

University of Dundee

DOCTOR OF PHILOSOPHY

Deterministic SpaceWire Networks

Gibson, David James

Award date:
2017

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. Jan. 2021

https://discovery.dundee.ac.uk/en/studentTheses/86f0873d-7eea-4377-960b-249c9171574e

Deterministic SpaceWire

Networks

David James Gibson

Doctor of Philosophy

University of Dundee

October 2017

ii

Table of Contents

 List of Figures ... xiii

 List of Tables.. xix

 List of Acronyms ... xxi

 Glossary .. xxv

 Acknowledgements ... xxvii

 Declaration of the Candidate ... xxviii

 Declaration of the Supervisor... xxix

 Abstract ... xxx

 Introduction ... 1

1.1 Research Questions .. 2

1.2 Outcomes ... 2

1.3 Thesis Structure .. 4

 Background ... 5

2.1 Spacecraft Subsystems ... 5

2.1.1 Attitude and Orbit Control ... 5

2.1.2 Communications .. 6

2.1.3 On-Board Computers ... 7

2.1.4 Scientific Instruments... 7

2.2 SpaceWire .. 8

iii

2.2.1 Development History ... 9

2.2.2 Protocol Stack .. 9

2.2.2.1 Physical Level ... 10

2.2.2.2 Signal Level .. 10

2.2.2.3 Character Level ... 11

2.2.2.4 Exchange Level... 12

2.2.2.5 Packet Level .. 15

2.2.2.6 Network Level .. 15

2.3 SpaceWire-D .. 17

2.3.1 Motivation .. 17

2.3.2 Operation .. 18

2.3.2.1 Time-Slots ... 18

2.3.2.2 Virtual Buses... 19

2.3.2.3 Schedules .. 28

2.4 Missions ... 29

2.4.1 Magnetospheric Multiscale Mission .. 29

2.4.2 ASTRO-H .. 32

2.4.3 JUpiter ICy moons Explorer .. 34

2.5 Other Communication Networks ... 36

2.5.1 MIL-STD-1553 .. 36

2.5.1.1 Node Types ... 36

iv

2.5.1.2 Transfer Types .. 37

2.5.1.3 ECSS Standardisation ... 39

2.5.2 Controller Area Network.. 42

2.5.2.1 Message Identifiers ... 42

2.5.2.2 Arbitration ... 42

2.5.2.3 Transfer Types .. 44

2.5.3 Other Networks .. 46

2.5.4 Comparison .. 47

2.5.4.1 Time-Division Multiplexing ... 47

2.5.4.2 Exclusive or Non-Conflicting Access to Network 48

2.5.4.3 Data Rates and Protocol Overhead ... 49

2.5.4.4 Acknowledgements ... 51

2.5.4.5 Multiple Initiators ... 51

2.5.4.6 Fault Detection, Isolation and Recovery....................................... 52

2.5.4.7 Comparison Summary .. 53

2.6 On-Board Data Systems ... 55

2.7 Summary .. 57

 Research Questions ... 60

3.1 Research Questions .. 60

3.1.1 Designing a SpaceWire-D Software Layer .. 61

3.1.2 Designing a SpaceWire-D Demonstrator ... 61

v

3.1.3 Scheduling SpaceWire-D Networks .. 62

3.1.4 Summary .. 63

 SpaceWire-D Software Layer ... 64

4.1 Overview .. 65

4.2 RTEMS Board Support Package .. 66

4.2.1 RTEMS in Space .. 67

4.2.2 Porting Process ... 68

4.2.2.1 Existing LEON Support .. 68

4.2.2.2 Cross-Compiling Toolchain .. 69

4.2.2.3 Loading and Debugging.. 69

4.2.3 Creating the BSP .. 70

4.2.3.1 Configuration Files ... 70

4.2.3.2 Linker Command Script.. 71

4.2.3.3 Board Initialisation ... 73

4.2.3.4 Interrupt Vectoring ... 74

4.2.3.5 Example: Ticker .. 77

4.3 SpaceWire-D Layer .. 79

4.3.1 Architecture .. 80

4.3.1.1 Application.. 80

4.3.1.2 API .. 81

4.3.1.3 Script Interpreter ... 81

vi

4.3.1.4 Script ... 81

4.3.1.5 Command Handler .. 81

4.3.1.6 RMAP Driver .. 82

4.3.1.7 Dispatcher ... 82

4.3.1.8 Error Handler .. 82

4.3.1.9 Notification Handler ... 82

4.3.1.10 Schedule .. 82

4.3.1.11 Control .. 82

4.3.1.12 Memory Map .. 82

4.3.1.13 Static Bus .. 83

4.3.1.14 Dynamic Bus... 83

4.3.1.15 Asynchronous Bus .. 83

4.3.1.16 Packet Bus... 83

4.3.1.17 Asynchronous Queue .. 84

4.3.1.18 Packet Queue .. 84

4.3.1.19 Packet Operation ... 84

4.3.1.20 Transaction.. 84

4.3.1.21 Transaction Group .. 85

4.3.2 Virtual Buses .. 85

4.3.3 Management ... 86

4.3.4 Executing Time-Slots ... 87

vii

4.3.4.1 Initiator Processing Time .. 88

4.3.4.2 Optimisation.. 89

4.3.5 Local-Timer Synchronisation... 92

4.3.6 Error Detection and Reporting ... 93

4.3.7 Notifications ... 94

4.3.8 Testing and Verification ... 94

4.3.8.1 Unit Testing .. 94

4.3.8.2 Protocol Verification... 95

4.4 Summary .. 95

 SpaceWire-D Demonstrator .. 97

5.1 Overview .. 97

5.2 Initiators ... 102

5.2.1 Automated Test Scripting .. 103

5.2.1.1 Scripting Language ... 103

5.2.1.2 Examples ... 105

5.3 Targets .. 119

5.3.1 Command Authorisation .. 119

5.3.2 Notifications ... 120

5.4 Routers ... 121

5.5 Network Manager... 121

5.6 Host PC .. 122

viii

5.6.1 Initiator Configuration ... 122

5.6.2 Target Configuration .. 124

5.6.3 Network Manager... 125

5.6.4 Target Monitor ... 126

5.7 Summary .. 131

 Verification of the SpaceWire-D Demonstrator ... 133

6.1 Running Example Script 1 ... 134

6.2 Running Example Script 2 ... 138

6.3 Running Example Script 3 ... 140

6.4 Testing and Validation ... 152

6.4.1 Test 1 - Single Static Bus ... 152

6.4.2 Test 2 – Multiple Static Buses ... 153

6.4.3 Test 3 - Multiple Different Buses .. 153

6.4.4 Test 4 – Slow Link ... 153

6.4.5 Test 5 – Concurrent Slots ... 153

6.4.6 Test 6 – Common Link .. 154

