derived from PMAT and OCT1 with metformin 
intolerance. 
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4.5.4. rs3889348 is associated with altered PMAT expression in the gut  

Given PMAT is one of the major metformin transporters in the gut, we explored the 

possibility that the intronic SNP, rs3889348 is a cis-eQTL in the intestine in a publicly 

available data set from the GTEx portal (Version V6p) (240). The G-allele of rs3889348 

(associated with increased risk of intolerance) was significantly associated with decreased 

expression of SLC29A4 in the terminal ilium of the small intestine (β = -0.49, p = 2.2×10-

03) and the transverse colon (β = -0.51, p = 1.2×10-06) (Figure 4.3). rs3889348 is the top 

cis-eQTL for PMAT in the transverse colon. 

  

 

Figure 4.3 Boxplot of association between rs3889348 and PMAT expression in the gut, colon 
transverse (left side) and terminal ilium of the small intestine (right side). 

 

4.6. Discussion 

Intestinal absorption of metformin is regulated by the function of cation transporters 

expressed in the gut. Impaired function of these transporters could increase metformin 

concentration in the intestine and lead to GI intolerance. Previous studies identified 

concomitant use of transporter inhibiting drugs and putative genetic variations to explain 

metformin's GI side effects. Association between reduced function OCT1 variants and 

metformin related GI side effects have been previously reported (34, 72, 174). While 

PMAT plays a primary role in the apical uptake of metformin, there are no studies 

investigating its role in metformin GI side effect. This is the first study to address the role 

of PMAT genetics in metformin intolerance in a large T2D population of Caucasian 

origin. We showed significant association of the intronic SNP, rs3889348, with GI 

intolerance. Each copy of the G allele was associated with 1.30 times higher odds of 
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metformin intolerance. We also generated a GRS derived by counting the number of risk 

alleles in the PMAT and previously reported OCT1 gene. Compared to those with no risk 

allele, metformin treated T2D subjects having two risk alleles had nearly two fold 

increased odds of GI intolerance. Those who carry three or more risk alleles had more 

than twice the odds of intolerance. Concomitant use of transporter inhibiting drugs were 

also shown to increase the odds of intolerance independent of the genotype. Notably the 

use of commonly prescribed drugs including PPIs, TCAs and codeine increased the odds 

of intolerance. Similar findings have been reported in a previous work from the 

GoDARTS (34).  Since PMAT and OCTs share strikingly similar substrate and inhibitor 

specificity, the observed association with GI side effects could also be through inhibition 

of other cation transporters in the SLC22 family (229, 241-243).  

 

PMAT is abundantly expressed in the human intestine and it is concentrated on the tips 

of the mucosal epithelial layer (244). Carriers of the G allele at this locus (rs3889348) 

had significantly reduced expression of SLC29A4 in the gut (240). This could lead to 

higher luminal concentration of metformin. Intestinal localization of OCT1 is ambiguous; 

with mixed reports suggesting in the apical (38) and basolateral (40, 245) sides. Given 

that PMAT is apically located, this finding suggests that metformin intolerance is driven 

by increased luminal concentration of metformin, rather than increased enterocyte 

concentration and direct toxicity to the enterocytes.   

 

Biogenic amines play an important role in the GI pathophysiology. Elevated levels of 

serotonin and histamine in the GI tract due to either reduced transport or impaired 

degradation causes GI symptoms such as nausea, vomiting and diarrhea (226, 246). 

Serotonin is produced mainly in the gut and stored in the enterochromaffin cells of the 

epithelium. Its release activates gut sensory neurons that will increase intestinal motility, 

secretion and sensation (246, 247). Histamine is a monogenic amine stored in the 

enterochromaffin-like cells within the gastric glands of the stomach. Binding of histamine 

to the H1, H2 and H4 receptors that are highly expressed in the gut, stimulate gastric acid 

secretion, increase intestinal motility and smooth muscle inflammation (226). 
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While the action of histamine is terminated via metabolism by diamine oxidase (DAO) 

and histamine N-methyltransferase (HNMT) enzymes (248), serotonin is cleared via 

reuptake mainly by SERT (249). Luminal clearance of histamine and serotonin by other 

gut metformin transporters such as OCT1, OCT3 and PMAT is also reported (39, 250-

253).   

 

Higher concentration of metformin in the gut either due to defective transporters or drug-

drug interactions is shown to inhibit uptake of histamine and serotonin leading to 

increased luminal concentration of the biogenic amines (174). An in vitro study by Yee 

et al also showed inhibition of DAO at therapeutic doses of metformin that further 

increase the level of histamine (226).  Moreover, increased colon motility and softening 

of stool consistency has been observed in SERT-/-(254). In addition, a recent study from 

the GoDARTS showed association of a composite SERT genotype, 5-HTTLPR (5-

hydroxy tryptamine (serotonin) transporter linked polymorphic region)/ rs25531, with 

intolerance to metformin in T2D subjects treated with metformin (174). In this study, 

carriers of the low-expressing SERT S* alleles had more than 30% increased odds of 

metformin intolerance (OR=1.31, 95% CI 1.02-1.67, p = 0.031). Moreover, they observed 

multiplicative interaction between the OCT1 and SERT genotypes (p = 0.003). However, 

we do not see such an interaction with SERT and PMAT (p = 0.70).   

 

In addition to the potential role of local concentrations of serotonin and histamine, 

increased luminal concentrations of metformin could also cause intolerance by other 

mechanisms that need to be explored. For example, intolerance could be mediated by a 

reduction in bile acid reabsorption in the ilium leading to elevated bile acid levels in the 

colon (255) which is known to cause GI disturbances (256). In addition, metformin affects 

composition and function of the gut microbiota favoring the growth of some species like 

Akkermansia (54, 55, 59, 60). Furthermore, we have reported increased levels of active 

and total GLP-1 levels in T2D and non-diabetic subjects treated with metformin (58) (see 

Chapter 3) and this might increase GI side effects (257).  
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In this study we have observed increased risk of intolerance with older age, female sex, 

lower weight and lower creatinine levels. Concomitant use of metformin with the PPIs 

and TCAs also increase the risk of intolerance. These findings are largely consistent with 

the results of previous studies, providing further evidence for clinical practice (34, 72). 

 

A limitation of this study was the definition for metformin induced GI intolerance. 

Previous studies define GI intolerance solely based on discontinuation of metformin in 

the first months of therapy and switching to other hypoglycaemic agents. This definition 

could be confounded by other reasons to switch off metformin including insufficient 

glycaemic control or non GI side effects related to metformin therapy. In the current 

study, we examined patient reports and clinical records for GI intolerance as a reason for 

stopping metformin and switching to other medications. This helps to reassure clean, 

accurate and well-defined phenotype for GI intolerance. However, there could be other 

reasons for stopping metformin such as comorbidities that might cause GI disturbance. In 

addition, initial conclusions drawn from this study need validation and replication in a 

well-powered independent studies.  

 

4.7. Conclusions 

In summary, our results suggest that older age, female sex and concomitant use of gut 

metformin transporter inhibiting drugs as a likely risk factors for GI intolerance. In 

addition, we have identified further genetic defects in gut metformin transporters that 

might play an important role in GI intolerance.  Early identification of these factors might 

be used to inform clinicians to choose the right drug therapy for a given subject. This may 

also reduce unnecessary discontinuation of metformin and improve adherence and hence 

glycaemic control. However, genotype based clinical studies with prospective design are 

needed to support our findings. Further studies, including genotype based clinical studies 

with prospective design, are required to replicate our preliminary findings. If replicated, 

these findings can contribute as a potential biomarker for inter-individual differences in 

severe GI adverse effects of metformin therapy that may lead to safer treatment. 

Inaddition, in vivo and in vitro studies are warranted to shed light on the molecular 

mechanisms of how increased gut metformin level could induce GI intolerance. Further 

studies may benefit from large, locus-wise or genome-wide data sets to identify additional genetic 
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factors in metformin related GI intolerance. We are working with international collaborators such 

as the MetGen consortium and the UK biobank to collect large enough cohorts for GWAS. Other 

genetic approaches such as gene-expression analysis, epigenetic and gene based rare variant 

burden tests may be helpful to detect genes and pathways involved in metformin related GI 

adverse effects. 
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CHAPTER 5. THE KCNJ11-E23K AND COMMON 

VARIANTS NEAR THE LHFPL3 GENE ARE 

ASSOCIATED WITH GLYCAEMIC RESPONSE TO 

SULPHONYLUREAS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statement of contribution: I was involved in the conception, design, analysis, 

interpretation, drafting and revision of this chapter. 
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5. THE KCNJ11-E23K AND COMMON VARIANTS NEAR THE LHFPL3 GENE 

ARE ASSOCIATED WITH GLYCAEMIC RESPONSE TO 

SULPHONYLUREAS 
 

5.1. Abstract 

Background and aims: SUs are oral agents used to treat T2D prescribed mainly in 

combination with metformin. Considerable interindividual variation in glycaemic 

response to treatment with SUs exit. The SUR1 and Kir6.2 encoded by ABCC8 and 

KCNJ11, respectively, are therapeutic targets for SUs. The E23K variant in the KCNJ11 

gene has been investigated in relation to glycaemic response to SU therapy, with 

conflicting results.  In this chapter we aimed to examine the effect of the E23K in a large 

cohort of T2D subjects treated with SUs added to metformin. We also conducted a GWAS 

on glycaemic response to SUs treatment. 

Materials and methods: We assessed the impact of the KCNJ11-E23K genotype on 

glycaemic response to SUs using linear regression analysis in 1,391 and 387 incident 

users of SUs as an add-on therapy to metformin from the GoDARTS and the DCS cohorts, 

respectively. In addition, we conducted a meta-GWAS in 2,905 SU users of European 

ancestry across the two cohorts.   

Results: Patients carrying the K (lysine) allele at E23K achieved better HbA1c reduction 

(allelic β = 0.13%, p < 0.0001) with SU treatment. In a GWAS we identified a genome-

wide significant locus on chromosome 7 in the intron of lipoma high-mobility group 

isoform C fusion partner-like 3 (LHFPL3). The strongest association was at rs11535279 

where each copy of the T allele was associated with 0.28% lower HbA1c reduction (95% 

CI [0.37 to 0.17], p = 5.0 × 10-09) following a year of SU therapy. 

Conclusion:  Carriers of the K (lysine) allele at KCNJ11-E23K had greater response to 

SU in patients with T2D stabilized on metformin. In addition, we conducted the first 

GWAS of SU response and identified a novel genetic marker at the LHFPL3 locus 

associated with glycaemic response to SU. 
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5.2. Introduction 

SUs were the first OHA to be introduced into clinical practice for the management of 

T2D and are still widely recommended as a second line therapeutic option in combination 

with metformin (129). SUs reduce HbA1c by an average 1.62% (18 mmol/mol) when 

used in combination with other OHA (258). 

 

SUs stimulate insulin secretion by closing KATP that are expressed on the surface of 

pancreatic β-cells (259). KATP channels are transmembrane proteins of octameric structure 

composed of SUR1 and Kir6.2 (260). Physiologically, an increase in ATP/ADP ratio 

following a rise in blood glucose level and resulting glucose metabolism promotes closure 

of the KATP channel thereby causing β-cell depolarization (Figure 1.5). This leads to 

subsequent opening of voltage regulated Ca2+ channels and entry of Ca2+ that will trigger 

exocytosis of insulin containing granules (261). SUs mimic the intracellular glucose 

sensing mechanism and exert their hypoglycaemic action by closing the KATP channels 

with subsequent increase in insulin secretion (262) (Figure 1.5). Two SU binding sites, 

namely an A and B, have been identified so far (263). While the A site resides in the 

SUR1, the B site is located on both the SUR1 and Kir6.2 (263). SUs can be categorized 

into an A, B or AB site ligands based on their binding affinity to these sites (104). While 

gliclazide, tolbutamide and chlorpropamide bind to the A site, glibenclamide, glipizide 

and glimepiride are AB site SU (104). 

 

Considerable interindividual variation in glycaemic response to SUs exist in patients with 

T2D. While 15% of those treated with SU show a marked response, 10-20% do not 

respond, with intermediate response phenotype for the remaining (264). Higher baseline 

HbA1c, male sex, shorter duration of diabetes and lower dose have been previously 

reported to be associated with better treatment outcomes (114, 265). Genetics may help 

to explain part of the remaining variation.   

 

Candidate variants in the genes encoding proteins involved in the PK and PD pathways 

of SUs have been investigated previously. SUs are mainly metabolized by CYP2C9 

which is encoded by the CYP2C9 gene. In Caucasians, robust association between loss of 

function variants in CYP2C9 and better glycaemic efficacy of SU has been reported (99-

101). Another study has shown association of endogenous β-cell reserve with SU induced 
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glycaemic response (114, 265). Following this, genes encoding proteins involved in β-

cell function have been investigated. Consistent association of variants in the TCF7L2 

gene with glycaemic response to SUs has been reported (114, 116, 117); TCF7L2 variants 

are thought to be associated with reduced beta-cell mass. ABCC8 and KCNJ11 are the 

genes that encode the mechanistic binding sites of SU, SUR1 and Kir6.2, respectively. 

The E23K  (rs5219C>T) variant is a common polymorphism that results in substitution 

of glutamic acid to lysine, with the K23 allele consistently associated with higher 

susceptibility to T2D (109, 266-271). Functional studies on the E23K showed the E23 

allele associate with altered channel function and β-cell over activity and insulin secretion 

(272, 273). Given the mechanism of action of SUs and the role of the E23K variant in 

KCNJ11 in insulin secretion, the variant has also been a popular subject of SU PGx 

investigation, with conflicting results in the literature (108, 110, 274-276) (see Chapter 1, 

section 1.3.2).  

 

5.3. Aims of the study 

In this chapter, we aimed to elucidate the role of the E23K variant on glycaemic response 

in a large cohort of T2D subjects that used SUs as add on treatment to metformin. 

Moreover, as there has been no GWAS of SU response reported to date, we also presented 

a GWAS meta-analysis of HbA1c reduction related to SU therapy in 2,905 T2D subjects 

(2,305 from the GoDARTS and 600 from the DCS).  

 

5.4. Research design and methods  

5.4.1. Description of study cohorts  

Patients were ascertained from the GoDARTS and DCS cohorts. Details of these cohorts 

have been described in chapter 2. The GoDARTS data set contains complete electronic 

medical records, prescription information and laboratory results from around 18,000 

individuals recruited in Tayside, Scotland. Half of the participants are diagnosed with 

T2D and the other half are controls. Validated prescription information, biochemistry, 

anthropometry and clinical history were available from 1 January 1990 onwards. For this 

study, individuals diagnosed with T2D with an age of diagnosis after 35 years of age that 

use SU as monotherapy or with metformin were identified. In addition, individuals 

diagnosed with T2D after the age of 90 years were excluded. To be eligible for this study, 
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patients could not have a history of insulin use before or within the study period and 

needed to be stably treated for at least 6 months (no other hypoglycaemic drug is started 

or stopped within the study period). All the subjects had a baseline HbA1c ≥ 7% (53 

mmol/mol) and ≤ 14% (130 mmol/mol). Those with missing critical baseline or treatment 

outcome measures were excluded from this study. We therefore identified 2, 905 

individuals who were treated with SUs as monotherapy or dual therapy with metformin.  

 

Replication was sought from the DCS study. The DCS is a prospective cohort of 

individuals with T2D from the West-Friesland region of the Netherlands. It started 

recruitment in 1996 and 12, 673 individuals had been enrolled to the study by 2015 (277). 

Annual examination was performed for each study participant. Electronic medical records 

that contain prescription, biochemistry and clinical data were linked to each individual 

using anonymized IDs. For the current study, 600 participants were identified using the 

same inclusion and exclusion criteria like the GoDARTS. 

 

The studies were approved by the Tayside Committee for Medical Research Ethics and 

the Medical Ethics Committee of the Vrije Universiteit Medical Centre for GoDARTS 

and DCS, respectively. Each participant had signed written informed consent.  

 

5.4.2. Definition of variables  

The following definitions were used for the SU response models: 

Baseline HbA1c: The latest HbA1c measure within 180 days before SU index date. 

Treatment HbA1c: For the candidate gene study, the minimum HbA1c measure between 

30 days from SU index date (date of first SU prescription) and end of the study period 

was used as treatment HbA1c in GoDARTS. DCS has only annual measures of HbA1c, 

therefore the HbA1c measure after one year of SU treatment was used as treatment 

HbA1c. A harmonized treatment HbA1c definition was used for the meta-GWAS. 

Accordingly, the closest HbA1c measure to one year (365 days) and between 6 and 15 

months of SU treatment was used as treatment HbA1c for the GoDARTS. The first year 

HbA1c after SU index was used for DCS.  

Dose: The average daily dose was calculated as the mean daily dose of prescriptions filled 

during the study period (mean of percentage of each SU divided by maximum 

prescribable dose according to the British national formulary (BNF)) (Table 5.1).  
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Drug group: Monotherapy (SU alone) or dual therapy (SU as add on to metformin); 

coded as “mono” and “dual” respectively. 

Baseline BMI/weight: The nearest measure to the index date within 180 days on either 

side of the index date. 

Age at diagnosis: The age in years at diagnosis of diabetes. 

Dependent variable: HbA1c reduction (baseline HbA1c – treatment HbA1c). 

Adherence: Calculated as the percentage of maximum possible adherence for each 

subject (sum of coverage in days of prescribed drug divided by study period in days 

multiplied by 100). 

 

Table 5.1 Maximum daily dose of sulphonylureas according to the BNF. 

SU type  Dose in mg 

Glibenclamide   15  

Tolbutamide  2000   

Glipizide  20  

Gliclazide NR*  320  

Gliclazide MR# 120  

Glimepiride   4  
*gliclazide normal release #gliclazide modified release. 
 
 

5.4.3. Definition of response and model development 

The glycaemic response to SUs was modelled as the quantitative phenotype of HbA1c 

reduction between baseline HbA1c and treatment HbA1c while the patients were 

maintained on stable treatment. In both GoDARTS and DCS, covariates were selected 

based on previous reports and univariate association between the outcome variable 

(HbA1c reduction) and explanatory variables. The best fit linear regression model was 

determined using stepwise backward elimination.  

 

5.4.4. Genotyping and quality control 

Genotyping and quality-control procedures for the discovery and first round replication 

from the GoDARTS cohort has been described in chapter 2. Second-round replication 

samples from the DCS cohort were genotyped using the HumanCoreExpress BeadChip. 

The genotyping data set was imputed to the same 1000 Genome CEU reference panel as 
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GoDARTS. Standard quality control procedures were applied for each data set as 

described in chapter 2.  

With a sample size of 2,905 independent individuals with allele frequency of 5%, the 

power to detect an effect size of 0.28% HbA1c change would be 80% for the standard 

GWAS significance threshold of 5 × 10-08 assuming an additive genetic model. This is 

based on population mean HbA1c change of 1.5% with standard deviation of 0.8 

following a year of SU treatment.   

 

5.4.5. Statistical analysis 

In all the discovery and replication cohorts, each SNP was tested for association with the 

quantitative measure of SU induced HbA1c reduction using  multiple linear regression in 

SNPTEST v2.536 (179), assuming an additive genetic model. After applying the standard 

quality control procedures, the association test results were combined using a fixed-effect 

inverse-variance-weighted meta-analysis using Genome-Wide Association Meta 

Analysis (GWAMA) v2.1.34 (278). All other analyses were performed using RStudio 

3.0.0. The QQman package in R was used to generate the Manhattan plot, and the regional 

plot around the LHFPL3 gene was visualized using LocusZoom (279).   

 

5.4.6. Pathway analysis 

We carried out pathway analysis to identify biological pathways or gene sets involved in 

SU response using MAGENTA (180) [see Chapter 2]. MAGENTA implements GSEA 

on GWAS summary data through pathway annotations from publicly available web-based 

datasets: the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), 

Protein Analysis Through Evolutionary Relationships (PANTHER), BioCarta and 

Reactome. The 75th percentile p-value of all the genes was used as enrichment cut off in 

this analysis. Top-ranking biological pathways associated with SU response were 

identified and genes in the top most pathway were further analysed.  

 



89 
 

5.5. Results 

5.5.1. Characteristics of study populations 

A total of 3,674 incident SU users between 1995 and 2014 were identified from 

GoDARTS. A study sample of 1,391 that start SUs as a second line treatment added to 

metformin were identified for the candidate gene study (KCNJ11-E23K). These samples 

were selected based on availability of sufficient data to define glycaemic response with 

regard to clinical phenotypes, prescription and biochemistry. 723 of the samples were 

genotyped with the Affymetrix Genome-Wide Human SNP array 6.0 (Affymetrix, Santa 

Clara, CA, USA) and the remaining 668 with Illumina HumanOminExpress (Illumina, 

Inc., SanDiego, CA, USA). Further data consisting of 387 samples from DCS who were 

started on SU and maintained on metformin throughout the study period were used as a 

replication set. The frequency of the minor allele (K) of the E23K genotype was 38.5% 

and 37.0% in the GoDARTS and DCS, respectively. The genotype distribution between 

those included and excluded from the study did not differ. No significant deviation from 

HWE was observed at any point.  

 

In the GoDARTS study women constitute 43.6% of the participants. The mean age (±SD) 

at diagnosis of the participants was 56.9 ± 9.9 years with a diabetes duration of 4.55 ± 4.28 

years. The mean BMI (±SD) and mean HbA1c (±SD) at baseline were 32.2 ± 5.4 kg/m2 

and 8.96% ± 1.37 (74.4 mmol/mol ± 14.98 mmol/mol), respectively. Gliclazide was the 

most commonly used SU in GoDARTS followed by glipizide. 

 

5.5.2. Association of the E23K variant with glycaemic response to SUs 

Multivariate linear regression analyses was performed to determine demographic and 

clinical factors affecting glycaemic response to SU treatment using the following model.  

HbA1c reduction ~ baseline HbA1c + sex + age at diagnosis + average daily dose + 
adherence 

 

Higher baseline HbA1c, older age at diagnosis and lower daily dose were independently 

associated with better glycaemic response to SU (Table 5.2). Being male was also 

associated with better response. This model explains 56% of the variation in HbA1c 
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reduction (adj. r2 = 0.5589).  

 

Table 5.2 HbA1c response model in the GoDARTS patients starting sulphonylureas. 

Characteristics  β [se] p 

Baseline HbA1c (%) 0.79 [0.02] <0.0001 

Age at diagnosis (years) 0.01 [0.003] <0.0001 

Gender (Women vs Men) -0.24 [0.05] <0.0001 

Daily dose (% of max. BNF) -1.12 [0.14] <0.0001 

Adherence 0.06 [0.12] 0.61 

 

The E23K genotype was included to the above clinical model, assuming an additive 

genetic model and meta-analysed across the two GoDARTS platforms and the DCS data 

set. Patients carrying the K-allele achieved better HbA1c reduction (allelic β = 0.13%, p 

< 0.0001) (Figure 5.1). There was no heterogeneity in this meta-analysis (phet = 0.86).   

 

Figure 5.1 Forest plot of the meta-analysis of the association of HbA1c reduction with the KCNJ11-
E23K variant after SU treatment as add on therapy to metformin in the GoDARTS and the DCS 
cohorts. 
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Individual characteristics according to the E23K genotype are shown in Table 5.3. No 

significant difference in baseline characteristics by genotype was observed. Homozygous 

carriers of the K-allele had greater HbA1c reduction compared to homozygous carriers 

of the parent E allele (1.93% ± 1.41 vs 1.72% ± 1.27). 

 

Table 5.3 Characteristics of the samples by KCNJ11-E23K genotype in the GoDARTS cohort. 

Characteristics  EE EK KK p 

n 529 651 205   

Age at diagnosis (years) 56.56 (10.59) 56.74 (9.68) 56.38 (9.39) 0.94 

Duration of diabetes (years) 4.44 (4.26) 4.70 (4.37) 4.79 (4.30) 0.25 

Baseline HbA1c (%) 8.96 (1.32) 9.01 (1.43) 8.92 (1.30) 0.90 

Weight (kg) 90.17 (16.63)  90.54 (16.86)  90.80 (17.43) 0.65 

BMI (kg/m2) 32.07 (5.14) 32.32 (5.58) 31.86 (5.26) 0.94 

Sex (women/%women) 228 (43.1%) 294 (45.16%) 82 (40%) 0.41 

Treatment HbA1c (%) 7.24 (1.10) 7.11 (1.02) 6.98 (0.98) 0.001 

HbA1c reduction (%) 1.72 (1.41) 1.90 (1.47) 1.93 (1.27) 0.02 

Adherence (%) 80 (21) 80 (22) 80 (22) 0.87 

Average dose (% of max. BNF) 31.67 (19.29) 32.38 (19.25) 30.3 (19.03) 0.63 

 

We then checked if the above association holds true in those treated with SUs as 

monotherapy in a meta-analysis using 1,223 and 213 subjects from the GoDARTS and 

the DCS cohorts, respectively. The E23K genotype was not significantly associated with 

HbA1c reduction following SU monotherapy (allelic β = -0.04, p = 0.29) (Figure 5.2). 

Clinical characteristics of subjects treated with SU monotherapy and SU add on to 

metformin are shown in Table 5.4.   
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Figure 5.2 Forest plot of the meta-analysis of the association of HbA1c reduction with the KCNJ11-
E23K variant after SU treatment (as monotherapy) in the GoDARTS and the DCS cohorts. 

 

Table 5.4 Characteristics of participants by drug group in the GoDARTS cohort. 

Characteristics  Monotherapy  Dualtherapy p 

Age at diagnosis (years) 62.46 (10.12) 56.62 (9.99) < 0.0001 

Duration of diabetes (years) 3.98 (4.01) 4.61 (4.32) 0.0001 

Baseline HbA1c (%) 9.04 (1.60) 8.98 (1.37) 0.27 

Weight (kg) 79.43 (15.44) 90.44 (16.84) < 0.0001 

BMI (kg/m2) 28.66 (5.00) 32.16 (5.37) < 0.0001 

Sex (women/% women) 467 (46.9) 571 (43.6) 0.101 

Treatment HbA1c (%) 6.94 (1.03) 7.14 (1.05) < 0.0001 

HbA1c reduction (%) 2.10 (1.70) 1.84 (1.42) < 0.0001 

Adherence (%) 82 (20) 80 (22) 0.08 

Average dose (% of max. BNF) 30 (18) 32 (19) 0.03 

 

It worth mentioning that significant association between the E23K variant and glycaemic 

response to SU was observed in a combined (SU mono and dual therapy) analysis using 

the harmonized definition (allelic β = -0.074, p = 0.017) from the GWAS. However the 
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signal is mainly driven by the dual therapy group. Carriers of the K allele had better 

HbA1c reduction in the dual therapy group (allelic β = -0.12, p = 0.003) but not in the 

monotherapy group (allelic β = -0.006, p = 0.90). This confirms the association between 

the E23K variant with two different definitions of glycaemic response, the closest HbA1c 

to 12 months of therapy and the minimum HbA1c within 18 months of treatment. 

 

5.5.3. GWAS meta-analysis results  

The discovery and first-stage replication GWA analysis consists of 2,305 incident SU 

users of European ancestry from the GoDARTS. Of which 1,187 were genotyped with 

the Affymetrix Genome-Wide Human SNP array 6.0 (Affymetrix, Santa Clara, CA, 

USA) and the remaining 1,118 with the Illumina HumanOminExpress (Illumina, Inc., 

SanDiego, CA, USA). The proportion of GoDARTS patients included in the analysis who 

were starting SUs as add on therapy to metformin was 57% with the remaining 43% 

starting SUs monotherapy. A further 600 patients from the DCS were included as a 

replication cohort, of whom 213 were on SU monotherapy and 387 were on dual therapy 

(metformin and SU). 

 

Multiple linear regression analyses using HbA1c reduction (HbA1c reduction after one 

year of SU treatment) as the outcome variable were performed by adding appropriate 

covariates such as: baseline HbA1c, sex, age at diagnosis, average daily dose and BMI. 

The same set of covariates were significantly associated in both study cohorts (Table 5.5). 

Table 5.5 Multivariate linear regression model for HbA1c reduction in sulphonylurea treated 
subjects from the GoDARTS and the DCS cohorts. 

 GoDARTS (n = 2305)  DCS (n = 600) 

Characteristics  β p β p 

Baseline HbA1c  0.75  <0.001 0.76 <0.001 

Age at diagnosis  0.01 <0.001 0.03 0.003 

Sex  0.33 <0.001 -0.05 0.485 

Baseline BMI  -0.01 0.05 -0.02 0.018 

Drug group -0.08 0.193 0.08 0.300 

Dose  -0.12 <0.001 -0.23 0.019 

Baseline HbA1c was measured as percentage; age was coded in years; Sex was coded as men vs women; 
Drug group was coded as dual (SU + metformin) vs monotherapy (SU alone); dose was measured as 
percentage of the recommended maximum daily dose according to the BNF. 
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After filtering by MAF ≥ 0.05, a total of 6, 247, 097 high quality common variants were 

included for association tests with SU related HbA1c reduction. In the meta-analysis 

consisting of 2,905 subjects of European ancestry, two SNPs located on chromosome 7 

reached the genome-wide significant threshold (p < 5 ×10-8) (Figure 5.3). These SNPs 

were located in the intronic region of LHFPL3 gene (Figure 5.4) and they are in strong 

LD with each other (r2 = 0.96, D’=1). The minor allele (T) of the most strongly associated 

SNP rs11535279, had a frequency of 13% and each copy of the minor allele was 

associated with a 0.28% lower HbA1c reduction (95% CI [0.37 to 0.17], p = 5.0 × 10-09). 

Stratified analysis showed a consistent direction of association across cohorts with 

consistent effect sizes ranging from -0.27 to -0.31 (Figure 5.5).
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Figure 5.3 Genome-wide results from single marker association with glycaemic response to sulphonylureas using an additive genetic model adjusted for age at 
diagnosis, baseline HbA1c, sex, drug group, dose and BMI in a meta-analysis consisting of 2,905 T2D subjects from the GoDARTS and DCS.  Upper panel: 
The chromosomal distribution of p values (Manhattan plot). Lower panel: The relationship between observed and expected p values (Q-Q plot) (λ = 0.995).



96 
 

 

Figure 5.4 Regional association plots around the LHFPL3 locus at chromosome 7 for the linear 
regression analysis. 
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Figure 5.5 Association of the top SNP (LHFPL3-rs11535279) with HbA1c reduction to SU treatment 
across the discovery and replication cohorts. 

 

Tables 5.6 and Table 5.7 show the population characteristics by rs11535279 genotype in 

the GoDARTS and the DCS cohorts, respectively. Homozygous and heterozygous 

carriers of the minor (T) allele had lower absolute HbA1c reduction in both the discovery 

and replication cohorts.  
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Table 5.6 Overview of GoDARTS population characteristics per rs11535279 genotype. 

Phenotype CC CT TT p 

n 1665 594 46  

Age at diagnosis (years) 60.08 ± 10.24 58.86 ± 10.46 57.72 ± 10.28 0.005 

Duration of diabetes (years) 4.80 ± 4.35 4.76 ± 4.49 4.56 ± 2.93 0.74 

Baseline HbA1c (%) 8.98 ± 1.49 8.95 ± 1.42 9.10 ± 1.38 0.88 

Weight (kg) 84.58 ± 16.92 86.33 ± 16.56 85.26 ± 13.90 0.05 

BMI (kg/m2) 30.35 ± 5.44 30.70 ± 5.44 30.19 ± 4.87 0.32 

Sex (women/%women) 762 (45.6) 251 (42.0) 21 (44.7) 0.60 

Treatment HbA1c (%) 7.57 ± 1.33 7.79 ± 1.53 8.24 ± 1.73 1.9 × 10-05 

HbA1c reduction (%) 1.41 ± 1.71 1.16 ± 1.61 0.85 ± 2.04 2.5 × 10-04 

Drug group (mono/%mono) 735 (43.9) 250 (41.8) 15 (31.9) 0.19 

Adherence (%) 86 ± 20 86 ± 20 86 ± 23 0.87 

Average daily dose  29.2 ± 0.17 29.2 ± 0.16 28.8 ± 0.14 0.86 

Baseline HbA1c was measured as percentage; age was coded as in years; Sex was coded as men vs women; 
Drug group was coded as dual (SU + metformin) vs monotherapy (SU alone); dose was measured as 
percentage of the recommended maximum daily dose according to the BNF. 

 
 

Table 5.7 Overview of the DCS population characteristics per rs11535279 genotype. 

Phenotype CC CT TT p 

n 479 112 9  

Age at diagnosis (years) 59.9 ± 10.0 58.8 ± 11.4 57.4 ± 9.9 0.31 

Duration of diabetes (years) 3.4 ± 3.6 4.0 ± 3.4 2.7 ± 2.5 0.56 

Baseline HbA1c (%) 7.5 ±1.5 7.5 ± 1.3 7.0 ± 1.2 0.59 

BMI (kg/m2) 30.0 ± 5.4 30.0 ± 4.9 30.4 ± 4.3 0.98 

Sex (women/%women) 207 (43)  51 (45) 7 (77) 0.081 

Treatment HbA1c (%) 6.7 ± 0.9 7.0 ± 1.1 6.9 ± 0.9 0.007 

HbA1c reduction (%) 0.77 ± 1.42 0.52 ± 1.42 0.08 ± 0.85 0.029 

Drug group (mono/%mono) 173 (36) 35 (31) 5 (55) 0.75 

Average daily dose 0.50 ± 0.36 0.46 ± 0.28 0.49 ± 0.28 0.31 

Baseline HbA1c was measured as percentage; age was coded as in years; Sex was coded as men vs women; 
Drug group was coded as dual (SU + metformin) vs monotherapy (SU alone); dose was measured as 
percentage of the recommended maximum daily dose according to the BNF. 

 

A few variants had suggestive evidence of association, notably rs11816402 at 

chromosome 10 (nearest gene MRLN), p = 7.70 × 10-08, just below the genome-wide 

significance threshold. Table 5.8 shows potentially interesting variants associated with 

SU response with a p-value less than 1×10-05 that would merit further replication efforts.   
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Table 5.8 Top meta-GWAS loci (p < 1 × 10-05) associated with HbA1c reduction after 1 year of SU 
treatment. 

Closest gene* SNP† EA/NEA position‡ EAF§ β (SE) p 

LHFPL3 rs11535279 T/C 7:104371018 0.135 -0.28 (0.05) 4.75×10-09 

MRLN rs11816402 T/C 10:61491043 0.08 -0.35 (0.07) 7.70×10-08 

LOC101927314 rs60209094 T/C 6:97763759 0.094 -0.31 (0.06) 6.84×10-07 

SLCO1B3 rs2217693 G/A 12:21107376 0.89 -0.26 (0.05) 1.03×10-06 

PDE1C rs76321395 T/G 7:32207216 0.055 -0.33(0.07) 1.23×10-06 

LOC107985157 rs72953314 C/T 18:31390825 0.246 0.17 (0.04) 1.93×10-06 

MALRD1 rs7908470 T/C 10:19703136 0.817 0.19 (0.04) 2.02×10-06 

ZMYM4 rs72659611 T/C 1:35844449 0.071 -0.30 (0.06) 3.38×10-06 

SCN2A rs2138034 G/C 2:166278809 0.369 -0.15 (0.03) 4.07×10-06 

LOC105371393 rs60890811 G/A 16:87072258 0.100 -0.27 (0.06) 4.43×10-06 

FAM49A rs7590817 T/G 2:16961602 0.436 0.14 (0.03) 5.95×10-06 

ZFYVE28 rs13105288 C/T 4:2297550 0.630 0.15 (0.03) 6.14×10-06 

B3GNT3 rs10854161 G/A 19:17905619 0.279 0.17 (0.04) 6.73×10-06 

PDE5A rs116150552 A/G 4:120522608 0.071 0.30 (0.07) 7.43×10-06 

CERS6 rs114214090 G/A 2:169514126 0.068 -0.36 (0.08) 7.61×10-06 

AKR1C4 rs141935840 G/A 10:5267666 0.052 -0.34 (0.08) 9.73×10-06 

LOC105378178 rs12436509 T/C 14:49160108 0.092 -0.23 (0.05) 9.73×10-06 

*Closest gene within 500 kbp of the SNP. †One representative per locus. ‡Position refers to chr:pos, 
according to the National Center for Biotechnology Information assembly build GRCh37/hg19. §Here EAF 
is the average of the effect allele frequencies of GoDARTS and DCS. EA: effect allele, NEA, non-effect 
allele. 

 

5.5.4. Association of LHFPL3-rs11535279 with SU induced insulin secretion  

We further checked if our top GWAS hit is associated with tolbutamide induced insulin 

secretion from the YOUTH92 and the FAMILY studies. This analyses was kindly 

performed by Anna Jonsson at partner institute, University of Copenhagen. Details of 

these studies are described by Hansen et al (280). In both studies participants underwent 

an IV glucose tolerance test (IVGTT) after a 12-hour overnight fast. A bolus of 3 mg/kg 

tolbutamide was injected into the antecubital vein after 20 minutes of 0.3 g/kg of 50% 

glucose administration. Venous blood samples were collected at different time points over 

the time course of 3 hours. Plasma levels of glucose, insulin and C-peptide were measured 

at baseline and subsequent time point samples.  
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Acute phase insulin response (AIR) to tolbutamide were calculated by means of the 

trapezoidal rule as the incremental values (areas under the curve when expressed above 

basal values) from 19 to 30 min (AUC19-30min). A linear regression analysis using inverse 

normally transformed insulin levels as an outcome variable adjusted for age and sex were 

performed using 357 and 266 samples from the YOUTH92 and the FAMILY studies, 

respectively. Fixed effect meta-analysis was performed using effect size estimates and 

standard errors obtained from the linear regression analysis of each study. The T allele at 

rs11535279-LHFPL3 was associated with lower acute beta-cell responsiveness to 

tolbutamide (β = -0.17, 95% CI = -0.37 - 0.03, p = 0.09) assuming additive genetic model 

of inheritance. This marginal association was directionally consistent with the GWAS 

finding above.  

 

5.5.5. The Insulin/IGF pathway-mitogen activated protein kinase/MAPK cascade 

pathway is enriched for SU response 

Using a meta-GWAS data consisting a total of 2,905 subjects treated with SU, we 

performed pathway analysis to identify biologically functional gene sets. Prior annotated 

sets of genes based on their relationship to molecular functions, biological processes or 

pathways from publicly available data sets namely: KEGG, PANTHER, Reactome, 

BioCarta and GO were utilized for this analysis. Each database is curated by expert 

biologists and sophisticated bioinformatics algorithms to serve a specific purpose. For 

example, The PANTHER system classifies proteins and their encoding genes based on 

families and subfamilies, their molecular function, biological processes and pathways. 

The GO is designed to define sets of genes according to their functional characteristics 

mainly molecular functions, biological processes and cellular components. The top ten 

significant pathways associated with SU response are presented in Table 5.9. The 

Insulin/IGF pathway-mitogen activated protein kinase/MAPK cascade (PANTHER) was 

the top-ranking pathway in relation to glycaemic response to SU with nominal GSEA p-

value of 3.0 × 10-04 and false discovery rate (FDR) of 0.02. Other pathways associated 

with SU response include: Cell adhesion (GO term), Fertilization (GO term), Immunity 

and defence (PANTHER), Negative regulation of protein kinase activity (GO term), 

Cadherin (PANTHER), Nitric Oxide Signalling in the Cardiovascular System 

(Ingenuity), Response to drug (GO term), Tumour necrosis factor receptor activity (GO 

term) and Tight junction (GO term). 
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Table 5.9 Top ten significant biological pathways or gene sets associated with SU response. 

Database Biological pathway or  
gene set 

75% cutoff (TOP 5%) 
Nominal 
GSEA  
p-value 

FDR Expected # 
of genes 

Observed # 
of genes 

PANTHER Insulin/IGF pathway-mitogen 
activated protein kinase/MAPK 
cascade 

3.00 × 10-04 0.02 5 12 

GO term Cell adhesion 1.00 × 10-03 1.00 106 133 
PANTHER Fertilization 1.10 × 10-03 0.14 8 16 
PANTHER Immunity and defence 1.90 × 10-03 0.24 55 74 
GO term Negative regulation of protein 

kinase activity 
3.00 × 10-03 1.00 11 19 

PANTHER Cadherin 3.10 × 10-03 0.51 14 23 
Ingenuity Nitric Oxide Signalling in the 

Cardiovascular System 
3.10 × 10-03 0.10 3 7 

GO term Response to drug 3.20 × 10-03 1.00 48 65 
GO term Tumour necrosis factor 

receptor activity 
3.40 × 10-03 1.00 2 6 

GO term Tight junction 3.60 × 10-03 0.93 17 27 
FDR: false discovery rate, GO: gene ontology, GSEA: gene-set enrichment analysis, PANTHER: Protein 
Analysis Evolutionary Relationships. 

 

We further evaluated the genes involved in the top-ranking Insulin/IGF pathway-mitogen 

activated protein kinase/MAPK cascade pathway. The significant genes in this pathway 

are shown in Table 5.10. INS (insulin) and its important paralog INS-IGF2 (insulin-insulin 

like growth factor 2), both involved in the insulin signalling pathway and T2D (281) are 

among the genes in this pathway. The RPS6KA (ribosomal protein S6 kinase alpha) 

family genes: RPS6KA1, RPS6KA2 and RPS6KA5 are also members of the Insulin/IGF 

pathway-mitogen activated protein kinase/MAPK cascade with p-values < 0.05.  Genes 

encoding mitogen activated protein kinases such as MAP2K2 and MAP2K6 are also 

members of the top gene set enriched for SU response. 
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Table 5.10 Genes within the Insulin/IGF-mitogen activated protein kinase/MAPK cascade pathway 
associated with SU response. 

Genes  CHR Gene p-

value 

Top SNP Top SNP p-value 

RPS6KA2  6 0.001 rs2345067 2.33 × 10-05 

INS 11 0.005 rs1124699 6.73 × 10-05 

INS-IGF2  11 0.004 rs1124699 6.73 × 10-05 

RPS6KA1  1 0.011 rs72879042 2.87 × 10-04 

RASA1  5 0.015 rs72781761 4.38 × 10-04 

PLAC4   21 0.08 rs13049767 5.94 × 10-04 

RPS6KA5  14 0.04 rs1286298 6.37 × 10-04 

MAP2K6  17 0.03 chr17: 67411382:I 8.15 × 10-04 

MAP2K2  19 0.05 rs8109965 1.48 × 10-03 

RPS6KB1  17 0.089 rs2645474 1.69 × 10-03 

MAP2K1  15 0.16 rs16949879 1.83 × 10-03 

MAP2K4  17 0.158 rs4792238 1.86 × 10-03 

RPS6KB2  11 0.125 rs72932799 3.33 × 10-03 

MAP2K3  17 0.34 rs75120481 5.66 × 10-03 

SOS1  2 0.281 chr2: 39415825:I 5.67 × 10-03 

IGF1  12 0.44 rs10735380 7.86 × 10-03 

SOS2  14 0.613 rs10134448 1.49 × 10-02 

RPS6KA4  11 0.524 chr11: 64018104:I 1.81 × 10-02 

MAP2K7  19 0.856 rs55971170 3.68 × 10-02 

FOS  14 0.93 rs8006997 5.65 × 10-02 



103 
 

5.6. Discussion 

In this population based PGx meta-analysis, we have demonstrated that the K (lysine) 

allele at KCNJ11-E23K variant is robustly associated with greater response to SUs in 

patients with T2D stabilized on metformin. In addition, we conducted the first GWAS of 

glycaemic response to SUs and identified a novel genetic marker at the LHFPL3 locus.  

 

Given Kir6.2 is the mechanistic site for SU action, the possibility to use KCNJ11 

mutations, the gene encoding Kir6.2, as a biomarker for interindividual variation in 

glycaemic response to SU therapy has long been of interest. Following identification of 

the E23K (rs5219) variant in the KCNJ11 as a marker for diabetes risk, several studies 

investigated its effect on SU response (108, 110, 274-276) (see Chapter 1, section 1.3.2). 

However, controversial and/or inconsistent findings that could be due to differences in 

study design, small sample size induced statistical fluctuation, definition of endpoint, 

study population and SU type have been published. In this large meta-analysis consisting 

of 1,778 T2D subjects of Caucasian origin treated with SUs as add on therapy to 

metformin, we showed significantly greater HbA1c reduction in carriers of the K allele 

compared to the E allele carriers. This is in line with a study by Javorsky et al conducted 

in 101 Caucasians who failed to achieve a target 7% (53 mmol/mol) HbA1c on metformin 

monotherapy (108). In this study, each K allele was associated with 0.16% [95% CI 0.01-

0.32, p = 0.038] greater HbA1c reduction after 6 months of SU therapy. In addition, a 

study consisting of Chinese patients treated with gliclazide showed greater reduction in 

fasting glucose level in homozygous carriers of the A allele of S1369A (106), a variant 

in strong LD with E23K (r2 = 0.87, D’ = 0.96).  In a similar study performed on 115 

Chinese patients, greater HbA1c reduction was reported in carriers of the A allele 

compared to homozygous carriers of the S allele following 2 months of SU therapy (105).  

 

In this current study, no significant difference in glycaemic response to SU by the E23K 

genotype was observed in the monotherapy group.  This could be due to differences in 

population characteristics between the dual therapy and monotherapy groups. Subjects in 

the dual therapy group are more obese and younger at diagnosis with longer duration of 

diabetes (Table 5.4). 

 

Other studies showed no association or faster glycaemic deterioration in carriers of the K 

allele compared to the parent E allele. In the UKPDS study, no significant difference in 
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change in fasting glucose level by the E23K genotype was observed after one year of 

treatment with SU monotherapy (109). This study was based on one year apart, two time 

point fasting glucose measures and no HbA1c was reported. In addition, continual dose 

adjustment carried out in this study could confound the observed result. Association of 

the K allele with higher odds of secondary SU failure defined as FPG > 300 mg/dL (16.7 

mmol/L) was also reported in a study consisting of 525 Caucasians treated with 

glibenclamide and metformin (110). Another study conducted in Japanese patients 

showed association of the K allele with SU failure (276). In this study, carriers of the K 

allele required insulin therapy faster than carriers of the parent allele. While homozygous 

carriers of the K allele required 7.7 ± 4.6 years, heterozygous carriers of the K allele and 

homozygous carriers of the parent E allele required 11.2 ± 6.3 and 11.1 ± 6.1 years, 

respectively, to start insulin. In light of the well-established risk of T2D for K allele 

carriers, the outcomes investigated in these studies are more likely to reflect the variant’s 

impact on diabetes progression rather than SU response.   

 

We also describe the first GWAS study investigating variants associated with HbA1c 

reduction after one year of SU treatment. In this meta-GWAS consisting of 2,905 SU 

treated T2D subjects of European ancestry, we have identified a novel polymorphism, 

LHFPL3-rs11535279, associated with HbA1c reduction to SU therapy. It worth 

mentioning that replication using data from the UKPDS is ongoing. rs11535279 is not in 

LD with a protein coding variant that would alter the primary structure of the protein. 

Therefore, it is more likely to play a regulatory role related to gene expression or 

transcription factor binding. The SNP rs11535279 maps to an LD block within intron 

region of the LHFPL3 gene family (LHFPL3, LHFPL3_AS1, LHFPL3_AS2) (Figure 5.4). 

LHFP3 is a member of the LHFP gene family that encode a tetraspan transmembrane 

protein (282). It is mainly expressed in the brain and the retina with little expression in 

the pancreas (240).  Mutations in the LHFPL3 are previously shown to be associated with 

diabetic retinopathy (283). None of the reported retinopathy SNPs are in LD with 

rs11535279 (r2 < 0.25), suggesting that the SU response signal is unlikely to be driven by 

diabetes retinopathy. Lipoma, hearing loss and autism are also traits previously reported 

to be associated with variation in the LHFPL3 gene (284-286).  

 

 

https://en.wikipedia.org/wiki/Transcription_factor
http://www.malacards.org/card/lipoma
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Given the role of beta-cell function for SU response, we checked if rs11535279 is in trans-

eQTL to sixteen reported beta-cell function genes based up on glucose/insulin traits by 

the MAGIC consortium (287) using 149 pancreas samples of European origin from the 

GTEx portal (55). rs11535279 is an eQTL for the expression of TCF7L2 in the pancreas 

(β = -0.35, p = 0.005), where each copy of the T allele is associated with decreased the 

expression of TCF7L2. Reduced expression of TCF7L2 is previously shown to reduce 

both basal and glucose stimulated insulin secretion (56, 57). Common variants in TCF7L2 

gene have been reported to increase the risk of T2D (288, 289). TCF7L2 is expressed in 

the pancreas and carriers of the T2D risk alleles have reduced insulin secretion, 

suggesting a role for TCF7L2 in β-cell function (290-293). In addition, variants in 

TCF7L2 have been reported to influence glycaemic response to SU therapy (115, 117, 

290). However, it is worth noting that the observed association is before applying multiple 

testing correction and trans-eQTL effects could be prone to type 1 error in data of small 

sample size as used here. Therefore examining in a larger population than presented here 

is warranted.  

 

In our meta-analysis using data from tolbutamide induced insulin secretion, we found a 

marginal but directionally consistent association of rs11535279 with β-cell 

responsiveness to tolbutamide. Carriers of the T allele had reduced insulin secretion and 

this is consistent with what we found in the GWAS where the same allele is associated 

with reduced glycaemic response to SU. While it is possible that rs11535279 has an effect 

on tolbutamide induced insulin secretion, the limited sample size and hence power 

prevents any definitive conclusion. 

 

The stringent significance threshold for GWAS could overlook moderate association 

signals that may have collective detrimental effects in certain pathways. Therefore, GSEA 

is an approach that can be used to identify pathways associated with a certain biological 

process or molecular function that are overlooked in single variant GWAS. GSEA utilizes 

well curated pathways consisting of multiple genes that act as part of a network within a 

given physiologic perturbation. Our results suggest significant enrichment of the 

insulin/IGF pathway-mitogen activated protein kinase/MAPK cascade in glycaemic 

response to SU treatment. This pathway lies post insulin secretion and mediates the 



106 
 

metabolic action of insulin to regulate transport and cellular uptake of glucose (294).  

Several genes are shown to be involved in this pathway (Table 5.10). Given SUs act by 

inducing β-cell insulin secretion, hypothesis driven genetic studies investigating SU 

response to date have largely focused on the pre secretion pathway. Here we showed 

enrichment of the Insulin/IGF-mitogen activated protein kinase/MAPK cascade pathway 

for glyceamic response to SU, suggesting genes involved in the insulin action might also 

have important role in the PGx of SU.   

 

There are several limitations to this study. Given that we used observational data, 

decisions to change the dose and/or direction and add or reduce another hypoglycaemic 

agent depends on individual patient and physician. Therefore there might be confounding 

although it is possible to adjust for many of these factors. However, there was no 

significant phenotypic difference by the E23K or rs11535279 genotypes and clinicians 

and patients were blinded to genotype. Patients used different SU types and this might 

confound the observed association. However, assumptions of dose equivalence had been 

made to account for possible differences. In addition, it is worth mentioning that > 80% 

of the patients in GoDARTS were prescribed gliclazide  

 

5.7. Conclusions  

This study is the first GWAS of glycaemic response to SU performed thus far. We have 

identified a novel locus at LHFPL3 that is associated with HbA1c reduction at genome-

wide significance level. Using a sample that is significantly larger than those in published 

studies, we confirmed association of the known T2D loci KCNJ11-E23K with glycaemic 

response to SU (when combined with metformin) in Caucasian population. Further 

studies will be necessary to replicate these findings. Currently we are working with the 

UKPDS and the wider MetGen-plus consortium to perform a meta-GWAS in European 

and non-European populations. In addition, whole genome and exome sequencing and 

rare variant analysis may give us additional insights to the genetics of glycaemic response 

to SU. To uncover the causal mutation, fine mapping into the surrounding DNA region 

of our GWAS hit is also warranted. Given rs11535279 falls within a non-coding region, 

it may play regulatory role, of one or more genes nearby or on another chromosome. 

Therefore, approaching larger consortium projects such as the GTEx could help to unravel 

the connection between the variant and changes in expression of other genes. In addition, 
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follow-up prospective studies with a larger sample selected based on their genotype are 

required before clinical translations of the findings. Subject to further replications and 

clinical investigations, the results here provide novel insights into the PGx of SU and may 

have potential for clinical implications. 
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CHAPTER 6. CYP2C8 AND SLCO1B1 VARIANTS AND 

THERAPEUTIC RESPONSE TO THIAZOLIDINEDIONES 

IN PATIENTS WITH TYPE 2 DIABETES 
 

This Chapter is published as: 

 

CYP2C8 and SLCO1B1 variants and therapeutic response to thiazolidinediones in 
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Ewan R. Pearson, and Kaixin Zhou 

 

Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland 
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6. CYP2C8 AND SLCO1B1 VARIANTS AND THERAPEUTIC RESPONSE TO 

THIAZOLIDINEDIONES IN PATIENTS WITH TYPE 2 DIABETES 

6.1. Abstract 

Aims: TZDs are putatively transported into the liver by OATP1B1 (encoded by 

SLCO1B1) and metabolized by CYP450 2C8 enzyme (encoded by CYP2C8). Whilst 

CYP2C8*3 has been shown to alter TZD PK, it has not been shown to alter efficacy. 

Methods: We genotyped 833 Scottish T2D patients treated with pioglitazone or 

rosiglitazone and jointly investigated the association of variants in these two genes with 

therapeutic outcome. 

Result: The CYP2C8*3 variant was associated with reduced glycaemic response to 

rosiglitazone (p = 0.01) and less weight gain (p = 0.02). The SLCO1B1 521T>C variant 

was associated with enhanced glycaemic response to rosiglitazone (p = 0.04). The super 

responders defined by combined genotypes at CYP2C8 and SLCO1B1 had a 0.39% (4 

mmol/mol) greater HbA1c reduction (p = 0.006) than the poor responders. Neither of the 

variants had a significant impact on pioglitazone response. 

Conclusion: These results show that variants in CYP2C8 and SLCO1B1 have a large 

clinical impact on the therapeutic response to rosiglitazone, and highlight the importance 

of studying transporter and metabolising genes together in PGx. 

 
 
6.2. Introduction 

The TZDs, pioglitazone and rosiglitazone, have been widely used in combination with 

other oral agents for the treatment of T2D. They act as peripheral insulin sensitizers by 

activating the PPARγ, which regulates the transcription of genes related to glucose 

metabolism (128). Following a meta-analysis of 42 studies that linked rosiglitazone to an 

increased risk of cardiovascular adverse effects (295), its marketing authorisation was 

withdrawn in Europe, and restricted use in the US. However, its restriction has been lifted 

after the Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in 

Diabetes (RECORD) study failed to show cardiac risks associated with rosiglitazone 

(296). Pioglitazone is still in clinical use in most countries although its use has been 

suspended in France, and restricted in Germany, due to a small absolute increased risk in 

bladder cancer. However a recent multi-population analysis showed no association of 

pioglitazone or rosiglitazone with the risk of bladder cancer (130). 
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TZDs are effective at lowering HbA1c by about 1-1.25% (11-14 mmol/mol) on average 

(297). Although TZDs show durability in action greater than seen with either metformin 

or SUs (298), weight gain induced by TZDs has limited their clinical utility (299). For 

every 1% reduction in HbA1c an estimated 2-3% weight gain is documented (128). 

 

The American Diabetes Association (ADA) and European Association for the Study of 

Diabetes (EASD) guidelines continue to highlight the need to individualise treatment in 

diabetes (129), and this applies particularly for the TZDs where substantial interindividual 

variation exists in glycaemic response (300). Epidemiological studies have identified age, 

gender, baseline weight and HbA1c as significant predictors of response, which can 

account for up to 49% of the variation in HbA1c reduction (301, 302). Genetic factors are 

expected to explain at least part of the remaining variation and may be important to better 

aid targeted treatment in this patient group. 

 

In silico modelling has shown that both pioglitazone and rosiglitazone are putative 

substrates of transporter OATP1B1 which is encoded by SLCO1B1 (303). Both agents 

are extensively metabolized in the liver, mainly by the cytochrome P450 2C8 enzyme 

encoded by CYP2C8 (304, 305). The main metabolites of rosiglitazone are N-desmethyl-

rosiglitazone and rosiglitazone-para-O-sulfate that are 20-55 fold less potent compared to 

the parent drug (306) (Figure 6.1). The principal metabolites of pioglitazone are M-III 

and M–IV; in contrast to the metabolites of rosiglitazone, they are shown to be 

pharmacologically active (307). Gemfibrozil, which inhibits both CYP2C8 and 

OATP1B1 has been shown to increase the plasma concentration AUC of pioglitazone and 

rosiglitazone between 2.4 and 3-fold in healthy volunteers (308, 309), suggesting a role 

for both CYP2C8 and OATP1B1 in PK of the agents. 
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Figure 6.1 Pharmacogenetic effect of CYP2C8 and SLCO1B1 on TZDs pharmacokinetics and 
pharmacodynamics. 

Pharmacogenetic influence by CYP2C8 and SLCO1B1 variants is expected to affect rosiglitazone 
pharmacodynamics because both its main metabolites (N-desmethyl-rosiglitazone and rosiglitazone-para-
O-sulfate) are less potent than its parent drug and pharmacokinetic differences will alter the drug exposure 
of active components (the parent drug, rosiglitazone) and therefore therapeutic response. Patients carrying 
the wild-type SLCO1B1 allele and gain-of-function CYP2C8 variants are expected to eliminate 
rosiglitazone much faster (poor responders) than carriers of the loss-of-function SLCO1B1 variants on a 
wild-type CYP2C8 background (super responders). In comparison, no pharmacogenetic effect is expected 
on pioglitazone response, as its main metabolites (M-II, M-III, and M-IV) remain active and the exposure 
of total active drug components is not altered by pharmacokinetic difference. 
 

Genetic variants CYP2C8*3 (linked polymorphisms of Arg139Lys and Lys399Arg), and 

SLCO1B1 521 T>C (Val174Ala) are commonly seen in populations of European ancestry 

with allele frequencies at around 12% and 16%, respectively (310). PK studies of healthy 

volunteers have established that the gain of function CYP2C8*3 variant is associated with 

modestly enhanced TZD metabolism. Homozygote CYP2C8*3 carriers had 36% lower 

rosiglitazone plasma concentration and 39% higher weight-adjusted oral clearance rate 

compared to the wild type carriers, with clear gene dosage effect seen in the heterozygotes 

(133, 134). A similar trend has been shown with pioglitazone (136). Despite the PK effect 

of the CYP2C8 variant on rosiglitazone, the studies that have assessed its impact on 

rosiglitazone efficacy have found no associations in small number of healthy non-insulin 

resistant volunteers (133, 134). For SLCO1B1, despite the in silico modelling, a PK study 

of 32 healthy volunteers found no association between the loss of function 521C allele 

and weight-adjusted plasma drug AUC after single dose rosiglitazone (4 mg) or 

pioglitazone administration (137). The lack of consistency of these PK and PD studies is 

potentially due to the limited statistical power in the small samples to detect the moderate 

genetic effect, and the fact that the variants have previously been considered in isolation. 
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As TZDs have to be transported into the liver to be metabolised by CYP2C8, we assessed 

the glycaemic response and side effect of weight gain induced by variants in SLCO1B1 

and CYP2C8 together in a large population of patients with T2D treated with rosiglitazone 

or pioglitazone. 

 

6.3. Research design and methods 

6.3.1. Sample ascertainment 

Patients were ascertained from the GoDARTS study, which has previously been 

described in detail (311) (see Chapter 2). In brief, all the patients can be linked to the 

Medicine Monitoring Unit/HIC Database to retrieve validated prescribing information 

and to the clinical information system, the Scottish Care Information–Diabetes 

Collaboration (SCI-DC), to obtain all bio-chemistry and clinical phenotypic data back to 

1992. Prospective longitudinal data were also collected on these patients. Since October 

1997, all patients with diabetes have been invited to give written informed consent to 

DNA and serum collection as part of the Wellcome Trust United Kingdom Type 2 

Diabetes Case Control Collection. As of June 2009, 9000 patients have participated in the 

GoDARTS study (see Chapter 2). 

 

From 1,942 incident TZD users in the GoDARTS cohort, we identified a study sample of 

833 patients who had TZD as their second-line (added to metformin or SU monotherapy) 

or third-line (added to metformin and SU dual therapy) treatment according to guidelines 

in Scotland. To be included in the study, individuals had to have complete data with 

respect to age, sex, weight, antidiabetic treatment history, TZD treatment dose, 

adherence, and regular HbA1c measurements. They all had a baseline HbA1c > 7% (53 

mmol/mol). They were on stable treatment for at least 6 months after TZD was initiated 

(the index date), which meant they did not start or stop another antidiabetic drug within 

6 months on either side of the TZD index date. They were not treated with insulin before 

or during the studied period. This will help to ascertain TZD related efficacy outcomes. 

A detailed sample ascertainment procedure is outlined in Figure 6.2. The study was 

approved by the Tayside Regional Ethics Committee, and informed consent was obtained 

from all subjects. 
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At no point the sample dropped out had a genotypic distribution difference when compared to the whole 
sample. 

Figure 6.2 Sample ascertainment flow. 

 

6.3.2. Drug outcome definitions 

Individuals’ glycaemic response to TZDs was modelled as the maximum HbA1c 

reduction recorded within 1 to 18 months of the index date while maintained on stable 

treatment. Similarly, TZD induced weight gain was measured as the difference between 

the last measurement within the study period and the baseline weight. The multivariate 

linear model equation for these two outcomes is as follows:  

 

HbA1c reduction (weight gain) ~ baseline HbA1c + adherence + daily dose + study 

duration + age + sex + genotype.  
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Baseline HbA1c and baseline weight were defined as the nearest measures taken within 

the 180 days prior to the TZD index date. Adherence was calculated from the population 

based drug dispensing records as the percentage of maximum possible adherence for each 

participant.  

 

Treatment dose was determined as the mean dose of prescriptions encashed during the 3 

months prior to the minimum HbA1c with in the 1–18 months of TZD index date. When 

the minimum HbA1c happened in 3 months, the average dose before the treatment HbA1c 

was recorded. 

 

6.3.3. Genotyping 

Genotype data for the CYP2C8 variant (rs10509681: Arg139Lys) and SLCO1B1 

(rs4149056:Val174Ala) was available for 833 individuals with TaqMan-based allelic 

discrimination assays (see Chapter 2 for details). 

 

6.3.4. Statistical analysis 

One-way analysis of variance (ANOVA) was used to test for differences in the baseline 

characteristics by genotype. Allele frequency difference between subgroups and the full 

sample was compared in a 2 df x 2 test. The exact test of HWE was carried out with 

PLINK v1.9 (166). Multiple linear regression analyses of HbA1c reduction and weight 

gain were performed with PLINK under an additive genetic model and with all the 

covariates included. 

 

6.4. Results 

In the 833 patients studied, the allele frequencies of CYP2C8*3 and SLCO1B1 521C were 

14.5% and 16%, respectively. The overall genotyping call rate was 94%, and both SNPs 

were in HWE in the sample (p > 0.05). In addition, we compared the TaqMan genotypes 

with the existing genotypes from exome chip array, and the concordance rates for 

rs10509681 and rs4149056 were 99.8% and 99.7%, respectively. There was no baseline 

clinical characteristic difference according to CYP2C8 or SLCO1B1 variant genotypes 

(Table 6.1).  
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The current sample size of 833 TZD treated individuals will have 80% statistical power 

to detect an association at a type I error threshold level of 0.025 (0.05/2) to detect an effect 

size of 0.24 assuming an average allelic frequency of 14% (Arg139Lys= 14.5%, 

Val174Ala = 16%). In a GWAS, this sample size will have only 6% power to detect the 

same effect size (0.24) assuming an allelic frequency of 5% at the usual GWAS p-value 

threshold of p < 5 × 10-08. 

 

Table 6.1 Baseline characteristics of the participants by CYP2C8*3 and SLCO1B1 521 T>C 
genotypes. 

 

CYP2C8 

 

SLCO1B1 

*1/*1  
(n=522) 

*1/*3  
(n=177) 

*3/*3  
(n=20) p TT  

(n=553) 
TC  
(n=204) 

CC 
(n=19) p 

Female 
(%) 227 (41%) 64 

(36%) 
8 
(40%) 0.50 228 

(41%) 81(40%) 7 
(37%) 0.87 

Age 
(Years) 61.6 (10.9) 61.5 

(10.8) 
66.2 
(10.3) 0.18 61.7 

(10.7) 
63.2 
(10.0) 

60.2 
(11.2) 0.32 

Baseline 
Weight 
(kg) 

92.7 (18.9) 92.5 
(18.8) 

96.2 
(20.0) 0.72 92.3 

(18.9) 
92.6 
(18.7) 

91.3 
(19.6) 0.97 

Baseline 
HbA1c (%) 9.1 (1.2) 9.0 

(1.1) 
9.5 
(1.6) 0.15 9.0 (1.2) 9.1 (1.3) 8.9 

(1.3) 0.95 

Dose 0.60 (0.23) 0.58 
(0.22) 

0.68 
(0.25) 0.08 0.60 

(0.23) 
0.57 
(0.22) 

0.68 
(0.24) 0.50 

Adherence 87.1 (14.1) 86.9 
(14.1) 

89.8 
(8.1) 0.67 87.6 

(13.5) 
85.8 
(14.8) 

87.4 
(11.5) 0.19 

*p-values for the baseline characteristics of Age, BMI, HbA1c and Starting Daily Dose are from 2d.f. One 
Way ANOVA. 
 

The number of patients treated with pioglitazone and rosiglitazone were 273 and 519, 

respectively, with the other 41 patients switched between the two agents. In the combined 

analysis, higher baseline HbA1c, higher baseline weight, older age, female sex, higher 

adherence, and longer treatment duration were independently associated with better 

glycaemic response. Greater weight gain was associated with higher baseline HbA1c, 

higher baseline weight, higher daily dose, female sex, and treatment with pioglitazone. 

No significant association with HbA1c reduction was observed when the CYP2C8*3 and 

SLCO1B1 521C variants were included into the clinical model (Table 6.2). However, 

compared with the wild type, carriers of the *3 allele had less weight gain (β = -0.91, p = 

0.006).  
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Table 6.2 Multiple linear regression models for HbA1c reduction and weight gain in all TZD treated 
patients. 

 Weight Gain HbA1C Reduction 

 β 95% CI p β 95% CI p 

Baseline HbA1c 0.36 [0.11,0.62] 0.005 0.61 [0.55,0.66] < 0.001 

Baseline Weight 0.30 [0.12,0.49] 0.001 0.06 [0.02,0.10] 0.007 

Age 0.13 [-0.18,0.44] 0.41 0.21 [0.14,0.28] <0.001 

Sex 0.96 [0.31,1.61] 0.003 0.22 [0.07,0.36] 0.003 

Dose 0.31 [0.17,0.45] <0.001 0.02 [-0.02,0.05] 0.36 

Adherence 0.17 [-0.05,0.39] 0.13 0.06 [0.01,0.11] 0.01 

Study Duration 0.09 [0.00,0.17] 0.05 0.05 [0.03,0.07] < 0.001 

Drug -1.08 [-1.76,-0.39] 0.002 0.09 [-0.16,0.24] 0.25 

CYP2C8*3 -0.91 [-1.55,-0.27] 0.006 -0.09 [-0.23,0.05] 0.24 

SLCO1B1 512T>C -0.28 [-0.93,0.37] 0.40 0.08 [-0.06,0.23] 0.25 

Sex was coded 1 and 2 for male and female respectively; Age was coded in the unit of 10 years; Baseline 
HbA1c was measured as percentage; Dose was measured as 10% of the recommended maximum daily 
dose; Adherence was measured in 10%; Baseline weight was measured in 10kg; Study duration was 
measured in month as the time from TZD index date to the treatment outcome measurement date, and the 
two drugs were coded as pioglitazone=1 and rosiglitazone=2. 
 

 

Compared with parent drugs, metabolites of rosiglitazone and pioglitazone exert different 

degrees of glycaemic efficacy (307). In addition, differences in baseline characteristics of 

pioglitazone and rosiglitazone treated individuals, as shown in Table 6.3, have been 

observed. Therefore, we performed multiple linear regression analysis in the two 

subgroups separately. The same set of clinical covariates was included in the modelling 

of weight gain and HbA1c reduction.  
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Table 6.3 Baseline characteristics of the participants by agent. 

 

Pioglitazone 

(n = 273) 

Rosiglitazone 

(n = 519) p  

Female (%) 104 (38%) 220 (42%) 0.27 

Age (Years) 61.7 (10.4) 62.1 (11.1) 0.67 

Baseline Weight (kg) 94.3 (18) 91.1 (18.9) 0.02 

Baseline HbA1c (%) 9.03 (1.14) 9.08 (1.21) 0.56 

Dose* 0.5 (0.18) 0.65 (0.23) < 0.001 

Adherence 86.7 (14.4) 87.3 (13.8) 0.58 

HbA1c reduction 1.5 (1.06) 1.76 (1.26) 0.002 

Weight Gain 3.53 (4.1) 3.04 (5.0) 0.13 

Data presented as mean (SD) or n (%) except where indicated (*Dose is the proportion of maximum 
recommended dose (8 mg/day for rosiglitazone and 45 mg/day for pioglitazone)). 
 

 

Table 6.4 shows the full clinical models in the rosiglitazone treated group. A higher 

baseline HbA1c, higher baseline weight, older age, female sex, and longer treatment were 

all independently associated with better glycaemic response. A higher daily dose was the 

only strong predictor of weight gain with patients on 8 mg/day gaining 2 kg more weight 

than those on 4 kg/day (although dose was not associated with glycaemic response to 

rosiglitazone). For pioglitazone treated patients, a similar pattern of clinical predictors 

was observed but with less statistical significance due to the smaller number of patients 

(Table 6.5). In contrast to rosiglitazone, there was no significant effect of pioglitazone 

dose on weight gain.  
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Table 6.4 Multiple linear regression models for HbA1c reduction and weight gain in rosiglitazone 
treated patients. 

 Weight Gain HbA1C Reduction 

 β 95% CI p β 95% CI p 

Baseline HbA1c 0.33 [0.15,0.65] 0.04 0.65 [0.59,0.72] < 0.001 

Baseline Weight 0.23 [-0.01,0.47] 0.06 0.07 [0.02,0.13] 0.004 

Age 0.19 [-0.19,0.58] 0.33 0.23 [0.15,0.31] < 0.001 

Sex 0.82 [-0.12,1.66] 0.06 0.28 [0.09,0.46] 0.003 

Dose 0.41 [0.25,0.59] < 0.001 0.03 [-0.01,0.06] 0.19 

Adherence 0.23 [-0.06,0.51] 0.11 0.05 [-0.01,0.11] 0.09 

Study Duration -0.08 [-0.20,0.04] 0.18 0.06 [0.03,0.08] < 0.001 

Sex was coded 1 and 2 for male and female respectively; Age was coded in the unit of 10 years; Baseline 
HbA1c was measured as percentage; Dose was measured as 10% of the recommended maximum daily 
dose; Adherence was measured in 10%; Baseline weight was measured in 10kg; and the study duration was 
measured in month as the time from TZD index date to the treatment outcome measurement date. 
 

Table 6.5 Multiple linear models for HbA1c reduction and weight gain in pioglitazone treated 
patients. 

 Weight Gain HbA1C Reduction 

 β 95% CI p β 95% CI p 

Baseline HbA1c 0.49 [0.06,0.91] 0.03 0.51 [0.40,0.61] < 0.001 

Baseline Weight 0.46 [0.17,0.76] 0.002 0.04 [-0.03,0.11] 0.28 

Age 0.09 [-0.40,0.58] 0.72 0.15 [0.03,0.27] 0.01 

Sex 1.08 [0.11,2.05] 0.03 0.13 [-0.11,0.37] 0.28 

Dose 0.00 [-0.26,0.25] 0.98 -0.01 [-0.08,0.05] 0.68 

Adherence 0.06 [-0.27,0.38] 0.72 0.07 [-0.01,0.15] 0.07 

Study Duration 0.29 [0.18,0.40] <0.001 0.03 [0.01,0.06]  0.01 

Sex was coded 1 and 2 for male and female respectively; Age was coded in the unit of 10 years; Baseline 
HbA1c was measured as percentage; Dose was measured as 10% of the recommended maximum daily 
dose; Adherence was measured in 10%; Baseline weight was measured in 10kg; and the study duration was 
measured in month as the time from TZD index date to the treatment outcome measurement date. 
 

When genetic variants were added to the clinical models, patients carrying the CYP2C8*3 

variant achieved less HbA1c reduction (allelic β = -0.21%, p = 0.01) and experienced less 

weight gain (allelic β = -0.93 kg, p = 0.02) with rosiglitazone treatment. The SLCO1B1 

521C variant was associated with greater HbA1c reduction (allelic β =0.18%, p = 0.04), 

but not weight gain, after rosiglitazone treatment. Neither of the two variants was 

significantly associated with response to pioglitazone (Table 6.6). This could be due to 

lack of enough statistical power from a smaller number of patients treated with 
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pioglitazone. Assuming the *3 variant has the same allelic effect size of 0.21% HbA1c 

reduction on both rosiglitazone and pioglitazone, the current sample size of 273 

pioglitazone users will provide only 37% statistical power to detect the association at an 

α level of 0.05 (312). More than 800 samples are required to provide sufficient (80%) 

statistical power to detect such an effect size.  
 

Table 6.6 Genetic effect of CYP2C8 and SLCO1B1 variants on HbA1c reduction and weight gain 
(additive genetic model). 

Treatment Gene Weight Gain HbA1C Reduction 

β 95% CI p β 95% CI p 

Rosiglitazone 

(n=444) 

CYP2C8*3 -0.93 [-1.73,-0.13] 0.02 -0.21 [-0.38,-0.04] 0.01 

SLCO1B1 -0.13 [-0.92,0.67] 0.75 0.18 [0.01,0.34] 0.04 

Pioglitazone 

(n=239) 

CYP2C8*3 -0.46 [-1.45,0.51] 0.34 0.14 [-0.10,0.38] 0.26 

SLCO1B1 -0.02 [-0.92,0.87] 0.96 -0.10 [-0.32,0.12] 0.37 

 

To better assess the impact of these variants in rosiglitazone response, we considered a 

composite model consisting of a group of super responders (reduced transport at 

OATP1B1 [SLCO1B1 521C] and “normal” metabolizers at CYP2C8 [wild type]), 

intermediate responders (wild type at CYP2C8 and SLCO1B1), and poor responders 

(“normal” transport of rosiglitazone into the liver across OATP1B1 [SLCO1B1 521T] and 

increased metabolism by CYP2C8 [CYP2C8*3]). When the two variants were considered 

together, as shown in Figure 6.3, the super responders had a 0.39% (4 mmol/mol) (p = 

0.006) greater HbA1c reduction than the poor responders. A similar, but nonsignificant, 

effect was seen on weight gain. 
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Figure 6.3 Rosiglitazone response by SLCO1B1 and CYP2C8 genotypes. 

Super responders (wild type at CYP2C8 and one or more variant C allele at SLCO1B1), intermediate 
responders (wildtype at both CYP2C8 and SLCO1B1), and poor responders (one or more *3 allele at 
CYP2C8 and wild type at SLCO1B1). The error bars represent the standard error of the mean (SEM). **p 
< 0.01. 
 

Since dosing is a strong predictor of rosiglitazone induced weight gain, we performed a 

stratified genetic analysis of the rosiglitazone-treated patients by daily dose. As shown in 

Table 6.7, the CYP2C8*3 variant had a similar impact on weight gain and HbA1c 

reduction in those treated with 4 mg/day and 8 mg/day. The SLCO1B1 variant had a 

stronger impact on glycaemic response in those treated with 8 mg/day than those treated 

with 4 mg/day. Owing to the limited sample size, this observed PGx difference is not 

statistically significant in a formal gene-by-dose interaction test (p = 0.73). 
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Table 6.7 Stratified analysis of CYP2C8*3 and SLCO1B1 genetic effect on rosiglitazone response by 
treatment dose. 

Treatment Gene Weight Gain HbA1C Reduction 

β 95% CI p β 95% CI p 

4 mg/day 

(n=341) 

CYP2C8*3 -0.45 [-1.44, 0.53] 0.36 -0.22 [-0.44,-0.01] 0.04 

SLCO1B1 -0.10 [-1.07,0.87] 0.84 0.11 [-0.11,0.32] 0.33 

8 mg/day 

(n=156) 

CYP2C8*3 -1.02 [-2.60, 0.56] 0.21 -0.12 [-0.30,0.30] 0.43 

SLCO1B1 -0.07 [-1.63,1.48] 0.93 0.35 [0.05,0.66] 0.02 

 
 

6.5. Discussion 

In this large population PGx study of patients with T2D, we have jointly investigated 

whether variants in the putative drug transporter gene SLCO1B1 and the metabolizing 

enzyme gene CYP2C8 contribute to variation in glycaemic response and weight gain in 

response to treatment with TZDs. We confirm previous reports that TZDs work better in 

women and with increasing obesity (32, 313). The combined genotypes at CYP2C8 and 

SLCO1B1 can be used to define super response and poor response groups to rosiglitazone, 

who differ in HbA1c reduction by 0.39% (4 mmol/mol). This effect size is approximately 

one-third of the average HbA1c reduction achieved by 8 mg daily rosiglitazone (297) or 

approximately one-half of the HbA1c reduction related to DPP-4 inhibitor monotherapy 

(189). Therefore, the effect size observed in this study could be clinically relevant in 

stratified medicine. On the other hand, these variants do not alter pioglitazone response.  

 

We showed that rosiglitazone treated individuals carrying the CYP2C8*3 variant had 

poorer glycaemic response but less weight gain in a gene-dosage-dependent manner 

compared with the wild-type carriers. These results are consistent with previous PK 

studies that showed that the CYP2C8*3 variant was associated with higher rosiglitazone 

oral clearance and lower plasma concentration AUC (133, 134). Other previous 

investigations into the PD impact of CYP2C8 variations on rosiglitazone response have 

found no evidence in small samples of subjects with normal insulin sensitivity (133, 134). 

However, association of the CYP2C8*3 variant with impaired HbA1c lowering has been 

reported in individuals with T2D (314). The current study has demonstrated that the mild 

PK difference between CYP2C8*3 genotype can be translated into PD difference in 

rosiglitazone treated individuals with T2D, with the lower drug exposure among the 

CYP2C8*3 variant carriers resulting in less HbA1c reduction and weight gain. In this 
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study we showed association of CYP2C8*3 with response to rosiglitazone but not 

pioglitazone despite an established role of CYP2C8 in pioglitazone PK. This is entirely 

consistent with the contrast between the pharmacological properties of the two agents 

(Figure 6.1). As the main rosiglitazone metabolites are less potent, PK difference of the 

parent drug was translated into efficacy difference. For pioglitazone, the principal 

biotransformation products, M-III and M-IV, are reported to exert sustained 

hypoglycaemic action and therefore ameliorate the PK difference in the parent drug on 

overall efficacy (315).  

 

In this study, we have for the first time showed that the SLCO1B1 521C allele is associated 

with better glycaemic response in patients treated with rosiglitazone. Our results also 

indicated that the PGx effect of the SLCO1B1 521T>C variant on rosiglitazone response 

was more pronounced in the 8 mg/day group than in the 4 mg/day group. This might 

explain why previous rosiglitazone PK studies reported no significant association 

between SLCO1B1 521T>C genotypes and drug exposure after 4 mg/day treatment and 

suggests that the variant becomes rate limiting only at high doses (133, 134).  

 

Joint investigation of variants in genes encoding for proteins involved in PK and PD of a 

given drug could give better understanding of the role of genetics in drug response than 

individual variants per se. For example, studies investigating joint effect of variants in 

metformin transporters have previously been published (77, 83, 85). With this in mind, 

we have investigated joint effect of variants in genes encoding TZD transporter 

(SLCO1B1) and metabolizer (CYP2C8). In a composite model that consists of super 

responders and poor responders, the glycaemic effect of the SLCO1B1 variant is much 

greater when considered on a CYP2C8 wild-type back-ground (allelic effect 0.22) 

compared with on a CYP2C8 variant background (allelic effect 0.1). This finding 

highlights the importance, when considering drug transporters and drug metabolizing 

enzymes, of assessing variants that alter drug availability for metabolism and variants that 

alter the rate of metabolism together; otherwise clinically important variants may be 

overlooked. Moreover, other functional variants such as those regulatory variants in these 

two genes could also affect the PK of TZDs and therefore contribute to the variation in 

treatment outcome. Locus-wise genetic screening would be useful to identify other 

functional variants in these two genes. In addition, further functional studies investigating 

the joint role of these variants in HbA1c reduction and weight gain are also warranted.  
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Even though the candidate gene approach focused on transporter and metabolizing enzymes 

explained some of the variability in TZD response, there still can be unidentified and/or unknown 

novel genes, genetic variants or pathways that may play a role in glycaemic response and adverse 

effects of TZDs. Therefore, performing discovery GWAS and replication in a well powered 

dataset is warranted. To achieve this, we are running a discovery GWAS in GoDARTS and 

looking for replication cohorts from the MetGen consortium. This will help to identify patients 

that will benefit from glucose reduction with minimum adverse effects prior to initiating treatment 

with TZDs. 

 

There were some limitations of our study. The main limitation is the observational nature 

of our data set, which may introduce bias. Response modelling has shown that baseline 

HbA1c and weight, the dose given, treatment duration, age, and sex all added variation 

to TZD response among the patients. Despite adjustment for these clinical characteristics 

in the model, the association between genetic variants and drug response could still be 

confounded. However, there was no phenotypic difference by genotype in our study 

sample, as shown in Table 6.1, and the clinicians and participants were clearly blind to 

genotype, so these extrinsic factors will not introduce bias to the PGx effect. A further 

limitation is our measure of weight gain. It is not possible to differentiate whether weight 

gain reflects fluid retention or increase in fat mass measured or both. Finally, our sample 

size, despite being much larger than any published study, is still small. This in particular 

limits the phenotypes we are able to study. For example, it is not possible to assess the 

impact of these variants on other side effects such as incident heart failure owing to a 

major lack of power.  

 

Finally, we acknowledge that we have undertaken a number of statistical tests in this 

study. We performed a total number of eight independent genetic association tests (two 

variants against two outcomes in two treatment groups), which carry a threshold of p = 

0.006 (0.05/8) for any individual signal to be study-wide significant under a stringent 

Bonferroni correction. As shown in Table 6.6, three independent signals did reach the 

conventional threshold of p < 0.05 with the current sample size. In addition, when the 

genotypes of the two variants were combined together based on known biological 

mechanisms, a study-wide significant (p = 0.006) result was observed between super 

responders and poor responders to rosiglitazone. Further replication of these variants in 
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larger independent samples is required to establish the role of these two variants in 

rosiglitazone response unequivocally.  

 

6.6. Conclusions 

This study established that glycaemic response and weight gain in rosiglitazone treated 

individuals with T2D were associated with genetic variants in the drug transporter gene 

SLCO1B1 and the metabolizing enzyme gene CYP2C8 and highlighted the importance of 

studying PK genes together. The genetically defined super responders had an extra 0.39% 

(4 mmol/mol) HbA1c reduction compared with those non responders. While our results 

establish key PGx variants that alter response to rosiglitazone, there could be factors that 

hinder its direct clinical applicability. The variants that increase glycaemic efficacy to 

rosiglitazone also increase weight gain; i.e., the “benefit” and “harm” are both increased. 

With the increasing awareness of risk associated with TZDs there is a need to optimize 

the benefit and reduce the risk for an individual. We believe that this is a key opportunity 

for PGx to potentially identify individuals who can benefit from the considerable 

therapeutic advantages of TZDs and who are least at risk for the side effects. Rather than 

letting TZDs slide into disuse, we should concentrate efforts on identifying predictors of 

response or harm to TZDs. 
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7. MISSENSE MUTATIONS IN GLP-1 RECEPTOR GENE ARE ASSOCIATED 

WITH MARKED IMPAIRMENT IN GLYCAEMIC RESPONSE TO GLP-1 

RECEPTOR AGONISTS 

7.1. Abstract 

Background and aims: Glycaemic response to GLP-1RA treatment varies markedly 

among patients with T2D yet the mechanism for this variation is uncertain and it is 

currently not possible to predict who will respond well and who will respond poorly.  

Common missense variants in the GLP-1R gene have previously been reported to alter 

GLP-1 mediated insulin secretion in non-diabetic individuals. Low-frequency and rare 

nonsynonymous variants have also been shown to affect functionality of the GLP-1R. We 

aimed to investigate the role of candidate GLP-1R variants and low-frequency and rare 

nonsynonymous variants in glycaemic response to GLP-1RA.   

Materials and methods: We performed a meta-analysis across the DIRECT, PRIBA, 

GoDARTS and PROMASTER cohorts. A total of 1,238 T2D subjects were followed-up 

for 6 months after initiation of GLP-1RA treatment. Patients were treated predominantly 

with exenatide or liraglutide. The association of GLP-1R variants, rs6923761 

(Gly168Ser) and rs10305420 (Pro7Leu), with reduction in HbA1c after treatment were 

assessed using multiple linear regression in an additive model. In addition, we performed 

gene-based exome-wide meta-analysis using nonsynonymous low-frequency and rare 

variants from the DIRECT and PRIBA cohorts. 

Results: The minor alleles in Gly168Ser and Pro7Leu were independently associated 

with reduced efficacy of GLP-1RA to lower HbA1c (Gly168Ser β (HbA1c change per 

allele) = -0.17%, p = 0.001, Pro7Leu β = -0.12%, p = 0.01). We then derived a GRS, 

summing up these two variants. The 21% of the population homozygous for the parent 

allele at both variants had a mean HbA1c reduction of 1.4% [1.2-1.6] (15.0 mmol/mol 

[13.0-17.0]) in response to GLP-1RA.  In contrast the 17% percent of the population who 

carry 3 or more variant alleles had a much lower glycaemic response to GLP-1RA 

treatment 0.9% [0.7-1.1] (9.6 mmol/mol [7.1 – 12.0]), a significant difference of 0.5% 

[5.5 mmol/mol] (p < 0.001). There was no significant impact of these variants on weight 

change in response to GLP-1RA suggesting the variants impact on the glycaemic 

lowering mechanisms of GLP-1RA rather than weight lowering mechanisms.  The rare 

variant analysis revealed suggestive association of the mutational load of variants in genes 

including Arrestin, beta1 (ARRB1) (β = 4.16, p = 6.32 × 10-05), Fanconi Anemia 
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Complementation group F (FANCF) (β = 2.39, p = 9.96 × 10-05) and Cyclin-dependant 

kinase 2 (CDK2) (β = 4.95, p = 1.82 × 10-04) with glycaemic response to GLP-1RA.  

Conclusion: Missense variants in the GLP-1R have a large clinical impact on glycaemic 

response to GLP-1RA. The frequencies of these variants are not rare, making this the 

largest, most common PGx effect described to date in T2D. In addition, genes involved 

in GLP-1/glucose stimulated insulin secretion might have a role in glycaemic response to 

GLP-1RA.  

 

7.2. Introduction 

The incretin effect is responsible for about 50%-70% of meal induced insulin secretion 

(316). This effect is significantly blunted in subjects with impaired glucose tolerance 

(317) and estimated to be only 30% in T2D (318) (see Figure 1.7). A study by Kjems et 

al also showed 3 to 5 fold reduced insulin secretion in T2D subjects compared to healthy 

volunteers after administration of GLP-1 and glucose (319). 

 

GLP-1 binds to the specific GLP-1R on the pancreatic β-cells that are predominantly 

expressed in the islets, lung and the brain (320). GLP-1R is a seven transmembrane 

protein that belongs to the G-protein coupled receptors family. Activation of the receptor 

enhance the formation of cAMP that elicits downstream signal transduction cascades 

leading to insulin synthesis and secretion (321).  

 

GLP-1RAs are drugs that act by mimicking the activity of endogenous incretin hormone 

GLP-1, and are typically prescribed as a second or third line drugs with oral agents and/or 

insulin (129). The GLP-1RA reduce HbA1c by 0.9%-1.4% (11-13 mmol/mol) on average 

at six months of therapy (322) with 50% of patients achieving the target HbA1c of less 

than 7% (53.0 mmol/mol) (323). GLP-1RAs have low risk of hypoglycaemia and are 

associated with weight loss (143). Recent findings also revealed neutral or favourable 

cardiovascular benefits following GLP-1RA treatment (199, 324). Additionally, it has 

been shown to reduce hepatic steatosis in ob/ob mice, and GLP-1R have been identified 

on hepatocytes and have been shown to have an insulin independent role in decreasing 

hepatic steatosis in vitro by modulating the insulin signalling pathway (325).  
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Clinically glycaemic response to GLP-1RA is highly variable with some patients benefit 

from marked response in terms of HbA1c reduction and/or weight reduction while others 

have disappointing lack of benefit (326). This is highlighted in the Association of British 

Clinical Diabetologists (ABCD) audit of exenatide and liraglutide, where nearly 30% of 

patients had weight loss (suggesting adherence) but no HbA1c reduction with GLP-1RA 

treatment (327). A study by Jones et al revealed association of β-cell function markers 

such as: duration of diabetes, insulin co-treatment, C-peptide and autoantibodies levels 

with glycaemic response to GLP-1RA (326). Genetic factors might also play an important 

role in the variable response to GLP-1RA among individuals. 

 

Given the role of GLP-1R in the downstream signalling of insulin secretion, genetic 

variation in the GLP-1R gene has been a candidate of interest to investigate 

responsiveness to GLP-1 and its analogues. In a study involving healthy subjects, a 

missense variant, Gly168Ser (rs6923761) was associated with reduced GLP-1 stimulated 

insulin secretion during hyperglycaemic clamp (155). T2D subjects that carry the rare 

allele (Ser) at this locus had lower glycaemic response to 6 months of gliptin treatment, 

an indirect GLP-1RA (156). In another study involving women with PCOS, a missense 

variant, Pro7Leu (rs10305420) showed association with weight change after being treated 

with liraglutide (328). However, there are limited studies investigating these variants with 

glycaemic response to GLP-1RA.  

 

The role of low-frequency and rare variants in the GLP-1R gene on the physiology of 

GLP-1 has also been investigated. A mutation at 149 position of the GLP-1R protein 

resulting in substitution of methionine for threonine that results in loss of function of the 

receptor, was associated with impaired insulin secretion and insulin sensitivity (329). 

Further functional studies revealed association of this variant with marked reduction in 

binding affinity for GLP-1RA, GLP-1 and exendin-4, resulting in decreased capability to 

trigger cAMP signaling (330). In a study involving T2D cases and non-diabetic controls, 

a low-frequency (MAF = 1.4%) missense GLP-1R variant (Ala316Thr, rs10305492) was 

associated with lower fasting glucose, lower T2D risk, and early insulin secretion but 

higher 2-hour glucose (331).  In another study by Scott et al, the minor allele of the variant 
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at this locus has been shown to be protective of cardiovascular risk (205). Very large 

sample sizes will be required to investigate each of these rare variants’ impact on 

glycaemic response to GLP-1RA. In the analyses presented here rare variants were 

collapsed into a combined gene based burden variable to test their association with 

glycaemic response to GLP-1RA. 

 

7.3. Aims  of the study 

In this chapter we aimed to investigate the association of the common missense GLP-1R 

variants, GLy168Ser and Pro7Leu, with HbA1c reduction in response to 6 months GLP-

1RA treatment. In addition, we undertook an exome-wide burden test of low-frequency 

and rare nonsynonymous variants with glycaemic response to GLP-1RAs and also 

performed a gene based meta-analysis.  

 

7.4. Research design and methods  

7.4.1. Description of the cohorts 

This study consisted of 1,238 participants, from four different cohorts.  

 

DIRECT  

Three groups of T2D subjects from four DIRECT participating centres have been 

included in this cohort (see Chapter 2). The first group were recruited just before starting 

a GLP-1RA and followed up for 6 months. The second group were recruited after they 

had GLP-1RA treatment between 6 and 24 months and were still on treatment at the time 

of assessment. The third group were all patients who had ever been treated with a GLP-

1RA where they had at least 4 months of GLP-1RA treatment and an HbA1c 

measurement within the 6 weeks prior to starting the GLP-1RA, and within 6 months (± 

2 months) after starting the GLP-1RA in order to define HbA1c reduction. The inclusion 

criteria for all the groups were a) baseline HbA1c ≥ 7.5% (58mmol/mol) and HbA1c < 

12% (108 mmol/mol), b) White European, c) Age ≥ 18 years and < 80 years. Written 

informed consent was signed by each participant and ethical approval was obtained from 

the respective participating centres. 
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PRIBA 

The PRIBA study recruited 620 subjects with T2D prospectively between April 2011 and 

October 2013 with baseline HbA1c ≥ 7.5% (58 mmol/mol) and estimated glomerular 

filtration rate (eGFR) > 30 mL/min/1.73m2. They commenced GLP-1RA therapy as part 

of their routine diabetes care and were followed up for 6 months. All the participants 

signed informed consent and the South West National Research Ethics committee 

approved the study.  

 

GoDARTS  

From 659 incident GLP-1RA users in the GoDARTS cohort, we identified a study sample 

of 315 patients who had been started on liraglutide or exenatide as their second-line 

(added to metformin or SU monotherapy) or third-line (added to metformin and/or SU 

and/or TZD, dual therapy) treatment according to the NHS guideline in Scotland. All the 

patients in the study had complete data with respect to age, gender, antidiabetic treatment 

history, regular HbA1c measurements and genotype. They all had a baseline HbA1c 

higher than 7% (53 mmol/mol). They were on stable treatment for 6 months after GLP-

1RA was initiated (the index date), which meant they did not start or stop another 

antidiabetic drug within the study period. They were not treated with insulin before or 

during the study period. The study was approved by the Tayside Regional Ethics 

Committee and informed consent was obtained from all subjects. 

 

PROMASTER 

The PROMASTER is a longitudinal study designed to examine extreme responders to 

second- and third-line T2D therapies using a prospective approach. All the participants 

were clinically diagnosed with T2D aged between 18 and 90 years and signed informed 

consent to participate. Data from 79 participants treated with GLP-1RA as part of their 

diabetes care were included for this meta-analysis. 

 

7.4.2. Genotyping and quality control  

DIRECT, PRIBA and PROMASTER: Genotypes were generated using the 

HumanCoreExome-24 chip v1.1 at partner LUMC for the PRIBA and PROMASTER 

samples, and at partner CNRS (Lille) for the DIRECT samples (see Chapter 2 for details). 
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Candidate GLP-1R variants, Gly168Ser (rs6923761) and Pro7Leu (rs10305420), were 

extracted from the genome-wide data (Table 7.1).  

GoDARTS: Genotypes for Gly168Ser (rs6923761) and Pro7Leu (rs10305420) were 

acquired from existing GoDARTS genome-wide data from the Affymetrix SNP 6.0 chips 

(Affymetrix, Santa Clara, CA, USA) or the Illumina chips (OmniExpress BeadChip kit; 

Illumina, Inc., San Diego, CA, USA) (see Chapter 2 for details). The imputation quality 

information values were 100% and 99.5% for Gly168Ser and Pro7Leu, respectively. In 

addition, we compared the imputed genotype with exome chip data and the concordance 

rate for rs6923761 and rs10305420 were 100% and 99.9%, respectively. Both variants 

were in HWE (p > 0.05) (Table 7.1).  

 

Table 7.1 Candidate missense variants in the GLP-1R gene. 

dbSNP ID EA/NEA Amino acid change EAF 

rs6923761 A/G Gly168Ser 0.37 

rs10305420 T/C Pro7Leu 0.36 

*Both the SNPs have imputation ≥ 95% in all the cohorts. EA, effect allele, NEA, non-effect allele. 

 

7.4.3. Statistical analysis 

All data cleaning and statistical analyses were undertaken in R-3.2.3. Qualitative 

characteristics are presented as frequency (percentage) and continuous variables as mean 

± SD, if normally distributed or as median and IQR otherwise. Differences between 

groups in quantitative variables were tested using Students T-test and Mann-Whitney U 

test if distributed normally or not, respectively. Differences in proportions were estimated 

using X2 test or Fisher's exact test as appropriate. We carried out genetic association 

analyses on candidate GLP-1R variants using an additive genetic inheritance model by 

linear regression adjusted for baseline HbA1c and other study specific covariates. A step-

wise backwards elimination approach was used to select covariates included to the final 

model in each study using the "stepAIC" within the MASS package in R. Study specific 

estimates are combined using fixed-effect meta-analysis using the metaphor package in R. 

p value less than or equal to 0.025 is considered as statistically significant.  

With a mean HbA1c reduction of 1.13% ± 0.8 after 6 months of GLP-1RA treatment, our 

study (n = 1,235) will have 80% power to detect an allelic effect size of 0.1% or more 



132 
 

assuming type I error, α level of 0.025 (0.05/2) with an average allele frequency of 0.35% 

(rs6923761G>A (37%), rs10305420C>T (36%)). To perform a GWAS, the current 

sample size will have no power to detect the same effect size (0.1) assuming an allelic 

frequency of 5% at the usual GWAS p-value threshold of p < 5 × 10-08. We need 2,944 

samples to detect an effect size of 0.3% with 80% power.  

 

7.4.4. Gene based burden test on low-frequency and rare variants  

We used GRANVIL (332) to evaluate the contribution of sets of variants in each gene 

(mutational load) using linear regression within DIRECT and PRIBA cohorts. To account 

for possible population structure, models were adjusted for the first ten PCs of the 

common variants (with MAF ≥ 5%). The analysis was performed for low-frequency and 

rare nonsynonymous variants (MAF < 0.05). Gene boundaries were defined according to 

the UCSC human genome database. Fixed-effects meta-analysis was performed by 

combining effect estimates from the regression analysis across studies, weighted by 

sample size. The significance threshold was set to p < 3.0 × 10−06, corresponding to a 

Bonferroni correction for 16,672 genes.  