6.4.7 Test 7 – Multi-Slots .. 154

6.4.8 Test 8 – Changing Schedules ... 154

6.4.9 Test 9 – Start and Stop Schedules .. 154

6.4.10 Test 10 – Reset Initiator ... 154

6.4.11 Test 11 – Error Injection .. 155

ix

6.5 Summary .. 155

 Scheduling SpaceWire-D Networks ... 156

7.1 Problem Specification .. 156

7.1.1 Bandwidth Requirements ... 157

7.1.1.1 Periodic Traffic ... 157

7.1.1.2 Aperiodic Traffic .. 157

7.1.1.3 Payload Data Traffic ... 158

7.1.2 Network Topology ... 159

7.1.3 Network Parameters ... 159

7.1.4 RMAP Execution Time .. 161

7.1.5 Solution Format .. 163

7.2 Solving the Problem ... 163

7.2.1 Selecting Paths ... 165

7.2.1.1 Breadth-First Search ... 165

7.2.1.2 Weighted Search ... 167

7.2.2 Scheduling Transactions .. 170

7.2.2.1 Conflict Graph .. 171

7.2.2.2 Periodic Traffic ... 171

7.2.2.3 Aperiodic Traffic .. 176

7.2.2.4 Payload Data Traffic ... 179

7.2.3 Complete Algorithm .. 187

x

7.3 Summary .. 189

 Evaluating the Scheduling Strategy .. 190

8.1 Test Cases .. 190

8.1.1 Generating Network Topologies .. 190

8.1.2 Generating Bandwidth Requirements .. 193

8.1.3 Test Case Generation Algorithm .. 194

8.1.4 File Format ... 197

8.2 Experimental Setup .. 199

8.3 Results .. 200

8.3.1 Experiment 1: BFS Path Selection ... 200

8.3.1.1 Results ... 201

8.3.1.2 Analysis .. 202

8.3.1.3 Detailed Result Description .. 204

8.3.2 Experiment 2: Weighted Search Path Selection................................. 208

8.3.2.1 Results ... 209

8.3.2.2 Analysis .. 210

8.4 Case Study: JUpiter ICy moons Explorer (JUICE).................................. 215

8.4.1 Network Topology ... 215

8.4.2 Time-Slot Duration .. 216

8.4.3 Bandwidth Requirements ... 217

8.4.3.1 Periodic ... 217

xi

8.4.3.2 Aperiodic .. 218

8.4.3.3 Payload Data ... 219

8.4.4 Scheduling .. 220

8.4.4.1 Path Selection ... 220

8.4.4.2 Initial Results .. 221

8.4.4.3 Load Balancing Dynamic Penalties .. 222

8.5 Load Balancing Dynamic Penalties ... 225

8.6 Summary .. 226

 Future Work .. 227

9.1 SpaceWire-D Efficiency Improvements .. 227

9.2 SpaceWire-D Hardware Controller .. 228

9.3 SpaceWire-D FDIR .. 229

9.4 SpaceWire-D On-Board Scheduler .. 229

9.5 SpaceFibre Scheduling ... 230

9.6 Summary .. 230

 Conclusions ... 231

10.1 Research Summary... 231

10.1.1 Designing a SpaceWire-D Software Layer .. 231

10.1.2 Designing a SpaceWire-D Demonstrator ... 232

10.1.3 Scheduling SpaceWire-D Networks .. 233

10.2 Contributions .. 236

xii

10.3 Outcomes ... 237

 Bibliography .. 238

 Appendix 1 .. 250

LEON2-FT Processor Board .. 250

RMAP Engines .. 251

SpaceWire DMA Channels .. 253

Embedded SpaceWire Router .. 254

Packet Demultiplexer ... 254

LEON2-FT in Space .. 255

 Appendix 2 .. 258

Multiple Initiators and Static Buses Results .. 258

xiii

List of Figures

Figure 2-1: SpaceWire Protocol Stack (ECSS 2008 A) ... 10

Figure 2-2: Data-Strobe Encoding ... 11

Figure 2-3: Link Interface State Machine (ECSS 2008 A) .. 13

Figure 2-4: Physical Addressing .. 16

Figure 2-5: Logical Addressing ... 17

Figure 2-6: Time-Slots ... 19

Figure 2-7: Overall Network Topology ... 20

Figure 2-8: Example Virtual Buses .. 20

Figure 2-9: Static Bus Operation ... 22

Figure 2-10: Dynamic Bus Operation .. 23

Figure 2-11: Asynchronous Bus Operation.. 25

Figure 2-12: Packet Bus Operation .. 27

Figure 2-13: MMS Network (Raphael, et al. 2014) ... 30

Figure 2-14: ASTRO-H Network (Ozaki, et al. 2010)... 33

Figure 2-15: JUICE Network (Airbus Defence & Space 2015) 35

Figure 2-16: Example MIL-STD-1553B Bus Architecture 37

Figure 2-17: BC to RT Transfer (US Department of Defense 1978) 38

Figure 2-18: RT to BC Transfer (US Department of Defense 1978) 38

Figure 2-19: RT to RT Transfer (US Department of Defense 1978) 39

Figure 2-20: On-Board Data Systems (European Space Agency 2014 A) 56

Figure 4-1: Initiator Layers .. 65

Figure 4-2: Loading an RTEMS Program to the LEON2-FT 70

xiv

Figure 4-3: RTEMS Program Memory Layout .. 72

Figure 4-4: SpaceWire Protocol Engine Interrupt Vectoring 76

Figure 4-5: Using STAR-Gate to Connect to the LEON2-FT Processor Board 78

Figure 4-6: Ticker Program UART Output .. 79

Figure 4-7: SpaceWire-D Layer Software Architecture .. 80

Figure 5-1: SpaceWire-D Demonstrator PXI Rack ... 98

Figure 5-2: SpaceWire-D Demonstrator Network Topology..................................... 99

Figure 5-3: SpaceWire-D Demonstrator Interactions .. 102

Figure 5-4: Example Script 1 – Simple Static Bus Schedule 105

Figure 5-5: Transaction Command .. 106

Figure 5-6: Transaction Group Command ... 107

Figure 5-7: Slot Command ... 107

Figure 5-8: Open Static Bus Command ... 108

Figure 5-9: Controlling Command Execution.. 109

Figure 5-10: Load Static Bus Command .. 111

Figure 5-11: Example Script 2 – More Complex Static Bus Schedule 112

Figure 5-12: Example Script 3 – Multiple Difference Types of Buses.................... 116