 

7.5. Results 

7.5.1. Participant characteristics 

We investigated the effect of two missense candidate variants in GLP-1R gene on 

glycaemic response to GLP-1RAs in 1,235 T2D participants of European ancestry from 

the DIRECT, PRIBA, GoDARTS and PROMASTER cohorts that are on one or more 

OHAs and/or insulin when they started GLP-1RA. Participant characteristics in each 

cohort are shown in Table 7.2. 573 (43%) of the participants were females. The mean 

(SD) age of starting GLP-1RA was 58 (±10) years. The mean (SD) reduction in HbA1c 

and weight values following  six months of the GLP-1RA therapy were 1.13% (1.56%) 

and 4.23 (6.53) kg respectively (analysis on weight fall was done in 854 participants).   

 

7.5.2. Models in each cohort 

Measures of glycaemic response to GLP-1RA were aligned across each cohort as the 

linear HbA1c reduction (expressed as reduction in percentage of HbA1c). Within each 

cohort, we tested associations with candidate GLP-1R variants (Gly168Ser and Pro7Leu) 
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using multiple linear regression models with and without adjustment for clinical 

covariates including baseline HbA1c. 

 

Baseline HbA1c is the main predictor of response in each cohort. Older age at diagnosis 

was associated with better glycaemic response to GLP-1RA. Reduced response to 6 

months GLP-1RA treatment was associated with insulin co-treatment and number of 

OHAs being taken with the GLP-1RAs. A composite variable derived considering 

number of hypoglycaemic agents dropped or added when patients start GLP-1RAs and 

changes in OHA or insulin dose throughout the study period did not show significant 

association with glycaemic response to GLP-1RA treatment (p = 0.65). Table 7.3 shows 

the best explanatory model for each participating cohort.
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Table 7.2 Characteristics of participants in cohorts included in the meta-analysis. 

Characteristics  DIRECT PRIBA  GoDARTS PROMASTER Overall 

n 365 471 323 79 1, 238 

Age at diagnosis (years) 46.99 ± 9.82 45.89 ± 10.52 48.52 ± 9.10 - 46.97 ± 9.97 

Age at GLP-1RA start (years) 59.72 ± 9.95 55.99 ± 10.18  59.16 ± 8.82 54.61 ± 11.43 57.83 ±  10.03 

Duration of diabetes (years) 12.73 ± 6.58 10.02 ± 6.56 10.64 ± 4.72 - 11.05 ±  6.21 

Sex (% women) 148 (40.6%) 216 (45.6%) 138 (42.7%) 35 (44.3%) 573 (43.4%) 

Pre-treatment weight (kg)  111.21 ± 22.08 114.47 ± 22.86 110.60 ± 22.04 106.12 ± 18.96 112.0 ±  22.28 

Pre-treatment BMI (kg/m2)  38.69 ± 6.94 39.77 ± 7.49 38.33± 6.71 36.99 ± 6.91 38.90 ± 7.13 

Pre-treatment HbA1c (DCCT-%) 9.39 ± 1.20 9.76 ± 1.58 9.42 ± 1.39 9.85 ± 1.59 9.57 ± 1.44 

GLP-1RA type (% exenatide) 132 (36.2%) 169 (35.9%) 87 (26.9%) - 388 (33.5%) 

On-treatment weight (kg) (n = 854) 107.14 ± 22.47 110.10 ± 21.78 112.85 ± 22.15 104.09 ± 20.13 108.70 ± 22.01 

On-treatment BMI (kg/m2) (n = 854) 37.25 ± 7.09 38.10 ± 7.05 39.07 ± 6.68 36.25 ± 6.94 37.71 ±  7.05 

On-treatment HbA1c (DCCT-%) 8.19 ± 1.45 8.38 ± 1.59 8.67 ± 1.65 8.94 ± 1.82 8.42 ±  1.58 

Weight fall (kg)(n = 854)# 4.00 [1.00-7.28] 3.45 [0.90-6.90] 4.45 [1.85-8.15] 2.75 [0.28-4.45] 3.80 [1.00 -7.00] 

BMI fall (kg/m2) (n = 854)# 1.47 [0.38-2.59] 1.17 [0.31-2.37]  1.72 [0.67-2.86] 0.88 [0.10-1.55] 1.25 [0.36 - 2.45] 

HbA1c fall (DCCT-%) 1.20 ±1.34 1.38 ±1.55 0.75 ± 1.71 0.89 ± 1.64 1.13 ± 1.56 

Insulin treated at GLP-1 start (%) 106 (29.04%) 182 (38.64%) 0 - - 

BMI: body mass index, # Median [IQR], DCCT: Diabetes control and complications trial. 
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Table 7.3 Clinical models in each cohort. 

Covariate DIRECT (r2 = 0.2155)  PRIBA (r2 = 0.3007)  GoDARTS (r2 = 0.2216)  PROMASTER (r2 = 0.1347) 

β [se] p β [se] p  β [se] p  β [se] p  

Baseline HbA1c (%) 0.43 [0.05] <0.001 0.48 [0.038] <0.001 0.57 [0.06] <0.001 0.32 [0.12] 0.01 

Age at diagnosis (years)  0.03 [0.01] <0.001 0.02 [0.006] <0.001 - - - - 

Age at GLP-1RA start 

(years) 

- - - - 0.02 [0.01] 0.02 - - 

Gender (W vs M) - - 0.29 [0.121] 0.02 0.17 [0.17] 0.33 - - 

Duration of diabetes 

(Years) 

0.02 [0.01] 0.06 -0.008 [0.01] 0.42 0.017 [0.02] 0.36 - - 

Baseline weight (kg) - - - - - - -0.013 [0.01] 0.17 

Baseline BMI (kg/m2) 0.02 [0.01] 0.01 - - - - - - 

Insulin at GLP-1RA start  -0.89 [0.17] <0.001 -0.57 [0.132] <0.001 - - - - 

Number of OHA at 

GLP1RA start 

-0.33 [0.10] 0.001 - - -0.40 [0.19] 0.04 -0.48 [0.27] 0.08 

W: women, M: men, BMI: body mass index, OHA: oral hypoglycaemic agent. 
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7.5.3. Association of GLP-1R variants with glycaemic response to treatment 

We then considered the impact of the GLP-1R variants on glycaemic response by adding 

them into the multivariate response model in each cohort. In the meta-analysis of 1,235 

participants of European ancestry (Figure 7.1), each copy of the Ser allele at amino acid 

position 168 of the GLP-1R gene was associated with a lower HbA1c reduction of –0.17% 

(p = 0.001, p-value (phet) = 0.24) when adjusting for baseline HbA1c; without baseline 

adjustment the allelic effect of the Ser-allele was the same, β = -0.17% (p = 0.001). The 

allelic effect size of the Leu-allele at position 7 was –0.12% (p = 0.01, phet = 0.12) when 

adjusted for baseline and the unadjusted one was –0.14% (p = 0.02). 

 

Since weight loss was an independent predictor of HbA1c reduction, we performed 

sensitivity analysis in a subset of 854 participants where we have complete data with 

regard to baseline and treatment weight. In a pooled analysis using weight fall as 

dependent variable adjusted for age, sex, baseline HbA1c and baseline weight, the 

Gly168Ser (β = 0.34, p = 0.32) and Pro7Leu (β = 0.29, p = 0.40) were not significantly 

associated with weight fall suggesting the association between glycaemic response to 

GLP-1RA and GLP-1R variants is independent of weight reduction.   

 

Thirty four percent of the participants were treated with exenatide and the remaining 66% 

with liraglutide. We performed sensitivity analysis if there is a difference in HbA1c 

reduction by GLP-1RA type in a population of 1,151 subjects that have complete data 

with respect to drug type. There was no significant difference in mean HbA1c reduction 

by GLP-1RA type. The mean HbA1c fall was 1.25% ± 1.56% [13.7 mmol/mol ± 

17 mmol/mol] and 1.10% ± 1.55% [12 mmol/mol ± 17 mmol/mol] in those treated with 

exenatide and liraglutide, respectively (p = 0.34) after six months of therapy. In addition, 

the candidate SNPs showed similar effect in those treated with exenatide or liraglutide.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007158/figure/F1/
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Results from linear regression models with covariate adjustment are presented. The x axis represents 
HbA1c reduction (%) of each copy of the minor allele. 

Figure 7.1 Pharmacogenetic impact of Gly168Ser (left) and Pro7Leu (right) on HbA1c reduction 
following GLP-1RA treatment in 1, 235 participants of European ancestry from the four cohorts. 

 

 

7.5.4. Association of a genetic risk score derived from the two candidate GLP-1R 

variants with glycaemic response  

As the two missense SNPs had independent effects on HbA1c reduction, we then derived 

a GRS by summing up the number of risk alleles at these two variants. Figure 7.2 shows 

population frequency of the GRS across the study participants. A clear dose response 

relationship of HbA1c reduction by the combined genotype is shown in Figure 7.3. The 

21% of the population who carry no risk allele in either of the variants had a mean HbA1c 

reduction of 1.4% [1.20-1.6] (15.0 mmol/mol [13.0-17.0]) in response to GLP-1RA. In 

contrast, the 17% of the population who carry 3 or more risk alleles had a much lower 

glycaemic response to GLP-1RA treatment 0.9% [0.7-1.1] (9.6 mmol/mol [7.1 – 12.0]), 

a significant difference of 0.50% [5.5 mmol/mol] (p < 0.001) (Figure 7.3).  Characteristics 

of participants by the genetic variants are shown in Table 7.4.  
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Figure 7.2 Pie chart of patients based on the number of risk allele counts from the two candidate 
GLP-1R variants (Gly168Ser and Pro7Leu) rounded up to the nearest percentage of all the 
participants. 

 

Bars represent mean HbA1c reduction and error bars represent standard error around the mean. *p < 0.05, 
**p < 0.01. 

Figure 7.3 Bar plot of HbA1c post GLP-1RA therapy stratified by the GRS from candidate GLP-1R 
variants (Gly168Ser and Pro7Leu). 
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 Table 7.4 Participants characteristics by GLP-1R variants allele count. 

Characteristics GRS 
0  1  2  ≥3 p 

n 263 376 378 204  
Age at diagnosis (years) 46.79 ±  

10.70 
46.95 ±  9.74 46.69 ±  9.68 47.71 ±  10.08 0.49 

Age at GLP-1RA start 
(years) 

57.54 ±  
10.88 

58.17 ±  9.88 57.12 ± 9.76 58.81 ±  9.82 0.54 

Gender (% Women)* 113 (42.97%) 154 (40.96%) 177 (46.83%) 90 (44.12%) 0.44 
Diabetes duration (years) 
(n = 1158)# 

11.0 [7.0-
14.0] 

10.5 [7.0-
15.0] 

10.0 [6.0-14.0] 10.0 [7.0-15.0] 0.23 

Baseline HbA1c (%) 9.63 ±  1.52 9.50 ±  1.41 9.56 ±  1.46 9.59 ± 1.34 0.92 
Baseline weight (kg) 110.62 ±  

22.80 
110.94 ±  
21.61 

113.22 ±  22.71 112.72 ±  
22.21 

0.13 

Baseline BMI (kg/m2) 38.29 ±  6.59 38.60 ±  7.40  39.57 ±  7.38  39.03 ±  6.63 0.07 
6m weight  (kg) (n = 851) 106.66 ±  

22.42 
107.39 ±  
20.09 

107.39 ±  23.12 108.33 ±  
22.56 

0.09 

6m BMI (kg/m2) (n = 
851) 

36.67 ± 6.38 37.38 ± 7.08 38.48 ± 7.55 37.28 ± 6.79 0.06 

6m HbA1c (%) 8.27 ± 1.46 8.37 ± 1.63 8.44 ± 1.63 8.60 ± 1.58 0.02 
Weight fall (kg) (n = 
851)# 

3.00 [1.00 - 
6.00] 

3.80 [0.95 - 
7.00] 

3.33 [1.00 - 
7.00] 

3.6[1.58 - 
7.56] 

0.32 

BMI fall (kg/m2) (n = 
851)# 

1.12 [0.32-
2.14] 

1.25 [0.31-
2.39] 

1.19 [0.36-
2.39] 

1.32 [0.62-
2.52] 

0.25 

HbA1c fall (%) 1.37 ± 1.49 1.14 ± 1.51 1.10 ± 1.61 0.87 ± 1.62 0.001 
*X2 test, #kruskal walis test. 

 

7.5.5. Gly168Ser is cis eQTL with GLP-1R gene in the pancreas  

Given GLP-1R is mainly expressed in the pancreatic tissue, we examined if these variants 

are eQTLs in 149 pancreas samples of European ancestry from the GTEx Project (333). 

The Gly168Ser variant is a cis eQTL, with carriers of the Ser allele having reduced 

expression of GLP-1R in the pancreas (β = -0.42, p = 4.4 × 10-05). Given Gly168Ser is a 

coding variant, we speculated this expression signal is driven by a non-coding SNP that 

is in LD with Gly168Ser. rs10305501 G>T is an intronic SNP in strong LD with 

rs6923761 (Gly168Ser) (r2 = 0.965, D’ = 1.0). This SNP is associated with HbA1c 

reduction (β = -0.20 (0.06), p = 6.58 × 10-04) and expression levels of GLP-1R in the 

pancreas, where carriers of the T allele had reduced GLP-1R expression (β = -0.36, p = 

9.6 × 10-05) (30) [Figure 7.4]. We then performed conditional analysis on each other. The 

observed association between these variants and HbA1c reduction became non-

significant (Gly168Ser β = -0.0034 (0.068), p = 0.96, rs10305501 β = -0.035 (0.069), p = 

0.61) showing the real signal could be from either or both of the variants.  

 



140 
 

 

 

Figure 7.4 eQTL of GLP-1R variants, rs10305501 (left panel) and rs6923761 (right panel), on GLP-
1R expression in the pancreas (Box plots generated from GTEx portal). 

 

7.5.6. Gene-based association analysis 

To increase the power to find low-frequency and rare nonsynonymous variants associated 

with glycaemic response to GLP-1RA, we performed gene-based meta-analysis using 

64,768 nonsynonymous low-frequency and rare variants from the DIRECT and PRIBA 

cohorts. Each study was adjusted for study specific covariates and the first 10 PCs. The 

meta-analysis showed no genomic inflation (λ = 0.996). Manhattan and Q-Q plots for the 

gene based meta-analysis adjusting for the first 10 PCs are shown in Figure 7.5.
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Figure 7.5 Manhattan (left) and Q-Q (right) plots of the gene level meta-analysis using low-frequency and rare variants from the DIRECT and PRIBA cohorts. 
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The meta-analysis included 16,672 genes and the corresponding genome-wide 

Bonferroni-corrected threshold was 3.0×10-06. We found no genome-wide significant 

results that survived multiple testing correction. Table 7.5 shows the top 14 genes 

demonstrating suggestive evidence of association (p < 5.0 × 10-04) with GLP-1RA 

induced HbA1c reduction.  

 

Table 7.5 The most significant gene-based test results from the meta-analysis. 

Gene symbol Chromosome Cumulative MAF Beta [se] p 

ARRB1 11 0.0019 4.16 [1.04] 6.32 × 10-05 

FANCF 11 0.0116 2.39 [0.61] 9.96 × 10-05 

INO80D 2 0.006 -2.57 [0.68] 1.69 × 10-04 

CDK2 12 0.0018 4.95 [1.32] 1.82 × 10-04 

PIGS 17 0.004 -4.52 [1.21] 1.86 × 10-04 

EEPD1 7 0.0115 -2.32 [0.62] 2.08 × 10-04 

DSCAML1 11 0.0113 3.03 [0.83] 2.44 × 10-04 

NUP43 6 0.007 -1.78 [0.49] 3.05 × 10-04 

KRT75 12 0.0079 3.19 [0.89] 3.17 × 10-04 

TRMT2A 22 0.0019 1.43 [0.40] 3.19 × 10-04 

SHMT2 12 0.0104 -1.33 [0.37] 3.45 × 10-04 

PTH2 19 0.0019 3.58 [1.01] 3.81 × 10-04 

NDUFA7 19 0.0182 -1.78 [0.51] 4.26 × 10-04 

CCDC158 4 0.009 3.53 [1.00] 4.46 × 10-04 

 

The strongest signal of association was observed at chromosome 11 with the mutational 

load of rare nonsynonymous variants in ARRB1 gene (p = 6.32 × 10-05, mean MAF = 

0.2%). The association at this gene had comparable effect sizes with the same direction 

of effect across the two cohorts (Figure 7.6). Two nonsynonymous rare variants namely: 

Thr370Met and Thr275IIe contributed to the association signal at the ARRB1 gene. Given 

these variants are rare in our study population, there are only three people who carry the 

variant alleles at these locus (two heterozygous for one of the variants and one 

heterozygous for both). Their clinical characteristics are shown in Table 7.6. Three of 

them have relatively higher baseline and lower treatment HbA1c after GLP-1RA 

treatment. Other top genes that showed suggestive association are FANCF (p = 9.96 × 10-

05, mean MAF = 1.16%) and CDK2 (p = 1.82 × 10-04, mean MAF = 0.2%). 
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Figure 7.6 Association of mutational burden of low-frequency and rare variants in ARRB1 with 
HbA1c reduction to GLP-1RA treatment across the DIRECT and PRIBA cohorts. 

 

Table 7.6 Clinical characteristics of carriers of the rare variants at ARRB1. 

Characteristics Subject 1 

(Thr370Met) 

Subject 2 

(Thr370Met)  

Subject 3 (Thr370Met 

and Thr275IIe) 

Age at GLP-1R start (years) 64 67 56 

Gender  M F F 

Diabetes duration (years) 8 11 11 

Baseline weight (kg) 142 140 102 

Baseline HbA1c (%) 12.40 11.94 11.03 

Baseline BMI (kg/m2) 45.84 49.02 38.39 

Treatment weight (kg) 142 133 NA 

Treatment  BMI (kg/m2) 45.84 46.57 NA 

Treatment  HbA1c 8.92 5.90 6.82 

Weight fall (kg) 0 7 NA 

BMI fall (kg/m2) 0 2.45 NA 

HbA1c fall (%) 3.48 6.04 4.21 

Insulin at GLP-1R start Yes  No No 

Hypertension status  Yes  yes NA 

GLP-1RA type  exenatide exenatide liraglutide 

Adherence (%) 100 100 100 
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7.6. Discussion 

In this population based PGx meta-analysis, we have demonstrated the association of 

common missense GLP-1R variants, Gly168Ser and Pro7Leu, with poor glycaemic 

response to GLP-1RA treatment in T2D. This effect is particularly strong in the 17% of 

the population that carry three or more rare alleles from the two variants. In addition, the 

gene based meta-analysis using low-frequency and rare nonsynonymous variants 

revealed suggestive evidence of association of β-cell function genes such as ARRB1, 

FANCF, INO80D and CDK2 with glycaemic response to GLP-1RA treatment.   

 

In line with our finding, results from an earlier study showed strong association of the 

Gly168Ser with HbA1c reduction in relation to DPP-4I treatment, drugs that increase 

endogenous GLP-1 levels by reducing its degradation (156). In this study, homozygous 

carriers of the Ser allele had 0.7% (8 mmol/mol) lower reduction in HbA1c compared to 

the Gly allele carriers. However, another small study with obese T2D subjects could not 

find significant difference in HbA1c reduction by Gly168Ser genotype after 14 weeks of 

liraglutide treatment (334).  This could be due to insufficient power from the small sample 

size.  

 

Clinical trials and observational studies showed robust association of GLP-1RA treatment 

with weight loss in diabetic and non-diabetic subjects (202). Consistent with this, we have 

seen a median 3.8 kg weight loss in our study population. However, interindividual 

variation in weight reduction has been previously reported (335). Gly168Ser and Pro7Leu 

have been investigated in relation to GLP-1RA induced weight loss. Some but not all 

have reported association of the Gly168Ser with weight response to GLP-1RA treatment 

in T2D subjects (334). In a pilot study involving obese women with PCOS, the Pro7Leu 

has also been associated with weight lowering potential of liraglutide (328). To ensure 

that the genotypic effect on GLP-1RA is not related to an effect on weight loss, we 

performed sensitivity analysis using a subset of data with complete baseline and on 

treatment weight, the two variants were not associated with weight loss. In addition no 

significant difference by combined genotype was observed suggesting the extra HbA1c 

reduction seen in those variant carriers were not secondary to an excess of weight lost 

induced by GLP-1RA treatment.   
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Reduced glycaemic response to GLP-1RA treatment could presumably be due to reduced 

GLP-1R expression on the pancreatic β-cells and hence insulin secretion. In a study 

performed on transfected cell lines expressing human GLP-1R, the 168Ser variant was 

associated with lower cell surface expression compared to the 168Gly variant (336). In 

addition, the 168Ser allele has been associated with reduced intracellular calcium 

mobilization following GLP-1RA stimulation (336). In line with the in vitro finding, 

reduced β-cell insulin secretory response to exogenous GLP-1 infusion was observed in 

healthy volunteers who carry the 168Ser allele (155).  

 

GLP-1RA act by increasing glucose stimulated insulin secretion in the pancreatic β-cells. 

Markers of β-cell failure has been shown to predict response following treatment with 

GLP-1RA (326). Though our gene based analysis identified no genome wide significant 

associations to glycaemic response after correcting for multiple testing, some of the top 

genes such as ARRB1, CDK2 and FANCF have been previously linked to β-cell function.  

 

The top gene, ARRB1, in the rare variant analysis has been shown to be involved in GLP-

1 induced insulin secretion in the pancreas. Sonoda and colleagues showed attenuated 

GLP-1 signalling, reduced cAMP levels and significantly impaired insulin secretion 

following ARRB1 knockdown in cultured INS-1 pancreatic β-cells (337). Mice with β-

arrestin-2 (ARRB2) knockdown, an important paralogue of ARRB1, had impaired 

glucose tolerance and reduced insulin secretion without affecting insulin sensitivity (338).  

 

The FANCF gene encodes for the FANCF protein in humans. Mutations in the FANC 

family genes are known to cause the Fanconi anaemia (FA), a rare autosomal recessive 

disorder characterised by defects in bone marrow failure (339). The majority of FA 

patients develop diabetes and other abnormalities of glucose metabolism characterised by 

marked defects in insulin secretion, the hall mark of β-cell deterioration (340). 
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CDK2 is important in glucose stimulated insulin secretion. A recent study in mice showed 

the role of CDK2 to couple progressive β-cell deterioration and β-cell dysfunction in the 

pathogenesis of diabetes (341). Severe glucose intolerance primarily due to defects in 

glucose stimulated insulin secretion has been reported with pancreas specific deletion of 

CDK2 (341).   

 

Although this is the largest study to assess variants of the GLP-1R in relation to glycaemic 

response to GLP-1RA in subjects with T2D, there are some limitations. First, unobserved 

confounding, especially in the observational cohorts used, might have biased our results. 

However, no phenotypic difference has been observed by genotype in these study 

population and both the patients, clinicians and practice nurses were (naturally) blind to 

genotype. A further limitation is that not all the patients used the same GLP-1RA drug 

(with 34% using exenatide and 66% using liraglutide). However, we could not see any 

significant difference in HbA1c reduction by these drugs in our analysis nor any effect of 

the SNPs, in these different treatment groups.  

 

7.7. Further works 

Replication in a larger cohort with prospective design in diverse population is necessary. 

In addition, recruit-by-genotype clinical trials are required to validate the utility of these 

variants for genetic testing. Moreover, association of the candidate GLP-1R variants with 

long term glycaemic control and other end points such as cardiovascular outcomes is 

warranted. GLP-1RA are known to increase heart rate as a side effect (342). rs10305501, 

an intronic SNP in strong LD with Gly168Ser, is cis-eQTL with GLP-1R in the left 

ventricle (β = 0.36, p = 2.7 × 10-05) and atrial appendage (β = 0.34, p = 2.4 × 10-04) (240) 

with carriers of the T allele had increased expression. Given the variant is associated with 

poor glycaemic response to GLP-1RA treatment and increase GLP-1R expression in the 

heart, it might be worth investigating its association with heart rate as a potential 

biomarker for both glycaemic response and adverse cardiovascular effects.  

 

Currently, we have got approval to access the prospective clinical trials data on the 

efficacy and adverse effects of GLP-1RA from the GSK. It constitutes around 2,900 

subjects of multiple ancestries treated with GLP-1RA with three years of follow-up. 
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GWAS data is available for most of these samples. In addition, a secondary replication 

cohort for candidate GLP-1R SNPs (Gly168Ser: rs6923761, Pro7Leu: rs10305420) is 

available from Eli Lilly. This data is also a prospective follow up clinical trial with 1000 

samples of European ancestry treated with GLP-RA.  

 

Some of the rare variants that make up the gene based analysis are more frequent in other 

populations. For example, Thr370Met, one of the variants that contributed to our top 

association signal at the ARRB1 gene, is very rare (MAF < 0.1%) among our study 

population, resulting in little statistical power to perform single-marker based association 

analysis with EU samples. However it might be possible to look at other populations such 

as the Latinos and South Asians, where the frequency is as high as 10% (343).  

 

Our gene based analysis suggested that genes involved in β-cell function might play a 

role in glycaemic response to GLP-1RA. Therefore, deriving a GRS using known β-cell 

function associated variants and assessing their role in glycaemic response to GLP-1RA 

treatment is also warranted. 

 

7.8. Clinical implications 

Carriers of three or more rare alleles in candidate GLP-1R variants had 0.5% (5.5 

mmol/mol) lower reduction in HbA1c compared to 21% of the population that carry no 

risk alleles. This genotype related effect size is equated to 0.6 mg of liraglutide QD or 10 

µg exenatide BID making this the largest, most common PGx effect described to date in 

T2D suggesting it may have a role as a potential biomarker for stratified medicine in 

clinical care. 
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CHAPTER 8. GENERAL DISCUSSION 
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8. GENERAL DISCUSSION 
8.1. Introduction 

Insufficient insulin secretion, fueled by reduced insulin action that arises through genetic 

and/or environmental factors, leads to the development of T2D, manifested by 

hyperglycaemia. Uncontrolled diabetes is strongly associated with microvascular and 

macrovascular complications that can damage nerves, blood vessels, and other organs. 

These complications can be debilitating or even life-threatening. A wide range of 

hypoglycaemic agents are available to control blood glucose of patients with T2D. These 

agents act in multiple tissues to enhance insulin secretion or insulin action (Figure 8.1). 

Interindividual variation in response to drugs is observed in clinical practice, ranging 

from lack of therapeutic efficacy to extreme adverse effects. Aside from common clinical, 

demographic and environmental factors, such as: age; gender; BMI; duration of diabetes; 

co-morbidities and drug interactions, genetic polymorphisms could be potential 

determinants of variability in drug response in T2D. PGx studies aspire to identify genetic 

biomarkers that can help to predict subgroups of subjects that are likely to benefit, or not, 

for a given drug. In addition, these studies may help to understand molecular mechanisms 

of action and functional characterization of existing drugs. Moreover, PGx may help to 

identify novel druggable targets for new therapeutic options.   

 

In chapter 1 of this thesis, previous findings related to the PGx of T2D drugs, along with 

their methodological challenges, were described. Subsequent chapters presented findings 

that could contribute to the knowledge of the genetic determinants of drug response in 

T2D. In this discussion chapter, a summary of the main findings in light of the existing 

knowledge will be discussed first; followed by methodological issues with the definition 

of drug response. Second, I discuss the role of PGx in understanding on-target and off-

target effects of drugs followed by its role in understanding drug biology and drug 

discovery. Finally, future work and clinical implications of our findings will be elaborated 

upon.  



150 
 

 
 Figure 8.1 Target organs and mechanisms of action of drugs for type 2 diabetes. 

 

8.2. Summary of the main findings   
8.2.1. Metformin and the gut 
Despite the clinical importance of metformin in the management of T2D, its mechanism 

of action in glucose lowering is not well characterized. In addition, in up to 10% of 

patients severe GI intolerance, with poorly understood underlying mechanisms, could 

lead to premature discontinuation. There is emerging evidence indicating that the gut is 

not only a mediator of metformin’s hypoglycaemic effects but is also related to the major 

side effects of metformin (59). In chapter 3, I provide evidence suggesting that metformin 

increases fasting GLP-1 levels in subjects with and without T2D, independent of weight 

and glycaemia, which could partially explain the mechanism of metformin’s glycaemic 

action in the gut, in line with results from previous studies (206, 221, 344). Furthermore, 

I tested if high gut metformin concentration, due to co-administration of drugs that 
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compete with metformin or genetic defects at gut transporters, could play a role in 

metformin’s GI side effects in chapter 4. The results suggested increased odds of GI 

intolerance with interacting drugs such as PPIs, TCAs and codeine, complementing 

previous report from the GoDARTS study (34). In addition, I found that carriers of the G 

allele of a cis-eQTL intronic SNP (rs3889348) in SLC29A4 (PMAT), which is highly 

expressed in the gut, had higher risk of GI intolerance. Carriers of the G allele would have 

a significantly higher risk of GI intolerance from metformin if they are treated with 

interacting drugs. 

 

8.2.2. Thiazolidinediones  
The TZDs, pioglitazone and rosiglitazone, are insulin sensitizers introduced in the late 

1990’s. Following evidence suggesting increased risk of cardiovascular outcomes, Sales 

of rosiglitazone was restricted in the US and banned in Europe. Re-evaluation returned 

the drug to the shelves in the US in 2013. Pioglitazone is also suspended in France and 

Germany after a study suggesting increased risk of bladder cancer.  Targeted prescribing 

by identifying those who can benefit the most with minimal risk, instead of applying a 

universal ban, might be a win-win solution. In chapter 5 of this thesis, I confirmed that 

TZDs work better in women and obese people. In addition, association of coding variants 

in SLCO1B1 (Val274Ala) and CYP2C8 (Arg139Lys and Lys399Arg) genes with 

glyceamic response to rosiglitazone is shown. The super responders, as defined by 

combined genotypes in these two genes, had significantly greater reduction in HbA1c to 

rosiglitazone compared to the poor responders. These findings need to be investigated in 

a larger cohort, work that is currently ongoing in the MetGen plus consortium. If the 

results are replicated, TZDs may be targeted in obese women with loss of function 

genotypes in SLCO1B1 and CYP2C8, except those who respond better genetically but 

also put on more weight.   

 

8.2.3. Insulin secretaguges  
In chapter 6, I adopted candidate gene, GWAS and pathway analysis approaches to study 

the PGx of glycaemic response to SU. This enabled us to shift from hypothesis testing 

based on prior knowledge to a hypothesis generating approach. The candidate gene 

approach provided evidence suggesting that the E23K variant in the KCNJ11 gene was 

associated with HbA1c reduction following SU therapy as an add-on to metformin. 

Carriers of the diabetes risk increasing K allele at this variant had greater HbA1c 
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reduction compared to carriers of the E allele. However, the E23K is not associated with 

HbA1c reduction when SU is given as monotherapy. These findings are consistent despite 

the use of two different outcome definitions: the minimum HbA1c in 18 months of 

therapy and the HbA1c measure closer to 12 months of SU therapy. SU exert their 

antihyperglycaemic effect by stimulating insulin secretion from the pancreatic β-cells. In 

this context, HbA1c is a surrogate proxy of the amount of insulin secretion attributable to 

SU.  However, HbA1c as the standard index of glycaemic control is affected by both 

insulin secretion and insulin sensitivity (345). Therefore, HbA1c might be a better proxy 

of glycaemic response to SU where variation in insulin sensitivity is better controlled with 

an existing insulin sensitizer like metformin. While this could explain the observed 

discrepancy in the genetic effect of the E23K-KCNJ11 between the mono and dual 

therapy groups, using a clean phenotype for β–cell response such as HOMA-β is 

warranted. 

 

The hypothesis-free GWAS revealed an intronic SNP in the LHFPL3 gene was associated 

with HbA1c reduction following SU therapy. The T allele at rs11535279 is associated 

with poor glycaemic response and suggestive evidence of reduced β-cell responsiveness 

to tolbutamide. In addition, pathway analysis showed enrichment of the insulin/IGF 

pathway-mitogen activated protein kinase/MAPK cascade. This enrichment lies in the 

insulin signaling pathway suggesting the post secretion cascade might play an important 

role in SU mediated glycaemic response. In an effort to replicate these findings, we are 

reaching out to similar studies including the UKPDS and the MetGen plus consortium.  

 

GLP-1RAs are widely prescribed in combination with other drugs for diabetic and obese 

patients. Glycaemic response to GLP-1RAs is highly variable. In chapter 7, evidence to 

suggest genetic factors associated with HbA1c reduction following GLP-1RAs treatment 

were provided. I observe carriers of the 168Gly and 10Pro variants in GLP-1R gene 

achieved greater reduction in HbA1c than carriers of the variant alleles, independent of 

weight loss. When genotypes of the two variants were combined into a GRS, homozygous 

carriers of the ancestral allele had significantly more HbA1c reduction than carriers of ≥ 

3 variant alleles (0.5% (5.5 mmol/mol)). Given that these observations are independent 

of weight loss, which is inherent to GLP-1RAs and could result in glucose reduction, 

along with the fact that population frequency of these variants is high, the variants may 

have a role as potential biomarkers for stratified medicine in clinical care, if replicated in 



153 
 

clinical trials. In addition, our gene based burden test reveals suggestive evidence of 

association of genes such as ARRB1, CDK2 and FANCF with glycaemic response to GLP-

1RAs. Involvement of these genes in β-cell function is previously reported (337-341). 

Therefore, further follow-up studies with bigger sample size are warranted.  

 

8.3. Measuring drug efficacy in diabetes  
In this thesis, reduction in HbA1c is usually used to measure efficacy of 

antihyperglycaemic agents. HbA1c estimates average blood glucose levels over a three 

month period of time. HbA1c is a good surrogate marker to predict long term macro and 

microvascular complications of diabetes. However, short term and long term blood 

glucose fluctuations that are not captured by HbA1c are believed to contribute to 

increased cardiovascular events in diabetes (346). Continuous optimization to reduce 

postprandial and average blood glucose levels, while avoiding hypoglycaemia, is 

required. Therefore, glycaemic variability that can capture the postprandial glucose spikes 

and hypoglycaemic events might be utilized as an outcome variable. Other clinically 

relevant hard end points such as vision loss and renal failure are increasingly being 

recognized following the rosiglitazone saga (347). Governing bodies now require studies 

on hard cardiovascular end points before approving new antidiabetic drugs (348). 

Therefore, more PGx studies should use hard endpoints where they are available. 

 

In all the glycaemic response models used in this thesis, baseline HbA1c was by far the 

strongest predictor of drug response, with patients starting at higher HbA1c levels 

responding better. There were concerns whether or not to adjust for baseline HbA1c in 

response models. However, a recent study by Jones et al recommends including baseline 

HbA1c to the model as a simple and effective way to avoid bias in studies involving drug 

response in diabetes (21). The proportion of phenotypic variance in HbA1c reduction 

explained by each candidate genetic variant is relatively small after adjustment for 

baseline HbA1c. For example, the Gly168Ser variant explains around 0.75% of the 

HbA1c reduction phenotype following GLP-1RA treatment. This is in line with most PGx 

studies involving quantitative trait outcomes in which each variant explains only a tiny 

proportion (<1%) of the phenotypic variance (349). Given the small effect sizes, the 

clinical utility of genetic predictors of efficacy or adverse effect is the big question. 

Although the predictability is not high for the majority of the population, small subgroups 

that are extreme responders or non-responders sensitive/resistant to drugs can be 
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identified. This is evidenced in chapters 5 and 7, where I looked at genetic extremes of 

homozygotes in response to rosiglitazone and GLP-1RAs. The other approach to increase 

predictive power of genetic variants could be deriving a GRS by combining multiple loci 

of modest effect size on efficacy of antidiabetic drugs, which may deliver a potentially 

useful tool to predict drug response.   

 

8.4. Pharmacogenomic perspectives of on-target and off-target effects of drugs  
While most PGx studies on antidiabetic drugs focus mainly on efficacy, it could also 

provide valuable insights into the unintended off-target effects of drugs. For example, 

carriers of the parent CYP2C8*1 allele have reduced hepatic metabolism of rosiglitazone 

(133, 134) compared to carriers of CYP2C8*3, and hence greater HbA1c reduction (350). 

However, the same variant is also associated with significant weight gain, an undesired 

phenotype in T2D. GLP-1RAs that act by binding with the GLP-1R, expressed in multiple 

tissues including the pancreas and the heart, could also be another example. Increased 

heart rate is reported as a side effect of GLP-1RAs treatment (342, 351). In chapter 7 of 

this thesis, I have shown association of the 168Ser allele with poor glycaemic response 

following GLP-1RA therapy. Carriers of this allele also had reduced expression of GLP-

1R in the pancreas but increased expression in the heart (352). The observation of this 

tissue specific differential expression effect of the PGx variant could potentially explain 

the off-target effect of GLP-1RA induced increments in heart rate, although this has to be 

established in prospective clinical studies. Drug response, in the context of interaction 

networks using a systems biology approach, could also help to identify specific on-target 

and off-target effects of drugs that might deliver insights into cellular mechanisms in 

protein-drug interaction networks. By applying this model, Xie et al successfully 

identified the reason for the off-target side effect of hypertension as a result of torcetrapib, 

an investigative drug for cardiovascular disease prevention (353). In this study torcetrapib 

is shown to have high affinity for activators in the renin-angiotensin-aldosterone system, 

a known pathway for blood pressure regulation. These examples highlight the importance 

of PGx in understanding the desired and undesired effects of drugs in the pre-development 

and post-marketing authorization of drugs.  

 

8.5. Pharmacogenomics to understand drug biology and drug discovery 
PGx can lead to the identification of unknown targets for existing drugs, thereby 

enhancing our understanding of the mechanism by which drugs work in different 
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physiological states. For example, GWAS on glycaemic response to metformin treatment 

in T2D patients identified variants near the ATM and SLC2A2 genes highlighting the 

hepatic mechanism of metformin (24, 25). PGx can also provide insights into the genetics 

of disease phenotypes. For example, Segrè et al reported detection of strong enrichment 

of genes that encode proteins targeted by antidiabetic drugs for T2D using multiple 

summary GWAS data for T2D and other glycaemic traits (354).  

 

Conventional target validation methods in pre-clinical studies of new drug development 

processes are not efficient (355). Drug target identification with a support of genetic 

evidence is more likely to yield a valid therapeutic agent (356). The discovery of SGLT-

2 inhibitors could be a good example of how genetic evidence can be utilized in drug 

development. The finding that carriers of the loss of function variants in SLC5A2, a gene 

encoding SGLT-2, had familial glycosuria with normal blood glucose level, could have 

led to successful development of SGLT-2 inhibitors as antidiabetic drugs. Genetic 

evidence showing the association of rare genetic variants in the Proprotein convertase 

subtilisin/kexin type 9 (PCSK9) gene with low density lipoprotein (LDL)-cholesterol 

levels (357, 358) gave birth to a new class of cholesterol-lowering agents (359). This is 

another example which highlights the utility of human genetic knowledge in therapeutic 

target identification and validation.  

 

PGx is an ideal system for the discovery and validation of new therapeutic targets. 

Homeostatic regulation before and after the onset of a disease might not be the same 

(360). While human genetic studies before the onset of the disease could be more 

informative to identify a target for preventive drug development, PGx studies that are 

carried out after disease onset would be better to identify and validate therapeutic targets 

for treatment (361). For example, identification of variants in the LHFPL3 gene 

associated with glycaemic response to SU might generate a very early hypothesis, which 

would require replication and supportive evidence from in vitro and in vivo functional 

studies.    

 

8.6. Future directions 
I have shown the robust association of metformin use with increased fasting GLP-1 levels 

in diabetic and non-diabetic subjects. However, the mechanism of this GLP-1 response 

to metformin remains unclear. Therefore, it is worth exploring metformin associated 
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GLP-1 secretion, perhaps with the aid of genetics. This is possible by using GWAS data 

from the DIRECT study, where recently diagnosed T2D subjects that are either on 

metformin or lifestyle treatment are genotyped. Metformin also has cardiovascular 

benefits through unknown mechanisms. It would also be interesting to look at the effect 

of genetic variants on the cardiovascular outcomes of metformin treatment. In addition, 

the role of the microbiome in the gut effect of metformin is increasingly being appreciated 

(52, 57). Manipulation of the gut microbiota is previously reported to modulate GLP-1 

secretion (362). Therefore, future investigation into the contribution of the gut 

microbiome in metformin-induced GLP-1 secretion is warranted.    

 

The finding I have observed regarding the association of non-synonymous genetic 

variants in GLP-1R with glycaemic response to GLP-1RA treatment is interesting. Given 

the observational nature of the data, it is worth attempting to replicate the results in a 

more formal clinical trial data with prospective design. Inspired to facilitate medical 

science innovation and improve clinical care, the consortium of clinical study data 

providers (https://clinicalstudydatarequest.com/) has decided to make anonymized 

patient level clinical data accessible to scientists upon request. Using this opportunity, we 

have approval to access clinical and genetic data from the GSK-Harmony studies where 

nearly 2,900 subjects are randomized to the GLP-1RAs, albiglutide or liraglutide, with 

GWAS available for most subjects. Eli Lilly has also agreed to genotype their study 

participants for our candidate variants, in their clinical studies where more than 1,000 

patients have participated. If the findings replicate, DIRECT is committed to carrying out 

recruit-by-genotype trials that might pave the path to translate the observed association 

into clinical practice.  

 

The candidate gene approach with a pre-specified set of genes has been widely utilized 

in PGx studies. The advent of array-based genotyping technologies allows us to scan 

millions of SNPs across the whole genome in a hypothesis free fashion. This GWAS 

approach has revolutionized the landscape of genetic research. In this thesis, I used 

candidate gene and GWAS approaches to investigate the genetic determinants of drug 

response phenotypes. High-throughput technological advancements enabled deep 

genome sequencing and generate other layers of omics data from epigenomics, 

transcriptomics, proteomics, metabolomics and microbiomics for medical research. This 

is usually accompanied by statistical advancements with development of tools that are 
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relatively easy to use. While each type of omics might provide specific information, 

integrative analysis across these layers may help to unravel the underlying mechanism (s) 

of drug response in complex diseases such as diabetes. T2D is a polygenic trait in which 

a single gene is unlikely to determine drug response. Complex biological networks that 

function at different levels in a living system are expected to enhance our understanding. 

Therefore, with the availability of such data, multi-omics analysis is warranted. 

 

8.7. Clinical translations of the findings 
Based on the findings in this thesis the following might have clinical implications: 

• Co-prescribing metformin with PPIs, TCAs and codeine is likely to increase the odds 

of GI intolerance. These odds may increase further with defective genetic background 

in PMAT and/or OCT1. 

• Clinically meaningful difference in HbA1c reduction (0.39% (4 mmol/mol)), 

equivalent to one-third of the average HbA1c reduction achieved by 8 mg daily 

rosiglitazone, is observed between the “super responders” and “poor responders” to 

rosiglitazone as defined by the CYP2C8*3 (linked polymorphisms of Arg139Lys and 

Lys399Arg) and SLCO1B1 521 T>C (Val174Ala) genotypes.  

• A difference of 0.5% (5.5 mmol/mol) in HbA1c reduction following 6 months of 

GLP-1RA treatment, between individuals who carry three or more variant alleles in 

candidate GLP-1R (Gly168Ser, Pro7Leu) variants (17% of the population) compared 

to homozygous carriers of the parent alleles at both variants (21% of the population), 

is equivalent to 0.6 mg of liraglutide QD or 10 µg Exenatide BID. This might have a 

significant impact in clinical practice guidelines for the prescribing of GLP-1RAs.   
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LIST OF APPENDICES 

Appendix I: Summary of studies on gene-drug interaction in type 2 diabetes 

Table A1 Overview of studies focusing on gene-metformin interaction in type 2 diabetes 

Variant Population Study 
group  

N Outcome  Major findings PMID  Author 
(publication 
year) 

OCT1 
rs12208357(C>T), 
rs72552763(GAT>del), 
rs34130495(G>A), 
rs34059508(G>A) 

Caucasians Healthy  34 PK (AUC, Cmax, 
CLrenal) 

No significant difference in steady state PK 
parameters between carriers of 0, 1 or 2 
reduced function alleles.  

25939711  Christensen et 
al (2015) 

rs12208357(C>T), 
rs72552763(GAT>del), 
rs34130495(G>A), 
rs34059508(G>A) 

Caucasians  T2D 103 PK (CL/F) None of the SNPs showed significant 
association with total clearance of metformin. 

23475568  Duong et al 
(2013) 

rs12208357(C>T), 
rs72552763(GAT>del), 
rs34130495(G>A), 
rs34059508(G>A) 

Caucasians  Healthy 
male 

103 PK (CLrenal) Carriers of 0, 1 and 2 reduced function 
variants showed increasing pattern of renal 
clearance (30.6, 33.1, 37.1 L/h, p = 0.04). 

19536068  Tzvetkov et al 
(2009) 

rs12208357(C>T), 
rs34130495(G>A), 
rs34059508(G>A), 
420del 

Caucasians  Healthy 20 PK (Cmax, AUC, 
V/F) 

Individuals having one or more variants 
showed higher Cmax (p = 0.004), AUC (p = 
0.01) and lower oral volume of distribution (P 
= 0.02).  

17609683  Shu et al 
(2007) 

rs12208357(C>T), 
rs72552763(GAT>del), 
rs34130495(G>A), 
rs34059508(G>A) 

Caucasians  T2D 159 PK (trough steady 
state 
concentration) 

Increasing number of deletions were 
associated with significant trend to decrease in 
trough steady state concentration (none, one or 
two: 642, 542, 397 ng/mL; p = 0.001).   

21989078  Christensen et 
al (2011) 

rs12208357(C>T), 
rs72552763(GAT>del), 
rs34130495(G>A), 
rs34059508(G>A) 

Caucasians  T2D 159 Response (HbA1c 
reduction) 

Individuals with zero, one and two reduced 
function alleles showed 0%, 0.2 % (0.2-0.6) 
and 1.1% (0.4-1.9) HbA1c reduction. p = 
0.016, 
 

21989078  Christensen et 
al (2011) 

rs12208357(C>T), 
rs72552763(GAT>del), 

Multi-ethnic T2D 171 Response (HbA1c 
reduction) 

None of these reduced function SNPs showed 
significant association with HbA1c reduction. 

PMC3006
596  

Davis et al 
(2010) 
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rs34130495(G>A), 
rs34059508(G>A) 
rs12208357 (C>T), 
420del 

Caucasians  T2D 1531 Response (HbA1c 
reduction, 
achieving 
treatment target, 
the hazard of 
monotherapy 
failure) 

No significant association between these loss 
of function variants and response. 

19336679  Zhou et al 
(2009) 

rs12208357(C>T), 
rs72552763(GAT>del), 
rs34130495(G>A), 
rs34059508(G>A) 

Caucasians  PCOS 
women 

150 Response 
(Insulin, total 
cholesterol, 
triglycerides)  

Carriers of no reduced function allele showed 
significant reduction in total cholesterol (-
14mg/Dl (0.8mmol/L), p = 0.002), and 
triglycerides (-17mg/dL (0.9mmol/L), p = 
0.008). Insulin AUC decreased in carriers of 0 
or 1 reduced function OCT1 variant carriers 
but not in two or more. 

20660041  Gambineri et 
al (2010) 

rs622342 A>C Caucasians T2D 102 Response (HbA1c 
reduction) 

Each minor C allele was associated with 
0.28% (0.09-0.47, p = 0.005) less HbA1c 
reduction.  

19381165  Becker et al 
(2009) 

rs622342 A>C Caucasians  T2D 148 Response (HbA1c 
reduction) 

The minor allele was not associated with 
HbA1c reduction. 

22882994  Tkac et al 
(2012) 

–43T > G Japanese  T2D 33 Response 
(achieving target) 

The minor allele was more frequent in 
responders than non-responders (0.42 vs 0.33, 
p < 0.05). 

17111267  Shikata et al 
(2007) 

rs628031 (Met408Val) Japanese T2D 33 Response 
(achieving target) 

The Met allele was more frequent in non-
responders than responders (0.28 vs 0.19, p < 
0.05). 

17111267  Shikata et al 
(2007) 

rs683369 (G>C) Multi-ethnic  High 
risk 

990 Response 
(diabetes 
incidence)  

The major allele showed protective effect (HR 
= 0.69, 0.53-0.89, p =0.004). 

20682687  Jablonski et al 
(2010) 
 

rs12208357(C>T), 
rs72552763(GAT>del), 
rs34130495(G>A, 
rs34059508(G>A), 
rs55918055(T>C) 

Caucasians T2D 2166 Response (GI side 
effect) 

Carriers of two or more reduced function 
alleles showed 2.41 (1.48-3.93, p < 0.001) 
times higher odds of developing GI side 
effects than carriers of no or one. 

25510240  Dujic et al 
(2015) 

rs12208357(C>T), 
rs34059508(G>A) 

Caucasian  T2D 246 Response (GI side 
effect) 

The minor alleles of these variants showed no 
significant association with GI side effect. 

22735389  Tarasova et al 
(2012) 
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rs628031 (A>G) Caucasian  T2D 246 Response (GI side 
effect) 

The A allele showed significant association 
with GI side effect (OR = 0.389, p = 0.012). 