Figure 5-13: Packet Bus Operation Command .. 116

Figure 5-14: Target Internal Authorisation Parameters ... 120

Figure 5-15: Initiator Configuration Program .. 123

Figure 5-16: Target Configuration Program .. 124

Figure 5-17: Network Manager Program ... 125

Figure 5-18: Target Monitor Program.. 127

Figure 5-19: Target Monitor Schedule View ... 128

Figure 5-20: Updated Target Monitor Schedule View .. 129

xv

Figure 5-21: Target Monitor Target Statistics View .. 130

Figure 5-22: Target Monitor Command List View .. 131

Figure 6-1: Example Script 1 – Target Monitor Schedule View 134

Figure 6-2: Example Script 1 – Time-Slot 0 .. 135

Figure 6-3: Example Script 1 – Static Bus 0, Transaction 0 135

Figure 6-4: Example Script 1 – Static Bus 0, Transaction 1 136

Figure 6-5: Example Script 1 – Static Bus 0, Transaction 2 136

Figure 6-6: Example Script 1 – Network Manager Statistics View 137

Figure 6-7: Example Script 2 – Target Monitor Schedule View 138

Figure 6-8: Example Script 2 – Target Monitor Command List View 139

Figure 6-9: Example Script 3 – Target Monitor Schedule View 141

Figure 6-10: Example Script 3 – Time-Slot 16 .. 142

Figure 6-11: Example Script 3 – Asynchronous Bus 16, Transaction 0 142

Figure 6-12: Example Script 3 – Asynchronous Bus 16, Transaction 1 143

Figure 6-13: Example Script 3 – Asynchronous Bus 16, Transaction 2 143

Figure 6-14: Example Script 3 – Asynchronous Bus 16, Transaction 3 144

Figure 6-15: Example Script 3 – Asynchronous Bus 16, Transaction 4 144

Figure 6-16: Example Script 3 – Asynchronous Bus 16, Transaction 5 145

Figure 6-17: Example Script 3 – Time-Slot 32 .. 145

Figure 6-18: Example Script 3 – Packet Bus 32, Packet Channel Status Read 0 146

Figure 6-19: Example Script 3 – Packet Bus 32, Packet Channel Status Read 1 146

Figure 6-20: Example Script 3 – Packet Bus 32, Packet Channel Status Read 2 147

Figure 6-21: Example Script 3 – Packet Bus 32, Packet Channel Status Read 3 147

Figure 6-22: Example Script 3 – Packet Bus 32, Packet Channel Status Read 4 148

Figure 6-23: Example Script 3 – Packet Bus 32, Packet Channel Status Read 5 149

xvi

Figure 6-24: Example Script 3 – Time-Slot 34 .. 149

Figure 6-25: Example Script 3 – Packet Segment Transfer 150

Figure 6-26: Example Script 3 – Time-Slot 36 .. 151

Figure 6-27: Example Script 3 – EOP Transaction .. 151

Figure 7-1: Problem Solving Overview ... 164

Figure 7-2: Network Topology with Potential Collisions .. 165

Figure 7-3: Shortest Path Selection with Collisions .. 166

Figure 7-4: Path Selection with No Collisions ... 166

Figure 7-5: Weighted Search Initial Costs ... 167

Figure 7-6: Weighted Search Costs after First Path Selected 169

Figure 7-7: Weighted Search Costs after All Paths Selected 170

Figure 7-8: Example Conflict Graph.. 171

Figure 7-9: Periodic Bandwidth Scheduling Algorithm .. 173

Figure 7-10: Periodic Bandwidth Scheduling Algorithm Block Diagram 174

Figure 7-11: Example Periodic Bandwidth Requirements Conflict Graph 175

Figure 7-12: Aperiodic Bandwidth Requirement Scheduling Algorithm 177

Figure 7-13: Aperiodic Bandwidth Scheduling Algorithm Block Diagram 178

Figure 7-14: Example Payload Data Conflict Graph ... 180

Figure 7-15: Example Payload Data Allocation .. 181

Figure 7-16: First-Fit Heuristic Block Diagram .. 183

Figure 7-17: First-Fit Heuristic Allocation .. 184

Figure 7-18: Best-Fit Heuristic Allocation .. 185

Figure 7-19: Best-Fit Heuristic Block Diagram ... 185

Figure 7-20: Least-Conflicting Heuristic Block Diagram 187

Figure 7-21: Complete SpaceWire-D Scheduling Algorithm 188

xvii

Figure 8-1: Generating Network Topology Stages .. 192

Figure 8-2: Network Topology Generation Algorithm Block Diagram 194

Figure 8-3: Requirement Generation Algorithm Block Diagram 195

Figure 8-4: Test Case Generation Software Flow .. 196

Figure 8-5: Test Case File Format ... 197

Figure 8-6: Example Test Case File ... 198

Figure 8-7: Example Test Case Architecture ... 199

Figure 8-8: Network Topology for Test Case (small_001) 204

Figure 8-9: Number of Conflicts Ratios .. 210

Figure 8-10: Payload Slots Used Ratios .. 212

Figure 8-11: Experimenting with Dynamic Penalty Values 214

Figure 8-12: Load Balancing Dynamic Penalties .. 225

Figure 12-1: LEON2-FT Processor Board Architecture (Parkes, McClements and

Mantelet, et al. 2013) ... 251

Figure 12-2: RMAP Initiator Descriptor Array ... 252

Figure 13-1: Example Script 2 – Time-Slot 0 .. 258

Figure 13-2: Example Script 2 – Static Bus 0, Transaction 0 258

Figure 13-3: Example Script 2 – Static Bus 0, Transaction 1 259

Figure 13-4: Example Script 2 – Static Bus 0, Transaction 2 259

Figure 13-5: Example Script 2 – Time-Slot 16 .. 260

Figure 13-6: Example Script 2 – Static Bus 16, Transaction 0 260

Figure 13-7: Example Script 2 – Static Bus 16, Transaction 1 261

Figure 13-8: Example Script 2 – Static Bus 16, Transaction 2 261

Figure 13-9: Example Script 2 – Time-Slot 32 .. 262

Figure 13-10: Example Script 2 – Static Bus 32, Transaction 0 262

file:///C:/Users/davidgibson/Documents/PhD%20Thesis/Final%20Submission/david_gibson_phd_vFINAL_6.docx%23_Toc496439023
file:///C:/Users/davidgibson/Documents/PhD%20Thesis/Final%20Submission/david_gibson_phd_vFINAL_6.docx%23_Toc496439024

xviii

Figure 13-11: Example Script 2 – Static Bus 32, Transaction 1 263

Figure 13-12: Example Script 2 – Static Bus 32, Transaction 2 263

Figure 13-13: Example Script 2 – Multi-Slot Time-Code 264

Figure 13-14: Example Script 2 – Time-Slot 48 .. 264

Figure 13-15: Example Script 2 – Static Bus 48, Transaction 0 264

Figure 13-16: Example Script 2 – Static Bus 48, Transaction 1 265

Figure 13-17: Example Script 2 – Static Bus 48, Transaction 2 265

xix

List of Tables

Table 2-1: Character Sequences ... 12

Table 2-2: Routing Tables .. 17

Table 2-3: Initiator Schedules .. 28

Table 2-4: CAN Bus Identifier Arbitration .. 43

Table 2-5: Communication Network Comparison ... 54

Table 5-1: SpaceWire-D Demonstrator Address Scheme .. 101

Table 5-2: Example Command Execution Parameters .. 109

Table 7-1: Initiator Parameters .. 160

Table 7-2: Target Parameters ... 160

Table 7-3: System Parameters .. 161

Table 7-4: RMAP Command and Reply Packet Sizes ... 161

Table 7-5: Paths Selected with the BFS Algorithm ... 168

Table 7-6: Paths Selected with Dijkstra’s Algorithm .. 168

Table 7-7: Example Periodic Bandwidth Requirements .. 175

Table 7-8: Example Periodic Bandwidth Requirements Static Buses 175

Table 7-9: Example Payload Data Bandwidth Requirements 180

Table 8-1: Test Case Classes.. 200

Table 8-2: Experiment 1: BFS Path Selection Results... 201

Table 8-3: Paths for Test Case (small_000) ... 205

Table 8-4: Schedule for Test Case (small_000) ... 206

Table 8-5: Experiment 2: Weighted Search Path Selection Results 209

Table 8-6: JUICE Periodic Bandwidth Requirements ... 218

xx

Table 8-7: JUICE Transformed Aperiodic Bandwidth Requirements 219

Table 8-8: JUICE Peak Throughput Payload Data Bandwidth Requirements 220

Table 8-9: Initial Result for JUICE Schedule .. 221

Table 8-10: MAJIS to SSMM Conflicting Paths ... 223

Table 8-11: JUICE Schedule with Load Balancing Dynamic Penalties 224

Table 12-1: Example RMAP Reply Demultiplexer Configuration 254

Table 12-2: Example RMAP Command Demultiplexer Configuration 255

xxi

List of Acronyms

ACS Attitude Control Subsystem

AHB Advanced High-Performance Bus

AOCP Attitude and Orbital Control Processor

AOCS Attitude and Orbital Control Subsystem

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BC Bus Controller (MIL-STD-1553B)

BF Best-Fit

BFS Breadth-First Search

BM Bus Monitor (MIL-STD-1553B)