22735389  Tarasova et al 
(2012) 

rs36056065 
(G160560908delinsGTA
AGTTG) 

Caucasian  
 

T2D 246 Response (GI side 
effect) 

8bp insertion showed significant association 
with GI side effect (OR = 0.405, p = 0.002) 

22735389  Tarasova et al 
(2012) 

OCT2 
OCT2_c.596C>T, 
OCT2_c.602C>T, 
OCT2_c.808G>T 

In vitro   PK (uptake)  Carriers of the variant alleles showed 
significant (596C>T, 602C>T, 808G>T: 68.6, 
60.1, and 39.6%) decrease in clearance than 
carriers of the reference alleles.  

18401339  Song et al 
(2008) 

OCT2 808G >T In vitro    PK (uptake) The minor allele showed 1.5 times higher 
metformin uptake than the reference allele (p 
< 0.01). 

19483665  Chen et al 
(2009) 

OCT2_808G >T Chinese T2D 18 PK  (AUC, 
CLrenal, 
CLtubular)  

Heterozygous GT carriers had higher AUC, 
CLrenal and CLtubular than wild GG 
genotype (p < 0.05). 

25573751  Hou et al 
(2015) 

OCT2_808G >T Chinese  Healthy  15 PK (CLtubular) The minor allele was associated with reduced 
renal tubular secretion (p = 0.037). 

18551044  Wang et al 
(2008) 

OCT2_808G >T Caucasians  Healthy  50 PK (CLrenal, 
CLtubular) 

The minor allele showed no effect on the PK 
of metformin. 

23873119  Christensen et 
al  (2013) 

OCT2_808G >T Korean Healthy  96 PK (AUC, Cmax) Homozygous GG carriers showed lower AUC 
(0.007) and lower Cmax than heterozygous 
GT (p = 0.012) carriers. 

23417334  Yoon et al 
(2013) 

OCT2_808G >T Caucasian, 
Afro-
American 

Healthy  23 PK (CLrenal, 
CLtubular) 

Subjects homozygous for the reference allele 
showed lower renal (0.005) and tubular 
clearance (0.002) than heterozygous subjects. 

 19483665  Chen et al 
(2009) 

OCT2_602C>T, 
OCT2_c.596C>T 

Korean Healthy  26 PK (Cmax, CL/F, 
CLrenal, 
CLtubular) 

Participants heterozygous for the minor allele 
of either of the variants showed higher Cmax 
and AUC & lower Cl/F, CLrenal, CLtubular. 

18401339  Song et al 
(2008) 

OCT2_808G >T Chinese T2D 209 Response (HbA1c 
reduction)  

Heterozygous GT carriers showed greater 
HbA1c reduction than  the wild type (-2.2 vs -
1.1, p < 0.05) 

25573751  Hou et al 
(2015) 

OCT2_808G >T Caucasian T2D 148 Response (HbA1c 
reduction) 

The minor allele showed no significant 
difference in HbA1c reduction. 

22882994  Tkac et al 
(2012) 

OCT2_808G >T Japanese T2D 33 Response 
(achieving target) 

No significant difference in prevalence of the 
minor allele between responders and non-
responders. 

17111267  Shikata et al 
(2007) 
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OCT2_808G >T Caucasians  T2D 246 Response (GI side 
effect) 

The minor allele showed no significant 
association with GI side effect. 

22735389  Tarasova et al 
(2012) 

OCT2_808G >T Chinese  T2D 400 Response (lactate 
concentration)  

Patients with the mutant genotype (TT) had 
higher incidence of hyperlactacidemia 
compared with the GG genotype (40% vs 
6.9%, p = 0.05). 

20139901  Li et al (2010) 

OCT2_602C>T Japanese T2D 33 Response 
(achieving target) 

No significant difference in prevalence of the 
minor allele between responders and non-
responders. 

17111267  Shikata et al 
(2007) 

OCT2_602C>T Iranian  T2D 40 Response(Insulin 
resistance 
(HOMA-IR) and 
beta cell function 
(HOMA-BCF)) 

The T allele was associated with significant 
increase in HOMA-IR (p = 0.019) but not 
HOMA-BCF than homozygous CC. 

25662675  Kashi et al 
(2015) 

rs662301C>T Multi-ethnic High 
risk 

990 Response 
(diabetes 
incidence)  

Carriers of the major allele benefit from 
metformin’s protective effect (p = 0.02). 

20682687  Jablonski et al 
(2010) 
 

OCT3 
T44M_131C>T In vitro   PK (uptake) The minor allele showed 60% more uptake of 

metformin than the reference genotype (p < 
0.001). 

20859243  Chen et al 
(2010) 

V423F_1267G>T In vitro   PK (uptake) The minor allele showed 50% less uptake of 
metformin than the reference genotype (p < 
0.001). 

20859243  Chen et al 
(2010) 

400I_1199C>T In vitro   PK (uptake) The minor allele showed 80% less uptake of 
metformin than the reference genotype (p < 
0.001). 

20859243  Chen et al 
(2010) 

rs3120137 G>A, 
rs3123634 C>T, 
rs12194182 A>G, 
rs2292334 C>T, 
rs2504927 G>A, 
rs2457576 C>G 

Caucasians  Healthy 
male 

103 PK (CLrenal) None of the variants showed significant 
association with renal clearance. 

19536068  Tzvetkov et al 
(2009) 

rs2076828 C > G Asian, Afro-
American 

Healthy  57 PK (AUC, 
CLrenal, 
CLtubular) 
Response (OGTT) 

The minor allele showed no association with 
the PK of metformin but significantly smaller 
change in AUC than the wild type (p < 0.001)  

25920679  Chen et al 
(2015) 
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OCT3-/- Knockout 
mice 

  PK  Knockout mice showed significant reduction 
in apparent volume of distribution, Clearance 
and bioavailability (p < 0.001) 

25920679  Chen et al  
(2015) 

L503F Leu>Phe Caucasians  Healthy 
male 

103 PK (CLrenal) The variants showed no significant association 
with renal clearance 

19536068  Tzvetkov et al 
(2009) 

MATE1 
G64D and V480M In vitro   PK (uptake) These variants showed complete loss of 

function 
19172157  Chen et al 

(2009) 
G64D, L125F, V338I, 
V480M, C497S 

In vitro   PK (uptake) These variants showed reduced transport of 
metformin (p < 0.01) than the reference 
genotypes 

19172157  Chen et al 
(2009) 

rs2289669G>A Chinese  T2D 30 PK (AUC, 
CLrenal, 
CLtubular) 

Homozygous A allele carriers showed higher 
AUC and lower clearance (p <0.01) than the 
reference genotype. 

26004431  He et al 
(2015) 

rs2289669G>A Japanese T2D 48 PK (oral 
clearance) 

Heterozygosity for the minor allele showed no 
significant difference in oral clearance 
compared with homozygous GG 

20016398  Toyama et al 
(2010) 

rs2252281T>C Asian, Afro-
American 

Healthy  57 PK (Cmax, 
CLrenal),  
Response 
(Glucose AUC 
after OGTT) 

No significant genotype-PK association was 
showed, Homozygous CC carriers had lower 
glucose AUC (greater response) than the 
reference allele.  

23267855  
 

Stocker et al 
(2013) 

rs2289669G>A Caucasians  T2D 148 Response (HbA1c 
reduction) 

Homozygous A allele carriers showed higher 
HbA1c reduction than carriers of the G allele 
(1.10 ± 0.18% vs 0.55 ± 0.09%, p = 0.02) 

22882994  Tkac et al 
(2012) 

rs2289669G>A Multi-ethnic T2D 171 Response (HbA1c 
reduction) 

Carriers of the minor allele (A) had 0.45% 
(0.17-0.74%) smaller absolute HbA1c 
reduction than homozygous GG carriers 

PMC3006
596  

Davis et al 
(2010) 

rs2289669G>A Caucasians  T2D 116 Response (HbA1c 
reduction) 

Each minor allele was associated with 0.3%  (-
0.51 to -0.10, p < 0.005) more A1c reduction 

19228809  Becker et al 
(2009) 

rs2289669G>A Chinese  T2D 220 Response (HbA1c 
reduction) 

Homozygosity for the minor allele (-2.3%) 
showed significantly higher HbA1c reduction 
than GG (-1.16%)  and GA (-1.07%)  allele 
carriers  (p < 0.05) 

26004431  He et al 
(2015) 

rs2289669G>A Caucasians 
 

T2D 246 Response (GI side 
effect) 

The minor allele showed no significant 
association with GI side effect 

22735389  Tarasova et al 
(2012) 
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rs2252281T>C Caucasians, 
Afro-
Americans 

T2D 249 Response (HbA1c 
reduction) 

After removing OCT1 variant carriers, 
patients 
homozygous for the minor allele had 
significantly larger relative change in HbA1c 
levels (i.e. greater response to metformin) than 
patients carrying at least one reference allele 
(p = 0.01). 

23267855  
 

Stocker et al 
(2013) 

rs8065082C>T Multi-ethnic  High 
risk 

990 Response 
(diabetes 
incidence)  

The minor allele was associated with lower 
incidence of T2D after metformin treatment 
(HR = 0.78, 0.64-0.96, p = 0.02) 

20682687  Jablonski et al 
(2010) 
 

MATE2 
rs12943590G>A Multi-ethnic T2D 171 Response (HbA1c 

reduction) 
Homozygous AA carriers had 0.43% lower 
HbA1c reduction (0.43%, 0.053-0.86%) than 
the reference genotype 

PMC3006
596  

Davis et al 
(2010) 

rs12943590G>A Caucasian, 
Afro-
American 

Healthy  57 PK (CLrenal, 
CLrenal), 
Response 
(Glucose AUC 
after OGTT) 

Carriers of one or more variant allele showed 
higher renal and tubular clearance than 
homozygous GG (p < 0.05), Homozygosity 
for the reference allele was associated with 
higher glucose AUC (p < 0.05) 

23267855  
 

Stocker et al 
(2013) 

c.485C>T, c.1177G>A In vitro   PK (uptake) Both variants showed 3-5 times lower 
metformin uptake than the reference (p < 0.05 
) allele 

21956618  Choi et al 
(2011) 

rs12943590G>A Caucasian + 
Afro-
American 

T2D 253 Response (HbA1c 
reduction)  

Patients homozygous for the minor allele had 
smaller change in HbA1c than carriers of the 
reference allele (−0.027 vs −0.15, p = 0.002) 

21956618  Choi et al 
(2011) 

AUC: area under the curve; CLrenal: renal clearance; CLtubular: renal clearance by secretion; CL/F: total clearance; Cmax: maximal plasma concentration; HbA1c: 
glycated haemoglobin; HOMA-BCF: homeostasis model assessment of beta cell function; HOMA-IR: homeostasis model assessment of insulin resistance; OGTT: oral 
glucose tolerance test; PCOS: polycystic ovary syndrome; PK: pharmacokinetics; T2D: type 2 diabetes mellitus; V/F: oral volume of distribution.  
 
 
Table A2 Overview of studies focusing on gene-SU interaction in type 2 diabetes 

Gene Variant Populati
on 

Stud
y 
grou
p  

Drug N Outcome  Major findings PMID  Author 
(publication 
year) 

CYPs 
CYP2C
9 

CYP2C9*
2 and *3 

Caucasia
ns 

T2D  Tolbutami
de 

475 Response 
(prescribed dose) 

*3 genotype carriers were prescribed with lower 
dose of tolbutamide than the wild type carriers 

1759771
0  

Becker et al 
(2008) 
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(p < 0.05). *2 carriers showed no significant 
difference compared to the wild type. 

CYP2C
9 

CYP2C9*
2 and *3 

Caucasia
ns 

T2D SUs 107
3 

Response 
(achieving target 
HbA1c, HbA1c 
reduction, time to 
monotherapy 
failure) 

Patients with two copies of loss of function 
alleles were 3.4 (p = 0.0009) times more likely 
to achieve target HbA1c than wild type carriers 
or 0.5% greater HbA1c reduction, and low 
hazard of monotherapy failure. 

1979441
2  

Zhou et al 
(2010) 

CYP2C
9 

CYP2C9*
3 

Japanese T2D Glimepirid
e  

42/
6 

Response (HbA1c 
reduction), PK 
(AUC) 

CYP2C9*1/*3 genotype was associated with 
significantly greater HbA1c reduction (p < 
0.05).  

1632529
5  

Suzuki et al 
(2006) 

CYP2C
9 

CYP2C9*
2 and *3 

Caucasia
ns  

T2D SUs 207 Response 
(prescribed dose, 
time to stable 
dose) 

No significant association but trend towards 
lower stable glimepiride dose was observed. 

2112177
2  

Swen et al 
(2010) 

CYP2C
9 

CYP2C9*
2 and *3 

Caucasia
ns 

T2D SUs 357 Response (severe 
hypoglycaemia) 

*3/*3 and *2/*3 genotypes were more common 
in the hypoglycaemic group than the 
comparison group (10% vs < 2%, p = 0.028). 

1596310
1  

Holstein et 
al (2005) 

CYP2C
9 

CYP2C9*
2 and *3 

Caucasia
ns  

T2D Glimepirid
e and  
glyclazide  

176 Response 
(incidence of 
hypoglycaemia) 

Patients with *1/*3 genotype had 1.69 (p = 
0.011) times higher risk of hypoglycaemia. 

1989155
4  

Ragia et al 
(2009) 

CYP2C
9 

CYP2C9*
2 and *3 

Turkish T2D SUs 108 Response (mild 
hypoglycaemia) 

CYP2C9*2 and *3 were more frequent in the 
hypoglycaemic group than non-hypoglycaemic 
group (7% vs 3%, p < 0.05) 

2169180
5  

Gokalp et al 
(2011) 

CYP2C
9 

CYP2C9*
2 and *3 

Caucasia
ns 

T2D SUs 203 Response 
(hypoglycaemia 
and prescribed 
dose) 

No over representation of loss of function 
alleles among hypoglycaemics were observed 
but slower metabolizers were prescribed with 
lower dose (p = 0.027). 

2121310
7  

Holstein et 
al (2011) 

CYP2C
9 

CYP2C9*
2 and *3 

 South 
Indian  

T2D Glibencla
mide  

80 Response (HbA1c 
reduction, 
hypoglycaemia) 

CYP2C9*1/*3 genotype showed no significant 
association with risk of hypoglycaemia, carriers 
of loss of function variants (*1/*3 and *1/*2) 
had better diabetic control than the wild type 
carriers (p < 0.001). 

2133699
4  

Surendiran 
et al (2011) 

CYP2C
9 

CYP2C9*
2 and *3 

 Caucasia
ns 

T2D SUs 156 Response 
(incidence of 
hypoglycaemia, 
HbA1c reduction) 

No significant association between CYP2C9 
genotype and risk of hypoglycaemia or HbA1c 
reduction was found. 

2444212
5  

Klen et al 
(2014) 
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CYP2C
9 

CYP2C9*
2 

Caucasia
ns  

T2D SUs 176 Response (risk of 
hypoglycaemia) 

*2 genotype carriers that are POR*1/*1 were 
3.2 (p=0.031) times more likely to encounter 
hypoglycaemia than the wild type carriers. 

2446460
0  

Ragia et al 
(2014) 

CYP2C
9 

CYP2C9*
2 and *3 

 Caucasia
ns  

Healt
hy 

Glibencla
mide 

21 Response (Insulin 
and glucose 
concentration), 
PK (oral 
clearance) 

Carriers of *3/*3 genotype had lower oral 
clearance (p < 0.001) and increased insulin 
secretion (p = 0.028) than carriers of the wild 
type. 

1195651
2  

Kirchheiner 
et al (2002) 

CYP2C
9 

CYP2C9*
3 

Korean Healt
hy 

Tolbutami
de 

18 PK (AUC, Cmax, 
t1/2) 

Carriers of *1/*3 genotype had greater AUC, 
Cmax, and longer t1/2 compared with the wild 
genotype carriers. 

1187536
5  

Shon et al 
(2002) 

CYP2C
9 

CYP2C9*
3 

Chinese  Healt
hy 

Glimepirid
e  

19 PK (AUC, Cmax, 
t1/2, oral 
clearance) 

Carriers of *3 genotype showed significantly 
greater AUC and Cmax and longer t1/2 and 
reduced oral clearance than the wild type 
carriers. 

1600329
8  

Wang et al 
(2005) 

CYP2C
9 

CYP2C9*
3 

Chinese  Healt
hy 
male 

Glibencla
mide 

18 PK (AUC, t1/2) CYP2C9*1/*3 carriers showed significantly 
greater AUC (p < 0.05) and longer t1/2 (p < 
0.05) than the wild type irrespective of their 
CYP2C19 genotype. 

1619865
6  

Yin et al 
(2005) 

CYP2C
9 and 
CYP2C
19 

CYP2C9*
3 and 
CYP2C19
*3 

Chinese  Healt
hy 
male 

Gliclazide  
MR 

24 PK (AUC, t1/2) Carriers of poor metabolizing CYP2C19 
variants showed significantly higher AUC (p < 
0.01) and prolonged t1/2 (p < 0.01) than the 
wild type. CYP2C9 variants showed no 
significant role in the PK of gliclazide MR. 

1729848
3  

Zhang et al 
(2007) 

KCNJ11/ABCC8 
ABCC8 S1369A 

(rs757110 
G>T) 

 Caucasia
ns  

T2D SUs 156 Response 
(incidence of 
hypoglycaemia, 
HbA1c reduction) 

No significant association between the variant 
allele and risk of hypoglycaemia or HbA1c 
reduction was found. 

2444212
5  

Klen et al 
(2014) 

ABCC8 S1369A 
(rs757110 
G>T) 

Chinese  T2D Gliclazide 126
8 

Response (FPG, 2 
hour glucose, 
HbA1c) 

Compared to the wild type carriers, carriers of 
A/A genotype showed 7.7% greater reduction in 
FPG (p <0.001), 11.9% greater reduction in 2 
hour glucose (p = 0.003) and 3.5% greater 
reduction in HbA1c (p = 0.06).  

1859953
0  

Feng et al 
(2008) 

ABCC8 E23K 
(rs5219A>
G) 

Caucasia
ns 

T2D Glibencla
mide 

525 Response (risk of 
secondary failure) 

Carriers of the K allele showed 1.69 (1.02-2.74, 
p = 0.04) times higher odds of secondary failure 
than homozygotes EE carriers. 

1659559
7  

Sesti et al 
(2006) 
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ABCC8 S1369A 
(rs757110 
G>T 

Japanese  T2D Glibencla
mide  

157 Response 
(incidence of 
severe 
hypoglycaemia) 

No significant difference in distribution of the 
genotype between cases and controls. 

2114291
8  

Sato et al 
(2010) 

KCNJ1
1 

E23K 
(rs5219A>
G), 
rs5215G>
A 

 Caucasia
ns  

T2D SUs 156 Response 
(incidence of 
hypoglycaemia, 
HbA1c reduction) 

No significant association between KCNJ11 
variants and risk of hypoglycaemia or HbA1c 
reduction was found. 

2444212
5  

Klen et al 
(2014) 

KCNJ1
1 

E23K 
(rs5219A>
G) 

Caucasia
ns 

T2D SUs 101 Response (HbA1c 
reduction) 

Carriers of the K allele had greater HbA1c (p = 
0.04) reduction than EE homozygotes. 

2238588
2  

Javorski et al 
(2012) 

KCNJ1
1 

E23K 
(rs5219A>
G) 

Caucasia
ns 

T2D SUs 364 Response (FPG) The minor allele showed no association with 
response to SUs. 

1131884
1  

Gloyn et al 
(2000) 

KCNJ1
1 

E23K 
(rs5219A>
G) 

Caucasia
ns 

T2D SUs 176 Response 
(incidence of mild 
hypoglycaemia) 

No difference in frequency of the variant were 
observed between cases and controls. 

2259170
6  

Ragia et al 
(2012) 

KCNJ1
1 

E23K 
(rs5219A>
G) 

Caucasia
ns 

T2D SUs 97 Response 
(incidence of 
severe 
hypoglycaemia) 

The K allele was associated with higher HbA1c 
(p = 0.04) and less frequent in hypoglycaemic 
groups (p = 0.04). 

1921494
2  

Holstein et 
al (2009) 

KCNJ1
1 

E23K 
(rs5219A>
G) 

Chinese  T2D Gliclazide 
MR 

108 Response (FPG, 
acute insulin 
response) 

KK genotype carriers showed lower FPG (p = 
0.03) and greater change in insulin (p = 0.05) 
than E allele carriers. 

2511535
3  

Li et al 
(2014) 

TCF7L2 
TCF7L
2 

rs1225537
2 G>T 

Caucasia
ns 

T2D SUs 901 Response 
(treatment failure) 

Homozygous TT genotype was associated with 
1.94 (1.23-3.06) times higher odds of treatment 
failure than GG genotype (p = 0.005). 

1751942
1  

Pearson et al 
(2007) 

TCF7L
2 

rs7903146 
C>T 

Caucasia
ns 

T2D Gliclazide 101 Response (HbA1c 
reduction) 

Homozygous C allele carriers showed 80% 
higher HbA1c reduction than the T allele 
carriers. 

2350945
4  
 

Javorski et al 
(2013) 

TCF7L
2 

rs7903146 
C>T 

Caucasia
ns 

T2D SUs 901 Response 
(treatment failure) 

Homozygous TT genotype was associated with 
1.73 (1.11–2.70) times higher odds of treatment 
failure than GG genotype (p = 0.015). 

1751942
1  

Pearson et al 
(2007) 

TCF7L
2 

rs7903146 
C>T 

Caucasia
ns 

T2D SUs 87 Response (FPG, 
HBA1c reduction) 

Homozygous carriers of the reference allele 
showed significant reduction in HbA1c (p = 

2111460
8  

Schroner et 
al (2011) 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Schroner%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=21114608
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0.003) and FPG (p = 0.031) than carriers of the 
minor allele. 

TCF7L
2 

rs7903146 
C>T 

Caucasia
ns 

T2D SUs 189 Response 
(secondary 
treatment failure) 

Patients who failed to respond to SU treatment 
showed 1.57 (1.01-2.45) times higher odds of 
carrying the T allele (p = 0.046). 

2134917
5  

Holstein et 
al (2011) 

Others 
ABCA1 R230C Mexican  T2D Glyburide 85 Response (dose to 

achieve target 
HbA1c) 

Carriers of the variant allele needed 
significantly higher dose to achieve target than 
the wild type (6.3 vs 3.3mg/day, p < 0.001). 

2327397
5  

 

Aguilar-
Salinas et al 
(2013) 
 

CDKA
L1 

rs7756992
A>G 

Caucasia
ns 

T2D SUs 101 Response  (FPG, 
HbA1c reduction) 

Carriers of the G allele had significantly greater 
FPG (p = 0.022) reduction than homozygous 
AA. However no significant difference in 
HbA1c between genotypes was observed. 

2229271
8  

 

Schroner et 
al (2012) 
 

IRS1 rs1801278
G>A 

Caucasia
ns 

T2D SUs 477 Response 
(secondary SU 
treatment failure) 

Patients with the variant allele had 2 (1.38-3.86, 
p = 0.038) times higher odds of secondary 
failure than the wild type carriers.   

1516179
4  

 

Sesti et al 
(2004) 
 

KCNQ
1 

rs163184T
>G 

 T2D SUs 87 Response (FPG 
reduction) 

Carriers of the T allele had significantly greater 
FPG (1.58 vs 1.04 mmol/L, p = 0.016) reduction 
than homozygous GG carriers. 

2170963
3  

 

Schroner et 
al (2011) 
 

NOS1A
P 

rs1049436
6G>T 

Caucasia
ns 

T2D SUs 619 Response 
(prescribed dose) 

Glibenclamide users with TG genotype were 
prescribed with higher dose than GG (0.38 ddd, 
0.14-0.63) 

1855103
9  

Becker et al 
(2008) 
 

AUC: area under the curve; Cmax: maximal plasma concentration; ddd: defined daily dose; FPG: fasting plasma glucose; HbA1c: glycated haemoglobin; MR: 
modified release; PK: pharmacokinetics; SUs: sulfonylureas; T2D: type 2 diabetes; t1/2: elimination half-life. 

 

Table A3 Overview of studies focusing on gene-glinides interaction in type 2 diabetes 

Gene Variant Populati
on 

Study 
group  

Drug N Outcome  Major findings PMID  Author 
(publication 
year) 

SLCO1B
1 

521T>C Caucasia
ns Healthy 

Repaglinid
e 56 

PK (AUC, 
Cmax) 

Homozygous CC carriers showed higher AUC 
and Cmax than T allele carriers (p < 0.0001) 

1596197
8  

Niemi et al 
(2005) 

SLCO1B
1  

521T>C 
Caucasia
ns  Healthy  

Repaglinid
e 32 PK (AUC) 

Participants with CC genotype showed 59 (p = 
0.001) and 72% (p < 0.001) greater AUC than 
TC and TT carriers respectively.  

1818759
5  

Kalliokoski 
et al (2008) 
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SLCO1B
1 

11187G>A 

Caucasia
ns Healthy 

Repaglinid
e 56 

Response 
(glucose) 

Carriers of the minor allele showed 11% (p = 
0.01) and 6.6% (0.056) maximum decrease in 
blood glucose and mean glucose change 
respectively, than carriers of the wild type.  

1596197
8  

Niemi et al 
(2005) 

SLCO1B
1 

*1B 

 Healthy 
Repaglinid
e 24 

PK (AUC, 
Cmax) 

SLCO1B1*1B/*1B carriers showed 32 and 24% 
of  AUC (P = 0.007) and Cmax  (p = 0.056) of 
SLCO1B1*1A/*1A carriers 

1885477
6  

Kalliokoski 
et al (2008) 

SLCO1B
1 

*1B Chinese Healthy 
male 

Repaglinid
e 

       
22 

PK (AUC, 
clearance)  

Carriers of *1A/*1B or *1A/*1A showed 
27.39% higher AUC than *1B/*1B (p = 0.015). 

2132790
9  

He et al 
(2011) 

KCNJ11 

E23K 
(rs5219A>
G) 

Chinese 

T2D 
Repaglinid
e 

10
0 

Response 
(plasma glucose 
reduction, 
HbA1c 
reduction) 

the K allele was associated with greater 
reduction in HbA1c (p = 0.02) and the E/K 
genotype showed greater 2hr glucose reduction 
(p = 0.04) than homozygous E/E. 

1866433
1  

He et al 
(2008) 

SLC30A8 rs1326663
4C>T 

Chinese T2D 
Repaglinid
e 48 

Response 
(insulin) 

Patients with the T allele showed greater 
increase in fasting (p<0.05) and post prandial 
(p<0.01) insulin than homozygous CC carriers.    

2080908
4  

Huang et al 
(2010) 

SLC30A8 rs1326663
4C>T 

Chinese T2D 
Repaglinid
e 

10
4 

Response 
(HOMA-BCF, 
fasting pro 
insulin level) 

No significant difference in insulin secretion 
parameters between genotypes was observed.  

2242462
3  

Feng et al 
(2012) 

SLC30A8 rs1688946
2G>A 

Chinese T2D 
Repaglinid
e 48 

Response 
(insulin, 
HbA1c) 

Patients heterozygous GA showed greater 
increase in fasting insulin (p<0.01), post 
prandial insulin (p<0.01) and HbA1c (p<0.05) 
reduction than homozygous GG individuals. 

2080908
4  

Huang et al 
(2010) 

KCNJ11 

E23K 
(rs5219A>
G) 

Chinese 

T2D 
Repaglinid
e 40 

Response (FPG, 
2 hour glucose 
and HbA1c 
reduction) 

Patients with the A allele showed higher FPG, 2 
hour glucose and HbA1c (p < 0.05) than GG 
homozygotes.  

2005429
4  

Yu et al 
(2009) 

ABCC8 

rs1799854(
exon16-
3T/C) 

Chinese 

T2D 
Repaglinid
e 

10
0 

Response 
(fasting insulin) 

Homozygous CC carriers showed greater 
change in fasting insulin than T/C (p = 0.04) 
and T/T (p = 0.03) carriers. 

1866433
1  

He et al 
(2008) 

CYP2C8 *3 

Caucasia
ns  Healthy 

Repaglinid
e 28 

Response 
(plasma glucose 
change), PK 
(AUC, Cmax) 

No significant difference was found between 
genotypes. *1/*3 carriers showed 45% (p < 
0.005) and 39% (p < 0.05) lower AUC and 
Cmax respectively than homozygous *1/*1 
carriers. 

1453452
5  

Niemi et al 
(2003) 
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CYP2C8 *3 
Caucasia
ns  Healthy 

Repaglinid
e 56 

PK (AUC, 
Cmax) 

Carries of *1/*3 genotype showed 48 and 44% 
lower AUC and Cmax respectively than *1/*1 
(p < 0.05) 

1596197
8  

Niemi et al 
(2005) 

CYP2C8 *3 

Caucasia
ns  Healthy 

Repaglinid
e 29 

Response 
(glucose, 
insulin), PK 
(AUC) 

No significant differences in PK and response 
parameters between genotypes were showed.  

2127010
6  

Tomalik-
Scharte 
(2011) 

CYP3A4 *18 

Malaysia
n  Healthy 

Repaglinid
e 

12
1 

PK (elimination 
constant, t1/2) 

CYP3A4*1/*18 carriers had 44 (p = 0.04) and 
33.8% (p = 0.04) lower elimination rate 
constant and half-life respectively, than the wild 
genotype carriers. 

2052310
6  

Ruzilawati 
et al (2009) 

IGF2BP
2 

rs1470579
A>C 

Chinese  T2D 
Repaglinid
e 42 

Response (FPG, 
PPG) 

Compared with homozygous AA, carriers of the 
minor allele showed significantly less FPG (p 
<0.05) and PPG (p <0.05) reduction. 

2052334
2  

Huang et  al 
(2010) 

IGF2BP
2 

rs4402960 

Chinese  T2D 
Repaglinid
e 42 

Response 
(insulin) 

Carriers of the T allele had enhanced insulin 
concentration than homozygous GG carriers (p 
< 0.01) 

2052334
2  

Huang et  al 
(2010) 

KCNQ1 rs2237892
C>T 

Chinese T2D 
Repaglinid
e 91 Response (PPG) 

Carriers of the TT genotype showed lower PPG 
and higher cumulative attainment of target PPG 
(p = 0.038) than C allele carriers.   

2128962
1  

Yu et al 
(2011) 

KCNQ1 rs2237895
A>C 

Chinese T2D 
Repaglinid
e 91 

Response 
(fasting insulin, 
HOMA-IR) 

Carriers of the minor allele showed greater 
increment in both fasting insulin and HOMA-
IR. 

2128962
1  

Yu et al 
(2011) 

KCNQ1 rs2237892
C>T 

Chinese T2D 
Repaglinid
e 40 Response (PPG) 

Carriers of the T allele showed greater reduction 
in PPG than homozygous CC carriers (p < 
0.05). 

2241422
8  

Dai et al 
(2012) 

KCNQ1 rs2237895
A>C 

Chinese T2D 
Repaglinid
e 40 Response (PPG) 

Carriers of the C allele showed greater reduction 
in PPG than homozygous AA carriers (p < 
0.05). 

2241422
8  

Dai et al 
(2012) 

NOS1AP rs1049436
6G>T Chinese T2D 

Repaglinid
e 

10
0 

Response 
(HOMA-IR) 

TT carriers had the least insulin resistance on 
HOMA-IR (p = 0.013) 

2030567
9  

Qin et al 
(2010) 

NOS1AP rs1274239
3A>C 

Chinese  T2D 
Repaglinid
e 84 

Response (FPG, 
fasting insulin, 
HOMA-IR) 

Patients with the minor C allele had reduced 
fasting glucose (p < 0.01), insulin (p < 0.05) and 
HOMA-IR (p < 0.001) than carriers of AA 
genotype. 

2433873
6  

Wang et al 
(2014) 

PAX4 R121W 

Chinese T2D 
Repaglinid
e 43 

Response (FPG, 
PPG) 

Patients homozygous for the reference allele 
showed better efficacy in terms of PPG than 
heterozygous RW carriers (p < 0.05). 

2229603
4  

Gong et al 
(2012) 
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PPARD rs2016520
T>C 

Chinese T2D 
Repaglinid
e 84 

Response 
(insulin)  

Heterozygous TC carriers showed significantly 
lower increase in post prandial insulin than the 
wild type carriers (p < 0.05). 

2531138
0  

Song et al 
(2015) 

MDR1 G2677T>
A 

Chinese T2D 
Repaglinid
e 24 PK (AUC) 

Subjects with GT and TT genotype showed 
significantly greater AUC than GG and TA 
carriers (p = 0.007). 

2239866
4  

Xiang et al 
(2012) 

NAMPT 3186C>T 

Chinese T2D 
Repaglinid
e 35 

Response 
(insulin) 

Patients heterozygous CT showed significantly 
lower insulin elevation than homozygous CC or 
TT patients (p < 0.05) 

2163157
0  

Sheng et al 
(2011) 

TCF7L2 rs290487C
/T 

Chinese T2D 
Repaglinid
e 40 

Response 
(fasting insulin, 
triglycerides) 

Homozygous TT carriers showed better efficacy 
in terms of fasting insulin and triglyceride 
levels. 

2005429
4  

Yu et al 
(2010) 

UCP2 866G>A 

Chinese T2D 
Repaglinid
e 41 

Response (FPG, 
HbA1c)  

Carriers of the A allele showed smaller decrease 
in FPG (p < 0.05), HbA1c (p < 0.05) and 
smaller increase in 30 min post load plasma 
insulin (p < 0.01) compared with GA carriers. 

2239383
5  

Wang et al 
(2012) 

CYP2C9 

CYP2C9*
3 

Caucasia
ns  Healthy 

Nateglinid
e 26 

PK (CL/F), 
Response 
(Glucose, 
insulin, 
glucagon) 

CYP2C9*3 carriers showed significantly 
reduced oral clearance than the wild type 
carriers (p < 0.01) but no difference in 
glycaemic response was observed. 

1500563
5  

Kirchheiner 
et al (2004) 

SLCO1B
1 

*1B/*1B  Healthy 
Nateglinid
e 24 

PK (AUC, 
Cmax), 
Response 
(glucose) 

Cmax occurred earlier in *1B/*1B than *1A/*1A 
carriers but no significant difference in other PK 
parameters or PD. 

1885477
6  

Kalliokoski 
et al (2008) 

SLCO1B
1  

c.521T>C Chinese  Healthy 
Nateglinid
e 17 

PK (AUC, 
Cmax, t1/2) 

Carriers of the C allele showed significantly 
higher Cmax (p = 0.002) and AUC (p = 0.001) 
than homozygous TT carriers. Homozygous CC 
subjects also showed longer t1/2 than TT 
subjects (p = 0.036). 

1679670
7  

Zhang et al 
(2006) 

CYP2C9 
and 
SLCO1B
1 
interactio
n CYP2C9*

3 / c.521 
T>C Chinese Healthy 

Nateglinid
e 35 

PK (AUC), 
response 
(glucose) 

Participants with *1/*3 & 521TT (56% higher, 
p < 0.001), *1/*1 & 521TC/CC (34% higher, p 
= 0.003) and *1/*3 & 521TC (56% higher, p = 
0.002) AUC, than reference carriers for both 
genotypes. They also showed significantly 
lower clearance than the reference. No 
significant difference in blood glucose between 
genotypes were showed. 

2284295
7  

Cheng et al 
(2012) 
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AUC: area under the curve; CL/F: total clearance; Cmax: maximal plasma concentration; FPG: fasting plasma glucose; HbA1c: glycated haemoglobin; HOMA-BCF: 
homeostasis model assessment of beta cell function; HOMA-IR: homeostasis model assessment of insulin resistance; PK: pharmacokinetics; PD: pharmacodynamics; 
PPG: post prandial glucose; T2D: type 2 diabetes; t1/2: elimination half-life. 

 

 

Table A4 Overview of studies focusing on gene-thiazolidinediones interaction in type 2 diabetes 

Gene Variant Populati
on 

Study 
group  

Drug N Outcome  Major findings PMID  Author 
(publication 
year) 

ABCA1 R219K Chinese  T2D Rosiglita
zone 

93 Response 
(treatment failure, 
HOMA-IR) 

R219K variant carriers showed greater 
treatment failure with per allele odds ratio of 
2.04 (p < 0.05) than homozygous carriers of 
the variant allele. Homozygous RR carriers 
had significantly greater decrease in HOMA-
IR (p < 0.05) than minor allele carriers. 

1821535
6  

Wang et al 
(2008) 

ABCA1 M883I Chinese  T2D Rosiglita
zone 

93 Response 
(treatment failure, 
HOMA-IR) 

No significant difference in response 
parameters between genotypes. 

1821535
6  

Wang et al 
(2008) 

ABCA1 R1587K Chinese T2D Rosiglita
zone 

93 Response 
(treatment failure, 
HOMA-IR) 

No significant difference in response 
parameters between genotypes. 

1821535
6  

Wang et al 
(2008) 

ADIPO
Q 

45T>G 
(rs2241766
) 

Japanese T2D Rosiglita
zone 

166 Response (FPG, 
HbA1c reduction) 

GG carriers showed less reduction in both 
FPG (p = 0.031) and HbA1c (p = 0.013) than 
other genotype carriers. 

1585557
9  

Kang et al 
(2005) 

ADIPO
Q 

276G>T 
(rs1501299
) 

Japanese T2D Rosiglita
zone 

166 Response (FPG, 
HbA1c reduction) 

GG carriers showed less reduction in FPG (p 
= 0.001) than other genotype carriers but no 
significant difference in HbA1c. 

1585557
9  

Kang et al 
(2005) 

ADRB3 Trp64Arg Chinese T2D Rosiglita
zone 

36 Response (FPG, 
PPG, HbA1c, 
fasting and post 
prandial insulin) 

No significant difference in response 
parameters between carriers of the minor 
allele and the wild type carriers. 

1965999
9  

Yang et al 
(2009) 

CYP2C
8 

*3 Caucasia
ns  

Healthy Rosiglita
zone 

31 PK (total 
clearance, t1/2), 
Response 
(glucose) 

Subjects having *1/*1, *1/*3, *3/*3 showed 
0.033, 0.038, 0.046 L/h (p = 0.02) total 
clearance and 4.3, 3.5, 2.9 hours elimination 

1717826
6  

Kirchheiner 
et al (2006) 
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half-lives. No significant difference in blood 
glucose levels between genotypes were found. 

CYP2C
8 

*3 Caucasia
ns  

Healthy Rosiglita
zone 

23 PK (AUC) No significant difference in PK parameters 
between genotypes. 

1685688
3 

Pederson et 
al (2006) 

CYP2C
8 

*3 Caucasia
ns 

Healthy Rosiglita
zone 

26 PK (AUC, Cmax, 
CL/F) 

*1/*3 carriers showed significantly lower 
AUC (p = 0.006), Cmax (p = 0.02) and higher 
clearance (0.03) than the wild type carriers.  

1912908
6  

Aquilante et 
al (2008) 

CYP2C
8 

*11 Korean Healthy Rosiglita
zone 

14 PK (AUC, Cmax) Subjects carrying *1/*11 had 54 and 34% 
higher AUC (p = 0.015) and Cmax (p = 
0.025), respectively than *1/*1 genotype. 

2124528
7  

Yeo et al 
(2011) 

KCNQ
1 

rs2237897 
C>T 

Chinese T2D Rosiglita
zone 

93 Response (FPG, 
PPG, HbA1c 
reduction) 

Carriers of the minor allele showed 
significantly greater reduction in PPG (p = 
0.032) than the wild type carriers. 

2128962
1  

Yu et al 
(2010) 

LEPTI
N 

G-2548A Chinese T2D Rosiglita
zone 

42 Response (FPG, 
PPG, HbA1c 
reduction, 
HOMA-IR, 
fasting and post 
prandial insulin) 

Homozygous AA carriers showed 
significantly enhanced fasting and 
postprandial insulin (p < 0.05) than the G 
allele carriers. 

1843865
3  

Liu et al 
(2008) 

LPIN1 rs1019256
6 C>G 

Korean T2D Rosiglita
zone  

262 Response (FPG, 
PPG, HbA1c 
reduction) 

Carriers of the G allele showed greater 
reduction in FPG (p = 0.005), PPG (p = 0.005) 
and HbA1c (0.014) compared to carriers of 
the wild type. 

1869305
2  

Kang et al 
(2008) 

PAX4 rs6467136
A>G 

Chinese  T2D Rosiglita
zone  

105 Response (FPG, 
2HG, HbA1c 
reduction) 

GA and AA carriers exhibited greater 
decrease in 2HG (p = 0.006) and higher target 
attainment rate of 2HG (p = 0.009) than the 
wild type carriers. 

2475231
1  

Chen et al 
(2014) 

PLIN 11482G>A Korean T2D Rosiglita
zone  

160 Response (weight 
gain) 

Carriers of AA, GA and GG genotypes had 
0.03 ± 1.46, 0.85 ± 1.89 and 1.33 ± 1.59 kg 
weight gain respectively (p = 0.01).  

1673201
5  

Kang et al 
(2006) 

PLIN 6209T>C, 
13041A>G
, 
14995A>T 

Korean T2D Rosiglita
zone  

160 Response (weight 
gain) 

No significant difference in weight gain 
between genotypes. 

1673201
5  

Kang et al 
(2006) 

PGC-
1α 

Thr394Thr  Chinese T2D Rosiglita
zone 

41 Response 
(glucose, insulin, 
HbA1c reduction, 
HOMA-IR) 

Patients with the A allele had less enhanced 
post prandial insulin than homozygous GG 
carriers (7.02 ±11.8 vs 15.37 ± 11.39, p = 
0.027). 

2049828
6  

Zhang et al 
(2010) 
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PGC-
1α 

Gly482Ser  Chinese T2D Rosiglita
zone 

41 Response 
(glucose, insulin, 
HbA1c reduction, 
HOMA-IR) 

Carriers of the Ser allele had significantly 
higher FPG, PPG and HOMA-IR (all p values 
< 0.05). Patients with the Ser allele also 
showed less attenuated fasting glucose and 
insulin levels (p < 0.05). 

2049828
6  

Zhang et al 
(2010) 

PPARγ
2 

Pro12ala Korean T2D Rosiglita
zone 

198 Response 
(response, FPG, 
HbA1c, Glucose, 
HbA1c) 

Carriers of the Ala allele showed significantly 
greater reduction in FPG (50.6 ±27.8 mg/dL 
vs 24.3 ± 41.9 mg/dL, p = 0.26), HbA1c 
(1.41% ± 1.47% vs 0.57% ± 1.16%, p = 
0.015) than the wild type. They also showed 
better response rate (86.67% vs 43.72%, p = 
0.002) 

1608485
4  

Kang et al 
(2005) 

SLCO1
B1 

521 T > C Caucasia
ns 

Healthy Rosiglita
zone 

26 PK (AUC, Cmax, 
CL/F) 

No significant difference in the PK between 
genotypes were found. 

1912908
6  

Aquilante et 
al (2008) 

SLCO1
B1 

521 T > C Caucasia
ns 

Healthy Rosiglita
zone 

32 PK (AUC) No significant difference in the PK between 
genotypes were found. 

1763549
6  

Kalliokoski 
et al (2008) 

TNF-α G-308A Chinese T2D Rosiglita
zone 

42 Response (FPG, 
PPG, HbA1c 
reduction, 
HOMA-IR, 
fasting and post 
prandial insulin) 

Carriers of the minor allele showed 
significantly greater attenuated fasting insulin 
levels (p < 0.05) than the wild type.  

1843865
3  

Liu et al 
(2008) 

UCP2 866 G>A Chinese T2D Rosiglita
zone 

36 Response (FPG, 
PPG, HbA1c, 
fasting and post 
prandial insulin) 

Carriers of the variant allele showed smaller 
attenuated post prandial insulin (p < 0.01) and 
greater attenuated HbA1c (p < 0.05) than wild 
type carriers. 

1965999
9 

Yang et al 
(2009) 

ADIPO
Q 

G-10068A Chinese  T2D Pioglitaz
one 

113 Response 
(HbA1c, FPG) 

No significant difference in response between 
genotypes was showed.  

1849480
5  

Li et al 
(2008) 

ADIPO
Q 

C-11377G Chinese  T2D Pioglitaz
one 

113 Response 
(HbA1c, FPG) 

G allele carriers showed significant percentage 
reduction in HbA1c than CC homozygotes (-
0.13 ± 0.13 vs -0.08 ± 0.11, p = 0.028). 

1849480
5  

Li et al 
(2008) 

ADIPO
Q 

45T>G  Iranian T2D Pioglitaz
one 

101 Response (15% 
decrease in 
HbA1c) 

No significant difference in response between 
genotypes.  

2218734
5  

Namvaran et 
al (2012) 

ADIPO
R2 

795G/A Iranian T2D Pioglitaz
one 

101 Response (15% 
decrease in 
HbA1c) 

No significant difference in response between 
genotypes. 

2218734
5  

Namvaran et 
al (2012) 
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CYP2C
8 

*3 Caucasia
ns 

Healthy Pioglitaz
one 

30 PK (AUC) *3 carriers showed 29.7% lower AUC (p = 
0.01) compared to homozygous *1/*1 carriers. 

2262587
7  

Aquilante et 
al (2012) 

CYP2C
8 

*3 Caucasia
ns 

Healthy Pioglitaz
one 

16 PK (AUC) *3/*3 and *1/*3 carriers showed 34% and 
26% lower weight-adjusted AUC than the 
wild type (p < 0.05). 

1791379
4  

Torino et al 
(2008) 

LPL  S447X Chinese  T2D Pioglitaz
one 

113 Response (>10% 
FPG reduction or 
>1% reduction in 
HbA1c) 

SS carriers had twice more odds of being a 
responder than carriers of the minor allele (p < 
0.05). 

1739443
0  

Wang et al 
(2007) 

PGC-1 Gly482Ser Chinese  T2D Pioglitaz
one 

250 Response (FPG, 
HbA1c) 

No significant difference in response between 
carriers of the variants were found. 

2004514
2  

Hsieh et al 
(2009) 

PPARγ Pro12Ala  Chinese  T2D Pioglitaz
one 

250 Response (FPG, 
HbA1c) 

Carriers of the minor allele (Ala) showed 
2.316 (1.100-4.874, p = 0.027) times higher 
odds of being a responder than the wild type 
carriers. 

2004514
2  

Hsieh et al 
(2009) 

PPARγ Pro12Ala  Chinese  T2D Pioglitaz
one 

67 Response (FPG, 
PPG, HbA1c) 

CG carriers showed higher differential values 
of FPG than CC carriers (-2.24 ± 0.82 vs -1.23 
± 1.24, p < 0.05). 

2314755
7  

Pei et al 
(2013) 

PPARγ Pro12Ala  Iranian T2D Pioglitaz
one 

101 Response (> 15% 
HbA1c reduction) 

No significant association between genotypes 
and response were found. 

2196813
9  

Namvaran et 
al (2011) 

PPARγ Pro12Ala   Obese 
post-
menopa
usal 
women 

Pioglitaz
one 

83 (FPG, HOMA-IR, 
insulin) 

Pro/Ala carriers showed significant reduction 
in FPG than the wild type carriers (-15 mg/dL 
vs -7mg/dL, p < 0.003). However insulin and 
HOMA-IR were lower in carriers of the wild 
type (p < 0.05). 

1855108
6  

Ramirez-
Salazar et al 
(2008) 

PTPRD rs1758449
9T>C 

Chinese  T2D Pioglitaz
one 

67 Response (FPG, 
PPG, HbA1c) 

Carriers of the reference allele showed 
significantly lower differential values of PPG 
than homozygous CC carriers (-0.63±3.26 vs -
3.18±3.37, p < 0.01). 

2314755
7  

Pei et al 
(2013) 

RESIST
IN 

420C>G  Japanese T2D Pioglitaz
one 

184 Response (HbA1c 
(β= -0.511, P = 
0.044) reduction, 
FPG (P = 0.02), 
HOMA-IR 
(0.012)) 

Homozygous GG carriers showed significant 
reduction in HbA1c, FPG and HOMA-IR than 
the wild type carriers. 

1973836
3  

Makino et al 
(2009) 

SLCO1
B1 

521 T > C Caucasia
ns  

Healthy Pioglitaz
one 

32 PK (AUC) No significant difference in the PK of 
pioglitazone between genotypes were found. 

1763549
6  

Kalliokoski 
et al (2008) 
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IGF2B
P2 

rs4402960
G>T 

Chinese  T2D Pioglitaz
one 

86 Response (PPG, 
HbA1c) 

Carriers of the variant allele showed 
significantly lower reduction in PPG (-0.70 ± 
3.92 mmol/L - -2.80 ± 3.81 mmol/L, p < 0.05) 
than homozygous GG carriers. 

2524733
5  

Zhang et al 
(2014) 

IGF2B
P2 

rs1470579
A>C 

Chinese T2D Pioglitaz
one 

86 Response (PPG, 
HbA1c) 

Carriers of the variant allele showed 
significantly lower reduction in PPG (-1.07 ± 
4.04 mmol/L vs -2.65 ± 3.85 mmol/L, p < 
0.05) than homozygous AA carriers. 