BPP Bin Packing Problem

BSP Board Support Package

CAN Controller Area Network

CCSDS Consultative Committee for Space Data Systems

CIDP Central Instrument Data Processor

CRC Cyclic Redundancy Check

C & C Command and Control

DCL Debug Communications Link

DMA Direct Memory Access

DR Data Recorder

xxii

DS Data-Strobe

DSU Debug Support Unit

EEP Error-End-of-Packet

ELF Executable and Linkable File

EOP End-of-Packet

ESA European Space Agency

ESC Escape Character

ESTEC European Space Research and Technology

Centre

FCT Flow-Control Token

FF First-Fit

FPGA Field-Programmable Gate Array

GDB GNU Debugger

GEO Geostationary Orbit

GPS Global Positioning System

GSFC Goddard Space Flight Center

HXI Hard X-Ray Imaging System

IEEE Institute of Electrical and Electronics Engineers

INI Initiator

IPT Initiator Processing Time

IRQ Interrupt Request

ISR Interrupt Service Routine

IXV Intermediate eXperimental Vehicle

JUICE JUpiter ICy moons Explorer

LC Least-Conflicting

xxiii

LEO Low Earth Orbit

LVDS Low-Voltage Differential Signalling

MAJIS Moons and Jupiter Imaging Spectrometer

MMS Magnetospheric Multiscale Mission

NASA National Aeronautics and Space Administration

NULL Null Character

OBC On-Board Computer

OBDH On-Board Data-Handling

OCS Orbit Control Subsystem

OD Object Dictionary

PDO Process Data Object

PROBA Project for On-Board Autonomy

QoS Quality of Service

RMAP Remote Memory Access Protocol

RT Remote Terminal (MIL-STD-1553B)

RTEMS Real-Time Executive for Multiprocessor Systems

RTOS Real-Time Operating System

RTR Router

SAR Synthetic Aperture Radar

SDO Service Data Object

SGD Soft Gamma-Ray Detector

SMU Satellite Management Unit

SOIS Spacecraft On-Board Interface Services

SSMM Solid-State Mass-Memory

SXI Soft X-Ray Imaging System

xxiv

SXS Soft X-Ray Spectrometer System

TAR Target

TBR Trap Base Register

TC Time-Code

TCIM Telemetry Command Interface Module

TID Transaction ID

TTC Telemetry, Tracking and Command

UART Universal Asynchronous Receiver/Transmitter

WCET Worst-Case Execution Time

xxv

Glossary

Blocked When a SpaceWire packet is held in one or more

buffers while it waits for a required SpaceWire

interface to be freed.

Cargo The section of a SpaceWire packet between the

destination address and the EOP that contains the

packet’s data.

Epoch A single iteration of 64 time-slots of a

SpaceWire-D initiator’s schedule.

L-char A SpaceWire link character.

Logical Address A byte with a value of 32-254 at the head of a

SpaceWire packet that indicates the entry within

the routing table that describes how the packet

should be routed.

N-char A SpaceWire normal character.

Physical Address A byte with a value of 0-31 at the head of a

SpaceWire packet that indicates the next physical

port that the packet should be transmitted out of.

SpaceWire Link A connection between two SpaceWire interfaces.

SpaceWire Node A source or destination of SpaceWire traffic.

xxvi

SpaceWire Network A collection of SpaceWire nodes and routers

connected by SpaceWire links.

SpaceWire Router A device used to switch packets between two or

more SpaceWire interfaces.

RMAP Initiator A device that transmits RMAP commands and

processes RMAP replies.

RMAP Target A device that processes RMAP commands and

transmits RMAP replies.

RMAP Transaction The process of an initiator transmitting an RMAP

command, a target receiving and executing the

command, the target transmitting an RMAP

reply, and the initiator receiving and handling the

reply.

xxvii

Acknowledgements

I would like to thank my principal supervisor, Prof. Steve Parkes, for allowing me the

opportunity to work on this project and for his support during the completion of this

research. I would also like to thank my second supervisor, Dr. Karen Petrie, for her

support and feedback throughout this project.

My colleagues at STAR-Dundee and the Space Technology Centre were extremely

helpful and supportive during the last four years and I would like to thank them for

their advice, feedback and for providing their technical expertise when working with

the many SpaceWire devices that were used on this project.

Finally, I’d like to thank my family and friends for their support and encouragement.

xxviii

Declaration of the Candidate

I hereby declare that I am the author of this thesis; that, unless otherwise stated, all

references cited have been consulted by me; that the work of which this thesis is a

record has been done by me, and that it has not been previously accepted for a higher

degree.

David James Gibson

October, 2017

xxix

Declaration of the Supervisor

I hereby declare that David James Gibson has satisfied all the terms and conditions of

the regulations made under Ordinances 12 and 39, and has completed the required nine

terms of research to qualify in submitting this thesis in application for the degree of

Doctor of Philosophy.

Steve M Parkes

October, 2017

xxx

Abstract

SpaceWire-D is an extension to the SpaceWire protocol that adds deterministic

capabilities over existing equipment. It does this by using time-division multiplexing,

controlled by the sequential broadcasting of time-codes by a network manager. A

virtual bus abstraction is then used to divide the network architecture into segments in

which all traffic is controlled by a single Remote Memory Access Protocol (RMAP)

transaction initiator. Virtual buses are then allocated a number of time-slots in which

they are allowed to operate, forming the SpaceWire-D schedule.

This research starts by contributing an efficient embedded SpaceWire-D software

layer, running on top of the RTEMS real-time operating system, for use in the initiators

of a SpaceWire-D network. Next, the SpaceWire-D software layer was used in two

LEON2-FT processor boards in combination with multiple other RMAP target boards,

routers, a network manager, and a host PC running a suite of applications to create a

SpaceWire-D Demonstrator. The SpaceWire-D software layer and SpaceWire-D

Demonstrator were used to verify and demonstrate the SpaceWire-D protocol during

the ESA SpaceWire-D project and resulted in multiple deliverables to ESA.

Finally, this research contributes a novel SpaceWire-D scheduling strategy using a

combination of path selection and transaction allocation algorithms. This strategy

allows for a SpaceWire-D network to be defined as a list of periodic, aperiodic and

payload data bandwidth requirements and outputs a list of paths and an allocation of

transactions to time-slots which satisfy the networking requirements of a mission.

1

Chapter 1

Introduction

SpaceWire is a communication network used on-board spacecraft to facilitate digital

communication between scientific instruments, mass-memory storage devices, on-

board computers, downlink telemetry and other subsystems (ECSS 2008 A). To allow

data to flow between multiple devices, SpaceWire networks use packet-switching

routers to direct traffic through the network. These routers use a mechanism called

wormhole routing which means that as soon as a packet enters an input port on the

router, it is immediately switched through the output port, assuming the port is not

already in use. This routing mechanism simplifies the memory requirements within

the routers as there is reduced packet buffering. However, it may cause a packet to be

delayed if the packet’s required output port is already in use. This problem is known

as blocking and it can introduce variable packet propagation times as well as network

congestion if multiple packets are strung out across the network, possibly causing

further blocking. This means that an unscheduled SpaceWire network is not suitable

for handling critical real-time traffic, which requires determinism. Therefore,

additional quality-of-service (QoS) mechanisms need to be in place before a

SpaceWire network can be used to handle both payload data-handling and command

and control traffic.

2

To provide deterministic features on top of a network consisting of existing SpaceWire

devices, a new protocol called SpaceWire-D (Parkes, Gibson and Ferrer 2015 B) can

be used. SpaceWire-D slices a SpaceWire network in two dimensions. Firstly, the

network topology is divided into segments called virtual buses, which are sections of

the network where all traffic is controlled by a single initiator. Secondly, network time

is divided into time-slots, controlled by the broadcasting of time-codes by a time-code

master and in which Remote Memory Access Protocol (RMAP) (ECSS 2010 B)

transactions are executed. Allocating time-slots to virtual buses can prevent blocking

as long as virtual buses that are allocated the same time-slot do not share any links.

SpaceWire-D networks must be designed so that they satisfy the bandwidth

requirements of a mission whilst adhering to the rules of the standard. There is a need

for computational methods to generate the schedules to meet these goals.

1.1 Research Questions

This project aims to answer the following question, divided into three parts:

How can the SpaceWire-D protocol be used to fulfil the bandwidth requirements

of a space mission?

1. How can an efficient SpaceWire-D software layer be designed on top of

existing SpaceWire devices?

2. How can a system using the SpaceWire-D protocol be prototyped in order to

demonstrate the standard?

3. How can a SpaceWire-D mission’s bandwidth requirements be represented

and satisfied computationally?

1.2 Outcomes

Work related to this project has appeared in the following publications:

3

• D. Gibson, S. Parkes, and K. Petrie. Modeling Deterministic Spacecraft

Networks with Constraint Programming. 19th International Conference on

Principles and Practices of Constraint Programming (Doctoral Program),

Uppsala, Sweden, 2013, (Gibson, Parkes and Petrie 2013)

• D. Gibson, S. Parkes, C. McClements, S. Mills, D. Paterson. SpaceWire-D on

the Castor Spaceflight Processor. 6th International SpaceWire Conference,

Athens, Greece, 2014, (Gibson, Parkes, et al. 2014)

• D. Paterson, D. Gibson, S. Parkes. An RTEMS Port for the AT6981

SpaceWire-Enabled Processor: Features and Performance. 6th International

SpaceWire Conference, Athens, Greece, 2014, (Paterson, Gibson and Parkes

2014)

• S. Parkes, D. Gibson, A. Ferrer. SpaceWire-D: Deterministic Data Delivery

over SpaceWire. DASIA International Space System Engineering Conference,

Warsaw, Poland, 2014, (Parkes, Gibson and Ferrer 2014)

• S. Parkes, D. Gibson, A. Ferrer. Experimental Results for SpaceWire-D.

DASIA International Space System Engineering Conference, Barcelona,

Spain, 2015, (Parkes, Gibson and Ferrer 2015 A)

• D. Gibson, S. Parkes, C. McClements, S. Mills. SpaceWire-D Prototype and

Demonstration System. 7th International SpaceWire Conference, Yokohama,

Japan, 2016, (Gibson, Parkes, et al. 2016)

In addition, the SpaceWire-D Demonstrator described in Chapter 5 was used to

complete the verification activity of the ESA SpaceWire-D project. It was then

delivered to ESA and installed at ESTEC in Noordwijk, The Netherlands.

4

Furthermore, the author has presented work related to this thesis at two SpaceWire

Working Group meetings at ESTEC and also gave an invited tutorial on SpaceWire-

D at the 7th International SpaceWire Conference in Yokohama, Japan, 2016.

1.3 Thesis Structure

Chapter 2 gives an overview of spacecraft systems, the SpaceWire standard and how

SpaceWire-D provides determinism over existing SpaceWire networks. A number of

missions using SpaceWire and SpaceWire-D are also described. The chapter

concludes with a comparison between SpaceWire-D and other existing deterministic

networks used for command and control traffic in space.

Chapter 3 presents the research questions in more detail and describes how the

following chapters answer them.

Chapter 4 describes the design of an efficient SpaceWire-D software layer.

Chapter 5 describes the design of the SpaceWire-D Demonstrator and Chapter 6

presents results gathered whilst performing a series of experiments using the

Demonstrator.

Chapter 7 describes computational methods for scheduling SpaceWire-D networks

and Chapter 8 presents results for randomised test cases and a case study of the JUICE

mission.

Finally, Chapter 9 describes some directions for future work and Chapter 10 provides

a conclusion to the thesis.

5

Chapter 2

Background

An on-board data-handling (OBDH) network allows the subsystems within a

spacecraft to communicate with each other. Scientific instruments generate data which

is sent through the network to be stored in one or more mass-memory devices before

being sent to a ground receiving station on Earth via the Telemetry, Tracking and

Command (TTC) system during a communication window. Telecommands sent from

the spacecraft’s operators on Earth are received via the TTC system and forwarded

through the network to an on-board computer for execution. Housekeeping telemetry

is either passed to or gathered by the on-board computer so that it can be transmitted

to a ground station to allow the spacecraft operators to monitor its status.

2.1 Spacecraft Subsystems

A spacecraft is composed of multiple subsystems which each have their own

responsibilities. For example, ensuring that the correct position and orientation are

maintained, facilitating communication with the spacecraft operators on Earth,

controlling other devices and generating and storing scientific data.

2.1.1 Attitude and Orbit Control

The attitude of a spacecraft is its rotational position around its centre of mass. A

spacecraft must be pointed in the correct direction so that it can fulfil its mission. For

example, a spacecraft that is capturing images of Earth from a low earth orbit (LEO)

6

must have its instruments directed at the required location on Earth and when a

communication window opens between the spacecraft and one of its ground stations,

the spacecraft’s downlink antenna must be directed to the station.

The attitude control subsystem (ACS) is responsible for controlling the orientation of

the spacecraft by making adjustments. Attitude is measured through the use of sensors

such as star trackers which use known star patterns as references in order to calculate

the rotational position of the spacecraft. The on-board computer can use these

measurements to calculate any adjustments that need to be made and if so, they are

passed as commands to actuators such as thrusters or reaction wheels for execution.

Similarly, the orbit control subsystem (OCS) allows the spacecraft to adjust its

velocity in order to maintain its current orbit or possibly transition into another orbit

if that is a requirement of the mission. Velocity changes are made using thrusters

commanded by the on-board computer.

2.1.2 Communications

The communication between a spacecraft and its operators on Earth is provided by the

TTC system. Housekeeping information and scientific data is sent from the spacecraft

to one or more ground stations on Earth. Telecommands are generated by the

spacecraft operators and sent from one or more ground stations to the spacecraft for

execution.

Due to the position of the spacecraft and the curvature and rotation of Earth,

communication may not be possible at all times. For example, if a spacecraft enters a

position behind a body such as a planet, it will not be able to communicate with a

ground station. As another example, if a spacecraft is in a low Earth orbit (LEO), its

view to a ground station may be obscured by the curvature of the Earth. Additionally,

7

in a LEO, the spacecraft may not pass over the same locations during its orbit due to

the rotation of the Earth. This further reduces the communication windows between

the spacecraft and its ground station.

The communication windows available between a spacecraft and its ground stations

affects the data storage requirements of a mission. If there are few communication

windows, the spacecraft will require more mass-memory storage space in order to

store data until it can be sent to a ground station.

2.1.3 On-Board Computers

An on-board computer (OBC) is responsible for executing embedded flight software

that controls a part or all of the spacecraft. It may have one or more processors, timers,

interrupt controllers, memory units and integrated peripherals such as network/bus

controllers or ADC/DAC interfaces.

Typically, the OBC will execute its flight software on top of a real-time operating

system such as VxWorks (Wind River 2016) or RTEMS (The RTEMS Project 2017)

due to the deterministic features and relatively small memory footprint in comparison

to general purpose operating systems.

2.1.4 Scientific Instruments

The main objective of a space mission is to deploy its scientific instruments so that

data can be gathered and sent back to Earth. There is a wide range of different scientific

instruments such as cameras, telescopes, telecommunications antennae,

spectrometers, magnetometers and many others. For example, a satellite in a

geostationary orbit (GEO) may include, in its payload, a large antenna to facilitate

communication links between continents or a satellite in a LEO may include a number

of cameras to perform earth observation.

8

In a science mission, each instrument generates scientific data packets which are

typically transferred across a communications network and stored within a mass-

memory device. When a communication window arrives, the spacecraft transmits its

stored data back to Earth for interpretation and analysis.

For Earth observation missions, instruments may be capturing images of the Earth and

therefore they may require very high data-rates compared to science missions which

require relatively low data-rates. Depending on the communication windows, as

described above, they may send their data back to Earth directly or store it in mass-

memory first.