2524733
5  

Zhang et al 
(2014) 

AUC: area under the curve; CL/F: total clearance; Cmax: maximal plasma concentration; FPG: fasting plasma glucose; HbA1c: glycated haemoglobin; HOMA-IR: 
homeostasis model assessment of insulin resistance; PK: pharmacokinetics; PPG: post prandial glucose; T2D: type 2 diabetes; t1/2: elimination half-life. 

 

Table A5 Overview of studies focusing on interaction between genes and drugs acting in the incretin pathway in type 2 diabetes. 

Gene Variant Populati
on 

Study 
group  

Drug N Outcome  Major findings PMID Author 
(publication 
year) 

GLP1R rs3765467 
C > T   

Chinese T2D  Exenatid
e 

36 Response 
(Glucose) 

No significant association between the variant 
and response were found. 

2578527
6  

Lin et al 
(2015) 

GLP1R rs3765467
C>T   

Caucasia
ns  

Healthy Exogeno
us GLP-1 

88 Response 
(insulin) 

Carriers of the minor allele showed greater β 
cell responsiveness than the wild type carriers (p 
< 0.05). 

2080527
9  

Sathanantha
n et al 
(2010) 

GLP1R rs761386 
C>T 

Chinese T2D  Exenatid
e 

36 Response 
(Glucose) 

No significant association between the variant 
and response were found. 

2578527
6  

Lin et al 
(2015) 

GLP1R rs6923761
G>A 

Caucasia
ns  

Healthy Exogeno
us GLP-1 

88 Response 
(insulin) 

Carriers of one or more copies of the minor 
allele showed lower β cell responsiveness than 
the wild type carriers (p < 0.05). 

2080527
9  

Sathanantha
n et al 
(2010) 

TCF7L
2 

rs7903146
C>T, 
rs1225537
2G>T 

Caucasia
ns 

Healthy Exogeno
us GLP-1 

73 Response 
(insulin) 

Carriers of the risk alleles showed significantly 
greater reduction in GLP-1 induced insulin 
secretion (p < 0.02) compared to wild type 
carriers. 

1766100
9  

Schafer et al 
(2007) 

WFS1 rs1001013
1 G>C 

Caucasia
ns 

Healthy Exogeno
us GLP-1 

102 Response 
(insulin) 

Compared with the wild type, carriers of the risk 
allele showed 36 and 26% lower GLP-1 induced 
first (p = 0.007) and second (p = 0.04) phase 
insulin secretion respectively. 

1933031
4  

Schafer et al 
(2009) 

TMEM
114 

rs7202633 
A>T 

Caucasia
ns 

healthy Exogeno
us GLP-1 

232 Response 
(insulin) 

Homozygous carriers of the risk allele had 
nearly two fold increased GLP-1 induced 

2367460
5  

 't Hart et al 
(2013) 
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insulin secretion than the wild type (p = 2.0 × 
10-7). 

CHST3 rs4148941 
A>C 

Caucasia
ns 

healthy Exogeno
us GLP-1 

232 Response 
(insulin) 

Carriers of the C allele had 32% (p = 3.9 × 10-8) 
lower GLP1 induced insulin secretion than the 
wild type carriers. 

2367460
5  

 't Hart et al 
(2013) 

CTRB1
/2 

rs7202877 
T>G 

Caucasia
ns 

Healthy Exogeno
us GLP-1 

232 Response 
(insulin) 

Carriers of the G allele had 33% (p = 1.9 × 10-6) 
greater GLP1 induced insulin secretion than the 
wild type carriers. 

2367460
5  

 't Hart et al 
(2013) 

CTRB1
/2 

rs7202877 
T>G 

Caucasia
ns 

T2D DPP4I 354 Response (HbA1c 
reduction) 

G-allele carriers showed 0.51 ± 0.16% (p = 
0.0015) smaller HbA1c reduction than the wild 
type carriers. 

2367460
5  

 't Hart et al 
(2013) 

KCNQ
1 

rs151290C
>A, 
rs2237892
C>T, 
rs2237895
A>C, 
rs2237897
C>T 

Caucasia
ns 

High 
risk 

Exogeno
us GLP-1 

102 Response 
(insulin) 

No significant association between either of the 
variants and GLP-1 induced insulin secretion 
were found. 

1936686
6  

Mussig et al 
(2009) 

THAD
A 

rs7578597
C>T 

Caucasia
ns 

Healthy Exogeno
us GLP-1 

123 Response 
(insulin) 

Homozygous carriers of the risk allele showed 
significantly reduced GLP-1 induced insulin 
secretion than CC and CT genotype carriers (p = 
1.6 × 10-3).  

1983388
8  

Simonis-Bik 
et al (2010) 

MTNR1
B 

rs1083096
3C>G 

Caucasia
ns 

Healthy Exogeno
us GLP-1 

123 Response 
(insulin) 

Carriers of the risk allele showed 30% more 
GLP1 stimulated insulin secretion (p = 0.037) 
compared with the wild allele carriers. 

1983388
8  

Simonis-Bik 
et al (2010) 

DPP4I: dipeptidyl peptidase 4 inhibitor; GLP-1: glucagon like peptide-1; T2D: type 2 diabetes; HbA1c: glycated haemoglobin. 
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Abstract: Type 2 diabetes is one of the leading causes of morbidity and mortality, consuming 

a significant proportion of public health spending. Oral hypoglycemic agents (OHAs) are the 

frontline treatment approaches after lifestyle changes. However, huge interindividual variation 

in response to OHAs results in unnecessary treatment failure. In addition to nongenetic factors, 

genetic factors are thought to contribute to much of such variability, highlighting the importance 

of the potential of pharmacogenetics to improve therapeutic outcome. Despite the presence of 

conflicting results, significant progress has been made in an effort to identify the genetic mark-

ers associated with pharmacokinetics, pharmacodynamics, and ultimately therapeutic response 

and/or adverse outcomes to OHAs. As such, this article presents a comprehensive review of 

current knowledge on pharmacogenetics of OHAs and provides insights into knowledge gaps 

and future directions.

Keywords: pharmacogenetics, type 2 diabetes, oral hypoglycemic agents, pharmacokinetics, 

pharmacodynamics, response

Introduction
Type 2 diabetes (T2D) is a complex disease characterized by persistent hypergly-

cemia as a result of insufficient insulin secretion, usually in the context of reduced 

insulin action. Frightening trends in morbidity and mortality of the disease are being 

observed. According to a recent estimate, some 382 million people between the ages 

of 20 years and 79 years live with diabetes, increasing to 592 million by 2035.1 T2D 

accounts for 85%–95% of the cases. According to the International Diabetes Federa-

tion, diabetes is the fifth leading cause of death, and it consumes ∼11% of the global 

health care spending.2

Following initial dietary and lifestyle changes, the most common treatment for T2D is 

the addition of oral hypoglycemic agents (OHAs), with a progressive addition of agents 

over time before insulin treatment is required to maintain glycemia at target. Currently 

available treatments include biguanides, sulfonylureas (SUs), meglitinides (glinides), 

thiazolidinediones (TZDs), α-glucosidase inhibitors, glucagon-like peptide (GLP)-1 

receptor (GLP-1R) agonists, dipeptidyl peptidase (DPP)-4 inhibitors, and sodium glucose 

transporter (SGLT)-2 inhibitors. Despite the availability of several OHAs, only 53% of 

Diabetes Mellitus patients achieve a target glycated hemoglobin (HbA1c) of ,7.0%.3

There is a considerable interindividual variability in drug response, measured in 

terms of efficacy or adverse drug outcomes, in T2D. A complex interaction of bio-

logical and nonbiological factors could explain this variability. While adherence to 

www.dovepress.com
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prescribed treatment, access to health care, and prescribing 

practice are some of the nonbiological factors,4 biological 

factors could be either genetic or nongenetic. Nongenetic 

biological factors influencing response to OHAs are related 

to intestinal, hepatic, or renal function in addition to age, sex, 

and body weight. Pharmacogenomics is the study of genetic 

factors affecting efficacy or undesired effects of drugs. In this 

review, we assess the published evidence for the presence 

of gene–drug interactions in T2D and appraise the usage of 

such evidence to understand pharmacokinetics (PK) and/

or pharmacodynamics (PD) of diabetes drugs and predict 

therapeutic response or adverse drug outcomes.

Challenges in the study of drug 
response in diabetes
In designing, conducting, and interpreting pharmacogenet-

ics studies, there are a number of factors that should be 

considered, including how drug response is defined, what 

covariates are included in the model, and how to account for 

difference in baseline HbA1c, the need for large sample size, 

comorbidities, and drug interactions. The field of pharmaco-

genetics is plagued with many positive but very small studies 

that cannot be replicated, with only a few consistent phar-

macogenetic findings. For SUs, the most robust findings are 

for cytochrome P450, family 2, subfamily C, polypeptide 9  

(CYP2C9), ATP-binding cassette, sub-family C, member 8 

(ABCC8), and transcription factor 7-like 2 (TCF7L2), and for 

metformin, they are for ataxia telangiectasia mutated (ATM) 

and possibly for multidrug and toxin extrusion (MATE) 1, 

with no consistent variants associated with response to gli-

tazones, DPP-4 inhibitors, SGLT-2 inhibitors, or GLP-1R  

agonists – in part because no large studies have been done 

in these areas. In this review, we will first highlight the 

challenges in the study of drug response in diabetes before 

reviewing the literature in relation to genetic variation in PK 

and PD of all commonly used diabetes treatments. We high-

light the key findings and whether they replicate or not.

Study design and confounders
Prospective genotype blind studies are optimal for phar-

macogenetic studies. However, they require a large sample 

size and are costly and time consuming. Therefore, the 

majority of published studies are either retrospective or 

case–control in design and therefore at risk of selection bias 

and confounding.

The association between genetic variants and drug 

response may be confounded by multiple factors. Base-

line HbA1c has a strong effect on response and should be 

considered in any model of glycemic response.5 Other factors, 

such as dose, drug group, and kidney and liver function tests, 

may alter magnitude and direction of reported effect sizes. 

Furthermore, adherence, estimated to range from 36%–93% 

in diabetic patients, could also be an important confounder.6 

While it is a reasonable assumption that most covariates that 

alter response are not correlated with genotype, care should 

be taken to evaluate these covariates in any pharmacogenetic 

response models.

Selection of genes/SNPs
To date, most pharmacogenetic studies of OHAs adopted a 

candidate gene approach. Based on the PK and PD knowl-

edge of the agents, genetic polymorphisms in transporter 

genes, metabolizing enzyme genes, and target genes were 

investigated. Apart from the largely consistent associations 

observed between CYP2C9*2/*3, Potassium Channel, 

Inwardly Rectifying Subfamily J, Member 11 (KCNJ11)/

ABCC8, and TCF7L2 for response to SU, no other phar-

macogenetic impact has been robustly established by these 

candidate gene studies. The existence of gene–gene interac-

tion, as suggested by a few recent pharmacogenetic studies of 

metformin response, could be the explanation for some of the 

replication failure as the marginal impact of each individual 

variant would be much smaller and difficult to detect than 

in a true interaction model.

The genetic architecture of drug response, which encom-

passes the frequency, number, and effect size of genetic vari-

ants, has rarely been addressed for any commonly prescribed 

drug. A recent study showed that many common variants 

with small-to-moderate effect sizes together account for 

20%–30% of variance in glycemic response to metformin.7 

Given that these variants are likely to be distributed across 

the genome, a hypothesis-free Genome-Wide Associa-

tion Study (GWAS) approach holds the potential to reveal 

more metformin response variants. Indeed, the only GWAS 

on OHAs published to date reported a robust association 

between glycemic response to metformin and variants at the 

ATM locus, which harbors no established candidate genes.8 

With the ever-reducing cost of genotyping on microarrays, 

more drug response GWAS analyses are expected to reveal 

novel mechanistic insights and/or genetic markers that could 

predict an efficacy or safety of drugs in diabetes.

Sample size and power
When considering drug efficacy, the general disappointing 

lack of consistent replication in the candidate gene studies 

reviewed here suggests that none of the variants examined 
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so far has a large impact on clinical outcomes. If the genetic 

architecture of treatment efficacy by other OHAs is similar 

to that of metformin, which is contributed by many common 

variants with small-to-moderate effect sizes, the large sample 

sizes will be essential to provide an adequate statistical power 

to uncover the variants. Moreover, when multiple variants are 

examined in a single study, such as the gene–gene interac-

tion or GWAS analyses, even larger sample sizes, typically 

in the range of a few thousand, are required to compensate 

the statistical penalty associated with multiple testing. Most 

of the studies reviewed here used a few hundred individuals 

or less (column 4 or 6 in Tables S1–S5), which have prob-

ably resulted in the inconsistent reports, with an overrepre-

sentation of positive results due to the winners’ curse and 

publication bias.9

However, it is worth noting that when considering more 

severe adverse reactions of drugs, such as metformin-induced 

lactic acidosis, a small sample size may be sufficient. This 

is seen most clearly in relation to drug-induced severe liver 

injury where the large impact causal variants were identified 

with just a few dozen samples.10,11 Therefore, genetic screen-

ing of rare severe adverse reactions with small samples is still 

warranted, provided that power calculations are presented to 

inform the range of effect sizes that could be excluded by 

the study design.

Choice and definition of end points
The phenotype for drug response is often variably defined 

depending on the available data that can make comparing the 

findings across the studies difficult. A linear term for HbA1c 

reduction or blood glucose reduction, or a dichotomous vari-

able defined as achieving therapeutic target (HbA1c ,7%) 

over a specified period of time, is the most commonly used 

end point in diabetes. Genetic determinants of safety and 

efficacy to the same drug might vary. However, some safety 

and efficacy measures may overlap and thus be associated 

with the same genes, for example, extreme response to SUs 

and hypoglycemia. The availability of multiple end points 

could increase the chance of selective outcome-reporting 

bias in pharmacogenetic studies. Therefore, consistent and 

functionally relevant response definitions where possible 

publishing a protocol in advance may be helpful.

Obesity and related comorbidities
Suboptimal glycemic control is usually associated with 

greater comorbidities, including hypertension and dys-

lipidemia. The fact that obesity and T2D are strongly linked 

led to the investigation of obesity as a clinical predictor of 

efficacy to OHAs. The first-line drug metformin showed 

similar efficacy in obese and nonobese T2D individuals.12,13 In 

another study, body mass index was not significantly associ-

ated with glycemic response to rosiglitazone, but responders 

had higher body fat percentage than nonresponders.14 Those 

with greater waist-to-hip ratio also showed a better reduction 

of fasting plasma glucose (FPG) and HbA1c when rosiglita-

zone was added to metformin and/or SUs.15

Drug–drug interactions
To achieve adequate glycemic control and treat concurrent 

pathologies, diabetic patients are often on polypharmacy, 

therefore there is a risk of drug–drug interactions.16 The con-

comitant administration of organic cation transporter (OCT) 

1-inhibiting drugs with metformin is reported to increase the 

gut concentration of metformin and gastro intestinal (GI) 

side effects.17 Coadministration of CYP-inhibiting drugs 

with insulin secretagogues risks potentiating hypoglyce-

mia. In healthy volunteers, simultaneous administration of 

gemfibrozil, a lipid-lowering drug that inhibits CYP2C8, 

and repaglinide resulted in an eightfold increase in the area 

under the concentration–time curve (AUC) of repaglinide that 

could prolong its hypoglycemic effect and warn precaution 

while prescribing.18 Therefore, in designing drug-response 

studies, common comorbidities and drug interactions should 

be considered.

Current state of evidence
Metformin
Metformin is the most widely prescribed first-line drug to 

treat T2D. There is a considerable interindividual variability 

in metformin’s glucose-lowering ability with approximately 

one-third of metformin users defined as poor responders.19 The 

mechanism for this variability, and indeed for the mechanism 

of action of metformin, remains uncertain. Metformin is 

also poorly tolerated by some individuals with up to 63% of 

patients experiencing metformin-induced gastrointestinal (GI) 

symptoms leading to 5%–10% premature discontinuation.20

Pharmacokinetics
Metformin is positively charged at physiological pH that 

renders it hydrophilic, resulting in limited passive diffusion. 

Therefore, metformin disposition is dependent on active 

transportation by OCTs (solute carrier family 22 [SLC22]) to 

cross the biological membranes. Plasma membrane monoam-

ine transporter (PMAT), OCT1,21 and OCT3 are involved in 

the apical uptake of metformin into enterocytes (Figure 1).  

In addition, a recent in vitro study identified a possible role 
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of serotonin and choline transporters.22 In the liver, OCT1 

transports metformin to the hepatocytes23 with biliary excre-

tion probably via MATE1.24 In the kidney, OCT2 is highly 

expressed in the basolateral membrane of the distal tubules 

of the kidney facilitating renal uptake,25 whereas MATE1 and 

MATE2, expressed in the apical membrane of the renal epithe-

lial cells, are involved in the renal secretion of metformin.26

Pharmacodynamics
Metformin is believed to lower blood glucose level by 

reducing hepatic glucose production and increasing insulin-

mediated peripheral glucose utilization. Even though the 

molecular mechanisms of how metformin exerts its hypo-

glycemic action are still elusive, it inhibits mitochondrial 

complex I, resulting in decreased adenosine triphosphate 

(ATP), and increased adenosine monophosphate (AMP) 

levels. AMP activates adenosine monophosphate-activated 

protein kinase (AMPK),27 and this had been thought to 

mediate the suppression of gluconeogenesis. However,  

a preserved glucose-lowering effect of metformin has been 

reported in AMPK knockout mice studies.28 Recently, non-

AMPK mechanisms have been proposed. One mechanism 

involves the inhibition of binding of AMP to adenylate 

cyclase by metformin, inhibiting its response to glucagon 

and disrupting downstream cAMP-PKA signaling. This 

inhibits enzymes of the gluconeogenic pathway in favor of 

glycolysis.29 An additional mechanism recently reported sug-

gests that metformin inhibits mitochondrial glycerophosphate 

dehydrogenase enzyme with a subsequent augmentation of 

cytosolic redox state thereby reducing hepatic gluconeogen-

esis.30 Although AMPK is no longer believed to be required 

for glucose lowering, the lipid lowering and any potential 

cancer beneficial effects of metformin are probably mediated 

via this kinase.27

Pharmacogenetics
There is a considerable interindividual variation in metformin 

PK, PD, and adverse effects. The majority of genetic studies 

have focused on variation in the metformin transporters31 

with more recent studies investigating the transcription fac-

tors (TCFs) that regulate these transporters19 and candidate 

genes in metformin PD. While substantial progress has been 

made to understand the detrimental effect of polymorphisms 

in transporter genes on PK, this does not robustly translate 

into drug response with inconsistent results being reported 

across many small studies (Table S1).

OCT1 and metformin efficacy
Nonsynonymous variants in the highly polymorphic SLC22A1 

gene that encodes OCT1 have been reported to affect func-

tionality.32 Studies in healthy and diabetic Caucasians showed 

the association of reduced function variants of OCT1 (G401S, 

R61C, 420del, and G465R) with a higher maximum plasma 

concentration (C
max

) and AUC, lower oral volume of distri-

bution, increased pattern of renal secretary clearance,33 and 

decreased trough steady-state concentration.34

Several studies have been conducted in an effort to link 

OCT1 variants to the clinical efficacy of metformin. In an 

oral glucose tolerance test study carried out in 20 healthy 

volunteers (eight having reference OCT1 and 12 with at 

least one reduced-function OCT1 allele), subjects carrying 

OCT1 variants had a significantly higher (P=0.004) glucose 

AUC compared to those with the reference genotype after 

metformin treatment.35 A study carried out by Christensen 

et al showed individuals carrying the reduced function OCT1 

alleles to have a significantly greater absolute HbA1c reduc-

tion during the initiation as well as maintenance period of 

treatment compared to carriers of the reference genotypes. 

However, the decrease became insignificant when adjusted 
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for baseline HbA1c.34 The Genetics of Diabetes Audit and 

Research Tayside (GoDARTs) is the largest reported study 

to investigate OCT1 variants and glycemic response to 

metformin.36 The GoDARTs investigators studied the two 

most common loss-of-function OCT1 variants, R61C and 

420del in 1,531 T2D patients treated with metformin. They 

showed no effect on a number of outcomes, including HbA1c 

reduction, odds of achieving treatment target, and hazard of 

monotherapy failure. Davis et al also showed no associa-

tion of these variants with absolute change in HbA1c.37 The 

Rotterdam study that investigated eleven tagging single 

nucleotide polymorphisms in SLC22A1 gene could not find 

any significant association with response to metformin.38 The 

Diabetes Prevention Program study evaluated the protective 

role of metformin on the incidence of diabetes in 990 high-

risk participants.39 The major allele of the missense SNP 

in OCT1, rs683369 encoding L160F, showed a significant 

protective effect (HR =0.69, 0.53–0.89, P=0.004). However, 

this variant is not reported to affect OCT1 functionality or 

in linkage disequilibrium (LD) with previously associated 

SNPs.

OCT1 and metformin intolerance: Tarasova et al screened 

the effect of seven variants in genes encoding transporter 

proteins in relation to GI side effects of metformin in 53 

tolerant and 193 intolerant patients.40 Cases were defined as 

those with the presence of at least one of diarrhea, flatulence, 

abdominal pain, asthenia, and vomiting while being treated 

with metformin. Two OCT1 variants, rs628031 (M408V) and 

rs36056065 (8 bp insertion), that are in strong LD showed a 

protective effect (odds ratio [OR] =0.389 [95% confidence 

interval {CI} =0.186–0.815], P=0.012 and OR =0.405 [95% 

CI =0.226–0.724], P=0.002, respectively). In this same study, 

two of the loss-of-function OCT1 variants, rs12208357 

(R61C) and rs34059508 (G465R), showed no significant 

association with intolerance. However, a recent GoDARTs 

study conducted on 2,166 (251 severely intolerant and 1,915 

tolerant) T2D patients showed reduced activity OCT1 vari-

ants (rs12208357 [R61C], rs55918055 [C88R], rs34130495 

[G401S], rs72552763 [M420del], and rs34059508 [G465R]) 

to be important determinants of metformin intolerance.17 

Carriers of two reduced function alleles had 2.4 times higher 

odds (95% CI =1.48–3.93, P=0.001) of developing GI side 

effects. The concomitant use of other drugs known to inhibit 

OCT1 transport increased this risk to an OR of 4 (2.09–8.16, 

P,0.001). In this study, cases were patients who have been on 

immediate release metformin for ,6 months and switched to 

another OHA (including modified release metformin) within 

6 months after stopping the immediate release metformin; 

controls were defined as those patients who were on at least 

2 g of metformin for .6 months.

OCT2: OCT2 is reported to account for ∼80% of 

metformin’s renal clearance.25 Studies in healthy and dia-

betic individuals showed an association of reduced func-

tion OCT2 variants (T199I, T201M, and A270S) with an 

increased plasma concentration and a reduced renal clear-

ance of metformin.41–44 However, other studies showed no 

association.33,45

Studies that aimed to link OCT2 variants with response 

to metformin have been focused on the A270S variant. Most 

of the reported studies do not show any association of this 

variant with response to metformin modeled as a dichoto-

mous trait,42 linear HbA1c reduction,38 or GI side effect.40 

However, a recent study in 209 newly diagnosed patients 

treated with 1,500 mg daily metformin for 1 year showed 

a greater HbA1c reduction (−2.2% vs −1.1%, P,0.05) in 

Chinese diabetic patients who were heterozygous for the 

minor allele than the wild type after adjusting for baseline 

HbA1c, exercise, and diet.43

MATEs: Nonsynonymous MATE1 and MATE2 vari-

ants with a reduced in vitro transport function have been 

reported.46,47 In a study of Chinese patients, homozygous 

carriers of the intronic MATE1 variant (rs2289669 G.A) had 

a greater AUC and a lower clearance (P,0.01) of metformin 

than carriers of the wild type.48 Several studies reported a link 

between this SNP with HbA1c reduction by metformin. Car-

riers of the minor allele at rs2289669 showed a significantly 

greater HbA1c reduction in both the dominant and the reces-

sive models.48–50 In the Diabetes Prevention Program study, 

the T allele of a SNP (rs8065082 C.T) in LD with rs2289669 

(r2=0.8) showed a protective effect against the incidence of 

diabetes in high-risk individuals.39 Finally, rs12943590, a 

promoter variant for MATE2, has been associated with PK of 

metformin in healthy individuals.51 This difference has also 

been seen in HbA1c reduction37 and successfully replicated 

in another study.47

In conclusion, while a number of variants have been 

reported in the metformin transporter genes, on the whole, 

there have been no definitive signals for these variants on 

glycemic response to metformin. However, MATE1 and 

MATE2 variants show some promise and larger studies, or 

meta-analysis of existing studies, are required to establish 

how much of these results are biased by small sample size 

and publication bias.

Gene–gene interaction: Although variants in transporter 

genes showed an association with metformin response, 

individual variants explain only a small fraction of the 
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variation. Given that multiple transporters are involved in the 

disposition of metformin and localization of uptake and efflux 

transporters in the same organ (Figure 1), joint investigation 

could give a better understanding. Interaction between the 

OCT2 variant, c.808 G.T (rs316019), and MATE1 variant, 

g.−66 T.C (rs2252281), in relation to the PK of metformin 

was reported by Christensen et al.45 The c.808 G.T alone 

showed no effect on either secretory or renal clearance of 

metformin. However, an increased clearance was observed 

with carriers of the c.808 G.T variant that are homozy-

gous for g.−66 T.C. In the Rotterdam study, interaction  

between the intronic MATE1 and OCT1 SNPs, rs2289669 

and rs622342, respectively, was investigated. A more pro-

nounced glucose-lowering effect of rs2289669 in MATE1 

was reported in metformin users with CC genotype than AA 

genotype for OCT1.52 Gene–gene interaction between g.−66 

T.C/rs2252281 and g.−130 G.A/rs12943590 promotor 

variants of MATE1 and MATE2, respectively, was reported 

by Stocker et al.51 Carriers of both variants showed a greater 

renal and secretary clearance. This clearly signifies the role 

of gene–gene interaction and the importance of complex 

network/pathway analysis to better understand the PK and 

PD of metformin.

TCF variants: Rather than studying transporter vari-

ants per se, an elegant study explored variants in TCFs 

that potentially regulate the expression of these transporter 

genes.19 They studied variants in specificity protein (SP) 1, 

which regulates the expression of a number of these trans-

porter genes; activating enhancer-binding protein 2, which 

represses MATE1 expression; and the TCFs, hepatocyte 

nuclear factor 4, alpha (HNF4α) and peroxisome proliferator-

activated, alpha (PPARα). They reported five variants in or 

near SP1 and one variant in activating enhancer-binding 

protein 2 that showed association with metformin elimina-

tion and HbA1c change. Of these, those homozygous GG 

at rs784892 (intronic SNP of AMHR2, downstream gene to 

SP1) achieved a 1.1% lower HbA1c and 98 mL/min lower 

secretory clearance of metformin than AA homozygotes. Up 

to 24% reduction in apparent clearance was also reported in 

patients’ homozygous GG at rs784888, a downstream vari-

ant to SP1. This SNP was associated with HbA1c reduction 

with β coefficient of −0.36% per G allele (P=0.01 before 

Bonferroni correction). Variants in HNF4α and PPARα were 

associated with HbA1c reduction, but their effect could not 

be explained by the PK of metformin suggesting that further 

investigation of other mechanisms is required.

Polymorphisms in the PD pathway: Genetic variants 

affecting the PD of metformin are not well studied. There 

are few candidate gene studies that reported nominal 

associations with metformin efficacy (Table S1). The GWAS 

on metformin response in 1,024 T2D incident users revealed 

an association of rs11212617, a SNP near ATM gene, with 

glycemic response to metformin as a linear reduction in 

glycated hemoglobin or achieving treatment target (HbA1C 

,7%).8 This finding was further replicated in two indepen-

dent cohorts from Scotland and the UK with sample sizes of 

1,783 and 1,113, respectively.53 A meta-analysis of three other 

studies separately or in combination with previous bigger 

studies confirmed the association of the variant with treat-

ment success.53 This finding was also replicated in a Chinese 

population.54 However, the Diabetes Prevention Program 

could not find any effect of rs11212617 on the efficacy of 

metformin in delaying progression to diabetes.55

Sulfonylureas
SUs were first introduced into clinical practice in the 1950s 

and have long been a cornerstone of treatment in T2D. Cur-

rently, they are used as the first-line agents or an add-on 

therapy to other OHAs, usually metformin. About a quarter 

of newly diagnosed patients initiate therapy with SUs.56 Each 

drug in the group varies in their PK parameters, insulin secre-

tory potency, and onset and duration of action.

PK and PD
The polymorphic CYP2C9 isoenzyme catalyzes the biotrans-

formation of SUs in the liver. Catalytic function of the 

enzyme is reported to be affected by the type of inherited 

amino acid substitution.57 Substitution of arginine with 

cysteine at amino acid position 144 (Arg144Cys) and iso-

leucine with leucine at position 359 (Ile359Leu) gives rise to 

mutant alleles, CYP2C9*2 and CYP2C9*3, respectively. The 

mutant alleles are known to have a reduced catalytic activity 

than the wild-type CYP2C9*1. Involvement of CYP2C19 in 

the metabolism of SUs is also reported.58 CYP2C19*2 (681 

G.A) and CYP2C19*3 (636 G.A) are variants that encode 

a nonfunctional CYP2C19 enzyme. Individuals with either of 

the variants are labeled as poor metabolizers.58 The *3 variant 

is most common in Asians with a frequency of 10%–25% 

compared to that of 2%–6% in Caucasians.

SUs induce glucose-independent insulin release from the 

pancreatic β-cells by binding to the ATP-sensitive potassium 

(K
ATP

) channel (Figure 2).59 The channel is composed of four 

subunits of the SU receptor (SUR) 1 and four subunits of 

the potassium inward rectifier channel (Kir) 6.2. Two SU-

binding sites have been reported in the channel. The A site 

resides exclusively on the SUR1 and the B site is available 
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on both subunits of the K
ATP

 channel. Binding of SUs to these 

receptors induces the closure of K
ATP

 channels and increases 

intracellular K+ ion and hence membrane depolarization 

with subsequent opening of voltage-gated Ca2+ channels 

that increase intracellular Ca2+ followed by the release of 

insulin-containing granules.

Pharmacogenetics
Interindividual variability in SU response exists. Follow-

ing SU initiation, an estimated 10%–20% of patients will 

have ,20 mg/dL FPG reduction.20 Clinical factors, such as 

baseline glucose, duration of diabetes, β-cell function, and 

degree of insulin resistance, affect response to SUs.20 Variants 

in genes encoding proteins involved in the PK and PD are 

widely reported to influence therapeutic outcome of SUs.

CYPs: Several studies investigated the effect of mutant 

alleles of the rate-limiting CYP2C9 on the PK and PD and 

the safety of SUs in healthy and T2D individuals. Reduced 

drug-metabolizing activity has been reported in individuals 

carrying either the CYP2C9*2 or the CYP2C9*3 variants, 

*3 being more profound.60 Compared to wild-type carri-

ers, healthy male volunteers homozygous for CYP2C9*3 

and CYP2C9*2 had a 50% and 10% lower oral clearance 

of glyburide, respectively.61 In line with this, a significant 

increase in AUC and plasma half-life (t
1/2

) of glyburide has 

been reported for heterozygous CYP2C9*3 than *1/*1 car-

riers.62 Similar result was also reported for tolbutamide.63 

The impact of CYP2C9 on the PK of the second generation 

SUs was also studied. Wang et al reported 40% and 30% 

more mean AUC of glimepiride for *3/*3 and *3/*1 carriers, 

respectively, compared to the wild type.64

Reduced function CYP2C19 variants also influence 

metabolism of SUs. More than threefold increase in AUC 

and prolonged half-life of gliclazide were reported among 

male healthy Chinese volunteers with reduced CYP2C19 

variants compared to carriers of the wild type.65

Influence of CYP variants on efficacy to SUs has been 

widely studied. The largest study based on retrospective data 

on 1,073 incident users of SUs from the GoDARTs showed that  

carriers of loss-of-function CYP2C9*2 or CYP2C9*3 

alleles were 3.4-fold more likely to achieve therapeutic 

target than carriers of the wild type, resulting in 0.5% 

greater HbA1c reduction.66 In the Rotterdam study, Becker 

et al defined response in terms of maintenance dose 

achieved among the incident SU users.67 In a subgroup of  

172 patients who were on tolbutamide, a lower dose was needed 

to regulate glucose in the carriers of CYP2C9*3 than in the 

carriers of the wild type. A reduction in HbA1c in carriers of 

CYP2C9*1/*3 was also reported among Japanese patients who 

have been on glimepiride.68 These consistent findings are some 

of the most robust pharmacogenetic findings in the diabetes field 

and could potentially translate into genotype-guided therapy in 

SUs. However, prospective studies in T2D patients are required 

before translating into clinical practice. The role that CYP2C19 

could play in the metabolism of gliclazide is documented.58 How-

ever, studies to link this with glycemic response are lacking.

Polymorphisms in mechanistic targets
Following the identification of SU-binding sites SUR1 and 

Kir6.2 (encoded by ABCC8 and KCNJ11, respectively), 

variants in these genes have been the subjects of many 

pharmacogenetic investigations. Rare pathogenic mutations 

in these genes lead to neonatal monogenic diabetes.69 Due to 

the low levels of insulin and ketoacidosis, insulin has been the 

typical treatment in neonatal diabetes. Successful transition 

from long-term insulin to SU treatment has been reported by 

Pearson et al in 2006.70 Following this, a number of studies 

investigated two strongly linked nonsynonymous common 

variants in the ABCC8 (S1369A, rs757110) and KCNJ11 

(E23K, rs5219) in patients with T2D.

ABCC8/KCNJ11: The E23K and S1369A variants form 

a haplotype. While K
ATP

 channels containing the K23/A1369 

haplotype are more sensitive to inhibition by gliclazide, 

they are less sensitive to inhibition by tolbutamide, chlo-

rpropamide, and glimepiride.71 Association of S1369A with 

glycemic control in 115 Chinese patients who have been on 

gliclazide for 8 weeks was reported.72 Carriers of minor allele 

had a greater HbA1c reduction than carriers of the wild type 

(1.60%±1.36% vs 0.76%±1.70%, P=0.04). Another larger 
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Figure 2 Action of sulfonylureas on β-cells.
Abbreviations: SUs, sulfonylureas; SUR1, sulfonylurea receptor 1.
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study also showed an association of the minor allele with a 

greater reduction in fasting (P,0.001) and 2-hour (P,0.003) 

glucose levels.73 Association between the KCNJ11 E23K and 

efficacy to SUs was reported in Chinese patients by Li et al.74 

In this study, 108 newly diagnosed T2D individuals have been 

treated with gliclazide MR for 16 weeks. Homozygous KK 

carriers had a lower FPG and were more likely to achieve 

the target FPG of 7.0 mmol/L (Plog rank =0.03) than E allele 

carriers. In another study carried out in 101 T2D Caucasians 

treated with SUs after metformin therapy, homozygous 

KK carriers showed a greater HbA1c reduction than EE 

homozygous after 6 months of therapy (1.04%±0.10% vs 

0.79%±0.12%, P=0.04).75

However, other studies could not replicate the above 

findings. The UK Prospective Diabetes Study investigated 

response to SUs in 363 individuals based on FPG measured at 

two time points in a 1-year period.76 No significant association 

between E23K and FPG was observed. This finding could 

probably be confounded by continual dose adjustment carried 

out in the UK Prospective Diabetes Study. In a study con-

ducted on 525 Caucasians who have been on glibenclamide 

and metformin, carriers of the K allele showed 1.69 ([95% CI 

=1.02–2.74], P=0.04) times higher odds of secondary treat-

ment failure, defined as FPG .300 mg/dL (16.7 mmol/L), 

than those who were homozygous for the reference allele.77 

Since metformin was used as an add-on therapy, the failure 

is for the combination rather than SU alone. Moreover, this 

secondary failure phenotype is more likely to reflect diabetes 

progression associated with the K allele than SU response. 

Another study carried out in 176 (92 experienced hypogly-

cemia and 84 not) T2D patients showed no association of 

the E23K variant with a mild hypoglycemia.78 This study 

might be confounded by an incomplete definition of mild 

hypoglycemia as it relies on patients’ self-report.

TCF7L2: TCF7L2 harbors the strongest T2D risk variants 

among the 120 GWAS-established loci. It encodes T-cell TCF4, 

an important downstream target of the WNT signaling pathway.79 

Reduced insulin secretion has been reported in relation to two 

intronic variants, rs7903146 and rs12255372, in the TCF7L2 

gene and hence hypothesized to affect SU response.80

GoDARTs is the largest study conducted on 901 Scot-

tish patients to link TCF7L2 variants with SU response.81 

Patients homozygous for the minor allele of rs12255372 

G.T were nearly twofold less likely to achieve therapeutic 

target after 3–12 months of SU treatment than homozygous 

carriers of the reference allele. Similar result was reported 

for rs7903146. Three other independent groups also showed 

a consistent result (Table S2).82–84

In conclusion, notable findings have been reported in 

the pharmacogenetics of SUs. Robust associations between 

variants in the CYP2C9, ABBC8/KCNJ11 and TCF7L2, are 

reported. More comprehensive assessments of these associa-

tions will be necessary to translate this genetic information 

into clinical utility.

Meglitinides
Meglitinides (glinides) are short acting non-SU secretagogues 

that lower postprandial glucose excursions preferentially 

by stimulating early phase insulin secretion. They act by 

regulating potassium channels in the pancreatic β-cells via 

a distinct mechanism from that of SUs. They are not com-

monly used in the UK.

After oral administration, glinides are absorbed rapidly with 

the peak plasma drug levels reached within 1 hour. Organic 

anion transporting polypeptide 1B1 (OATP1B1), encoded by 

Solute Carrier Organic Anion Transporter Family, Member 

1B1 (SLCO1B1), mediates their transport into the liver,85 

where .95% of the oral dose get metabolized by the CYP 

family isozymes.57

Association of genetic variants in the SLCO1B1, CYP2C9, 

and CYP2C8 genes with the PK and/or efficacy of glinides has 

been reported. In healthy individuals, carriers of the variant 

allele c.521 T.C in the SLCO1B1 had a reduced transport 

and an increased plasma concentration of repaglinide and 

nateglinide.86–89 The *1B/*1B haplotype in the same gene was 

also associated with a reduced transport of glinides.90 Associa-

tion of the *3 variant in CYP2C8 and CYP2C9 with the PK of 

nateglinide and repaglinide has also been reported.86,91,92

In a study carried out in 100 Chinese patients, He et al 

investigated the effect of KCNJ11 genotype on the efficacy 

of repaglinide after 24 weeks of treatment.93 Carriers of the 

K allele of E23K showed a greater HbA1c reduction (EE: 

1.52%±1.03%, EK: 2.33%±1.53%, and KK: 2.65%±1.73%, 

P=0.02). However, this result could be confounded by base-

line effect as carriers of the variant allele had higher HbA1c 

at baseline than carriers of the wild type.

Studies pertaining to the pharmacogenetics of glinides 

are confounded by small sample sizes (most of them ,100). 

PD investigations are available for repaglinide only, and most 

of the PK studies are limited to healthy volunteers (Table S3). 

Therefore, further studies with bigger sample sizes, meth-

odological diversities, and replication are required.

Thiazolidinediones
TZDs, also known as glitazones, are OHAs that act as insulin 

sensitizers in different tissues, including the liver, muscle, and 
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adipose tissue. Glitazones act via the activation of PPAR-γ 

that regulates the transcription of multiple downstream genes 

involved in glucose and lipid metabolism. They reduce HbA1c 

by ∼0.5%–1.4%.94 There are three glitazones that have been 

licensed: rosiglitazone, pioglitazone, and troglitazone. While 

troglitazone was withdrawn from the global market in 2000 

due to idiosyncratic hepatotoxicity, marketing authorization 

for roziglitazone has been withdrawn in Europe and put under 

restrictions in the USA due to the potential cardiovascular 

risks. France and Germany have suspended pioglitazone due 

to an increased risk of bladder cancer. However, recent mul-

tipopulation studies showed no association of pioglitazone or 

rosiglitazone with the risk of bladder cancer.95,96

Pharmacogenetics
CYP2C8 and SLCO1B1: Hepatic uptake of TZDs is medi-

ated by OAT1B197 with metabolism mostly by CYP2C8. 

Genetic variants in genes encoding these proteins have been 

investigated for their possible impact on the PK of TZDs in 

healthy volunteers. The homozygote carriers of CYP2C8*3 

had 36% lower rosiglitazone plasma concentration and 39% 

higher weight-adjusted oral clearance compared to carriers 

of the wild type.98,99 Similar trends have been reported for 

pioglitazone in two other studies.100,101 For SLCO1B1, despite 

in silico modeling, PK studies in healthy Caucasians found 

no association between loss-of-function 521 T.C variant 

of SLCO1B1 and plasma concentrations of rosiglitazone 

and pioglitazone.99,102 It is worth noting that these studies 

had small samples that could limit statistical power to detect 

moderate genetic effects.

PPARG: PPARG, the mechanistic target of TZDs, is 

an obvious candidate for pharmacogenetic investigations. 

Association of the common variant rs1801282 P12A with 

risk of T2D has been reported.103 The most robust study that 

showed an association between P12A and response to pio-

glitazone was carried out in 250 Chinese patients.104 Carriers 

of the minor allele (Ala) showed 2.32 ([95% CI =1.10–4.87], 

P=0.03) times higher odds of being a responder than carriers 

of the wild type. In this study, responders were defined 

as those with .15% decrease in HbA1c levels or .20% 

decrease in FPG levels (or both) after 24 weeks of pioglita-

zone treatment. Association of the same variant with a linear 

reduction in HbA1c and FPG after pioglitazone therapy was 

replicated in an independent cohort of 67 patients.105 Similar 

trend has been reported in 198 Korean patients treated with 

4 mg rosiglitazone daily for 3 months.106

Adverse outcomes: Adverse effects induced by TZD 

therapy have been investigated in relation to genetic variants. 

Watanabe et al studied association of troglitazone-induced 

hepatotoxicity with the 68 polymorphic sites of 51 candidate 

genes in 110 Japanese patients (25 cases and 85 controls).10 

The strongest correlation was observed for combined null 

genotype of glutathione S-transferase theta-1 and glutathione 

S-transferase mu-1 (OR =3.7 [95% CI =1.4–10.1], P=0.008). 

In another Japanese study, association of troglitazone-induced 

liver injury with mutations in CYP2C19 was reported.11 In the 

Diabetes REduction Assessment with ramipril and rosiglita-

zone Medication (DREAM) trial, a higher rate of roziglitazone-

induced edema (OR =1.89 [95% CI =1.47–2.42], P=0.017) 

was reported for patients’ homozygous CC for rs6123045, a 

variant at the Nuclear Factor of Activated T-cells, Cytoplasmic, 

Calcineurin-Dependent 2 (NFATC2) locus (Table S4).107

incretins
There is a greater insulin secretory response to oral than intra-

venous glucose load despite the same glucose concentrations 

at the level of the β-cell; this is termed as the incretin effect and 

has been attributed to the incretin peptides: GLP-1 and gastric 

inhibitory polypeptide.108 GLP-1 is a glucoincretin hormone 

secreted from enteroendocrine L cells within the crypts of 

the intestinal mucosa. It has a t
1/2

 of 1–2 minutes due to rapid 

degradation by the enzyme DPP-4 and thus limited therapeutic 

potential.109 Two therapeutic strategies were developed to over-

come this rapid degradation – oral agents that inhibit DPP-4 

(known as gliptins) and injectable agents that are resistant to 

breakdown by DPP-4 (GLP-1R agonists).

Pharmacogenetic studies on GLP-1R agonists are limited. 

A pilot study on healthy Caucasians showed differences in the 

insulinotropic response to exogenous GLP-1 in relation to two 

common variants (rs6923761 G.A and rs3765467 C.T) in 

the GLP-1R gene.110 ’t Hart et al reported significant association 

between a variant near the Chymotrypsinogen B1/2 (CTRB1/2) 

gene (rs7202877) and glycemic response to gliptins. CTRB1/2 

encodes chymotrypsin, and the G allele at rs7202877 variant 

was associated with an increased fecal chymotrypsin activity. 

Carriers of the G allele at this SNP showed 0.51%±0.16% lower 

HbA1c reduction compared to TT genotype (P=0.0015) after 

being on gliptins for at least 3 months.111 Association of vari-

ants in other T2D-related genes, such as Potassium Channel, 

Voltage Gated KQT-Like Subfamily Q, Member 1 (KCNQ1), 

TCF7L2, and Wolfram Syndrome 1 (WFS1), with GLP-1R 

agonist response has also been reported (Table S5).

SGLT-2 inhibitors
SGLT-2 inhibitors are a new class of OHAs that 

inhibit SGLT-2-mediated renal reabsorption of glucose 
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thereby increase glycosuria, resulting in a reduction of 

hyperglycemia independent of β-cell function.112 After oral 

administration, SGLT-2 inhibitors show a bioavailability of 

65%–78% with a t
1/2

 ranging 10–13 hours allowing once a 

day administration.112 They are mainly eliminated through 

O-glucuronidation by uridine diphosphate glucuronosyl-

transferases (UGTs).113 A recent study carried out in 134 

healthy and T2D subjects showed involvement of UGT1A9 

and UGT2B4 in the metabolism of canagliflozin.113 Carriers 

of reduced function variants, UGT1A9*3 and UGT2B4*2, 

had an increased plasma concentration of canagliflozin than 

carriers of the parent allele.

SGLT-2 inhibitors reduce HbA1c by 0.58%–1% when 

used as a mono- or an add-on therapy.114 Individual variation 

in response to SGLT-2 inhibitors has been reported, and part 

of this variation could be attributable to genetic variation. 

Nonsense and missense mutations in the SLC2A5 gene that 

result in the loss of SGLT-2 function cause familial renal 

glycosuria and are associated with the reduced circulating 

glucose levels.115,116

Conclusion and future directions
More than 120 studies pertaining gene–drug interaction 

in diabetes have been investigated for this review (Tables 

S1–S5). Even though small studies that lack replication 

predominate, well-powered, and successfully replicated 

findings are emerging. Promising advances in the phar-

macogenomics of T2D have already been made. Genetic-

guided therapy is now mainstream in the case of maturity 

onset diabetes of the young and neonatal diabetes.70,117 To 

further translate pharmacogenomics research into clinical 

practice, more well-designed studies with sufficiently large 

sample size and well-characterized phenotype should be 

conducted, and where possible meta-analysis across studies 

should be undertaken to provide robust evidence for an asso-

ciation. In addition, data from high-throughput sequencing 

of rare variants, noncoding regions, and multilevel -omics, 

including transcriptomics, proteomics, metabolomics, and 

metagenomics, may yield greater mechanistic insights and 

possibly biomarkers with a larger clinical effect.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of 

diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.
2. International Diabetes Federation (IDF). IDF Diabetes Atlas. 6th ed. 

Brussels: International Diabetes Federation; 2013.

 3. Casagrande SS, Fradkin JE, Saydah SH, Rust KF, Cowie CC. The preva-
lence of meeting A1C, blood pressure, and LDL goals among people 
with diabetes, 1988-2010. Diabetes Care. 2013;36(8):2271–2279.

 4. Becker ML, Pearson ER, Tká  I. Pharmacogenetics of oral antidiabetic 
drugs. Int J Endocrinol. 2013;2013:686315.

 5. DeFronzo RA, Stonehouse AH, Han J, Wintle ME. Relationship 
of baseline HbA1c and efficacy of current glucose-lowering thera-
pies: a meta-analysis of randomized clinical trials. Diabetic Med. 
2010;27(3):309–317.

 6. Ho PM, Rumsfeld JS, Masoudi FA, et al. Effect of medication nonad-
herence on hospitalization and mortality among patients with diabetes 
mellitus. Arch Intern Med. 2006;166(17):1836–1841.

 7. Zhou K, Donnelly L, Yang J, et al. Heritability of variation in glycaemic 
response to metformin: a genome-wide complex trait analysis. Lancet 
Diabetes Endocrinol. 2014;2(6):481–487.

 8. Zhou K, Bellenguez C, Spencer CC, et al. Common variants near ATM 
are associated with glycemic response to metformin in type 2 diabetes. 
Nat Genet. 2011;43(2):117–120.

 9. Vella A. Pharmacogenetics for type 2 diabetes: practical considerations 
for study design. J Diabetes Sci Technol. 2009;3(4):705–709.

 10. Watanabe I, Tomita A, Shimizu M, et al. A study to survey susceptible 
genetic factors responsible for troglitazone-associated hepatotoxicity in 
Japanese patients with type 2 diabetes mellitus. Clin Pharmacol Ther. 
2003;73(5):435–455.

 11. Kumashiro R, Kubota T, Koga Y, et al. Association of troglitazone-
induced liver injury with mutation of the cytochrome P450 2C19 gene. 
Hepatol Res. 2003;26(4):337–342.

 12. Donnelly LA, Doney AS, Hattersley AT, Morris AD, Pearson ER. The 
effect of obesity on glycaemic response to metformin or sulphonylureas 
in Type 2 diabetes. Diabet Med. 2006;23(2):128–133.

 13. Ong CR, Molyneaux LM, Constantino MI, Twigg SM, Yue DK. Long-
term efficacy of metformin therapy in nonobese individuals with type 
2 diabetes. Diabetes Care. 2006;29(11):2361–2364.

 14. Miyazaki Y, De Filippis E, Bajaj M, Wajcberg E, Glass LC, Triplitt C. 
Predictors of improved glycemic control with rosiglitazone therapy 
in type 2 diabetic patients: a practical approach for the primary care 
physician. Br J Diabetes Vasc Dis. 2005;5:28–35.

 15. Kim YM, Cha BS, Kim DJ, et al. Predictive clinical parameters for 
therapeutic efficacy of rosiglitazone in Korean type 2 diabetes mellitus. 
Diabetes Res Clin Pract. 2005;67:43–52.

 16. Scheen AJ. Drug interactions of clinical importance with antihyperg-
lycaemic agents: an update. Drug Saf. 2005;28(7):601–631.

 17. Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. 
Association of organic cation transporter 1 with intolerance to metformin 
in type 2 diabetes: a GoDARTS Study. Diabetes. 2015;64(5):1786–1793.

 18. Niemi M, Backman JT, Neuvonen M, Neuvonen PJ. Effects of gem-
fibrozil, itraconazole, and their combination on the pharmacokinet-
ics and pharmacodynamics of repaglinide: potentially hazardous 
interaction between gemfibrozil and repaglinide. Diabetologia. 
2003;46:347–351.

 19. Goswami S, Yee SW, Stocker S, et al. Genetic variants in transcription 
factors are associated with the pharmacokinetics and pharmacodynam-
ics of metformin. Clin Pharmacol Ther. 2014;96(3):370–379.

 20. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann 
Intern Med. 1999;131(4):281–303.

 21. Han TH, Everett RS, Proctor WR, et al. Organic cation transporter 
1 (OCT1/mOct1) is localized in the apical membrane of Caco-2 cell 
monolayers and enterocytes. Mol Pharmacol. 2013;84(2):182–189.

 22. Han TK, Proctor WR, Costales CL, Cai H, Everett RS, Thakker DR. Four 
cation-selective transporters contribute to apical uptake and accumula-
tion of metformin in Caco-2 cell monolayers. J Pharmacol Exp Ther. 
2015;352(3):519–528.

 23. Müller J, Lips KS, Metzner L, Neubert RH, Koepsell H, Brandsch M. Drug 
specificity and intestinal membrane localization of human organic cation 
transporters (OCT). Biochem Pharmacol. 2005;70(12):1851–1860.

 24. Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of 
metformin. Clin Pharmacokinet. 2011;50(2):81–98.

www.dovepress.com
www.dovepress.com
www.dovepress.com
https://www.dovepress.com/get_supplementary_file.php?f=84854.pdf
https://www.dovepress.com/get_supplementary_file.php?f=84854.pdf


Pharmacogenomics and Personalized Medicine 2016: 9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

27

A review on pharmacogenetics in type 2 diabetes

 25. Kimura N, Masuda S, Tanihara Y, et al. Metformin is a superior 
substrate for renal organic cation transporter OCT2 rather 
than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20(5): 
379–386.

 26. Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, 
Moriyama Y. A human transporter protein that mediates the final 
excretion step for toxic organic cations. Proc Natl Acad Sci USA. 
2005;102(50):17923–17928.

 27. Pernicova I, Korbonits M. Metformin – mode of action and 
clinical implications for diabetes and cancer. Nat Rev Endocrinol. 
2014;10(3):143–156.

 28. Foretz M, Hébrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeo-
genesis in mice independently of the LKB1/AMPK pathway via a decrease 
in hepatic energy state. J Clin Invest. 2010;120(7):2355–2369.

 29. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides 
suppress hepatic glucagon signalling by decreasing production of cyclic 
AMP. Nature. 2013;494(7436):256–260.

 30. Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses 
gluconeogenesis by inhibiting mitochondrial glycerophosphate dehy-
drogenase. Nature. 2014;510(7506):542–546.

 31. Maruthur NM, Gribble MO, Bennett WL, et al. The pharmaco-
genetics of type 2 diabetes: a systematic review. Diabetes Care. 
2014;37:876–886.

 32. Nies AT, Koepsell H, Damme K, Schwab M. Organic cation 
transporters (OCTs, MATEs), in vitro and in vivo evidence for the 
importance in drug therapy. Handb Exp Pharmacol. 2011;(201): 
105–167.

 33. Tzvetkov MV, Vormfelde SV, Balen D, et al. The effects of genetic 
polymorphisms in the organic cation transporters OCT1, OCT2, and 
OCT3 on the renal clearance of metformin. Clin Pharmacol Ther. 
2009;86(3):299–306.

 34. Christensen MM, Brasch-Andersen C, Green H, et al. The pharmaco-
genetics of metformin and its impact on plasma metformin steady-state 
levels and glycosylated hemoglobin A1c. Pharmacogenet Genom-
ics. 2011;21(12):837–850. [Erratum in Pharmacogenet Genomics. 
2015;25(1):48–50].

 35. Shu Y, Brown C, Castro RA, et al. Effect of genetic variation in the 
organic cation transporter 1, OCT1, on metformin pharmacokinetics. 
Clin Pharmacol Ther. 2008;83(2):273–280.

 36. Zhou K, Donnelly LA, Kimber CH, et al. Reduced-function 
SLC22A1 polymorphisms encoding organic cation transporter 1 
and glycemic response to metformin: a GoDARTs study. Diabetes. 
2009;58(6):1434–1439.

 37. Davis R, Giacomini K, Yee SW, Jenkins G, McCarty CA, Wilke RA.  
PS1-10: response to metformin and genetic variants of organic cat-
ion and multidrug and toxin extrusion transporters. Clin Med Res. 
2010;8(3–4):191.

 38. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, 
Stricker BH. Genetic variation in the organic cation transporter 1 is 
associated with metformin response in patients with diabetes mellitus. 
Pharmacogenomics J. 2009;9(4):242–247.

 39. Jablonski KA, McAteer JB, de Bakker PI, et al; Diabetes Prevention 
Program Research Group. Common variants in 40 genes assessed 
for diabetes incidence and response to metformin and lifestyle inter-
vention in the diabetes prevention program. Diabetes. 2010;59(10): 
2672–2681.

 40. Tarasova L, Kalnina I, Geldnere K, et al. Association of genetic varia-
tion in the organic cation transporters OCT1, OCT2 and multidrug and 
toxin extrusion 1 transporter protein genes with the gastrointestinal side 
effects and lower BMI in metformin-treated type 2 diabetes patients. 
Pharmacogenet Genomics. 2012;22(9):659–666.

 41. Song IS, Shin HJ, Shim EJ, et al. Genetic variants of the organic cation 
transporter 2 influence the disposition of metformin. Clin Pharmacol 
Ther. 2008;84(5):559–562.

 42. Shikata E, Yamamoto R, Takane H, et al. Human organic cation trans-
porter (OCT1 and OCT2) gene polymorphisms and therapeutic effects 
of metformin. J Hum Genet. 2007;52(2):117–122.

 43. Hou W, Zhang D, Lu W, et al. Polymorphism of organic cation 
transporter 2 improves glucose-lowering effect of metformin via influ-
encing its pharmacokinetics in Chinese type 2 diabetic patients. Mol 
Diagn Ther. 2015;19(1):25–33.

 44. Chen Y, Li S, Brown C, et al. Effect of genetic variation in the organic 
cation transporter 2 on the renal elimination of metformin. Pharmaco-
genet Genomics. 2009;19(7):497–504.

 45. Christensen MM, Pedersen RS, Stage TB, et al. A gene-gene interac-
tion between polymorphisms in the OCT2 and MATE1 genes influ-
ences the renal clearance of metformin. Pharmacogenet Genomics. 
2013;23(10):526–534.

 46. Kajiwara M, Terada T, Ogasawara K, et al. Identification of multidrug 
and toxin extrusion (MATE1 and MATE2-K) variants with complete 
loss of transport activity. J Hum Genet. 2009;54(1):40–46.

 47. Choi JH, Yee SW, Ramirez AH, et al. A common 5’-UTR variant in 
MATE2-K is associated with poor response to metformin. Clin Phar-
macol Ther. 2011;90(5):674–684.

 48. He R, Zhang D, Lu W, et al. SLC47A1 gene rs2289669 G.A variants 
enhance the glucose-lowering effect of metformin via delaying its 
excretion in Chinese type 2 diabetes patients. Diabetes Res Clin Pract. 
2015;109(1):57–63.

 49. Tká  I, Klim áková L, Javorský M, et al. Pharmacogenomic associa-
tion between a variant in SLC47A1 gene and therapeutic response to 
metformin in type 2 diabetes. Diabetes Obes Metab. 2013;15(2): 
189–191.

 50. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG,  
Stricker BH. Genetic variation in the multidrug and toxin extru-
sion 1 transporter protein influences the glucose-lowering effect of 
metformin in patients with diabetes: a preliminary study. Diabetes. 
2009;58(3):745–749.

 51. Stocker SL, Morrissey KM, Yee SW, et al. The effect of novel pro-
moter variants in MATE1 and MATE2 on the pharmacokinetics and 
pharmacodynamics of metformin. Clin Pharmacol Ther. 2013;93(2): 
186–194.

 52. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, 
Stricker BH. Interaction between polymorphisms in the OCT1 and 
MATE1 transporter and metformin response. Pharmacogenet Genom-
ics. 2010;20(1):38–44.

 53. van Leeuwen N, Nijpels G, Becker ML, et al. A gene variant near ATM 
is significantly associated with metformin treatment response in type 2 
diabetes: a replication and meta-analysis of five cohorts. Diabetologia. 
2012;55(7):1971–1977.

 54. Zhou Y, Guo Y, Ye W, et al. rs11212617 is associated with metformin 
treatment response in type 2 diabetes in Shanghai local Chinese popula-
tion. Int J Clin Pract. 2014;68(12):1462–1466.

 55. Florez JC, Jablonski KA, Taylor A, et al; Diabetes Prevention Program 
Research Group. The C allele of ATM rs11212617 does not associate 
with metformin response in the diabetes prevention program. Diabetes 
Care. 2012;35(9):1864–1867.

 56. Desai NR, Shrank WH, Fischer MA, et al. Patterns of medication initia-
tion in newly diagnosed diabetes mellitus: quality and cost implications. 
Am J Med. 2012;125(3):302.e1–302.e7.

 57. Kirchheiner J, Roots I, Goldammer M, et al. Effect of genetic poly-
morphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the 
pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin 
Pharmacokinet. 2005;44(12):1209–1225.

 58. Xu H, Murray M, McLachlan AJ. Influence of genetic polymorphisms 
on the pharmacokinetics and pharmacodynamics of sulfonylurea drugs. 
Curr Drug Metab. 2009;10:643–658.

 59. Shyng S, Nichols CG. Octameric stoichiometry of the KATP channel 
complex. J Gen Physiol. 1997;110(6):655–664.

 60. Goldstein JA. Clinical relevance of genetic polymorphisms in the human 
CYP2C subfamily. Br J Clin Pharmacol. 2001;52(4):349–355.

 61. Kirchheiner J, Brockmöller J, Meineke I, et al. Impact of CYP2C9 
amino acid polymorphisms on glyburide kinetics and on the insulin 
and glucose response in healthy volunteers. Clin Pharmacol Ther. 
2002;71(4):286–296.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Pharmacogenomics and Personalized Medicine 2016: 9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

28

Dawed et al

 62. Yin OQ, Tomlinson B, Chow MS. CYP2C9, but not CYP2C19, 
polymorphisms affect the pharmacokinetics and pharmacodynamics 
of glyburide in Chinese subjects. Clin Pharmacol Ther. 2005;78(4): 
370–377.

 63. Shon JH, Yoon YR, Kim KA, et al. Effects of CYP2C19 and CYP2C9 
genetic polymorphisms on the disposition of and blood glucose 
lowering response to tolbutamide in humans. Pharmacogenetics. 
2002;12(2):111–119.

 64. Wang R, Chen K, Wen SY, Li J, Wang SQ. Pharmacokinetics of 
glimepiride and cytochrome P450 2C9 genetic polymorphisms. Clin 
Pharmacol Ther. 2005;78(1):90–92.

 65. Zhang Y, Si D, Chen X, et al. Influence of CYP2C9 and CYP2C19 
genetic polymorphisms on pharmacokinetics of gliclazide MR in 
Chinese subjects. Br J Clin Pharmacol. 2007;64(1):67–74.

 66. Zhou K, Donnelly L, Burch L, et al. Loss-of-function CYP2C9 vari-
ants improve therapeutic response to sulfonylureas in type 2 diabetes: 
a Go-DARTS study. Clin Pharmacol Ther. 2010;87(1):52–56.

 67. Becker ML, Visser LE, Trienekens PH, Hofman A, van Schaik RH, 
Stricker BH. Cytochrome P450 2C9 *2 and *3 polymorphisms and 
the dose and effect of sulfonylurea in type II diabetes mellitus. Clin 
Pharmacol Ther. 2008;83(2):288–292.

 68. Suzuki K, Yanagawa T, Shibasaki T, Kaniwa N, Hasegawa R, Tohkin M.  
Effect of CYP2C9 genetic polymorphisms on the efficacy and phar-
macokinetics of glimepiride in subjects with type 2 diabetes. Diabetes 
Res Clin Pract. 2006;72(2):148–154.

 69. Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neona-
tal diabetes: new clinical syndromes, new scientific insights, and new 
therapy. Diabetes. 2005;54(9):2503–2513.

 70. Pearson ER, Flechtner I, Njølstad PR, et al; Neonatal Diabetes Inter-
national Collaborative Group. Switching from insulin to oral sulfony-
lureas in patients with diabetes due to Kir62 mutations. N Engl J Med. 
2006;355(5):467–477.

 71. Lang VY, Fatehi M, Light PE. Pharmacogenomic analysis of ATP-
sensitive potassium channels coexpressing the common type 2 dia-
betes risk variants E23K and S1369A. Pharmacogenet Genomics. 
2012;22(3):206–214.

 72. Zhang H, Liu X, Kuang H, Yi R, Xing H. Association of sulfonylurea 
receptor 1 genotype with therapeutic response to gliclazide in type 2 
diabetes. Diabetes Res Clin Pract. 2007;77(1):58–61.

 73. Feng Y, Mao G, Ren X, et al. Ser1369Ala variant in sulfonylu-
rea receptor gene ABCC8 is associated with antidiabetic efficacy 
of gliclazide in Chinese type 2 diabetic patients. Diabetes Care. 
2008;31(10):1939–1944.

 74. Li Q, Chen M, Zhang R, et al. KCNJ11 E23K variant is associated 
with the therapeutic effect of sulphonylureas in Chinese type 2 diabetic 
patients. Clin Exp Pharmacol Physiol. 2014;41(10):748–754.

 75. Javorsky M, Klimcakova L, Schroner Z, et al. KCNJ11 gene E23K 
variant and therapeutic response to sulfonylureas. Eur J Intern Med. 
2012;23(3):245–249.

 76. Gloyn AL, Hashim Y, Ashcroft SJ, et al; UK Prospective Diabetes 
Study (UKPDS 53). Association studies of variants in promoter and 
coding regions of beta-cell ATP-sensitive K-channel genes SUR1 
and Kir62 with Type 2 diabetes mellitus (UKPDS 53). Diabet Med. 
2001;18(3):206–212.

 77. Sesti G, Laratta E, Cardellini M, et al. The E23K variant of KCNJ11 
encoding the pancreatic beta-cell adenosine 5’-triphosphate-sensitive 
potassium channel subunit Kir62 is associated with an increased risk 
of secondary failure to sulfonylurea in patients with type 2 diabetes.  
J Clin Endocrinol Metab. 2006;91(6):2334–2339.

 78. Ragia G, Tavridou A, Petridis I, Manolopoulos VG. Association of 
KCNJ11 E23K gene polymorphism with hypoglycemia in sulfo-
nylurea-treated type 2 diabetic patients. Diabetes Res Clin Pract. 
2012;98(1):119–124.

 79. Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer J, Maedler K.  
Transcription factor 7-like 2 regulates beta-cell survival and function 
in human pancreatic islets. Diabetes. 2008;57(3):645–653.

 80. Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription 
factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat 
Genet. 2006;38(3):320–323.

 81. Pearson ER, Donnelly LA, Kimber C, et al. Variation in TCF7L2 
influences therapeutic response to sulfonylureas: a GoDARTs study. 
Diabetes. 2007;56(8):2178–2182.

 82. Schroner Z, Javorsky M, Tkacova R, et al. Effect of sulphonylurea treat-
ment on glycaemic control is related to TCF7L2 genotype in patients 
with type 2 diabetes. Diabetes Obes Metab. 2011;13(1):89–91.

 83. Javorský M, Babjaková E, Klim áková L, et al. Association between 
TCF7L2 genotype and glycemic control in diabetic patients treated with 
gliclazide. Int J Endocrinol. 2013;2013:374858.

 84. Holstein A, Hahn M, Körner A, Stumvoll M, Kovacs P. TCF7L2 and 
therapeutic response to sulfonylureas in patients with type 2 diabetes. 
BMC Med Genet. 2011;12:30.

 85. Bachmakov I, Glaeser H, Fromm MF, König J. Interaction of oral antidi-
abetic drugs with hepatic uptake transporters: focus on organic anion 
transporting polypeptides and organic cation transporter 1. Diabetes. 
2008;57(6):1463–1469.

 86. Niemi M, Backman JT, Kajosaari LI, et al. Polymorphic organic 
anion transporting polypeptide 1B1 is a major determinant of 
repaglinide pharmacokinetics. Clin Pharmacol Ther. 2005;77(6): 
468–478.

 87. Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M. Different 
effects of SLCO1B1 polymorphism on the pharmacokinetics and 
pharmacodynamics of repaglinide and nateglinide. J Clin Pharmacol. 
2008;48(3):311–321.

 88. Zhang W, He YJ, Han CT, et al. Effect of SLCO1B1 genetic polymor-
phism on the pharmacokinetics of nateglinide. Br J Clin Pharmacol. 
2006;62(5):567–572.

 89. Cheng Y, Wang G, Zhang W, Fan L, Chen Y, Zhou HH. Effect of 
CYP2C9 and SLCO1B1 polymorphisms on the pharmacokinetics and 
pharmacodynamics of nateglinide in healthy Chinese male volunteers. 
Eur J Clin Pharmacol. 2013;69(3):407–413.

 90. Kalliokoski A, Backman JT, Neuvonen PJ, Niemi M. Effects of the 
SLCO1B1*1B haplotype on the pharmacokinetics and pharmaco-
dynamics of repaglinide and nateglinide. Pharmacogenet Genomics. 
2008;18(11):937–942.

 91. Kirchheiner J, Meineke I, Müller G, et al. Influence of CYP2C9 and 
CYP2D6 polymorphisms on the pharmacokinetics of nateglinide 
in genotyped healthy volunteers. Clin Pharmacokinet. 2004;43(4): 
267–278.

 92. Niemi M, Leathart JB, Neuvonen M, Backman JT, Daly AK, Neuvonen PJ.  
Polymorphism in CYP2C8 is associated with reduced plasma concentra-
tions of repaglinide. Clin Pharmacol Ther. 2003;74(4):380–387.

 93. He YY, Zhang R, Shao XY, et al. Association of KCNJ11 and ABCC8 
genetic polymorphisms with response to repaglinide in Chinese diabetic 
patients. Acta Pharmacol Sin. 2008;29(8):983–989.

 94. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperg-
lycemia in type 2 diabetes, 2015: a patient-centered approach. Update 
to a position statement of the American Diabetes Association and 
the European Association for the Study of Diabetes. Diabetes Care. 
2015;38:140–149.

 95. Levin D, Bell S, Sund R, et al; Scottish Diabetes Research Network 
Epidemiology Group; Diabetes and Cancer Research Consortium. Pio-
glitazone and bladder cancer risk: a multipopulation pooled, cumulative 
exposure analysis. Diabetologia. 2015;58(3):493–504.

 96. Lewis JM, Ferrara A, Peng T, et al. Risk of bladder cancer among dia-
betic patients treated with pioglitazone interim report of a longitudinal 
cohort study. Diabetes Care. 2008;34:916–922.

 97. Kalliokoski A, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism  
and oral antidiabetic drugs. Basic Clin Pharmacol Toxicol. 2010; 
107(4):775–781.

 98. Kirchheiner J, Thomas S, Bauer S, et al. Pharmacokinetics and phar-
macodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin 
Pharmacol Ther. 2006;80(6):657–667.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Pharmacogenomics and Personalized Medicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/pharmacogenomics-and-personalized-medicine-journal

Pharmacogenomics and Personalized Medicine is an international, peer-
reviewed, open access journal characterizing the influence of genotype 
on pharmacology leading to the development of personalized treatment 
programs and individualized drug selection for improved safety, efficacy 
and sustainability. This journal is indexed on the American Chemical 

Society’s Chemical Abstracts Service (CAS). The manuscript manage-
ment system is completely online and includes a very quick and fair 
peer-review system, which is all easy to use. Visit http://www.dovepress.
com/testimonials.php to read real quotes from published authors.

Pharmacogenomics and Personalized Medicine 2016: 9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

29

A review on pharmacogenetics in type 2 diabetes

 99. Aquilante CL, Bushman LR, Knutsen SD, Burt LE, Rome LC,  
Kosmiski LA. Influence of SLCO1B1 and CYP2C8 gene polymor-
phisms on rosiglitazone pharmacokinetics in healthy volunteers. Hum 
Genomics. 2008;3(1):7–16.

 100. Aquilante CL, Kosmiski LA, Bourne DW, et al. Impact of the 
CYP2C8 *3 polymorphism on the drug-drug interaction between gemfi-
brozil and pioglitazone. Br J Clin Pharmacol. 2013;75(1):217–226.

 101. Tornio A, Niemi M, Neuvonen PJ, Backman JT. Trimethoprim and 
the CYP2C8*3 allele have opposite effects on the pharmacokinetics 
of pioglitazone. Drug Metab Dispos. 2008;36(1):73–80.

 102. Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M. No significant 
effect of SLCO1B1 polymorphism on the pharmacokinetics of 
rosiglitazone and pioglitazone. Br J Clin Pharmacol. 2008;65(1): 
78–86.

 103. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common 
PPARgamma Pro12Ala polymorphism is associated with decreased 
risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80.

 104. Hsieh MC, Lin KD, Tien KJ, et al. Common polymorphisms of the 
peroxisome proliferator-activated receptor-gamma (Pro12Ala) and 
peroxisome proliferator-activated receptor-gamma coactivator-1 
(Gly482Ser) and the response to pioglitazone in Chinese patients with 
type 2 diabetes mellitus. Metabolism. 2010;59(8):1139–1144.

 105. Pei Q, Huang Q, Yang GP, et al. PPAR-γ2 and PTPRD gene polymor-
phisms influence type 2 diabetes patients’ response to pioglitazone in 
China. Acta Pharmacol Sin. 2013;34(2):255–261.

 106. Kang ES, Park SY, Kim HJ, et al. Effects of Pro12Ala polymor-
phism of peroxisome proliferator-activated receptor gamma2 gene 
on rosiglitazone response in type 2 diabetes. Clin Pharmacol Ther. 
2005;78(2):202–208.

 107. Bailey SD, Xie C, Do R, et al. Variation at the NFATC2 locus increases 
the risk of thiazolidinedione-induced edema in the Diabetes REduction 
Assessment with ramipril and rosiglitazone Medication (DREAM) 
study. Diabetes Care. 2010;33(10):2250–2253.

 108. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 
receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 dia-
betes. Lancet. 2006;368(9548):1696–1705.

 109. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 
2007;87(4):1409–1439.

 110. Sathananthan A, Man CD, Micheletto F, et al. Common genetic 
variation in GLP1R and insulin secretion in response to exog-
enous GLP-1 in nondiabetic subjects: a pilot study. Diabetes Care. 
2010;33(9):2074–2076.

 111. ’t Hart LM, Fritsche A, Nijpels G, et al. The CTRB1/2 locus affects 
diabetes susceptibility and treatment via the incretin pathway. Diabetes. 
2013;62(9):3275–3281.

 112. Scheen AJ. Pharmacokinetics, pharmacodynamics and clinical use of 
SGLT2 inhibitors in patients with type 2 diabetes mellitus and chronic 
kidney disease. Clin Pharmacokinet. 2015;54(7):691–708.

 113. Francke S, Mamidi RN, Solanki B, et al. In vitro metabolism of cana-
gliflozin in human liver, kidney, intestine microsomes, and recombinant 
uridine diphosphate glucuronosyltransferases (UGT) and the effect 
of genetic variability of UGT enzymes on the pharmacokinetics of 
canagliflozin in humans. J Clin Pharmacol. 2015;55(9):1061–1072.

 114. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose 
co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 
diabetes mellitus. Drugs. 2015;75(1):33–59.

 115. van den Heuvel LP, Assink K, Willemsen M, Monnens L. Autosomal 
recessive renal glucosuria attributable to a mutation in the sodium 
glucose cotransporter (SGLT2). Hum Genet. 2002;111(6):544–547.

 116. Calado J, Soto K, Clemente C, Correia P, Rueff J. Novel compound 
heterozygous mutations in SLC5A2 are responsible for autosomal 
recessive renal glucosuria. Hum Genet. 2004;114(3):314–316.

 117. Rafiq M, Flanagan SE, Patch AM, et al; Neonatal Diabetes Inter-
national Collaborative Group. Effective treatment with diabetes 
due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care. 
2008;32(2):204–209.

http://www.dovepress.com/pharmacogenomics-and-personalized-medicine-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com


CYP2C8 and SLCO1B1 Variants
and Therapeutic Response to
Thiazolidinediones in Patients
With Type 2 Diabetes
Diabetes Care 2016;39:1902–1908 | DOI: 10.2337/dc15-2464

OBJECTIVE

Thiazolidinediones (TZDs) are putatively transported into the liver by OATP1B1
(encoded by SLCO1B1) and metabolized by CYP450 2C8 enzyme (encoded by
CYP2C8). While CYP2C8*3 has been shown to alter TZD pharmacokinetics, it has
not been shown to alter efficacy.

RESEARCH DESIGN AND METHODS

We genotyped 833 Scottish patients with type 2 diabetes treated with pioglita-
zone or rosiglitazone and jointly investigated association of variants in these two
genes with therapeutic outcome.

RESULTS

The CYP2C8*3 variant was associated with reduced glycemic response to rosigli-
tazone (P = 0.01) and less weight gain (P = 0.02). The SLCO1B1 521T>C variant was
associated with enhanced glycemic response to rosiglitazone (P = 0.04). The super
responders defined by combined genotypes at CYP2C8 and SLCO1B1 had a 0.39%
(4 mmol/mol) greater HbA1c reduction (P = 0.006) than the poor responders.
Neither of the variants had a significant impact on pioglitazone response.

CONCLUSIONS

These results show that variants in CYP2C8 and SLCO1B1 have a large clinical
impact on the therapeutic response to rosiglitazone and highlight the importance
of studying transporter and metabolizing genes together in pharmacogenetics.

The thiazolidinediones (TZDs), pioglitazone and rosiglitazone, have been widely used
in combination with other oral agents for the treatment of type 2 diabetes. They act
as peripheral insulin sensitizers by activating the nuclear peroxisome proliferator–
activated receptor g, which regulates the transcription of genes related to glucose
metabolism (1). After a meta-analysis of 42 studies that linked rosiglitazone to an in-
creased risk of cardiovascular adverse effects (2), its marketing authorization was with-
drawn in Europe and its use restricted in the U.S. However, its restriction has been lifted
after the Rosiglitazone Evaluated for Cardiovascular Outcomes in Oral Agent Combina-
tion Therapy for Type 2 Diabetes (RECORD) study failed to show cardiac risks associated
with rosiglitazone (3). Pioglitazone is still in clinical use inmost countries, and its use has
been suspended in France, and restricted in Germany, owing to a small absolute in-
creased risk in bladder cancer. However, a recent multipopulation analysis showed no
association of pioglitazone or rosiglitazone with the risk of bladder cancer (4).
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TZDs are effective at lowering HbA1c
by ;1–1.25% (11–14 mmol/mol) on av-
erage (5). Although TZDs show durabil-
ity in action greater than seen with
either metformin or sulfonylureas (6),
weight gain induced by TZDs has re-
strained their clinical utility (7). For ev-
ery 1% reduction in HbA1c, an estimated
2–3% weight gain is documented (1).
The American Diabetes Association

and European Association for the Study
of Diabetes guidelines continue to high-
light the need to individualize treatment
in diabetes (8), and this applies particu-
larly for the TZDs, where substantial in-
terindividual variation exists in glycemic
response (9). Epidemiological studies
have identified age, sex, baseline weight,
and HbA1c as significant predictors of
response, which can account for up to
49% of the variation in HbA1c reduction
(10,11). Genetic factors are expected to
explain at least part of the remaining
variation and may be important to bet-
ter aid targeted treatment in this pa-
tient group.
In silico modeling has shown that

both pioglitazone and rosiglitazone are pu-
tative substrates of transporter OATP1B1,
which is encoded by SLCO1B1 (12). Both
agents are extensively metabolized in
the liver, mainly by the cytochrome
P450 2C8 enzyme encoded by CYP2C8
(13,14). The main metabolites of rosigli-
tazone are N-desmethyl-rosiglitazone
and rosiglitazone-para-O-sulfate, which
are 20- to 55-fold less potent compared
with the parent drug (15). The principal
metabolites of pioglitazone areM-III and
M-IV; in contrast to the metabolites of
rosiglitazone, they are shown to be phar-
macologically active (16). Gemfibrozil,
which inhibits bothCYP2C8andOATP1B1,
has been shown to increase the plasma
concentration area under the curve (AUC)
of pioglitazone and rosiglitazone between
2.4- and 3.0-fold in healthy volunteers
(17,18), suggesting a role for both CYP2C8
and OATP1B1 in pharmacokinetics of the
agents.
Genetic variants CYP2C8*3 (linked poly-

morphisms of Arg139Lys and Lys399Arg),
and SLCO1B1 521T.C (Val174Ala) are com-
monly seen in populations of European
ancestry with allele frequencies at ;12%
and 16%, respectively (19). Pharmacoki-
netic studies of healthy volunteers have
established that the gain-of-function
CYP2C8*3 variant is associated with
modestly enhanced TZD metabolism.

Homozygote CYP2C8*3 carriers had
36% lower rosiglitazone plasma concen-
tration and 39% higher weight-adjusted
oral clearance rate compared with the
wild-type carriers, with clear gene dos-
age effect seen in the heterozygotes
(20,21). A similar trend has been shown
with pioglitazone (22). Despite the phar-
macokinetic effect of CYP2C8 variant on
rosiglitazone, the studies that have as-
sessed its impact on rosiglitazone effi-
cacy have found no associations in a
small number of healthy non–insulin re-
sistant volunteers (20,21). For SLCO1B1,
despite the in silico modeling, a pharma-
cokinetic study of 32 healthy volun-
teers found no association between the
loss-of-function 521C allele and weight-
adjusted plasma drug AUC after single-
dose rosiglitazone (4 mg) or pioglitazone
administration (23). The lack of consis-
tency of these pharmacokinetic and dy-
namic studies is potentially due to the
limited statistical power in the small
samples to detect the moderate genetic
effect, and the fact that the variants have
previously been considered in isolation.

As TZDs have to be transported into
the liver to be metabolized by CYP2C8,
we assessed the glycemic response and
side effect of weight gain induced by
variants in SLCO1B1 and CYP2C8 to-
gether in a large population of patients
with type 2 diabetes treated with rosi-
glitazone or pioglitazone.

RESEARCH DESIGN AND METHODS

Sample Ascertainment
Patients were ascertained from the Di-
abetes Audit and Research in Tayside
Scotland (DARTS) study, which has pre-
viously been described in detail (24). In
brief, all the patients can be linked to
the Medicine Monitoring Unit/Health
Informatics Centre Database to retrieve
validated prescribing information and
to the clinical information system, the
Scottish Care Information–Diabetes Col-
laboration (SCI-DC), to obtain all bio-
chemistry and clinical phenotypic data
back to 1992. Prospective longitudinal
data were also collected on these patients.
Since October 1997, all patients with dia-
betes have been invited to give written
informed consent to DNA and serum col-
lection as part of the Wellcome Trust
UnitedKingdomType2DiabetesCaseCon-
trol Collection. As of June 2009, .9,000
patients have participated in this Genetics
of DARTS (GoDARTS) study.

From 1,942 incident TZD users in the
GoDARTS cohort, we identified a study
sample of 833 patients who had TZD as
their second-line (added to metformin or
sulfonylurea monotherapy) or third-line
(added to metformin and sulfonylurea
dual therapy) treatment according to
guidelines in Scotland. To be included in
the study, individuals had to have com-
pletedatawith respect to age, sex,weight,
oral antidiabetes treatment history, TZD
treatment dose, adherence, and regular
HbA1cmeasurements. They all had a base-
line HbA1c .7%. They were on stable
treatment for at least 6 months after
TZD was initiated (the index date), which
meant they did not start or stop another
antidiabetes drug within 6 months on ei-
ther side of the TZD index date. Theywere
not treated with insulin before or during
the studied period. This will help to ascer-
tain TZD-related efficacy outcomes. A de-
tailed sample ascertainment procedure is
outlined in Supplementary Fig. 1. The
study was approved by the Tayside Re-
gional Ethics Committee, and informed
consent was obtained from all subjects.

Drug Response Definitions
Individuals’ glycemic response to TZDs
was modeled as the maximum HbA1c re-
duction recorded within 1 to 18 months
of the index date while maintained on
stable treatment. Similarly, TZD-induced
weight gain was measured as the differ-
ence between the last measurement
within the study period and the baseline
weight. The multivariate linear model
equation for these two outcomes is
as follows: HbA1c reduction (weight
gain) ; baseline HbA1c + adherence +
daily dose + study duration + age + sex +
genotype. Baseline HbA1c and baseline
weight were defined as the nearest mea-
sures taken within the 180 days prior to
the TZD index date. Adherence was calcu-
lated from the population-based drug-
dispensing records as the percentage of
maximumpossible adherence for each par-
ticipant. Treatment dose was determined
as themeandoseofprescriptionsencashed
during the 3 months prior to the minimum
HbA1cwithin the 1–18months of TZD index
date.When theminimumHbA1c happened
in,3months, the average dose before the
treatment HbA1c was recorded.

Genotyping
CYP2C8*3 (rs10509681) and SLCO1B1
521T.C (rs4149056) were genotyped
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in the entire GoDARTS cohort with
TaqMan-based allelic discrimination as-
says. As the two CYP2C8*3 variants
rs10509681 and rs11572080 are in per-
fect linkage disequilibrium (r2 = 1 in the
1,000-genome CEU panel) (25), only
rs10509681was genotyped in the current
study. Assays were performed under
manufacturer-recommended (Applied
Biosystems) standard conditions. Assays
were performed on 10 ng genomic DNA
in 384-well plates and cycled using a
H2OBIT thermal cycler (Thermo Scientific,
Surrey, U.K.); fluorescence detection and
genotype calling were performed on an
ABI 7900FastHT sequence detection sys-
tem (Applied Biosystems).

Statistical Analysis
One-way ANOVA was used to test for
differences in the baseline characteris-
tics by genotype. Allele frequency differ-
ence between subgroups and the full
sample was compared in a 2 df x2 test.
The exact test of Hardy-Weinberg equi-
librium was carried out with PLINK (26).
Multiple linear regression analyses of
HbA1c reduction and weight gain were
performed with PLINK under an additive
genetic model and with all the covari-
ates included.

RESULTS

In the 833 patients studied, the allele
frequencies of CYP2C8*3 and SLCO1B1
521C were 14.5% and 16%, respectively.
The overall genotyping call rate was
94%, and both single nucleotide poly-
morphisms were in Hardy-Weinberg
equilibrium in the sample (P . 0.05). In
addition, we compared the TaqMan geno-
types with the existing genotypes from
exome chip array, and the concordance
rates for rs10509681 and rs4149056
were 99.8%and 99.7%, respectively. There
was no baseline clinical characteristic dif-
ference according to CYP2C8 or SLCO1B1
variant genotypes (Supplementary Table 1).
The number of patients treated with

pioglitazone and rosiglitazone were 273
and 519, respectively, with the other
41 patients switched between the
two agents. In the combined analysis,
higher baseline HbA1c, higher baseline
weight, older age, female sex, higher
adherence, and longer treatment dura-
tion were independently associated
with better glycemic response. Greater
weight gain was associated with higher
baseline HbA1c, higher baseline weight,

higher daily dose, female sex, and treat-
ment with pioglitazone. No significant
association with HbA1c reduction was ob-
served when the CYP2C8*3 and SLCO1B1
521C variants were included into the
clinical model (Supplementary Table 2).
However, compared with the wild type,
carriers of the *3 allele had less weight
gain (b= 20.91, P = 0.006).

Compared with parent drugs, metabo-
lites of rosiglitazone and pioglitazone ex-
ert different degrees of glycemic efficacy
(16). In addition, differences in base-
line characteristics of pioglitazone- and
rosiglitazone-treated individuals, as shown
in Supplementary Table 3, have been ob-
served. Therefore, we performedmultiple
linear regression analysis in the two sub-
groups separately. The same set of clinical
covariates was included in the modeling
of weight gain and HbA1c reduction. Table
1 shows the full clinical models in the
rosiglitazone-treatedgroup.Ahigher base-
line HbA1c, higher baseline weight, older
age, female sex, and longer treatment were
all independently associated with better
glycemic response. A higher daily dosewas
the only strong predictor of weight gain
with patients on 8 mg/day gaining 2 kg
more weight than those on 4 kg/day
(although dose was not associated with
glycemic response to rosiglitazone). For
pioglitazone-treated patients, a similar
pattern of clinical predictors was ob-
servedbutwith less statistical significance
due to the smaller number of patients
(Supplementary Table 4). In contrast to
rosiglitazone, there was no significant ef-
fect of pioglitazone dose on weight gain.

When genetic variants were added to
the clinical models, patients carrying the
CYP2C8*3 variant achieved less HbA1c

reduction (allelic b = 20.21%, P = 0.01)
and experienced less weight gain (allelic
b = 20.93 kg, P = 0.02) with rosiglita-
zone treatment. The SLCO1B1 521C var-
iant was associated with greater HbA1c
reduction (allelic b = 0.18%, P = 0.04),
but not weight gain, after rosiglitazone
treatment. Neither of the two variants
was significantly associated with re-
sponse to pioglitazone (Table 2). This
could be due to lack of enough statistical
power from a smaller number of pa-
tients treated with pioglitazone. Assum-
ing the *3 variant has the same allelic
effect size of 0.21% HbA1c reduction on
both rosiglitazone and pioglitazone, the
current sample size of 273 pioglitazone
users will provide only 37% statistical
power to detect the association at an
a-level of 0.05 (27). More than 800 sam-
ples are required to provide sufficient
(80%) statistical power to detect such
an effect size.

To better assess the impact of these
variants in rosiglitazone response, we
considered a composite model consist-
ing of a group of super responders (re-
duced transport at OATP1B1 [SLCO1B1
521C] and “normal” metabolizers at
CYP2C8 [wild type]), intermediate re-
sponders (wild type at CYP2C8 and
SLCO1B1), and poor responders (“nor-
mal” transport of rosiglitazone into the
liver across OATP1B1 [SLCO1B1 521T]
and increased metabolism by CYP2C8
[CYP2C8*3]). When the two variants
were considered together, as shown in
Fig. 1, the super responders had a 0.39%
(4 mmol/mol) (P = 0.006) greater HbA1c
reduction than the poor responders. A
similar, but nonsignificant, effect was
seen on weight gain.

Table 1—Multiple linear models for HbA1c reduction and weight gain in rosiglitazone

Weight gain HbA1c reduction

b 95% CI P b 95% CI P

Baseline HbA1c 0.33 0.15, 0.65 0.04 0.65 0.59, 0.72 ,0.001

Baseline weight 0.23 20.01, 0.47 0.06 0.07 0.02, 0.13 0.004

Age 0.19 20.19, 0.58 0.33 0.23 0.15, 0.31 ,0.001

Sex 0.82 20.12, 1.66 0.06 0.28 0.09, 0.46 0.003

Dose 0.41 0.25, 0.59 , 0.001 0.03 20.01, 0.06 0.19

Adherence 0.23 20.06, 0.51 0.11 0.05 20.01, 0.11 0.09

Study duration 20.08 20.20, 0.04 0.18 0.06 0.03, 0.08 ,0.001

Sex was coded 1 and 2 for male and female, respectively. Age was coded in the unit of 10
years. Baseline HbA1c was measured as percentage. Dose was measured as 10% of the
recommended maximum daily dose. Adherence was measured in 10%. Baseline weight was
measured in 10 kg. The study duration was measured in month as the time from TZD index
date to the treatment outcome measurement date.
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Since dosing is a strong predictor of
rosiglitazone-induced weight gain, we

performed a stratified genetic analysis

of the rosiglitazone-treated patients by

daily dose. As shown in Supplementary

Table 5, the CYP2C8*3 variant had a sim-

ilar impact on weight gain and HbA1c re-

duction in those treated with 4 mg/day

and 8 mg/day. The SLCO1B1 variant

had a stronger impact on glycemic re-

sponse in those treated with 8 mg/day

than those treated with 4 mg/day.
Owing to the limited sample size, this
observed pharmacogenetic difference
is not statistically significant in a formal
gene-by-dose interaction test (P = 0.73).

CONCLUSIONS

In this large population pharmacoge-
netic study of patients with type 2 dia-
betes, we have jointly investigated
whether variants in the putative drug

transporter gene SLCO1B1 and the me-
tabolizing enzyme gene CYP2C8 contrib-
ute to variation in glycemic response
and weight gain in response to treat-
ment with TZDs. We confirm previous
reports that TZDs work better in women
and with increasing obesity (28,29). The
combined genotypes at CYP2C8 and
SLCO1B1 can be used to define super
response and poor response groups to
rosiglitazone, who differ in HbA1c reduc-
tion by ;0.39% (4 mmol/mol). This ef-
fect size is approximately one-third of
the average HbA1c reduction achieved
by 8mg daily rosiglitazone (5) or approx-
imately one-half of the HbA1c reduction
related to dipeptidyl peptidase 4 inhibi-
tor monotherapy (30). Therefore, the
effect size observed in this study could
be clinically relevant in stratified medi-
cine. On the other hand, these variants
do not alter pioglitazone response.

We showed that rosiglitazone-treated
individuals carrying the CYP2C8*3 variant
had poorer glycemic response but less
weight gain in a gene-dosage–dependent
manner compared with the wild-type
carriers. These results are consistent with
previous pharmacokinetic studies that
showed that the CYP2C8*3 variant was
associated with higher rosiglitazone oral
clearance and lowerplasmaconcentration
AUC (20,21). Other previous investiga-
tions into the pharmacodynamic impact
of CYP2C8 variations on rosiglitazone re-
sponse have found no evidence in small
samples of subjects with normal insulin
sensitivity (20,21). However, association
of the CYP2C8*3 variant with impaired
HbA1c lowering has been reported in indi-
viduals with type 2 diabetes (31). The cur-
rent study has demonstrated that the
mild pharmacokinetic difference between
CYP2C8*3 genotype can be translated
into pharmacodynamic difference in
rosiglitazone-treated individuals with
type 2 diabetes, with the lower drug expo-
sure among the CYP2C8*3 variant carriers

Table 2—Genetic effect of CYP2C8 and SLCO1B1 variants on HbA1c reduction and weight gain (additive genetic model)

Treatment Gene

Weight gain HbA1c reduction

b 95% CI P b 95% CI P

Rosiglitazone (n = 444) CYP2C8*3 20.93 21.73, 20.13 0.02 20.21 20.38, 20.04 0.01
SLCO1B1 20.13 20.92, 0.67 0.75 0.18 0.01, 0.34 0.04

Pioglitazone (n = 239) CYP2C8*3 20.46 21.45, 0.51 0.34 0.14 20.10, 0.38 0.26
SLCO1B1 20.02 20.92, 0.87 0.96 20.10 20.32, 0.12 0.37

Figure 1—Rosiglitazone response by SLCO1B1 and CYP2C8 genotypes. Super responders (wild
type at CYP2C8 and one ormore variant C allele at SLCO1B1), intermediate responders (wild type
at both CYP2C8 and SLCO1B1), and poor responders (one or more *3 allele at CYP2C8 and wild
type at SLCO1B1). The error bars represent the SEM. **P , 0.01.
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resulting in less HbA1c reduction and
weight gain.
In this study we showed association

of CYP2C8*3 with response to rosiglita-
zone but not pioglitazone despite an
established role of CYP2C8 in pioglita-
zone pharmacokinetics. This is entirely
consistent with the contrast between
the pharmacological properties of the
two agents (Fig. 2). As the main rosigli-
tazone metabolites are less potent,
pharmacokinetic difference of the par-
ent drug was translated into efficacy
difference. For pioglitazone, the princi-
pal biotransformation products, M-III
and M-IV, are reported to exert sus-
tained hypoglycemic action and there-
fore ameliorate the pharmacokinetic
difference in the parent drug on overall
efficacy (32).
In this study, we have for the first time

showed that the SLCO1B1 521C allele is
associated with better glycemic re-
sponse in patients treated with rosigli-
tazone. Our results also indicated that the
pharmacogenetic effect of the SLCO1B1
521T.C variant on rosiglitazone response
was more pronounced in the 8 mg/day
group than in the 4 mg/day group. This
might explain why previous rosiglitazone
pharmacokinetic studies reported no sig-
nificant association between SLCO1B1
521T.C genotypes and drug exposure

after 4 mg/day treatment and suggests
that the variant becomes rate limiting
only at high doses (19,20).

Joint investigation of variants in
genes encoding for proteins involved in
pharmacokinetics and pharmacody-
namics of a given drug is believed to
give better understanding of the role
of genetics in drug response than indi-
vidual variants per se. For example,
studies investigating joint effect of vari-
ants in metformin transporters have
previously been published (33–35). With
this in mind, we have investigated joint
effect of variants in genes encoding TZD
transporter (SLCO1B1) and metabolizer
(CYP2C8). In a composite model that con-
sists of super responders and poor re-
sponders, the glycemic effect of the
SLCO1B1 variant is much greater when
considered on a CYP2C8 wild-type back-
ground (allelic effect 0.22) compared
with on a CYP2C8 variant background (al-
lelic effect 0.1). This finding highlights the
importance, when considering drug trans-
porters and drug metabolizing enzymes,
of assessing variants that alter drug avail-
ability for metabolism and variants that
alter the rate ofmetabolism together; oth-
erwise clinically important variantsmay be
overlooked. Moreover, other functional
variants such as those regulatory variants
in these two genes could also affect the

pharmacokinetics of TZDs and therefore
contribute to the variation in treatment out-
come. Locus-wise genetic screening would
be useful to identify other functional vari-
ants in these twogenes. In addition, further
functional studies investigating the joint
role of these variants in HbA1c reduction
and weight gain are also warranted.