In addition to the science or Earth observation data, an instrument may generate

housekeeping telemetry to inform the OBC of its status and receive telecommands to

perform various actions.

For all types of space missions that require two or more devices to be interconnected,

a technology such as SpaceWire may be used. SpaceWire packets are content-agnostic

and can be used to transfer any type of data between devices. For future Earth

observation missions with extremely high data-rate requirements, other networks may

be required as described in Section 2.5.3.

2.2 SpaceWire

SpaceWire is a communication network used on-board spacecraft to facilitate

communication between the mission payload’s scientific instruments, mass-memory

storage devices, on-board computers, downlink telemetry and other subsystems

(ECSS 2008 A). SpaceWire enabled devices are connected by full-duplex data links,

providing bi-directional data-flow at variable transmission rates of between 2 Mbit/s

and 200 Mbit/s. The simplest SpaceWire network consists of two nodes with a point-

9

to-point link between them. If more complex network topologies are required, packet

switching routers can be used to direct traffic between nodes.

2.2.1 Development History

In 1996, the IEEE-1355-1995 serial link standard (IEEE Computer Society 1996 A)

was published and subsequently considered for use in OBDH networks. However,

some problems were identified that would prevent it being used for space applications.

Some of the potential improvements that were identified were the use of low voltage

differential signalling (LVDS) (IEEE Computer Society 1996 B),

(Telecommunications Industry Association 2012), improved cables and connectors

and improved link initialisation and restart mechanisms (Guasch, Parkes and Christen

1999). Taking into consideration the IEEE-1355-1995 and LVDS standards as well as

the identified optimisations, work began at the University of Dundee on the first draft

of the SpaceWire standard (S. Parkes 1999). Revision A of the full standard was

published by the ECSS in 2003 (ECSS 2003), revision B was not released and revision

C was published in 2008 (ECSS 2008 A).

2.2.2 Protocol Stack

The SpaceWire standard defines several levels that form a protocol stack allowing

communication between the physical transmission medium and the software

application. As the protocol stack progresses upwards, beginning at the physical level,

each level provides further abstraction from the hardware and ends at the network level

which describes a system of SpaceWire devices. The protocol stack in a system with

two applications is shown in Figure 2-1.

10

Figure 2-1: SpaceWire Protocol Stack (ECSS 2008 A)

As shown in Figure 2-1, in this example there are two applications running on

SpaceWire enabled devices connected by a SpaceWire link or network at the physical

level. Each level talks to the levels immediately above and below it. The following

sections briefly describe each level.

2.2.2.1 Physical Level

The physical level describes the mechanical and electrical requirements of SpaceWire

cables, connectors and printed circuit boards. Each cable consists of four shielded

twisted pairs with an overall shield and can be up to 10 metres in length.

2.2.2.2 Signal Level

The signal level describes the encoding, voltage level and noise margin requirements

of the signals driven along the cables. SpaceWire performs signalling using LVDS

11

(IEEE Computer Society 1996 B) which provides low power consumption and high

immunity to noise.

SpaceWire signals are encoded using data-strobe (DS) which encodes the transmission

clock along with the data signal as a pair of signals, data and strobe, as illustrated in

Figure 2-2.

Figure 2-2: Data-Strobe Encoding

As shown in Figure 2-2, the data signal is unmodified and the strobe is a signal that

changes voltage levels whenever the data signal is at the same value for two

consecutive bits. The transmission clock can be recovered by XORing the data and

strobe signals.

2.2.2.3 Character Level

At the character level, bits are grouped into different combinations that describe two

classes of characters: data and control. A data character is a 10-bit sequence that

combines an 8-bit block of data with a data-control flag set to zero to indicate a data

character and an odd parity bit. A control character is a 4-bit sequence split into a 2-

bit control code, a data-control flag set to one to indicate a control character and an

odd parity bit. The different characters defined at this level are listed in Table 2-1.

12

Table 2-1: Character Sequences

 Bit

 P C 0 1 2 3 4 5 6 7 8 9 10 11

Data P 0 D0 D1 D2 D3 D4 D5 D6 D7 - - - -

FCT P 1 0 0 - - - - - - - - - -

EOP P 1 0 1 - - - - - - - - - -

EEP P 1 1 0 - - - - - - - - - -

ESC P 1 1 1 - - - - - - - - - -

NULL P 1 1 1 0 1 0 0 - - - - - -

TC P 1 1 1 1 0 T0 T1 T2 T3 T4 T5 T6 T7

As shown in Table 2-1, the character level defines seven different characters: one data

character, four normal control characters and two extended control characters. Each

data character contains eight bits of data listed as D0-D7. The flow-control token

(FCT) control character is used for flow control between two SpaceWire interfaces

and the end-of-packet (EOP) and error-end-of-packet (EEP) characters are used to

indicate the normal or erroneous termination of a packet. The two extended control

characters, the null (NULL) and time-code (TC), are formed by concatenating the

escape (ESC) control character with additional bits. The NULL character is sent

continuously while a link is not being used, in order to keep the link active and avoid

disconnections. The TC control character contains an 8-bit time-code where the first

six least-significant bits, listed as T0-T5, indicate a time value and the two most

significant bits, T6 and T7, contain control flags.

2.2.2.4 Exchange Level

The exchange level defines the mechanisms for controlling the state of a link during

initialisation, nominal activity and recovery as well as handling flow-control and

system time distribution. The control characters used for these mechanisms: the ESC,

13

NULL, FCT and TC characters are known as link-characters or L-chars and are not

passed up the stack to the packet level.

A SpaceWire link can be in one of a number of states as illustrated by the link interface

state machine from the SpaceWire standard (ECSS 2008 A), in Figure 2-3.

Figure 2-3: Link Interface State Machine (ECSS 2008 A)

As shown in Figure 2-3, when a link is reset, it enters the ErrorReset state and the

transmitter and receiver are reset. After the reset signal is de-asserted, the state

machine transitions to the ErrorWait state after a 6.4 µs delay. In the ErrorWait state,

the transmitter is reset again and the receiver is enabled. After a 12.8 µs delay, the

state transitions into the Ready state unless an error occurs or a character other than a

NULL is received in which case the state returns to ErrorReset. The link waits in the

Ready state until the link is enabled, either by the host or started automatically upon

receipt of a NULL character if the AutoStart flag has been set. As in the ErrorWait

state, if an error occurs or a character other than a NULL is received, the state

transitions back to ErrorReset. Once the link is enabled, the link transitions into the

14

Started state, enabling the transmitter which begins sending NULL characters. Once

a NULL has been received in the Started state or previously, in the ErrorWait or

Started states, the link moves into the Connecting state. If an error occurs or a character

other than a NULL is received or 12.8 µs passes without receiving a NULL, the link

returns to the ErrorReset state. In the Connecting state, the transmitter is enabled to

allow transmission of FCTs as well as NULLs. When an FCT is received the link

moves to the Run state. If an error occurs or any character other than a NULL or FCT

is received or 12.8 µs passes without receiving an FCT, the link transitions back to the

ErrorReset state. Once in the Run state, the transmitter is fully enabled to send Time-

Codes, FCTs, N-Chars and NULLs. If an error occurs, the state transitions back to

ErrorReset.

Flow-control is handled by the exchange of FCTs sent across a link to indicate that the

transmitter has enough space in the receive buffer to hold another eight N-chars. A

credit count is maintained by the link interface which is updated each time an FCT is

received or an N-char is transmitted. When there is no credit left, a link cannot transmit

anymore N-chars until it receives another FCT. An outstanding counter is maintained

by the link interface to indicate how many N-chars it is expecting to receive,

determined by how many FCTs the link has transmitted and how many N-chars have

been received. An FCT is transmitted whenever there is enough room to receive eight

more N-chars.

System time distribution is implemented through the use of the TC extended control

character. In a SpaceWire network, one device can be designated as the time-code

master and is responsible for initiating the broadcasting of sequential time-codes. Each

routing switch contains an internal time-code counter. When a link receives a time-

code that is one more than the counter’s current value, modulo 64, it increments the

15

counter. The time-code is then transmitted out of all other ports in the device, if they

are configured to transmit time-codes. If the time-code received has the same value as

the internal counter, it is ignored to prevent the circular distribution of time-codes.

Otherwise, if the time-code received is not the next expected value, the counter is

updated but the time-code is not transmitted out of the other links.

2.2.2.5 Packet Level

The packet level defines the composition of SpaceWire packets. A packet consists of

a list of zero of more physical address bytes and a cargo section carrying the packet’s

data. Each packet is terminated by a marker to indicate the end of the packet which is

an EOP in a packet terminating correctly and an EEP in a packet terminating

erroneously.

2.2.2.6 Network Level

The network level defines the mechanisms used to allow the construction of more

complex networks consisting of multiple nodes, links and routing switches.

A SpaceWire routing switch is a device with two or more links that allows a packet to

be switched between an input and output link on the routing switch using a mechanism

called wormhole routing. When a packet enters an input port on the routing switch,

the first byte is read to determine the required output port for the packet. If the output

port is free, the header byte is deleted from the packet and the remainder of the packet

is immediately sent out of the output port, marking the output port as busy. If the

output port is already busy, the packet must wait until the output port is free before

being forwarded. Once the packet is terminated by either an EOP or EEP, the output

port is freed, ready to be used by another packet if required. If the next device in the

16

path is a routing switch, the process repeats with the next header byte until the packet

reaches the destination node.

There are two types of addressing defined in the packet level. The first is physical

addressing which has already been described as a list of output ports which a packet

must be forwarded out of to travel from the source of the packet to the destination

node. At each step of the journey the leading physical address byte is stripped from

the packet. An example of a packet being routed between a source, three routers and

a destination node is shown in Figure 2-4. In this figure, the routers are named RTR0,

RTR1 and RTR2.

Figure 2-4: Physical Addressing

As shown in Figure 2-4, when the packet leaves the source and enters RTR0, the

destination address list is 1, 3 and 8. The first address byte is deleted and the packet is

forwarded out of output port 1. This process continues through the RTR1 and RTR2

until the packet finally reaches the destination node.

The second type of addressing is logical addressing where a single destination address,

which is not deleted at each step, is used to route a packet through the network. When

using logical addressing, each node has a unique identifier between 32 and 254 and

each routing switch has a table that defines one or more ports to forward a packet

addressed with a specific logical address to. This allows even a very large network to

use a single byte for the destination address section of each packet rather than a

potentially large list of physical addresses. If the example network from Figure 2-4 is

used with a destination logical address of 32, the routing table is listed in Table 2-2.

17

Table 2-2: Routing Tables

Router Logical Address Ports

RTR0 32 1

RTR1 32 3

RTR2 32 8

As listed in Table 2-2, when a packet enters RTR0 with a logical address of 32, it will

be forwarded out of port 1. In RTR1 and RTR2, the packet will be forwarded out of

ports 3 and 8, respectively. The packet being sent from the source to the destination

using logical addressing is shown in Figure 2-5.

Figure 2-5: Logical Addressing

As shown in Figure 2-5, the packet now has only a single logical address byte at the

start of the packet. When the packet enters a routing switch, it checks its routing table

entry for logical address 32 and forwards it to the correct output port.

2.3 SpaceWire-D

SpaceWire-D is a protocol which extends SpaceWire networks with deterministic

capabilities using a software layer on top of existing SpaceWire equipment (Parkes,

Gibson and Ferrer 2015 B).

2.3.1 Motivation

As described in Section 1, unscheduled SpaceWire networks can suffer from blocking

which can cause the network to be non-deterministic. If the network is being used for

real-time traffic, such as command and control, this may cause critical deadlines to be

18

violated. The aim of SpaceWire-D is to solve this problem by providing deterministic

features in order to ensure that blocking does not cause deadlines to be missed. It also

aims to allow deterministic and non-deterministic traffic to share the same network. If

these goals can be achieved, then complexity and cost may be reduced as the spacecraft

now only requires a single network.

2.3.2 Operation

SpaceWire-D operates by controlling which parts of the network are allowed to send

and receive traffic at specific times. Firstly, network time is divided into time-slots

which are controlled by the distribution of consecutive SpaceWire time-codes.

Secondly, the network is divided into segments called virtual buses where all traffic is

controlled by a single initiator. Finally, each initiator has a schedule which describes

which time-slots are allocated to the virtual buses. If a non-conflicting link rule is

adhered to when creating the schedules, the possibility of blocking can be removed.

This allows SpaceWire-D to satisfy the deterministic requirements of a

communication network used for command and control applications.

2.3.2.1 Time-Slots

A SpaceWire-D time-slot is a period of time that begins when an initiator receives a

time-code and ends when the initiator receives the next time-code. Time-codes contain

a 6-bit time-value so there are 64 time-slots. For example, if an initiator receives time-

code 𝑛, this signals the end of the previous time-slot, (𝑛 − 1) 𝑚𝑜𝑑 64, and the start

of time-slot 𝑛, as illustrated in Figure 2-6.

19

Figure 2-6: Time-Slots

In Figure 2-6, there is a timeline going left to right on the horizontal axis showing

when time-codes are received by an initiator. At the start of the illustration, time-slot

63 is currently active. When time-code 0 is received by the initiator, this terminates

time-slot 63 and signals the beginning of time-slot 0. The same process is repeated for

the other time-codes.

A single time-code master is used to synchronise the initiators by sending out time-

codes at fixed-length intervals, at a rate of 1-1024 Hz. This allows for between 1 and

16 schedule epochs per second, where an epoch is a single iteration of the schedule

from time-slot 0 to time-slot 63. Each initiator listens for time-codes being received

by, for example, installing an interrupt service routine (ISR) that is called whenever a

time-code interrupt is raised. Alternatively, a time-code status flag could be polled if

interrupts are discouraged. The initiator can then tell its SpaceWire-D layer that a new

time-slot should be executed, which will, in turn, initiate any scheduled transactions.

2.3.2.2 Virtual Buses

Virtual buses are segments of the overall network that have a specific structure. They

consist of a single RMAP initiator, one or more RMAP targets and the SpaceWire

links that make up the paths between the initiator and the targets. For example,

consider the network topology illustrated in Figure 2-7.

20

INI

INI

TAR TAR
TAR

TAR

TAR
TAR

RTR

RTR

RTR

Figure 2-7: Overall Network Topology

In Figure 2-7, there is a network containing two initiators, six targets, three routers and

some links to connect the different nodes and routers. Two possible virtual buses are

shown in Figure 2-8.

INI

INI

TAR TAR
TAR

TAR

TAR
TAR

RTR

RTR

RTR

Figure 2-8: Example Virtual Buses

As shown in Figure 2-8, there are two virtual buses, each consisting of one initiator,

three targets and the links between the nodes. In this example, the two virtual buses

21

have no shared links so they can be thought of as independent i.e. they can operate at

the same time without packets on one virtual bus interfering with packets on the other.

A virtual bus is assigned to an initiator’s schedule by allocating the virtual bus one or

more time-slots in which it can operate. Virtual buses can change from one time-slot

to the next and an initiator’s schedule can contain a combination of any virtual bus

types as long as their allocated time-slots don’t overlap.