There were some limitations of our
study. The main limitation is the obser-
vational nature of our data set, whichmay
introduce bias. Response modeling has
shown that baseline HbA1c and weight,
the dose given, treatment duration, age,
and sex all added variation to TZD re-
sponse among the patients. Despite ad-
justment for these clinical characteristics
in the model, the association between ge-
netic variants anddrug response could still
be confounded. However, there was no
phenotypic difference by genotype in our
study sample, as shown in Supplementary
Table 1, and the clinicians and participants
were clearly blind to genotype, so these
extrinsic factors will not introduce bias to
the pharmacogenetic effect. A further lim-
itation is our measure of weight gain. It is
not possible to differentiatewhethermea-
sured weight gain reflects fluid retention
or increase in fat mass or both. Finally, our
sample size, despite being much larger
than any published study, is still small.
This in particular limits the phenotypes

Figure 2—Pharmacogenetic effect of CYP2C8 and SLCO1B1 on TZDs pharmacokinetics and pharmacodynamics. Pharmacogenetic influence by
CYP2C8 and SLCO1B1 variants is expected to affect rosiglitazone pharmacodynamics because both its main metabolites (N-desmethyl-rosiglitazone
and rosiglitazone-para-O-sulfate) are less potent than its parent drug and pharmacokinetic differences will alter the drug exposure of active
components (the parent drug, rosiglitazone) and therefore therapeutic response. Patients carrying the wild-type SLCO1B1 allele and gain-of-
function CYP2C8 variants are expected to eliminate rosiglitazone much faster (poor responders) than carriers of the loss-of-function SLCO1B1
variants on a wild-type CYP2C8 background (super responders). In comparison, no pharmacogenetic effect is expected on pioglitazone response, as
its main metabolites (M-II, M-III, and M-IV) remain active and the exposure of total active drug components is not altered by pharmacokinetic
difference.
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we are able to study. For example, it is not
possible to assess the impact of these var-
iants on other side effects such as inci-
dent heart failure owing to a major lack
of power.
Finally, we acknowledge that we have

undertaken a number of statistical tests
in this study.We performed a total num-
ber of eight independent genetic asso-
ciation tests (two variants against two
outcomes in two treatment groups),
which carry a threshold of P = 0.006
(0.05/8) for any individual signal to be
study-wide significant under a stringent
Bonferroni correction. As shown in Ta-
ble 2, three independent signals did
reach the conventional threshold of
P , 0.05 with the current sample size.
In addition, when the genotypes of
the two variants were combined to-
gether based on known biological mech-
anisms, a study-wide significant (P=0.006)
result was observed between super re-
sponders and poor responders to rosi-
glitazone. Further replication of these
variants in larger independent samples
is required to establish the role of these
two variants in rosiglitazone response
unequivocally.
This study established that glycemic

response andweight gain in rosiglitazone-
treated individuals with type 2 diabetes
were associated with genetic variants
in the drug transporter gene SLCO1B1
and the metabolizing enzyme gene
CYP2C8 and highlighted the impor-
tance of studying pharmacokinetic
genes together. The genetically defined
super responders had an extra 0.39%
(4 mmol/mol) HbA1c reduction com-
pared with those nonresponders. While
our results establish key pharmacoge-
netic variants that alter response to ro-
siglitazone, there could be factors that
hinder its direct clinical applicability.
The variants that increase glycemic
efficacy to rosiglitazone also increase
weight gain; i.e., the “benefit” and
“harm” are both increased. With the in-
creasing awareness of risk associated
with TZDs there is a need to optimize
the benefit and reduce the risk for an
individual. We believe that this is a key
opportunity for pharmacogenetics to
potentially identify individuals who
can benefit from the considerable ther-
apeutic advantages of TZDs and who
are least at risk for the side effects.
Rather than letting TZDs slide into dis-
use, we should concentrate efforts on

identifying predictors of response or
harm to TZDs.
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Aims: To investigate, in the Carotid Atherosclerosis: Metformin for Insulin Resistance (CAM-

ERA) trial (NCT00723307), whether the influence of metformin on the glucagon-like peptide

(GLP)-1 axis in individuals with and without type 2 diabetes (T2DM) is sustained and related to

changes in glycaemia or weight, and to investigate basal and post-meal GLP-1 levels in patients

with T2DM in the cross-sectional Diabetes Research on Patient Stratification (DIRECT) study.

Materials and methods: CAMERA was a double-blind randomized placebo-controlled trial of

metformin in 173 participants without diabetes. Using 6-monthly fasted total GLP-1 levels over

18 months, we evaluated metformin’s effect on total GLP-1 with repeated-measures analysis

and analysis of covariance. In the DIRECT study, we examined active and total fasting and 60-

minute post-meal GLP-1 levels in 775 people recently diagnosed with T2DM treated with met-

formin or diet, using Student’s t-tests and linear regression.

Results: In CAMERA, metformin increased total GLP-1 at 6 (+20.7%, 95% confidence interval

[CI] 4.7-39.0), 12 (+26.7%, 95% CI 10.3-45.6) and 18 months (+18.7%, 95% CI 3.8-35.7), an

overall increase of 23.4% (95% CI 11.2-36.9; P < .0001) vs placebo. Adjustment for changes in

glycaemia and adiposity, individually or combined, did not attenuate this effect. In the DIRECT

study, metformin was associated with higher fasting active (39.1%, 95% CI 21.3-56.4) and total

GLP-1 (14.1%, 95% CI 1.2-25.9) but not post-meal incremental GLP-1. These changes were

independent of potential confounders including age, sex, adiposity and glycated haemoglobin.
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Conclusions: In people without diabetes, metformin increases total GLP-1 in a sustained man-

ner and independently of changes in weight or glycaemia. Metformin-treated patients with

T2DM also have higher fasted GLP-1 levels, independently of weight and glycaemia.

KEYWORDS

antidiabetic drug, GLP-1, metformin

1 | INTRODUCTION

Metformin is recommended as first-line therapy for the majority of

individuals with type 2 diabetes mellitus (T2DM).1 This is based on

evidence of cardiovascular benefit and also its capacity to maintain or

reduce weight. In the UK Prospective Diabetes Study, metformin

monotherapy led to a 39% reduction in the risk of myocardial infarc-

tion compared with conventional dietary therapy over 10 years, a

finding not explained by the drug’s effect on glycaemia.2 Metformin

has also been shown to reduce the risk of developing T2DM. In the

Diabetes Prevention Program, metformin therapy reduced new-onset

T2DM by 31% and also led to 2.1-kg weight loss compared with pla-

cebo over 2.8 years.3,4

The glucagon-like peptide-1 (GLP-1) axis remains at the forefront

of T2DM and cardiovascular research. Major outcomes trials of

dipeptidyl peptidase-4 (DPP-4) inhibitors and the first completed out-

come trial of a GLP-1 receptor agonist in patients with T2DM indi-

cated cardiovascular safety, although not benefit5–8; however, it was

recently reported that the potent GLP-1 receptor agonist, liraglutide,

has cardiovascular benefit.9 Furthermore, it has been reported that

another GLP-1 receptor agonist, semaglutide, has also provided cardi-

ovascular benefit in a major trial.10 This is supported by recently pub-

lished results from a Mendelian randomization study of a GLP-1

genetic variant (Ala316Thr; rs10305492) strongly associated with

lower fasting glucose levels, which demonstrated a lower risk of car-

diovascular disease,11 supporting the concept that GLP-1 may indeed

be protective against cardiovascular disease. In addition, GLP-1

receptor agonists can yield modest weight loss12 and blood pressure

reduction, important goals in the management of T2DM.

It is unclear whether some of metformin’s benefits may be

mediated via GLP-1. To explore this, it is important to establish

robustly the effect of metformin on GLP-1, and whether any effect is

mediated by changes in related variables such as weight or glycaemia.

Various small studies of short duration have investigated the effect

of metformin therapy on circulating GLP-1 levels in individuals with

and without T2DM.13–20 While results have been inconsistent, some

have shown increases in active GLP-1 and total GLP-1 in both the

fasting and postprandial states. To date, however, no suitable studies

have been conducted to investigate robustly whether metformin

therapy influences circulating GLP-1 levels in individuals with and

without T2DM, whether any observed effect is sustained in the

longer term (ie, beyond a few weeks), and whether any effect is

related to changes in other variables that metformin is known to

influence, such as weight and glycaemia. To address these questions,

we performed complementary studies, namely, an ancillary study

using data from a randomized placebo-controlled repeated-measures

study with 18 months’ follow-up, the Carotid Atherosclerosis: Met-

formin for Insulin Resistance (CAMERA) study,21 and a cross-sectional

study by the Diabetes Research on Patient Stratification consortium,22

the DIRECT study.

2 | MATERIALS AND METHODS

The CAMERA study was a randomized double-blind placebo-

controlled trial designed to investigate the effect of metformin on

surrogate markers of cardiovascular disease in patients without dia-

betes, aged 35 to 75 years, with established coronary heart disease

and a large waist circumference (≥94 cm in men, ≥80 cm in women;

NCT00723307). This single-centre trial enrolled 173 adults who were

followed up for 18 months each. Patients attended the research cen-

tre every 6 months in a fasted state. A detailed description of the

trial and its results has been published previously.21 Participants were

randomized 1:1 to 850 mg metformin or matched placebo twice daily

with meals, although they could reduce the dose to once daily based

on side effects for the duration of the trial. Weight was measured in

light clothing using a bio-impedance scale. While bio-impedance body

fat results were available from the trial, we opted to measure circulat-

ing leptin levels as a better marker of body fat.

The DIRECT study (www.direct-diabetes.org) is part of a

European Union Innovative Medicines Initiative project, with the

overarching aim of discovering and validating biomarkers of rapid dia-

betes development, progression and drug response.22 It involves four

industrial partners and 21 academic institutes within Europe. As part

of Work Package 2, which aimed to identify predictive biomarkers of

glycaemic deterioration, deep phenotyping and biochemical assays

were performed in 836 people recently diagnosed with T2DM who

were receiving either metformin or lifestyle therapy alone at baseline.

The 18-month follow-up data are being collected. For this study,

complete cross-sectional data were analysed from the baseline visit

in 775 participants from all six clinical centres.

2.1 | Sample assays

In CAMERA, participants attended 6-monthly visits after overnight

fasts and before taking their morning dose of metformin. Blood sam-

ples collected during the trial were centrifuged at 4�C soon after

sampling, separated and stored at −80�C at the Western Infirmary’s
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Clinical Research Facility, Glasgow, for subsequent analyses. As previ-

ously described,21 6-monthly fasting plasma glucose, fasting insulin

and HbA1c levels were analysed We calculated updated homeostasis

model assessment for insulin resistance (HOMA2-IR) index values

using the HOMA Calculator (v2.2.3, https://www.dtu.ox.ac.uk/

homacalculator/). Using available stored EDTA plasma samples, 6-

monthly total GLP-1 levels (Meso Scale Diagnostics, Rockville, Mary-

land) were measured with commercially available electrochemilumi-

nescence assay (Meso Scale Diagnostics). Leptin levels were

measured with a commercially available enzyme-linked immunosorb-

ent assay (R&D Systems, Abingdon, UK). For total GLP-1, the mean

inter- and intra-assay coefficients of variation (CVs) were 2.6% and

17.3%, respectively. For leptin, the mean inter- and intra-assay CVs

were 10.1% and 6.3%. All time points for an individual participant

were run on the same plate, blinded to treatment arm.

For the DIRECT study, blood samples were collected in the

morning after a 10-hour overnight fast. Metformin was stopped for

the 24 hours preceding the study visit and restarted immediately

thereafter. For a mixed meal test, participants drank 250 mL Fortisip

liquid drink (18.4 g carbohydrate/100 mL) over 2 to 5 minutes. Blood

samples were taken immediately prior to the drink (time 0) and then

every 30 minutes up to 120 minutes. Samples for GLP-1 measure-

ment were collected using P800 (for active GLP-1) and EDTA tubes

(for total GLP-1; Becton Dickinson, Oxford, UK) at 0 and 60 minutes.

The same commercial kits were used to measure GLP-1 levels as in

CAMERA. In DIRECT, the mean intra- and inter-assay CVs for active

GLP-1 were 9% and 10%, respectively. For total GLP-1, these CVs

were 6% and 9%, respectively.

2.2 | Ethics and consent

All participants provided written informed consent for participation in

both studies. For the CAMERA study, this included permission for

biochemical assays that were not planned at the time of the trial. The

CAMERA trial was approved by the Medicines and Healthcare Pro-

ducts Regulatory Agency and West Glasgow Research Ethics Com-

mittee. In DIRECT, each partner clinical centre obtained approval

from their respective research ethics review boards.

2.3 | Statistics

Normality was assessed for all variables, and non-normally distributed

data were transformed using the natural log value where relevant

(specifically for active GLP-1, total GLP-1, leptin and HOMA2-IR).

In the CAMERA study, analyses were performed for the modified

intention-to-treat population (ie, participants with a baseline total

GLP-1 and at least one subsequent total GLP-1 result). The effect of

metformin on total GLP-1 was investigated using two different

approaches. First, repeated-measures analysis was carried out, allow-

ing a comparison of metformin- and placebo-treated participants over

the entire trial (assuming a general covariance structure). Repeated-

measures analyses were only performed after demonstrating that

there was no significant treatment-by-visit interaction (ie, that any

observed effect was stable over the trial). Secondly, analyses of

covariance were carried out to determine the effect of metformin vs

placebo on total GLP-1 levels at 6, 12 and 18 months, respectively.

Additional on-treatment analyses were performed to assess whether

any change in total GLP-1 attributable to metformin was related to

simultaneous changes in weight, HOMA2-IR, HbA1c, leptin, or all

four variables combined, by adding these as cofactors.

In the DIRECT study, fasting active and total GLP-1, and 60-

minute post-meal total GLP-1 levels were compared between metfor-

min and lifestyle groups using Student’s t-tests. Anthropometric mea-

sures (age, sex, waist–hip ratio, body mass index [BMI]), lifestyle

factors (smoking and alcohol use), HbA1c, fasting glucose and centre

were investigated regarding any influence of metformin on GLP-1

levels using linear regression models.

Because of the natural log transformation for GLP-1 measures,

results are presented as the percentage differences in geometric

means of GLP-1 measures on metformin vs placebo or metformin vs

lifestyle to aid interpretation. The same approach was taken to pres-

ent leptin results. Statistical analyses were carried out using the sta-

tistical packages SPSS (version 22, SPSS Inc., Chicago, Ill) and R

(version 3.0.1). A two-sided P value of 0.05 was used as the threshold

for statistical significance.

3 | RESULTS

Baseline characteristics of the participants in the CAMERA and

DIRECT studies are summarized in Table S1 and Table 1, respectively.

It was previously reported that metformin led to falls in HbA1c level

(0.13% or 1.4 mmol/mol), fasting insulin level (21%), HOMA-IR value

(26%) and weight (3.2 kg) compared with placebo over 1.5 years in

the CAMERA study.

In the DIRECT study there was no significant difference in age,

sex, BMI, duration of diabetes or HbA1c between the metformin and

non-metformin treated groups. Metformin-treated individuals had a

higher fasting glucose level (P < .001) and a slightly higher waist–hip

ratio than those on no treatment (P = .045) in the DIRECT study.

3.1 | CAMERA results: Metformin increases fasting
total GLP-1 over 18 months

The geometric mean for total GLP-1 was 3.52 pmol/L (11.6 pg/mL) in

metformin recipients and 3.76 pmol/L (12.4 pg/mL) in placebo recipi-

ents at baseline. Metformin therapy led to significant increases in

fasting total GLP-1 levels compared with placebo at each of the

6, 12 and 18-month study visits (Table 2 and Figure 1A). The

increases in total GLP-1 levels at these visits were 21% (P = .010),

27% (P = .001) and 19% (P = .012), respectively. In repeated-

measures analysis, metformin increased total GLP-1 level by 23.4%

(P < .0001) across the entire duration of the 18-month follow-up,

with no evidence of heterogeneity among the study visits (P = .74).

Leptin levels fell with metformin treatment, in keeping with a

reduction in body fat (Table 2). Overall, metformin therapy reduced

leptin by 25% (P < .0001) compared with placebo, with similar

changes observed at each visit.

Adjustment for the observed changes in weight, HOMA2-IR,

HbA1c and leptin at each visit, whether individually or combined, did
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not attenuate metformin’s effect on total GLP-1 level (Table 3).

Adjusted comparisons (for all four variables) at 6, 12 and 18 months

showed an increase in total GLP-1 level of 32% (P = .001), 35%

(P ≤ .001) and 26% (P = .002), respectively, for metformin compared

with placebo therapy.

3.2 | DIRECT results: Association of metformin with
fasting and post-meal GLP-1 levels

The geometric mean for total fasted GLP-1 level was 2.39 pmol/L in

metformin recipients and 2.09 pmol/L in lifestyle-treated patients.

Metformin users had higher basal fasted active GLP-1 levels (+25.5%,

95% confidence interval [CI] 17.0-35.5; P < .001) and fasted total

GLP-1 levels (+14.5%, 95% CI 8.4-21.0; P = .0097) than individuals

who were on lifestyle therapy (Table 1 and Figure 1B). These differ-

ences persisted after controlling for anthropometric measures (age,

sex, waist–hip ratio, BMI), lifestyle factors (smoking, alcohol), study

centre and HbA1c for both fasted active and fasted total GLP-1

(+39.1%, 95% CI 21.3-56.4; P = 1.35e-05 and +14.1%, 95% CI 1.2-

25.9, respectively; P = .03). Replacing HbA1c with fasting glucose in

these models did not materially alter these results. There was no dif-

ference in the 60-minute total GLP-1 concentration between metfor-

min users and non-metformin users after adjusting for these

covariates and baseline total GLP-1 (4.4%, 95% CI −0.5 to

9.4; P = .27).

4 | DISCUSSION

In the present two complementary studies we sought further infor-

mation regarding the relationship between metformin therapy and

circulating GLP-1 levels. We showed that daily metformin therapy

for 18 months led to a 25% increase in circulating total GLP-1

levels in individuals without diabetes but with elevated waist

TABLE 2 Change in GLP-1 and leptin levels with metformin vs placebo treatment over 18 months in the CAMERA study

Average treatment effect
(metformin – placebo)2

Visit (number of paired
samples) Metformin vs placebo1 Effect (95% CI) P

P value for
interaction
across visits

GLP-1, natural log units 6 months (n = 150) 0.188 (0.046, 0.329) 0.210 (0.106, 0.314) <.0001 .74

12 months (n = 146) 0.237 (0.098, 0.376)

18 months (n = 157) 0.172 (0.038, 0.305)

GLP-13, % 6 months (n = 150) 20.7% (4.7, 39.0) 23.4% (11.2, 36.9)

12 months (n = 146) 26.7% (10.3, 45.6)

18 months (n = 157) 18.7% (3.8, 35.7)

Leptin, natural log units 6 months (n = 152) −0.262 (−0.403, −0.120) −0.286 (−0.419; −0.153) <.0001 .80

12 months (n = 146) −0.293 (−0.467, −.118)

18 months (n = 157) −0.237 (−0.405, −0.069)

Leptin3, % 6 months (n = 152) −23.1% (−33.2, −11.3) −24.9% (−34.2, −14.2)

12 months (n = 146) −25.4% (−37.3, −11.1)

18 months (n = 157) −21.1% (−33.3, −6.7)

1 Analysis of covariance for visits at 6, 12 and 18 months, respectively.
2 Repeated measures analysis for the overall treatment effect over 18 months.
3 Percentage difference in geometric means.

TABLE 1 Characteristics of participants in the DIRECT study

Characteristics Metformin (N = 270) Lifestyle (N = 505) P

Men, n (%) 151 (55.9) 295 (58.4) .70

Median (range) age, y 63 (35-75) 64 (35-75) .064

Duration of diabetes, y 1.18 (0.82) 1.25 (0.75) .10

Weight, kg 88.9 (16.7) 89.7 (17.0) .53

BMI, kg/m2 30.1 (4.7) 30.7 (5.1) .11

Waist–hip ratio 0.97 (0.08) 0.96 (0.08) .045

HbA1c, % 6.40 (0.60) 6.34 (0.59) .20

HbA1c, mmol/mol 46.44 (6.57) 45.81 (6.39) .20

Fasting plasma glucose, mmol/L 7.49 (1.47) 6.94 (1.37) <.001

Geometric mean (95% CI) fasting active GLP-1, pmol/L 0.14 (0.12-0.16) 0.11 (0.10-0.12) <.001

Geometric mean (95% CI) fasting total GLP-1, pmol/L 2.39 (2.20-2.59) 2.09 (1.95-2.23) .0097

Geometric mean (95% CI) 60-min total GLP-1, pmol/L 4.87 (4.51-5.25) 4.34 (4.05-4.65) .031

Data presented as mean (standard deviation) unless otherwise indicated.

PREISS ET AL. 359



circumferences, and this increase was sustained across the entire

duration of the study and did not appear to be related to any

changes in glycaemia or adiposity. In people with recently diag-

nosed T2DM, metformin treatment was associated with higher

fasted active and fasted total, but not incremental, GLP-1 levels. In

both studies, these differences in GLP-1 levels occurred despite the

previous dose of metformin having been taken the day before each

visit (>24 hours in the DIRECT study), suggesting that circulating

GLP-1 levels probably remain consistently elevated in patients on

metformin therapy.

Active GLP-1 is secreted by gastro-intestinal L cells in response

to the presence of nutrients in the small intestine, leading to an

increase in glucose-stimulated insulin secretion and suppressed glu-

cagon secretion. GLP-1 also delays gastric emptying and promotes

satiety. This bioactive form of the hormone is rapidly metabolized

by the enzyme DPP-4, with the result that its half-life in the circula-

tion is <2 minutes. Understanding the incretin pathway led to the

development of related medications, namely, GLP-1 receptor ago-

nists (incretin mimetics) and DPP-4 inhibitors (incretin enhancers),23

which are designed to directly or indirectly increase the in vivo

activity of GLP-1.

Previous small studies with various designs have produced mixed,

often null, results but some have suggested that metformin therapy

increases circulating GLP-1 levels by various mechanisms24

(Table S2). In a study of 10 obese participants without diabetes and

10 control subjects who were given metformin 2.55 g/d for 2 weeks,

GLP-1 levels at 30 and 60 minutes after a glucose load were

increased though baseline GLP-1 levels (and leptin) and were

unchanged on metformin.13 An uncontrolled study of metformin ther-

apy (2 g/d) in 40 women with polycystic ovarian syndrome over

8 months, albeit with substantial loss to follow-up, with only

22 women completing metformin therapy, produced similar findings

to our own, with a 25% increase in area-under-the-curve GLP-1

levels over 180 minutes during oral glucose loading compared with

baseline.14 In a crossover study 10 individuals with T2DM were given

3 single-dose interventions on 3 different days, 1 week apart (either

metformin 1 g plus placebo subcutaneous injection or placebo tablet

plus subcutaneous GLP-1 or metformin 1 g plus subcutaneous GLP-

1).15 Glucose was infused to achieve a concentration of ~15 mmol/L.

Analyses showed that metformin therapy inhibited DPP-4 activity

and also increased active GLP-1 levels. In a further crossover study

conducted in 20 participants with T2DM who were treated for

6 days with each of four respective regimens (placebo or metformin

or sitagliptin or the combination) with washout periods in between

interventions, metformin therapy led to an increase in fasted and

post-challenge total GLP-1 levels, although there was no change in

intact GLP-1 levels.16 Furthermore, in a crossover study of 12 partici-

pants with T2DM treated with placebo or metformin for 7 days,

respectively, and then investigated during intraduodenal catheter

infusion of glucose, DPP-4 activity fell modestly while intact and total

GLP-1 levels rose at baseline and during the infusion after metfor-

min.17 By contrast, a crossover study of 16 participants with T2DM

FIGURE 1 A, Total GLP-1 levels on metformin vs placebo over 18 months in the CAMERA study. B, Association of metformin therapy vs

lifestyle treatment with fasting active GLP-1, fasting total GLP-1 and incremental total GLP-1 in the DIRECT study. Data are shown as A,
geometric mean (1 standard error) and B, geometric mean (95% CI).
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treated for 4 weeks respectively with placebo, metformin, sitagliptin

and combined metformin/sitagliptin yielded no increase in active

GLP-1 level on metformin.18 Other studies have suggested no effect

on DPP-4 activity. In a study of 8 drug-naïve participants with

T2DM treated with metformin for 3 months, the area under the

curve for active GLP-1 over 6 hours after a standard mixed meal

increased, although DPP-4 activity was unchanged.19 It is therefore

apparent that most studies in this area have been limited by small

sample size (and therefore reduced power) and that most have

focused on the acute effect of metformin therapy as opposed to its

longer-term effects. Animal studies have produced similarly mixed

results, including evidence of an acute increase in GLP-1 with met-

formin treatment and of DPP-4 inhibition in some studies but not

all.25–27

By contrast, the present studies have examined the relationship

of metformin with circulating GLP-1 in large cohorts with and with-

out T2DM and addressed long-term effects of metformin over

18 months in individuals without diabetes.

In individuals without diabetes, our finding that the increase in

GLP-1 was not related to the observed 3.2-kg decrease in weight or

the 25% improvement in insulin sensitivity is in keeping with a

direct effect of metformin on the incretin axis. The sustained nature

of the GLP-1 increase suggests that metformin may in part provide

cardiometabolic benefit, even in a population without diabetes and

beyond reducing the risk of developing T2DM, by increasing expo-

sure of treated individuals to GLP-1 in the longer term. This is sup-

ported by findings from both recently completed outcomes trials of

GLP-1 receptor agonists9,10 and by a Mendelian11 randomization

study of a GLP-1 receptor variant associated with lower fasting glu-

cose levels, which was also associated with lower risk of coronary

heart disease. It also provides a further rationale to test these

potential benefits of metformin in a population without diabetes.

The Glucose Lowering in Non-Diabetic Hyperglycaemia Trial

(GLINT; ISRCTN34875079) is studying whether metformin reduces

cardiovascular risk as well as cancer and other outcomes in partici-

pants without diabetes.

The present studies have several strengths. The CAMERA

study is by far the largest and longest trial to address the question

of the impact of metformin on circulating GLP-1 levels and its ran-

domized design minimizes the possibility of unmeasured or unac-

counted for confounding. Although it was cross-sectional and

therefore unable to directly address causality, DIRECT is the largest

study to investigate the association of metformin with GLP-1 levels

in individuals with T2DM, and was able to adjust for a range of

potential confounding factors. The CAMERA trial was specifically

conducted in participants without T2DM (although with elevated

waist circumferences), which enabled us to avoid the potential

effects of other glucose-lowering agents and also to provide novel

data on a group at high risk of T2DM in whom metformin is being

investigated in a major trial, GLINT. Samples were available at 6-

month intervals, providing data on the sustained effect of metfor-

min on GLP-1 levels. An important weakness of the CAMERA trial

was that we did not have access to suitably prepared samples to

allow the measurement of active GLP-1 levels and only fasted sam-

ples were available; however, in the DIRECT study in which we

had access to both active and total fasted GLP-1 levels, metformin

recipients demonstrated clearly higher levels of both, in particular

active GLP-1. Notably, however, in both studies, higher GLP-1

levels were observed despite the last metformin dose having been

taken the day before blood sampling, which, in the context of the

limited bioavailability of metformin (<60%), suggests that some of

this effect may reflect the impact of the drug in the distal small

intestine and colon, as highlighted in other studies.28 Consistent

with this, the apparent impact of metformin in the DIRECT study

was on fasting GLP-1 rather than meal-stimulated GLP-1 levels. In

addition, the fact that some participants in the CAMERA study

reduced their metformin dose and, in some cases, stopped trial

medication suggests that our results are likely to be an underesti-

mation of the true effect of metformin on fasting total GLP-1 in

this population.

Further studies are needed to determine the longitudinal

effect of metformin on GLP-1 levels in individuals with diabetes.

Additional research on the mechanism by which metformin

increases GLP-1 would also be useful, including whether this effect

is largely a direct effect of metformin on L-cells or is mediated

indirectly via metformin’s many other effects on the gastrointesti-

nal tract, such as altering the microbiome or decreasing bile acid

reabsorption.29

TABLE 3 Effects of metformin on total GLP-1 level without and

with on-treatment adjustments for changes in key variables

Variable Adjustment

Metformin --
placebo
Mean % change
(95%CI) P

GLP-1, 6 months No
adjustment

20.7 (4.7, 39.0) .010

Weight 25.0 (7.6, 45.3) .004

HOMA2-IR 24.6 (8.0, 43.7) .003

HbA1c 26.1 (8.4, 46.8) .003

Leptin 22.9 (6.4, 41.9) .005

Combined* 32.4 (13.0, 55.1) .001

GLP-1,
12 months

No
adjustment

26.7 (10.3, 45.6) .001

Weight 35.0 (15.9, 57.3) <.001

HOMA2-IR 27.2 (10.4, 46.7) .001

HbA1c 28.7 (11.0, 49.2) .001

Leptin 33.0 (15.7, 53.0) <.001

Combined* 35.4 (15.8, 58.1) <.001

GLP-1,
18 months

No
adjustment

18.7 (3.8, 35.7) .012

Weight 23.5 (7.0, 42.5) .004

HOMA2-IR 21.4 (6.2, 39.0) .005

HbA1c 20.9 (5.3, 38.8) .007

Leptin 20.8 (5.6, 38.2) .006

Combined* 26.0 (9.1, 45.6) .002

Results are shown as percentage change in geometric mean (95% CI).

Unadjusted result at each time point is provided, followed by the result
adjusted for changes in weight, HOMA2-IR, HbA1c and leptin respec-
tively; this is followed by the result adjusted for all these variables com-
bined (indicated by *).
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In summary, we report evidence from 2 major studies showing

that metformin treatment leads to a sustained and long-term

increase in circulating total GLP-1 levels in individuals without dia-

betes, independently of changes in weight and glycaemia, while

metformin therapy is also associated with higher fasted total and

active GLP-1 levels in people with diabetes, independently of weight

and glycaemia. These complementary findings support a potential

direct role for the incretin axis in the cardiometabolic benefits of

metformin.
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In the past decade, genome-wide association studies 
(GWAS) and high-throughput sequencing, propelled by 
the fast development in affordable genomic technologies, 
have greatly advanced our understanding of the genetic 
aetiology of many common diseases1. Pharmacogenomic 
studies applying these genome-wide approaches to 
investigate drug responses have also yielded important 
results2,3. In this Review, and in this context, we discuss 
the genomic evidence that has strengthened our under-
standing of the multifactorial aetiology of type 2 diabetes 
mellitus (T2DM) and discuss the emerging evidence that 
a complex genetic architecture might underline the vari-
ation in response to antidiabetic drugs. Genetic evidence 
in disease genomics is increasingly being used for target 
validation in drug discovery. We anticipate how robust 
pharmacogenomic evidence could provide valuable 
information for predicting both on-target and off-target 
effects in drug discovery and development.

The multifactorial aetiology of T2DM
T2DM is a complex metabolic disease characterized by 
hyperglycaemia resulting from functional impairment 
in insulin secretion, insulin action or both4. Both insu-
lin resistance and secretory deficiency arise through the 
interplay of genetic and environmental risk factors5. 
GWAS, which have interrogated all the common genetic 

variants (minor allele frequency >5%), have identified 
>120 T2DM risk loci6,7. High-throughput sequencing 
studies, which could theoretically examine all the vari-
ants in the genome, or at least the section that encodes 
proteins, have also enabled the discovery of rare variants 
(minor allele frequency <5%) at GWAS-identified loci 
and novel loci for T2DM8,9. Together these common 
variants with small to moderate effects and rare variants 
with relatively large effects could account for ~15% of the 
total risk of developing T2DM and confirm its nature as 
a multisystem disorder6,10.

Glycaemic control is a key focus in the management 
of T2DM, and is associated with both microvascular and 
macrovascular benefits11–13. The treatment of T2DM has 
evolved with our understanding of the pathophysiology 
of this complex disease5. A wide range of drug treatments, 
characterized by different mechanisms of action, are avail-
able to achieve glycaemic control in patients with T2DM14 
(FIG. 1). Apart from insulin replacement, traditional oral 
agents include secretagogues that stimulate the pancreas 
to release insulin and sensitizers that enhance the efficacy 
of insulin action14. New agents include dipeptidylpepti-
dase 4 (DPP-4) inhibitors, also known as the gliptins, 
that enhance the so-called ‘incretin effect’ and pro mote 
glucose-stimulated insulin secretion15; as well as sodium–
glucose cotransporter 2 (SGLT-2) inhibitors that reduce 
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mellitus: insights into drug action 
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Abstract | Genomic studies have greatly advanced our understanding of the multifactorial 
aetiology of type 2 diabetes mellitus (T2DM) as well as the multiple subtypes of monogenic 
diabetes mellitus. In this Review, we discuss the existing pharmacogenetic evidence in both 
monogenic diabetes mellitus and T2DM. We highlight mechanistic insights from the study of 
adverse effects and the efficacy of antidiabetic drugs. The identification of extreme sulfonylurea 
sensitivity in patients with diabetes mellitus owing to heterozygous mutations in HNF1A 
represents a clear example of how pharmacogenetics can direct patient care. However, 
pharmacogenomic studies of response to antidiabetic drugs in T2DM has yet to be translated 
into clinical practice, although some moderate genetic effects have now been described that 
merit follow‑up in trials in which patients are selected according to genotype. We also discuss 
how future pharmacogenomic findings could provide insights into treatment response in 
diabetes mellitus that, in addition to other areas of human genetics, facilitates drug discovery 
and drug development for T2DM.
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hyperglycaemia by increasing glucose elimination via the 
urine16. Although these drugs are all effective at lowering 
glucose in patients with T2DM, glycaemic control often 
fails even after a combination of the available treatment 
options due to the progressive nature of the disease.

Antidiabetic drug responses can be considered at 
many levels, as outlined in TABLE 1, including the phys-
iological response to the drug, or the long-term effect 
of the drug in terms of microvascular or macrovascular 
risk reduction. In this Review, when considering drug 
response, we focus primarily on the glycaemic effect of 
drugs as this outcome has been the most studied.

Monogenic diabetes mellitus
With the increasing awareness that T2DM is highly 
hetero geneous, and as we understand more about the 
aetiology of the disease, we can begin to subdivide T2DM 
into distinct aetiological subtypes. This development can 
be seen with the increasing identification of monogenic 
forms of the disease, which until the past 10–15 years 
were mis classified as type 1 diabetes mellitus or T2DM. 
Understanding these aetiological subtypes has resulted in 
some of the most clinically robust examples of pharma-
cogenetics to date. For example, patients with Maturity 
Onset Diabetes of the Young owing to mutations in 
HNF1A (which accounts for ~3% of all diabetes mellitus 
cases diagnosed under the age of 30 years) are extremely 
sensitive to sulfonylurea treatment, and can successfully 
transition off insulin treatment17. Similarly, patients with 
neonatal diabetes mellitus due to KCNJ11 or ABCC8 
mutations who have insulin-dependent diabetes melli-
tus from soon after birth have been shown to respond to 
high dose sulfonylureas and to be able to transition off 
insulin onto oral sulfonylurea treatment18. These examples 
highlight how increasing awareness of aetiological sub-
types of diabetes mellitus will enable a precise approach 
to treatment of the disease and is an area of great interest. 
However, for the remainder of this Review, we focus on 
polygenic influences on drug responses in T2DM.

Pharmacogenomics and genetic architecture
Pharmacogenetics aims to seek the genetic explanation 
of why individuals respond differently to drugs, both 
in terms of therapeutic efficacy as well as adverse drug 

reactions (ADR)19. Before the emergence of genome-wide 
genotyping arrays, pharmacogenetic studies focused on 
candidate genes with known links to drug distribution, 
metabolism or response pathways19. With the develop-
ment of cost-effective genomic technologies, genome-
wide genotyping and sequencing has transformed this 
traditional pharmacogenetic approach into a more global 
pharmacogenomic approach that can systematically 
interrogate millions of genetic polymorphisms across 
the genome20,21. Most published genome-wide studies of 
drug response are GWAS, with only a few studies report-
ing sequencing-based investigations. One example of a 
sequencing-based study is the use of publicly available 
whole-genome sequence data on 482 samples to profile 
231 genes22. In that study, the investigators also performed 
whole-genome sequencing on seven family members to 
try to explain the genetic basis of their variable response 
to anticoagulation treatment. The terms pharmacogenet-
ics and pharmacogenomics are often used interchange-
ably, but in this Review we use pharmacogenomics to refer 
to studies using genome-wide approaches.

Biomarker discovery for precision medicine remains 
the long-term goal of pharmacogenomic studies. However, 
an often under-appreciated benefit of such studies is that 
they can advance our understanding of the biological 
mechanisms of drug action in humans by identifying 
variants in genes not previously thought to be associ ated 
with drug response. These genes might never have been 
included in traditional candidate gene approaches3.

A fundamental issue underlying the validity and 
feasibility of pharmacogenomic studies is the genetic 
architecture of drug response23. In this context ‘genetic 
architecture’ refers to the number of response variants; 
the frequency spectrum of these response variants; the 
effect-size spectrum of the variants; the physical distribu-
tion of the variants in the genome; and the amount of var-
iation in drug response explained by these genetic variants 
(known as heritability). While heritability determines the 
validity of pharmacogenomic studies, the other aspects 
of genetic architecture dictate the feasibility and design of 
pharmacogenomic studies.

Adopting traditional twin and family study designs 
to estimate the heritability of drug treatment outcomes 
has been largely impractical, because family members 
might not develop the same disease or be treated with 
same drug. With the availability of GWAS data, new 
‘chip-based’ approaches have been developed to estimate 
heritabil ity from population-based samples24. However, 
data from at least a few thousand individuals are required 
to achieve an accurate estimate of heritability by these 
methods25. Such methods, therefore, can be applied 
to estimate the heritability of treatment efficacy for 
commonly used drugs, but not the less frequent ADRs.

In a study of GWAS data from 2,085 patients with 
T2DM, heritability of glycaemic response to metformin 
was estimated to be up to 34% (P = 0.02)23. Furthermore, 
this investigation also found that the heritability is 
probably the result of many common response variants 
with small to moderate effect sizes scattered across the 
genome23. These results suggest that the genetic architec-
ture of metformin efficacy is similar to that of T2DM and 

Key points

• The list of known variants affecting type 2 diabetes mellitus (T2DM) risk confirms that 
this disease has a multifactorial aetiology

• The concept of precision medicine has been exemplified in pharmacogenetic studies 
of monogenic diabetes mellitus

• The genetic architecture of mild adverse drug reactions and treatment efficacy for 
antidiabetic agents probably resembles that of T2DM and other complex traits

• Existing pharmacogenetic evidence of T2DM is limited; future pharmacogenomic 
studies utilizing large samples sizes will help identify variants that reveal novel 
mechanisms of drug action

• Genetic evidence-based ‘dose-response’ curves have been used in validating 
candidate drug targets

• Pharmacogenomic studies adopting a systems biology approach are expected to 
provide context specific evidence for future T2DM drug development
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Metformin
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↓ Glucose absorption

Metformin
↑ Glucose uptake
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↑ Glucose uptake
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↑ Insulin secretion
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↑ Insulin sensitivity
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↓ Gluconeogenesis

other complex traits. This similarity between the genetic 
architectures of T2DM and the treatment efficacy of met-
formin is likely to be rooted in the multi factorial aetiol-
ogy of the disease. Variants in different genes or pathways 
might affect metformin treatment efficacy in patients 
whose pathophysiology is heterogeneous (for example, 
those individuals who are predominantly insulin resist-
ant or those whose insulin secretion is deficient). Similar 
to metformin, other antidiabetic agents are also used to 
treat patients with a heterogeneous pathophysiology. We, 
therefore, anticipate that the genetic architecture of treat-
ment efficacy for other antidiabetic agents will be similar 
to that of the metformin response.

To appreciate the scale of the heritability estimate of 
34% for glycaemic response to metformin, it is necessary 
to put it into the context of other complex traits. In a 2015 
study, again using a population-based method, the herit-
ability estimate for BMI was 27% (standard error 2.5%)26, 
which is considerably lower than the heritabil ity esti-
mates of ~40–60% derived from traditional twin and 
family studies27. The discrepancy observed between the 
two methods could be explained by the fact that herit-
ability is underestimated by the ‘chip-based’ method 
due to imperfect tagging and it is often overestimated 
by the traditional twin studies due to common envi-
ronment confounding28. Therefore the actual heritabil-
ity of glycaemic response to metformin could be even 
higher than what has been estimated from GWAS data. 
In addition, chip-based heritability estimates also suffer 
underestimation due to the incomplete coverage of con-
tributions from rare variants, whereas traditional twin 
and family studies are unbiased in this regard24. Finally, 
the diversity of the microbiota residing in the gut might 
also contribute to the variable response to metformin. 

For example, metformin-associated changes in the gut 
microbiome accounts for a considerable proportion of 
the difference in gut taxonomic composition between 
patients with T2DM and control individuals without the 
disease29. Examining the diversity and composition of 
the gut microbiome might, therefore, enable the identi-
fication of novel targets for the prevention or manage-
ment of T2DM as the microbiota genome is easier to 
modify with prebiotics or probiotics compared with the 
host genome30.

Notably, twin and family studies have been used 
to estimate the heritability of physiological response to 
antidiabetic agents in participants without T2DM. For 
example, in a twin-family study of 100 healthy twins and 
25 siblings, the heritability of GLP-1 stimulated insulin 
secretion during hyperglycaemia was 53%31. In another 
family study, the heritability of tolbutamide-stimulated 
insulin secretion (Acute Insulin Responsetolbutamide) in 
284 healthy family members of patients with T2DM 
was estimated to be 69%32. The results of these twin and 
family studies that include non-diabetic individuals have 
demonstrated that a large component of the variation in 
physiological response to antidiabetic drugs is contrib-
uted by genetic variants. However, to what extent such 
high heritability estimates are comparable to that of gly-
caemic response estimated from population-based stud-
ies of patients with T2DM is unclear. Two reasons might 
account for different heritability estimates between the 
two study designs. Firstly, twin and family studies are 
often performed in controlled settings, which have less 
environmental variance than real-world patient pop-
ulations. Consequently, the same genetic effect sizes 
could lead to higher heritability estimates. Secondly, the 
pharmacodynamics in patients with T2DM might differ 

Figure 1 | Target organs and action mechanism of antidiabetic drugs. The mechanism for metformin action remains 
uncertain: metformin might target the liver to reduce gluconeogenesis and skeletal muscles to enhance peripheral 
glucose utilization110, with a possible role in the gut to increase levels of glucagon‑like peptide 1 (GLP‑1) (REF. 111). 
Sulfonylureas and meglitinides increase insulin secretion in the pancreas112,113. Thiazolidinediones (TZDs) act as insulin 
sensitizers in skeletal muscle, adipose tissue and the liver114. GLP‑1 receptor (GLP‑1R) agonists (GLP‑1RA) target the 
pancreas to increase insulin secretion and reduce glucagon production, as well as act in the gut to reduce gastric 
emptying115. Dipeptidyl peptidase 4 (DPP‑4) inhibitors (DPP‑4i) increase endogenous incretin levels by blocking the action 
of DPP‑4 (REF. 115). Sodium–glucose cotransporter 2 (SGLT‑2) inhibitors (SGLT‑2i) reduce renal glucose reabsorption116.
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from that in healthy individuals, as the mechanism of 
glycaemic homeostasis could vary by physiological states 
in which different functional pathways are involved33.

Most of the robust findings in pharmacogenomic 
studies to date are related to severe ADRs2. The variants 
associated with these rare ADRs often confer a large risk. 
For example, the HLA-B*57:01 allele results in an 80-fold 
(P = 9.0 × 10−9) increased risk of flucloxacillin-induced 
liver injury compared with non-carriers of this allele34. 
Encouraged by findings like this, many of the drug-re-
sponse variants have been proposed to have considera-
ble, clinically significant effects on treatment outcome35,36. 
This proposal is supported by the hypothesis that drug 
response variants lack the evolutionary constraint that 
has filtered out large disease risk variants via natural 
selection35. However, two explanations exist as to why 
large effect pharmacogenomic variants are unusual, 
especially for variants affecting treatment efficacy. Firstly, 
pharmaceutical interventions often achieve clinical effect 
via complex metabolic networks, which rely on redun-
dant pathways and synergistic effects to maintain their 
robustness when confronted with external stimuli37. 
Partial or complete impairment of one node in the net-
work is, therefore, more likely to have a marginal effect 
on treatment efficacy than a complete shutdown of all 
relevant pathways. Secondly, the established spectrum of 
large effect ADR variants might also reflect a publication 
bias, which accumulated the so-called ‘low hanging fruit’ 
that have been identified by pharmacogenomic stud-
ies often using fewer than 1000 cases3,38. Although the 
genetic architecture of rare ADRs might be akin to those 
of polygenic diseases in which large effect variants dom-
inate3, we anticipate the genetic architecture of treatment 
efficacy and mild ADRs would both encompass a spec-
trum of rare-to-common variants with moderate effect 
sizes. This notion is in line with the fact that rare vari-
ants with moderate effect have been successfully identi-
fied for common diseases such as T2DM by sequencing 
and imputation-based rare variant association studies 
of >100,000 samples9. Assembling large cohorts would, 
therefore, enable the identification of more drug response 
variants by future pharmacogenomic studies.

Pharmacogenomics of T2DM drugs
Owing to the considerable variability in response to 
existing drugs to treat diabetes mellitus, a large number 
of pharmacogenetic studies have been published, but 
only one pharmacogenomic GWAS study of metformin 
treatment efficacy reported39. These studies each focused 
on a single oral agent and have been the subject of many 
previous reviews40–42. No report exists on the pharmaco-
genetics of drug–drug interactions, despite a large number 
of patients requiring multiple agents to combat dia betes 
mellitus progression and for maintaining gly caemic con-
trol. In this section we summarize the replicated findings 
in studies of treatment efficacy and place more emphasis 
on the investigation of adverse effects (TABLE 2).

Treatment efficacy
Very few robust pharmacogenetic findings related to 
treatment efficacy of diabetes mellitus drugs have been 
reported. Previous candidate gene studies largely focused 
on drug transporters or metabolizing enzyme variants 
that have been implicated in the pharmacokinetics of 
drug exposure41. Variation in metformin pharmaco-
kinetics is mainly the result of variants in the transporters 
SLC22A1 (which encodes solute carrier family 22 mem-
ber 1, commonly known as OCT1) and SLC47A1 (which 
encodes MATE-1)43,44. However, the most investigated 
reduced-function OCT1 variants with low transporter 
activity had no consistent effect on glycaemic control 
in patients45–48. Sulfonylureas are mainly metabolized by 
Cytochrome P450 2C9 which is encoded by CYP2C9. 
Individuals with loss-of-function variants in CYP2C9 have 
higher drug exposure, and this in turn leads to consistent 
observations of greater glycaemic response than in those 
carrying wild-type alleles49–51.

Studies of potential pharmacodynamic variants, 
which might affect how antidiabetic agents alter glucose 
levels, have largely focused on the genes involved in glu-
cose metabolism and the risk of developing T2DM. One 
replicated finding is seen for TCF7L2 and sulfonylurea 
response, where the allele associated with reduced β-cell 
function and, therefore, increased risk of T2DM, is also 
associated with reduced efficacy of sulfonylureas52–54. 

Table 1 | Comparison of pharmacogenomic studies and genomic studies of antidiabetic drugs

Study 
characteristic

Pharmacogenomics of 
antidiabetic drugs

Genomic studies of other diabetes  
mellitus-related traits

Sample size Currently <10,000 individuals Currently >100,000 individuals

Number of 
established variants

Only a few • >120 for T2DM risk
• >83 for other diabetes mellitus‑related traits

Data type Longitudinal Cross‑sectional

Outcomes • Physiological response (for example, 
insulin secretion)

• Treatment efficacy: glucose reduction
• Hard endpoints: cardiovascular risk
• Other outcomes: weight reduction

• Onset of T2DM
• Hyperglycaemia: fasting glucose level, HbA1c levels
• Insulin resistance: as defined by HOMA
• Insulin secretion: fasting insulin level, fasting 

C‑peptide level, β‑cell function assessed by HOMA

This table highlights that the published GWAS of response to antidiabetic agents used considerably smaller sample sizes and, 
therefore, established fewer variants, than those GWAS of other diabetes mellitus‑related traits. Given that more longitudinal data 
in large cohorts are increasingly available from large bioresources such as the UKBiobank, pharmacogenomic studies are expected 
to provide more insights into the genetic basis of different drug response phenotypes. GWAS, genome‑wide association study; 
HOMA, homeostatic model assessment; T2DM, type 2 diabetes mellitus.
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The K allele of the E23K variant in KCNJ11, which encodes 
the known targets of sulfonylureas, is also associated with 
an increased glycaemic response in multiple studies55–57. 
These observations of E23K carriers are consistent with 
evidence that neonates with monogenic diabetes mellitus 
who have causal variants in KCNJ11 could be effectively 
treated with sulfonylureas18. Another replicated finding 
is the association between the PPARG Pro12Ala variant 
and response to thiazolidinediones (commonly known 
as TZDs). A few studies, each with fewer than 200 par-
ticipants, have consistently reported that the T2DM risk 
Pro allele is associated with poor glycaemic response58–60. 
For the newer agents such as gliptins and SGLT-2 inhibi-
tors, pharmacogenetic studies of treatment efficacy have 
been sparse with only one relatively large study reporting 
the association and replication between rs7202877 near 
CTRB1/2 and response to gliptins61.

The only GWAS of any antidiabetic agent published to 
date identified a variant rs11212617 near the ATM locus as 
being associated with glycaemic response to metformin39. 
Independent replications were later reported in multiple 
cohorts of different ancestries, strengthening evidence that 
this variant is the most established drug response variant 
for an antidiabetic drug62,63. Given the moderate effect 
on glycaemic response to metformin, this variant is not a 
useful biomarker that can substantially increase our ability 
to accurately predict the treatment outcome in individual 
patients. However, as this variant has no functional link 
to any known metformin mode-of-action, it demonstrates 
that such a pharmacogenomic discovery can reveal novel 
mechanisms of action of an antidiabetic drug, which might 
in turn identify further pathways to target with new thera-
peutic agents. The finding that variants near ATM are 
associated with metformin response has prompted fur-
ther study of the genes at this locus in relation to glucose 
metabolism and metformin response. For example, in a 
small study of patients with ataxia telangiectasia who have 
recessive loss-of-function mutations in ATM, the investi-
gators identified impaired glucose tolerance and insulin 
resistance, which supports a potential role for ATM in 
glucose metabolism and the response to metformin64.

ADRs
Pharmacogenetic studies have also been performed 
to help in the understanding of ADRs associated 
with antidiabetic drugs. Key ADRs studied include 
sulfonylurea-induced hypoglycaemia, TZD-associated 
oedema, hepatotoxicity, heart failure and metformin- 
associated gastrointestinal disturbance65–69. To date, no 
studies have been published on the pharmacogenom-
ics of the potentially fatal but rare ADRs of metformin- 
associated lactic acidosis70. Thus far, the investigators in 
all the published pharmacogenetic studies have adopted a 
candidate gene approach. For sulfonylurea-induced hypo-
glycaemia, a number of small studies using no more than 
108 patients have been conducted and they consistently 
showed that loss-of-function CYP2C9 variants, which 
are associated with increased drug exposure66, are also 
associated with a higher risk of hypoglycaemia65, which 
is consistent with the efficacy studies showing that these 
variants are associated with greater glucose reduction than 
wild-type alleles45. For TZDs, the results have indicated 
that variants in GSTT1 and CYP2C19 are associated with 
troglitazone-induced hepatotoxicity68,71; while variants 
in NFATC2 are associated with the rate of rosiglitazone- 
induced oedema67. Although some safety concerns have 
been raised about gliptins and SGLT-2 inhibitors, such 
as genital and urinary tract infections associated with 
SGLT-2 inhibitors and the pancreatitis and liver dys-
function associated with gliptins70, to our knowledge, no 
pharmacogenetic reports on these ADRs exist.

Metformin causes gastrointestinal disturbance in as 
many as 20–40% of patients with 5–10% of patients not 
being able to tolerate the drug70. The biological mech-
anism underlying gastrointestinal intolerance to met-
formin remains poorly understood. On the basis of the 
hypothesis that individuals who are intolerant to met-
formin are exposed to higher concentrations of the drug 
in the gastrointestinal tract, investigators have explored 
variants in transporters such as OCT1 (REF. 72). In a large 
study of 2,166 patients, both reduced-function variants 
in OCT1 and co-medication of certain OCT1 inhibitors 
(that is, verapamil, proton pump inhibitors, citalopram, 

Table 2 | Replicated pharmacogenetic findings of antidiabetic agents

Agent Treatment efficacy ADRs

Metformin HbA1c reduction: ATM39,62 • Gastrointestinal adverse effects: 
SLC22A1 (REFS 69,73)

• Lactic acidosis: no evidence

Sulfonylureas • HbA1c reduction: TCF7L2 (REFS 52–54), 
KCNJ11 (REFS 55–57) and CYP2C9 
(REFS 49,51)

• Maintenance dose: CYP2C9 (REF. 50)

Hypoglycaemia: CYP2C9 (REF. 65)

TZDs HbA1c/glucose reduction: PPARG58–60 Troglitazone‑induced hepatotoxicity: 
GSTT1 (REF. 68) and CYP2C19 (REF. 71)

Gliptins (DPP‑4i) HbA1c reduction (insulin response): 
CTRB1/2 (REF. 61)

Reported pancreatitis and liver dysfunction: 
no evidence

SGLT‑2i No evidence Reported genital and urinary tract infections: 
no evidence

ADRs, adverse drug reactions; DPP‑4, dipeptidyl peptidase 4; i, inhibitor; SGLT‑2, sodium–glucose cotransporter 2; T2DM, type 2 
diabetes mellitus; TZDs, thiazolidinediones.
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codeine and doxazosin) significantly increased the risk 
of metformin-induced gastrointestinal side effects69. The 
combination of carrying the genetic variants and tak-
ing co-medications could result in a fourfold (P <0.001) 
increased risk of gastrointestinal side effects69. Therefore 
this large effect on metformin-induced gastrointestinal 
side effects by these OCT1 variants have the potential to 
be translated into clinical practice by prescreening the 
patients for OCT1 genotype and co-medication of OCT1 
inhibitors. Moreover, this study highlighted two key fac-
tors for successful pharmacogenomics of anti diabetic 
drugs: large sample sizes are required for adequate stat-
istical power; and the need to consider co-prescribed 
medication that potentially interacts with these agents69. 
This result has since been replicated in an independent 
study in which the same genetic variants were associated 
with an increased risk (OR 2.3; P = 0.02) of less severe 
metformin intolerance73.

Genetics and drug target validation
A major challenge in the modern pharmaceutical indus-
try is that <15% of drugs entering the development pipe-
line make it to market74, a vastly expensive, inefficient 
and wasteful process. Toxicity and lack of efficacy con-
tribute to the high failure rate of new drugs in develop-
ment, which reflects the ineffectiveness of conventional 
target validation methods used in preclinical studies. 
Moreover, the model systems used in the preclinical 
studies often fail to represent real biological systems 
working in humans.

Genetic variants that arise as a result of historical 
mutation and recombination events can be viewed as 
naturally occurring experiments that perturb human 
gene function. These naturally occurring mutations are 
an opportunity to see the effect of perturbing a gene (for 
example, by a potential novel drug) on disease risk and 
off-target effects without the need to develop and trial 
the drug. For example, in a large survey of 61,104 drugs 
across the various stages of development, those candi-
dates that targeted proteins encoded by genes with robust 
human genetic evidence (that is evidence from GWAS or 
an association with diseases in OMIM) are twice as likely 
to be therapeutically valid75.

To address the question of how to harness human 
genetic evidence to guide target validation in drug 
development, the ‘therapeutic hypothesis’ has been 
proposed76. Central to this approach is the concept of a 
genetic evidence based ‘dose-response’ curve. An exam-
ple of translating such a hypothesis into a new drug is 
the development of the PCSK9 inhibitors to reduce lev-
els of LDL cholesterol77. Rare ‘gain-of-function’ variants 
in PSCK9 lead to high levels of LDL cholesterol and an 
increased risk of coronary heart disease78. Conversely, 
rare ‘loss-of-function’ variants result in lower LDL choles-
terol levels and a reduced risk of coronary heart disease79. 
GWAS also identified common variants in other genes 
such as SORT1 and LDLR with mild effect on LDL chol-
esterol levels and risk of coronary heart disease80,81. These 
experiments (which are essentially designed by nature) 
have demonstrated that reducing levels of LDL choles-
terol and the risk of coronary heart disease is possible by 

inhibiting the function of PCSK9 without any observable 
adverse effects77. With further support by other mecha-
nistic evidence derived from model systems, a new gener-
ation of LDL-cholesterol-lowering PCSK9 inhibitors have 
been developed, tested and licensed for use82.

Dozens of common and rare variants have been con-
vincingly associated with glycaemic control and the risk 
of developing T2DM10. Representatives from both aca-
demia and pharmaceutical companies have now formed 
the Accelerating Medicines Partnership to enhance the 
translation of human genomic research outputs into 
the development of new drugs (Accelerating Medicines 
Partnership)83. As one of the three prioritized areas, 
the Accelerating Medicines Partnership aims to estab-
lish an open-access portal for T2DM genetics research 
(http://www.type2diabetesgenetics.org), which will 
pool genomic and phenotyping data to facilitate novel 
data mining efforts83. One target of potential interest 
raised by the Accelerating Medicines Partnership is the 
zinc-transporter-encoding SLC30A8. The use of GWAS 
has established robust evidence that the common coding 
variant Arg325Trp is associated with the risk of T2DM84. 
The results of mechanistic studies in humans and mice 
have both indicated that the reduced zinc transporter 
activity allele is associated with an increased risk 
of T2DM85,86. However, in a sequencing-based study of 
~150,000 individuals, rare protein-truncating variants in 
SLC30A8 protected the carriers from developing T2DM9. 
This conflicting genetic evidence does not provide a 
consistent dose-response curve based on the functional 
characterization of the variants87. Further mechanistic 
studies, especially those involving intensive phenotyping 
of individuals carrying rare extreme functional SLC30A8 
variants will be useful to validate whether inhibiting or 
enhancing the zinc transporter 8 function could be the 
therapeutic option for treating T2DM. The example 
provided by SLC30A8 demonstrates that human genetic 
evidence is not always sufficient to validate a gene or 
protein as a drug target, especially in situations when 
uncertainty surrounds the exact mechanism of how 
target genes alter a phenotype of interest.

The discovery of SGLT-2 inhibitors to treat T2DM is 
another example of how genetic evidence can be used to 
assist drug development (FIG. 2). Early evidence indicated 
that phlorizin, a natural inhibitor of SGLT-2 and isolated 
from the bark of apple trees, restored euglycaemia and 
insulin sensitivity in animal models of T2DM88. After the 
cloning of SLC5A2 which encodes SGLT-2, functional 
variants in SGLT-2 have been linked to familial renal 
glycosuria (OMIM)89. Patients with familial renal glycos-
uria, who carry a spectrum of >50 mild heterozygote to 
severe homozygote SGLT-2 loss-of-function variants, 
have different levels of glycosuria but apparently normal 
renal functions, normal glucose concentrations and gen-
erally good health90. Here the genetic evidence not only 
validated the therapeutic potential of inhibiting SGLT-2 
but also provided critical evidence that selective inhib-
itors targeting the protein would result in no long-term 
ADRs. Consequently, several selective SGLT-2 inhibitors 
have been successfully developed and licensed to treat 
T2DM14. Aside from their glucose-lowering effect, these 
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SGLT-2 inhibitors have an average 1.63 kg (P <0.001) 
weight reduction benefit16,91, which is increasingly con-
sidered an important component in the management 
of T2DM92.

Pharmacogenomics and drug discovery
Conventional pharmacogenetics, which is based on 
candidate genes, has been used in all stages of the drug 
development pipeline, from target identification to 
clinical trials and postmarket analysis of ADRs35. As 
pharmacogenetics moves to pharmacogenomics, this 
genome-wide-hypothesis-free approach could also have 
more applications in drug discovery and development20.

The proposed ‘therapeutic hypothesis’ is based on 
the principle that human genetics is an experiment of 
nature, which shows what phenotypic outcomes the 
natural perturbations of gene functions can lead to in 
a human population76. Clearly human genetics has the 
advantage that the experimental system is in humans 
as opposed to cell or animal model systems used in 
preclinical studies. However, the ideal system for val-
idating a therapeutic hypothesis would be a genetic 
study carried out in the exact context the new drug is 
developed for. Genetic evidence of disease risk could be 
useful in validating the targets for a preventive drug but 
less informative for predicting therapeutic potential for 
disease management. For example, let us consider using 
human genetic evidence to validate candidate drug 
targets to improve glycaemic control in patients with 

T2DM. The most available candidates would be those 
genes with established variants associated with the risk 
of developing T2DM or poor glycaemic control in the 
general population. However, the mechanism regulating 
glycaemia has been suggested to vary between different 
physiological states33. The variants affecting glycaemia 
in normal individuals and those associated with T2DM 
risk only partially overlap33, which suggests perturbations 
of glycaemia are not always linked to the risk of T2DM. 
Similarly, the variants conferring risk to T2DM have little 
effect on the rate of disease progression93, which suggests 
that the mechanisms controlling glycaemia when T2DM 
has developed might be different from those involved in 
its development. Consequently, targeting genes involved 
in the regulation of glycaemia in healthy individuals or 
the risk of T2DM might not have the desired glycaemic 
effect on the management of T2DM, especially if their 
biological functions have been altered by the onset of 
the disease. In the context of disease management, phar-
macogenomic studies of existing antidiabetic drugs can 
identify genes involved in glycaemic control in patients 
with T2DM. Robust pharmacogenomic findings would, 
therefore, provide physiological-state-specific informa-
tion for drug target validation in addition to other evi-
dence of normal glycaemic control and risk of T2DM 
derived from human genetic studies.

TABLE 1 outlines the differences between pharma-
cogenomic studies of drugs used to treat T2DM and 
genomics of other diabetes mellitus-related traits. 
Compared to the wealth of findings from other areas of 
human genetics, to date pharmacogenomics has yielded 
less robust results, in part owing to the challenge to assem-
ble tens of thousands of samples that could provide ade-
quate statistical power to detect variants with moderate 
effect sizes. However, we anticipate future drug discovery 
and drug development to benefit more from the pharma-
cogenomic findings derived from larger samples that are 
increasingly available from biobanks linked to electronic 
health record data (for example the UKBiobank). Notably, 
longitudinal data from clinical trials or health record link-
age enable the study of outcomes other than simple meas-
ures of glycaemia. For example, given a sufficient sample 
size, using pharmacogenomics to assess cardiovascular 
endpoints of antidiabetic drugs might be possible. In addi-
tion, large samples would also enable pharmacogenomics 
to jointly analyse multiple outcomes (such as, both gly-
caemic benefit and weight benefit of metformin), which 
would help to identify variants associated with pleiotropic 
effects of antidiabetic drugs.

Avoiding ADRs or off-target effects is also an impor-
tant consideration in drug development. The very 
existence of ADRs is an illustration of our incomplete 
understanding of the complex interactions between 
our biological system and any designed interventions94. 
The increased availability of genome-wide screening 
tools will enable the identification of more ADR vari-
ants at an early stage of drug development, which has 
a number of clear advantages. For example, if ADR 
variants are identified before phase III clinical trials, 
recruitment-by-genotype trials could be performed 
to evaluate the efficacy and risk in stratified patient 

Figure 2 | Dose-response curve for the therapeutic 
hypothesis of selective SGLT-2 inhibitors. The y axis 
represents a range of glucose levels, in which the high 
range represents the hyperglycaemic state observed in 
type 2 diabetes mellitus as compared to the normal range 
observed in healthy individuals or those patients with 
familial renal glycosuria. The x axis represents a spectrum 
of naturally occurring sodium–glucose cotransporter 2 
(SGLT‑2) loss‑of‑function variants observed in patients with 
familial renal glycosuria. The variants were ordered from 
the mild heterozygotes to severe homozygotes as defined 
by the resulting severity of glycosuria. For on‑target 
adverse reactions, the benign glucosuria and apparently 
normal health observed in these patients supports the 
safety profile of selectively inhibiting SGLT‑2 function in a 
wide dose window.
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subgroups35. When a drug is approved for marketing, 
understanding the genetic basis of severe ADRs could 
also help the continuous development of the drug by 
prescreening the genotype ahead of treatment95.

A systems biology view of drug response
One of the biggest challenges facing contemporary 
biological research is to understand the complex bio-
logical networks that function in a living system96. This 
complexity can be seen in T2DM, where the genes har-
bouring the established aetiological variants have an 
excess of interactions within a high-confidence interac-
tion network97. The variants in this network affect the 
protein function, stability of protein or transcript, and 
expression of individual genes, which collectively per-
turb or rewire the network to alter the risk of T2DM98,99. 
Interestingly, when considering a network of disease 
genes and genes encoding known drug targets, the dis-
tance between genes reported in GWAS and known drug 
targets are shorter than those between random gene–
drug targets pairs100. This is predominantly driven by a 
threefold enrichment of drug target genes among the 
first neighbours of the GWAS reported genes. More evi-
dence of direct overlap between the drug target genes 
and disease risk genes was also presented in a gene set 
enrichment analysis101. In this study, a set of 102 target 
genes for existing diabetes mellitus drugs (for example, 
insulin, metformin and TZDs), as curated from the liter-
ature, showed significant enrichment of genetic associa-
tion with T2DM susceptibility101. Such findings indicate 
that potential drug targets are enriched in a disease net-
work, but might only be identified when considering the 
network as a whole, rather than individual disease genes.

When modelling a drug intervention in a functional 
network, it is important to consider how the drug alters 
the functional network at the level of the cell, the tissue 

and the disease state, which will ultimately determine 
the beneficial and harmful effects of the drug. To date, 
our knowledge of biological networks has been largely 
limited to the generic, static models lacking such con-
textual information102. Research in systems biology is 
beginning to offer more comprehensive cell-lineage and 
tissue-specific networks103–105, which will enable mod-
elling of drug interventions in specific contexts such 
as the cell type, the tissue and the physiological state. 
Such analyses will provide insights into how drugs can 
achieve the desired therapeutic effect in target tissues 
or known sites of action, but importantly highlight the 
potential undesirable off-target effects in other contexts. 
Moreover, adopting a systems-wide approach might 
change the focus of drug development for complex 
diseases such as T2DM from targeting an individual 
protein or gene to systems-wide attacks on multiple 
dynamic targets106.

Conclusions
The availability of affordable high-throughput genomic 
technologies has expanded our knowledge about the 
multifactorial aetiology of T2DM. Studies adopting such 
genome-wide approaches to investigate the response of 
existing antidiabetic drugs have been limited, but have 
the potential to improve our understanding of the bio-
logical mechanisms underlying treatment efficacy and 
adverse effects. With major investments in precision 
medicine in the USA107, the 100,000 genomes project in 
the UK108, and the EU-funded stratified medicine in dia-
betes mellitus initiative Innovative Medicines Initiative: 
DIabetes REsearCh on patient straTification (known as 
IMI-DIRECT)109, more findings from adequately pow-
ered pharmacogenomic studies are expected to comple-
ment other human genetic discoveries to facilitate more 
efficient antidiabetic drug discovery programs.
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Abstract
Aims/hypothesis There is an extensive body of literature sug-
gesting the involvement of multiple loci in regulating the ac-
tion of metformin; most findings lack replication, without
which distinguishing true-positive from false-positive find-
ings is difficult. To address this, we undertook evidence-
based, multiple data integration to determine the validity of
published evidence.
Methods We (1) built a database of published data on gene–
metformin interactions using an automated text-mining ap-
proach (n = 5963 publications), (2) generated evidence scores
for each reported locus, (3) from which a rank-ordered gene
set was generated, and (4) determined the extent to which this
gene set was enriched for glycaemic response through repli-
cation analyses in a well-powered independent genome-wide
association study (GWAS) dataset from the Genetics of
Diabetes and Audit Research Tayside Study (GoDARTS).

Results From the literature search, seven genes were identi-
fied that are related to the clinical outcomes of metformin.
Fifteen genes were linked with either metformin pharmacoki-
netics or pharmacodynamics, and the expression profiles of a
further 51 genes were found to be responsive to metformin.
Gene-set enrichment analysis consisting of the three sets and
twomore composite sets derived from the above three showed
no significant enrichment in four of the gene sets. However,
we detected significant enrichment of genes in the least
prioritised category (a gene set in which their expression is
affected by metformin) with glycaemic response to metformin
(p = 0.03). This gene set includes novel candidate genes such
as SLC2A4 (p = 3.24 × 10−04) and G6PC (p = 4.77 × 10−04).
Conclusions/interpretation We have described a semi-
automated text-mining and evidence-scoring algorithm that fa-
cilitates the organisation and extraction of useful information
about gene–drug interactions. We further validated the output
of this algorithm in a drug-response GWAS dataset, providing
novel candidate loci for gene–metformin interactions.

Keywords G6PC . Gene-set enrichment . Metformin .

SLC2A4 . Text-mining . Type 2 diabetes

Abbreviations
AMPK AMP-kinase
ATM Ataxia telangiectasia mutated
FABLE Fast Automated Biomedical Literature

Extraction
G6PC Glucose 6-phosphatase
GoDARTS Genetics of Diabetes and Audit Research

Tayside Study
GSEA Gene-set enrichment analysis
GWAS Genome-wide association study
LKB Liver kinase beta

Electronic supplementary material The online version of this article
(doi:10.1007/s00125-017-4404-2) contains peer-reviewed but unedited
supplementary material, which is available to authorised users.

* Adem Y. Dawed
a.y.dawed@dundee.ac.uk

1 Division of Molecular and Clinical Medicine, Medical Research
Institute, Ninewells Hospital and Medical School, Level 5, Mailbox
12, University of Dundee, Dundee DD1 9SY, UK

2 Department of Clinical Sciences, Genetic and Molecular
Epidemiology Unit, Lund University, Skåne University Hospital
Malmö, Malmö, Sweden

3 Department of Public Health & Clinical Medicine, Umeå University,
Umeå, Sweden

4 Department of Nutrition, Harvard School of Public Health,
Boston, MA, USA

Diabetologia (2017) 60:2231–2239
DOI 10.1007/s00125-017-4404-2

http://dx.doi.org/10.1007/s00125-017-4404-2
mailto:a.y.dawed@dundee.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-017-4404-2&domain=pdf


MAGENTA Meta-Analysis Gene-set Enrichment of
variaNTAssociations

MATE Multi drug and toxin extrusion
OCT Organic cation transporter
PD Pharmacodynamics
PK Pharmacokinetics
PMAT Plasma membrane monoamine transporter
SHBG Sex-hormone binding protein
STK Serine/threonine kinase

Introduction

Metformin has been used for 60 years by more than 150 mil-
lion people worldwide. It is the first-line monotherapy pre-
scribed at diagnosis in people with type 2 diabetes [1], and
also slows progression to type 2 diabetes in people with ele-
vated but non-diabetic glucose levels who are unable or un-
willing to adhere to lifestyle modification [2–4].

Despite the popularity of metformin in diabetes treatment,
its mechanisms of action are poorly understood; suppression
of endogenous glucose production via activation of AMP-
kinase (AMPK) has been hypothesised [5]. However, a pre-
served glucose-lowering effect has been reported in AMPK
knockout mice [6]. Alternative, non-AMPK-dependent,
mechanisms include inhibition of mitochondrial glycerophos-
phate dehydrogenase activity [7] and adenylate cyclase-
mediated inhibition of the gluconeogenic pathway in favour
of glycolysis [8]. In a recent study performed on
Caenorhabditis elegans and extended to human cell lines,
Wu et al identified two new targets of metformin action: the
nuclear pore complex and the gene encoding acyl-CoA dehy-
drogenase 10 [9].

Diabetes treatment guidelines adopt a one-size-fits-all ap-
proach, and do not take into account interindividual variation
in response. Yet there is considerable between-patient varia-
tion in treatment effects, with some responding poorly or not
at all and others being highly sensitive to the drug or
experiencing extreme adverse drug reactions [10]. Up to
30% of individuals treated with metformin develop nausea,
bloating, abdominal pain and/or diarrhoea, and 5–10% are
unable to continue with metformin treatment [11].
Heritability studies indicate that genetic variation underlies
around 34% of the variability in metformin response [12].

Previous candidate gene-based pharmacogenetic studies of
metformin have largely focused on loci encoding transporter
proteins; little emphasis has been placed on genes in the phar-
macodynamics (PD) domain, and much of the published data
are inconclusive and sometimes controverted [10].
Hypothesis-free genome-wide association studies (GWASs)
on metformin have identified a genome-wide significant var-
iant, rs11212617, near the ATM gene for metformin-induced
glycaemic response [13]. Given that this SNP lies in a large

block of genes that are in linkage disequilibrium, the authors
performed cellular work and suggested ATM to be the causal
gene.

AMPK, the energy sensor, is the downstream target of met-
formin and is believed to be involved in the PD of metformin.
Selective inhibition of ataxia telangiectasia mutated (ATM)
protein by KU-55933 resulted in a marked reduction in
metformin-induced AMPK activation, suggesting involvement
of ATM in AMPK activation. However, cellular studies
showed marked inhibition of organic cation transporter
(OCT)1, an important mediator of metformin uptake by the
liver, by KU-55933, suggesting that the observed attenuated
AMPK phosphorylation could also be due to inhibition of
OCT1 [14]. A recent GWAS study from the MetGen consor-
tium reported an association between an intronic SLC2A2 var-
iant, rs8192675, and the glycaemic response to metformin [15].

Owing to the vast literature on gene–metformin interactions,
obtaining an unbiased overview of the evidence is extremely
difficult. While meta-analysis delivers trustworthy findings if
well conducted, heterogeneity in study designs, analytic strate-
gies, population characteristics and data selection biases present
challenges to such analyses [16].Thus, to facilitate this process,
automated approaches to integrate evidence from multiple
sources, cataloguing the levels of evidence, validating in a
real-world dataset, and using this to prioritise genes for
follow-up are increasingly favoured [17, 18].

Here, we established a semi-automated text-mining pipe-
line to prioritise biological candidate genes that show evi-
dence of interaction with metformin based on strength of ev-
idence from published studies. We then evaluated the
prioritised gene sets by examining their enrichment using a
well-powered external dataset.

Methods

Data collection

Selection and download of articles Articles that make refer-
ence to studies of genes and metformin in humans, identified
through PubMed, were identified using the Fast Automated
Biomedical Literature Extraction (FABLE) tool [19].
Accordingly, 13,914 articles were identified, of which 5963
reported independent information (Fig. 1). PubMed article
identifiers (PMIDs) were collected for automated download
of full text articles using Batch Entrez and EndNote. These
tools permit access to articles from journals that are either
open access or to which our institution (Lund University)
subscribes. In most cases, PDFs are the default source of in-
formation from published articles. Thus, batch conversion of
PDF to text format was done using Xpdf 3.04 (ftp.foolabs.
com, accessed from 1 February to 30 June 2014).
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Gene and drug dictionary construction Gene and drug
names are often described using more than one naming con-
vention, abbreviation and/or synonym in the biomedical liter-
ature. Therefore, we compiled a comprehensive dictionary of
gene names and abbreviations by extracting gene synonyms
from NCBI Gene (www.ncbi.nlm.nih.gov/gene/), UCSC
Genome Brower (www.genome.ucsc.edu/), SymAtlas
(www.biogps.org/), Google (www.google.com/), GeneCards
(www.genecards.org/) and iLINCS (www.ilincs.org/ilincs/),
which was subsequently used to standardise data for a given
gene. A drug dictionary capturing generic name, brand names,
synonyms and International Union of Pure and Applied
Chemistry (IUPAC) names of metformin was also developed
from drug cards of the Drug Bank (www.drugbank.ca/) (see
electronic supplementary material [ESM] Table 1). All these
databases were accessed from 1 February to 30 June 2014.

Sentence extraction Sentence extraction involves text seg-
mentation, tokenisation and named entity recognition.
Sentence segmentation and tokenisation were achieved using
the Lingua::EN::Sentence module in the Perl software pack-
age, which is freely available from the Comprehensive Perl
Archive Network (CPAN) (http://search.cpan.org/~shlomoy/
Lingua-EN-Sentence-0.14/lib/Lingua/EN/Sentence.pm,
accessed from 1 February to 30 June 2014). Gene and drug
names were tagged using a Perl-based mark-up algorithm that
uses a set of hashes and regular expressions. Sentences that
contain a drug and a gene (i.e. a gene–drug dyad) were ex-
tracted from the corpus of each article (e.g., from titles, ab-
stracts or main body of texts).

Annotation of extracted sentencesAnalyses are based on the
assumption that gene–drug dyads coalesce within a single
sentence. Thus, each sentence was manually annotated to de-
scribe relationships between genes and metformin according
to the annotation guideline given from the gene–drug interac-
tion corpus and comparative evaluation by the Discovery
through Integration and Extraction of Genomic and Clinical

Knowledge (http://diego.asu.edu/, accessed 15 August 2014)
[20]. ‘Interaction’ words are those that describe the presence
of an interaction. For the purpose of these annotations,
interactions refer to the action, effect or influence of the gene
on a clinical outcome, pharmacokinetics (PK) or PD of the
drug. Furthermore, the action, effect or influence of the drug
on gene expression is also included as a component of
interaction.

Annotation categoriesMain annotations used to confirm the
presence or absence of interaction between genes and metfor-
min can be direct or indirect, and explicit or inferred. For the
current analysis, three categories of data about interactions
were documented: direct explicit, indirect explicit and indirect
inferred. Only direct and explicit interactions were taken for-
ward for further analysis. Different annotation subcategories
were also used, along with interactions if they existed in
sentences. These include ‘increased interaction’, ‘decreased
interaction’ or ‘negation’. Negation indicates an absence of
interaction and is usually represented by negative words such
as ‘not’ or ‘never’ (ESM Table 2).

Developing the evidence-scoring algorithm

An iterative ranking algorithm was developed based on the
pharmacogenomic relatedness, frequency and consistency of
evidence for co-occurring gene–drug pairs. Each gene was giv-
en a score based on the strength of evidence for interaction with
metformin. The scoring algorithm is adapted from the Coriell
Personalized Medicine Collaborative pharmacogenomics ap-
praisal [17]. Accordingly, each gene was given a score
consisting of seven categories, ranging from 1 (representing
the strongest evidence; presence of consistent clinical data) to
7 (the weakest evidence; published evidence showing lack of
effect of the gene on drug response). See the ESMMethods for
further details.

Once all the evidence for a given gene had been gathered, a
single score was assigned based on the greatest strength of
evidence. For evidence scores 1–3, the drug–phenotype asso-
ciation should be consistent across different studies. If the data
were found to be inconsistent, the clinical relevance of the
gene was considered unknown and a score of 4–6, as appro-
priate, was returned. A score of 7 was given if the clinical
relevance was clearly refutable based on the available evi-
dence. Table 1 outlines criteria for each score with their as-
sessment outcomes.

Genome-wide association data

Cohort description The validation cohort was from the
Genetics of Diabetes and Audit Research Tayside Study
(GoDARTS) consisting of 2568 adults of European ancestry
diagnosed with type 2 diabetes who had been on stable

FABLE

13,914 articles

Sentence extraction

3575 full text PDF2388 abstracts

Converted to text file

Duplicates removed

5963

Fig. 1 Identification, screening and selection of published articles
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metformin treatment for at least 6 months with no history of
insulin use before or during the study period [13]. All partic-
ipants had a baseline HbA1c > 7% (53 mmol/mol) and < 14%
(129.5 mmol/mol).

Genotyping and quality control Genotyping and quality
control procedures for the GoDARTS cohort are described
elsewhere [13, 14, 21]. See ESM Methods for further details.

Glycaemic response definition and model A linear regres-
sion model of glycaemic response was fitted as the maximum
HbA1c reduction recorded within 1–18 months of the metfor-
min index date adjusted for baseline HbA1c, creatinine clear-
ance, adherence, dose, drug group and baseline gap (the num-
ber of days between baseline HbA1c measure and metformin
index date). The final glycaemic response model was: HbA1c

reduction = baseline HbA1c + creatinine clearance + adher-
ence + average daily dose + drug group + baseline gap +
genotype.

Each SNP was tested for association with a continuous
measure of glycaemic response (HbA1c reduction) with
SNPTEST v2.5 (https://mathgen.stats.ox.ac.uk/genetics_
software/snptest/snptest.html) [22] using multiple linear
regression assuming an additive model. Association test
results were combined with fixed-effects inverse-variance-
weighted meta-analysis using Genome-Wide Association
Meta Analysis software v2.1.34 (www.geenivaramu.ee/en/
tools/gwama) [23]. Software was accessed from 1 February
to 30 June 2014.

Gene-set enrichment analysis

We carried out enrichment analysis using Meta-Analysis
Gene-set Enrichment of variaNT Associations (MAGENTA
v2.4) (https://software.broadinstitute.org/mpg/magenta/,
accessed from 1 February to 30 June 2014) [24] to test
whether literature-identified gene sets were enriched with

glycaemic response to metformin in a well-powered GWAS
from the GoDARTS consisting of 2568 individuals with
type 2 diabetes treated with metformin. Five sets of genes
identified from the literature were used for gene-set enrich-
ment analysis (GSEA): (1) genes directly related to clinical
outcomes of metformin; (2) genes associated with either the
PK or PD of metformin but not directly related to the clinical
outcome; (3) genes whose expression is affected by the
presence of metformin and not included in either (1) or (2)
above; (4) genes related to clinical outcome, PK or PD (1 + 2);
and (5) genes related to a clinical outcome and/or PK/PD/
expression (1 + 2 + 3). See ESM Methods for further details.

Results

Data retrieval and extraction

From our screen of articles with a key word ‘metformin’ in
FABLE, we identified 5963 unique articles published from
1968 to January 2014 (Fig. 1). Among these, 3575 (60%)
were accessed as full text articles (ESM Fig. 1) and the re-
maining 2388 (40%) as abstracts (ESM Fig. 2). Although
other parts may contain biologically relevant information,
the best keyword per total word was obtained from abstracts
[25]. ESM Fig. 3 shows the distribution of full text articles and
abstracts by year of publication. A total of 2009 sentences
were extracted with 3063 co-occurrences of metformin and
genes. After removing non-interaction shared entities, and hy-
pothetical, possible and indirect interactions, 1074 direct and
explicit co-occurrences were annotated.

Genes related to clinical outcomes as a consequence
of metformin treatment

From the search outlined above, seven genes were identified
that appear to modify the effects of metformin on diabetes-

Table 1 Evidence code assignment for gene–metformin interaction

Evidence code definition

Evidence code Study category Study objective/findings Assessment outcome

1 Clinical outcomes studies Consistent effect of genetic variant on drug of interesta Clinically relevant

2 PK or PD study Consistent effect of genetic variant on drug of interesta Clinically relevant

3 Molecular/cellular functional studies Consistent effect of genetic variant on drug of interesta Potential clinical relevance

4 Clinical outcomes studies Inconsistent effect on drug of interest Clinical relevance unknown

5 PK or PD study Inconsistent effect on drug of interest Clinical relevance unknown

6 Molecular/cellular functional studies Inconsistent effect on drug of interest Clinical relevance unknown

7 Clinical outcomes studies, PK or
PD study

Demonstrates no effect of the genetic variant on
drug response

Clinical relevance unsupported

aFor evidence scores 1, 2 and 3, the drug–phenotype association should be consistent across different studies. If not, a score of 3–6 is assigned, as
appropriate
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related clinical outcomes. These genes were assigned evi-
dence code 1 and thus found to be clinically relevant (ESM
Table 3). These genes included encoding proteins that affect
metformin transport (SLC22A1, SLC22A2, SLC47A1). While
SLC22A1 and SLC22A2 encode OCT1 and OCT2, respective-
ly, SLC47A1 encodes multi drug and toxin extrusion
(MATE)1.

OCT1 transports metformin in the gut and facilitates its
hepatic uptake [26, 27]. OCT2 and MATE1, expressed in
the kidney, are widely reported to be involved in the renal
excretion of metformin [28, 29]. Multiple variants in these
genes are reported to affect functionality and therapeutic re-
sponse to metformin [10]. STK11, PRKAA2, ATM and SHBG
genes also showed consistent evidence of interactions with
metformin on clinical outcomes. ATM encodes for serine/thre-
onine protein kinase that belongs to the PI3/PI4-kinase family.
This gene is primarily involved in DNA damage response but
also involved in insulin signalling and beta cell dysfunction
[30].

The liver kinase beta 1 (LKB1)–AMPK pathway controls
hepatic glucose homeostasis and may play a role in the ther-
apeutic effects of insulin-sensitising glucose-lowering agents
[31]. While STK11 encodes LKB1, PRKAA2 encodes AMPK
alpha 2 subunit. LKB1 is the upstream kinase of AMPK, an
element involved in cellular metabolism and energy homeo-
stasis [32]. Zhou et al reported that AMPK could be a key
molecular effector of metformin. Activation of AMPK by
metformin was shown to be associated with a subsequent
reduction in the production of glucose in the liver [33].
SHBG encodes the sex hormone binding protein (SHBG),
and variation at this locus has been related to polycystic ovary
syndrome [34]. According to Ding et al, the level of circulat-
ing SHBG is inversely related to insulin resistance and may be
causally related to type 2 diabetes [35].

Genes related to PK and/or PD of metformin

Those genes that affected transport of the drug in the body or
influenced metformin action but did not appear to consistently
affect clinical outcomes were assigned a score of 2 (ESM
Table 4). Of these, SLC47A2, SLC22A3 and SLC29A4 encode
transporter proteins MATE2, OCT3 and plasma membrane
monoamine transporter (PMAT), respectively. These genes
were found to be predictive of the PK parameters of metfor-
min. MATE2 is a transporter protein expressed in the brush
border of the kidney [36]. Stocker et al reported an association
of this protein with renal clearance and subsequent glucose-
lowering effect of metformin [37]. OCT3, expressed in the
brush border of the intestine and the basolateral hepatocyte
membrane, could have a role in the gut absorption and hepatic
intake of metformin [38, 39]. Significant interindividual vari-
ation in hepaticOCT3mRNA levels and association of genet-
ic variants in OCT3 (mRNA) with reduced OCT3 mRNA

expression in the liver has previously been reported [40].
PMAT is mainly expressed in the luminal side of the intestine
and is involved in the intestinal absorption of metformin [40].
The remaining 12 genes were associated with the PD of the
drug.

Genes whose expression is influenced by metformin

Genes that encode proteins in which their cellular and molec-
ular function is consistently affected in the presence of met-
formin may have potential clinical relevance. Accordingly,
they were assigned a score of 3. ESM Table 5 shows a total
of 51 genes that have potential relevance in predicting clinical
outcome and/or PK or PD properties of the drug.

Gene-set enrichment analysis

We performed GSEA to test the enrichment of literature-
identified metformin-related gene sets in a hypothesis-free
GWAS from the GoDARTS. Overall, five sets of genes were
constructed (Table 2 and Fig. 2) and tested for enrichment. We
obtained the nominal enrichment p value for each gene (ESM
Table 6) and then gene set after running MAGENTA
(Table 3).

Four of the five gene sets showed no significant enrich-
ment; the one that contained genes whose expression was
affected by the presence of metformin showed significant en-
richment (p < 0.05) (Table 3). In this gene set, six out of 17
genes above the 75th percentile enrichment cut-off (the ex-
pected number of genes above the cut-off being 11) were
determined to have true associations with the glycaemic re-
sponse to metformin. SLC2A4 (p = 3.24 × 10−04), G6PC
(p = 4.77 × 10−04) andMAPK1 (p = 1.51 × 10−03) were among
the top-ranking genes in this gene set. These genes encode
GLUT4, glucose 6-phosphatase (G6PC) and mitogen-
activated protein kinase 1 enzymes, respectively.

Discussion

Patients vary greatly in their glycaemic response, optimal dos-
age and adverse drug reactions following metformin therapy
[41]. Genetics accounts for about 34% of this variability [12].
Hence, there is a case for more personalised therapy in dis-
eases such as type 2 diabetes. Understanding how genetic
variation impacts the effects of glucose-lowering drugs or
helps to refine the characterisation of type 2 diabetes might
improve treatment effectiveness and decrease adverse drug
reactions, morbidity, mortality and cost of treatment.

Although there are publications in relation to the PK, PD
and clinical outcomes of metformin, there is no database that
concisely summarises the mechanisms describing gene–drug
interactions. In most cases, specific evidence of interactions is
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buried deep within the literature, making it extremely difficult
to comprehend the overall weight of evidence for given inter-
actions. This problem is not specific to gene–metformin inter-
actions, but is one that is common to the gene–drug and gene–
environment interaction literature per se. In this paper, how-
ever, we focus on interactions between metformin and genes
that impact clinical outcomes, PK and/or PD of the drug using
a comprehensive text-mining strategy.

Our analyses identified seven genes ranked as ‘top priority’
to predict metformin-related clinical outcomes. These genes
constituted three solute carrier family genes (SLC22A1,
SLC22A2 and SLC47A1) that are related to the PK of

metformin, and four PD-related genes (ATM, STK11,
PRKAA2 and SHBG). Fifteen genes were found to affect the
PK/PD of metformin without being consistently related to
clinical outcomes. A third gene set in which expression or
activation is affected by the presence of metformin has also
been identified from the text-mining. A GSEA using GWAS
data from GoDARTS showed significant enrichment of the
third category for glycaemic response.

Genes that showed consistent changes in cellular and mo-
lecular functions in the presence of metformin may have po-
tential clinical relevance in the search for biomarkers that pre-
dict the therapeutic outcome of metformin. This includes

Table 2 Literature-identified gene sets used for MAGENTA analysis

Gene set Genes

A SLC22A1, SLC47A1, STK11, ATM, PRKAA2, SLC22A2, SHBG

B SLC47A2, SLC22A3, SLC29A4, DDIT3, FBP1, FOXO3, I2BR, INS, RPS6KB1, INSR, IRS2, KAT2A, KLF15, NR0B2, SIRT1

C MTOR, SERPINE1, AKT1, SLC2A2, PIK3, CFTR, ERBB2, G6PC, GLP1, HIF1A, IL6, PCK1, PCK2, RPS6KB1, TXNIP, COX2,
CYP3A4, IGFBP1, MAPK1, MAPK3, PPARGC1A, SREBF1, AGER, BGLAP, GAPDH, KLF15, MYC, SEPP1, ABCB1, ALPP,
CASP3, CCNE1, CYP19A1, DDIT4, IL1RN, IRS2, SLC2A4, MAPK8, MEF2A, NFKB, NR1I2, PKLR, PPARA, PPP2R4, RAB4A,
STAT3, TNFA, TP53, TSC1, TSC2, TIMP2

D (A + B) SLC22A1, SLC47A1, STK11, ATM, PRKAA2, SLC22A2, SHBG, SLC47A2, SLC22A3, SLC29A4, DDIT3, FBP1, FOXO3, I2BR,
INS, RPS6KB1, INSR, IRS2, KAT2A, KLF15, NR0B2, SIRT1

E (A + B + C) SLC22A1, SLC47A1, STK11, ATM, PRKAA2, SLC22A2, SHBG, SLC47A2, SLC22A3, SLC29A4, DDIT3, FBP1, FOXO3, I2BR,
INS, RPS6KB1, INSR, IRS2, KAT2A, KLF15, NR0B2, SIRT1, MTOR, SERPINE1, AKT1, SLC2A2, PIK3, CFTR, ERBB2, G6PC,
GLP1, HIF1A, IL6, PCK1, PCK2, RPS6KB1, TXNIP, COX2, CYP3A4, IGFBP1, MAPK1, MAPK3, PPARGC1A, SREBF1,
AGER, BGLAP, GAPDH, KLF15, MYC, SEPP1, ABCB1, ALPP, CASP3, CCNE1, CYP19A1, DDIT4, IL1RN, IRTK, SLC2A4,
MAPK8, MEF2A, NFKB, NR1I2, PKLR, PPARA, PPP2R4, RAB4A, STAT3, TNFA, TP53, TSC1, TSC2, TIMP2

A, genes directly related to clinical outcomes of metformin; B, genes associated with either the PK or PD of metformin; C, genes whose expression is
affected by metformin; D, genes related to the clinical outcome, PK or PD; E, genes related to clinical outcome and/or PK/PD/expression

SLC22A1

SLC47A1

STK11

ATM

PRKAA2

SLC22A2

SHBG

SLC47A2

SLC22A3

SLC29A4

DDIT3

FBP1

FOXO3

I2BR

INS

RPS6KB1

INSR

IRS2

KAT2A

KLF15

NR0B2

SIRT1

MTOR

SERPINE1

AKT1

SLC2A2

PIK3

CFTR

ERBB2

G6PC

GLP1

HIF1A

IL6

PCK1

PCK2

RPS6KB1

TXNIP

COX2

CYP3A4

IGFBP1

MAPK1

MAPK3

PPARGC1A

SREBF1

AGER

BGLAP

GAPDH

KLF15

MYC

SEPP1

ABCB1

ALPP

CASP3

CCNE1

CYP19A1

DDIT4

IL1RN

IRS2

SLC2A4

MAPK8

MEF2A

NFKB

NR1I2

PKLR

PPARA

PPP2R4

RAB4A

STAT3

TNFA

TP53

TSC1

TSC2

TIMP2

MAGENTA

A B C

D
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analysis. A, genes directly related
to clinical outcomes of
metformin; B, genes associated
with either the PK or PD of
metformin; C, genes whose
expression is affected by
metformin; D, genes related to the
clinical outcome, PK or PD; E,
genes related to clinical outcome
and/or PK/PD/expression
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SLC2A4 and G6PC. SLC2A4 encodes GLUT4, which plays a
crucial role in regulating blood glucose homeostasis by facil-
itating insulin-stimulated glucose transport into skeletal mus-
cles [42]. Metformin is shown to modulate translocation of
GLUT4 in skeletal muscle and adipocytes [43]. G6PC gene
encodes G6PC, a rate-limiting enzyme in hepatic glucose pro-
duction. It is involved in glucose production via the gluconeo-
genesis and glycogenolysis pathways. Cellular studies have
shown metformin to suppress glucose phosphatase enzyme
expression independent of AMPK [44]. While the top genes
according to the GSEA were SLC2A4 and G6PC, there is a
possibility that the true signal could be from neighbouring
genes. ESM Fig. 4 shows regional association plots around
SLC2A4 and G6PC.

The stringent significance threshold for a GWAS could
overlook moderate-association signals that may have detri-
mental collective effects in certain pathways. Therefore, inte-
grating GSEA guided by carefully curated evidence from the
literature, as we did here, is likely to identify signals that are
overlooked in a GWAS. In this study, we tested enrichment of
text-mining-based prioritised gene sets on a GWAS of metfor-
min response. Gene sets that were given high priority (those
related to clinical outcome, PK or PD) showed no significant
enrichment for multiple modest associations. This is probably
due to the fact that our scoring system is subject to the publi-
cation bias that is well known to affect candidate gene associ-
ation studies. For example, there are many small studies
reporting the association between variants in metformin trans-
porter genes and glycaemic response, resulting in a higher
priority of PK genes in our gene set ranking. However, a
meta-analysis of most published studies, in up to 8000
metformin-treated individuals with type 2 diabetes from the
MetGen consortium, showed the putative pharmacogenetics
variants in five transporter genes had no significant impact on
the glycaemic response to metformin [45], which is in line
with our GSEA. The ranking system prioritises published ev-
idence dominated by PK studies. Yet PK variants do not seem
to alter metformin response [45]. Therefore, this is largely due
to candidate gene-based approaches. The molecular and

cellular-based approaches looked at mostly PD studies and
hence cast the net wider, so being less focused on the
transporters.

The enrichment of association signals within the low-
priority gene set highlights the need to follow up association
signals for loci with multiple modest effects for glycaemic
response that have been previously overlooked, such as
SLC2A4 and G6PC, which rank high in the GWAS, with p-
values of 3.24 × 10−04 and 4.77 × 10−04, respectively.
Although the pipeline described here has generated novel

evidence of gene–metformin interactions, it by no means ren-
ders a complete overview of all relevant literature. For exam-
ple, only 60% of the index articles were accessible as full text,
and conversion of the native PDF file into text format might
have caused relevant data to be lost, as some articles used
formats that are incompatible with the file templates used in
our pipeline. Furthermore, data contained in tables and figures
in the index papers were extracted in a semi-structured format,
making data retrieved from tables and figures challenging to
analyse and interpret. Thus, for papers in which important
results were included in tables and figures, but not articulated
in the title, abstract or main text of the article, evidence of
interactions may have been overlooked.

Some genes are reported in papers in a non-standard form
that may not be captured by the dictionary-based named entity
recognition used in this study, and in some articles, non-
standard abbreviations for metformin, instead of its original
generic or brand name (e.g. the term ‘MET’), are occasionally
used. Such abbreviations are not found in any standard drug
abbreviation protocol. Sentences with such abbreviations are
likely to be incompletely characterised using the text retrieval
strategy adopted here. Other barriers to data assimilation in-
clude the extent to which anaphora (‘use of grammatical sub-
stitute [as pronoun or a pro-verb] to refer to the denotation of a
preceding word or group of words’ [46]) and epiphora (‘the
repetition of a word or words at the end of two or more suc-
cessive verses, clauses, or sentences’ [46]) were resolved,
which may also have resulted in loss of information; this
might have occurred, for example, when a gene and a drug

Table 3 Gene-set enrichment analysis of glycaemic response associations in literature-identified gene sets

Gene set Nominal
MAGENTA
enrichment
p value (75%)

Number of OBS
genes/loci above
enrichment cut-off

Number of EXP
genes/loci above
enrichment cut-off

Excess number of
genes/loci above
enrichment cut-off
(OBS – EXP)

Enrichment
fold (OBS/EXP)

Total
number
of genes

Clinically relevant genes 0.561 2 2 0 1 7

PK_PD genes 0.975 1 3 13

Gene expression 0.03 17 11 6 1.55 43

Clinically relevant + PK _PD genes 0.925 3 5 20

Clinically relevant + PK_PD + Gene
expression

0.133 20 16 4 1.25 63

EXP, expected; OBS, observed
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were found in separate sentences (i.e. not described in the
same sentence).

Larger studies with regular iterations that use extensive
literature coverage, SNP-level annotation and more intensive-
ly automatedmachine learning approaches are likely to extend
the observations reported here. GSEA using a larger GWAS
dataset for metformin response is likely to increase the power
and produce convincing results. Replication using other
GWAS datasets including SNP–SNP interaction analyses is
also likely to extend the number of validated interactions, as
some of those prioritised using our algorithm may have eth-
nically specific effects that are undetectable in the ethnically
homogeneous GoDARTS cohort.

Conclusions

We have developed a semi-automated text-mining and
evidence-scoring algorithm that could help to organise and ex-
tract useful information from the literature on gene–drug and
gene–environment interactions. According to our analysis,
genes that encode transporter proteins such as OCTs and
MATEs yield the strongest evidence of modifying the thera-
peutic outcomes of metformin. In addition, genes in the LKB1–
AMPK pathway are also found to be related to the therapeutic
outcomes of the glucose-lowering drug. However, we did not
detect enrichment for the highly prioritised gene sets using
GWAS data from the GoDARTS cohort; instead it was the gene
set that were ranked with lower evidence scores that showed
statistically significant enrichment in the GoDARTS.

Given that the genomic architecture of drug response is
complex and the mechanism of metformin action is still not
clearly known, candidate gene studies investigating drug re-
sponse to metformin have had limited success. In an alterna-
tive approach, here we have identified novel genes potentially
associated with metformin action. Using a text-mining ap-
proach of the published literature, we have identified a gene
set derived from cellular and functional studies associated
with metformin response. The association of genetic variation
in these genes, including SLC2A4 and G6PC, needs further
replication and follow-up.
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