Initiators have four different functions related to virtual buses: an initiator opens a bus,

defining its configuration and allocating it to the schedule; loads it, telling the bus what

it should do in the next allocated time-slot; executes it during an allocated time-slot;

and closes it when it’s no longer required. There are four different types of virtual bus,

each with their own implementations of the load and execute functions which provide

features related to different classes of traffic which exist on an OBDH/C&C network.

Static Bus

The static bus is the simplest type of virtual bus. It is a segment of the network that is

allowed to operate in a single time-slot in each schedule epoch. This means that

transactions on a static bus are executed at the same time in each schedule, making the

static bus the most deterministic type of virtual bus. The static bus is suited to

repeating, periodic traffic such as housekeeping telemetry being gathered by an OBC.

When a static bus is opened by an initiator, the user passes a time-slot, a list of allowed

targets and a slot size to the SpaceWire-D layer. The schedule is then checked to

determine if the request to open a new static bus is valid. If the newly requested bus

does not interfere with any existing virtual buses in the schedule, the slot is allocated.

22

A static bus is loaded with a group of one or more RMAP transactions. The transaction

group can be repeated in every occurrence of the allocated time-slot or executed once,

as a single-shot transaction group.

When the time-code master signals that the allocated time-slot should be executed, the

SpaceWire-D layer looks at the static bus to determine if there is a transaction group

to be executed and, if so, the initiator executes the transactions.

When a static bus is closed by the initiator, the user passes the identifier of the static

bus and the SpaceWire-D layer frees the slot allocated to the bus.

The operation of the static bus is illustrated in Figure 2-9.

Figure 2-9: Static Bus Operation

In Figure 2-9, there is a timeline showing three schedule epochs. At some point before

the first schedule epoch begins, the initiator opens a static bus in time-slot 0 and loads

it with a transaction group. As time-codes are generated by the time-code master, the

static bus is executed in each occurrence of time-slot 0 as shown by the green

rectangles. This illustrates that a static bus executes a transaction group at the same

time in each epoch of the schedule.

23

Dynamic Bus

The dynamic bus differs from the static bus in that it can be allocated multiple slots

and transaction groups can be executed in any of those allocated. This means that it is

less deterministic than the static bus because the time-slot in which a transaction group

is executed may differ between schedule epochs.

When a dynamic bus is loaded with a transaction group, the group is executed once in

the next allocated time-slot. The dynamic bus is suited to aperiodic traffic with

deadlines, such as commands that must reach an instrument within a certain length of

time after an event is detected by a sensor. If a dynamic bus has its slots allocated at

intervals less than the required deadline, then the deadline will be satisfied no matter

when the transaction group is loaded into the dynamic bus.

The operation of the dynamic bus is illustrated in Figure 2-10.

Figure 2-10: Dynamic Bus Operation

In Figure 2-10, an initiator has opened dynamic bus 0 and allocated it time-slots 0, 15

and 42. The filled rectangles show the slots in which transaction groups are executed

and the non-filled rectangles show the slots where no transaction groups have been

executed. The number of the time-slot is shown in parenthesis below the name of the

dynamic bus. At four points in the figure, the initiator loads the dynamic bus with a

24

transaction group which is executed in the next available time-slot in the schedule.

This illustrates that a dynamic bus can execute a transaction group at multiple different

times in the schedule.

Asynchronous Bus

The asynchronous bus differs from the static and dynamic buses in that it is loaded

with individual, prioritised transactions rather than transaction groups. The

transactions are held in a queue and, just before an allocated time-slot occurs, a subset

of the transactions are pulled from the head of the queue to form a transaction group

to be executed in the next slot. When pulling the highest priority transaction from the

queue, its execution time is added to a running total execution time. If the new total is

less than the duration of a slot, the transaction is added to the transaction group. If a

high priority transaction does not fit in the time-slot, it may be skipped in preference

of lower priority transactions if they are small enough to fit in the remainder of the

slot’s capacity.

The asynchronous bus is non-deterministic because of the problem of priority

starvation. This means that lower priority transactions cannot have their execution

guaranteed because they may be overlooked in preference of higher priority

transactions. It is suited to payload data traffic where, for example, an instrument is

generating data packets that are to be written to a solid-state mass memory (SSMM)

device for storage. As packets are generated, they can be added to the asynchronous

bus transaction queue and sent in a best-effort manner with no deterministic

guarantees.

The operation of the asynchronous bus is illustrated in Figure 2-11.

25

Figure 2-11: Asynchronous Bus Operation

In Figure 2-11, the initiator has opened an asynchronous bus and allocated it time-slot

2. Just before schedule epoch 0 begins, the initiator loads the asynchronous bus with

four individual transactions with priorities 3, 0, 2 and 1. At this point the priority queue

has reordered the transactions in the correct order, where the highest priority level is

0 and the lowest is 7. In time-slot 1 of schedule epoch 0, just before the allocated time-

slot, a transaction group is prepared by pulling transactions from the head of the

priority queue. In this example, three transactions are pulled, with priority levels 0, 1

and 2, to form the transaction group which is executed in the following time-slot. This

leaves the queue with a single remaining transaction with priority level 3. This process

is repeated in the next two schedule epochs.

Packet Bus

The targets in a packet bus take an active role in order to provide flow-control with

the initiator. This is different to the static, dynamic and asynchronous buses, where the

only action required by the targets is to return RMAP replies.

Rather than be loaded with transactions or groups of transactions, a packet bus is

loaded with prioritised requests to transfer a packet between the initiator and the target.

The packet bus does this using a flow-control abstraction called a packet channel. A

26

packet transfer operation is completed in three stages. Firstly, the initiator checks that

the required packet channel in the target is ready to send or receive a packet. Secondly,

the packet is transferred between the initiator and the target in one or more segments.

Lastly, the operation is terminated by indicating to the target that the process is

complete. This frees the packet channel up to be used for another transfer operation if

required.

In the first stage, the initiator checks that the target’s packet channel is ready to send

or receive a packet. This is done to provide end-to-end flow-control between the

initiator and the target and to ensure that a packet is not transferred between the two

nodes until both sides are ready. The initiator signals that it is ready by pulling the

transfer request from the packet bus queue. The target indicates its readiness by writing

status information in a set of registers, or a data structure, in a known location for the

packet channel. The initiator can then use an RMAP read command to read this status

information and determine if the target has a buffer ready for the operation.

Once both sides are ready, they can move to stage two of the transfer operation. If the

packet is too large to transfer in a single slot, then it must be segmented and transferred

over multiple slots. In this stage, the segments are sent to the target via RMAP write

transactions, or read from the target via RMAP read transactions.

Once all of the packet segments have been transferred, the initiator needs to tell the

target that the process has been completed. This indicates to the target that the packet

channel can now be used in another transfer operation. This stage could be done, for

example, by using an RMAP write transaction to reset the status information in the

packet channel’s registers or data structure.

27

Packet transfer operations are prioritised in the same manner as transactions in the

asynchronous bus. Just before a slot allocated to a packet bus occurs, a number of

packet transfer operations are pulled from the head of the queue. Their transaction

execution times, for the relevant stage, are checked and summed using the same

method as the asynchronous bus. This means that a packet bus transaction group can

contain a combination of stage one, two or three transactions depending on the current

status of each operation. Again, because of the problem of priority starvation, this is a

non-deterministic bus and would be suited to payload data traffic that requires end-to-

end flow-control between the initiator and target.

The operation of the packet bus is illustrated in Figure 2-12.

Figure 2-12: Packet Bus Operation

In Figure 2-12, the initiator has opened packet bus 2 and allocated it time-slots 2, 32

and 55. Before the first allocated time-slot occurs, the initiator loads the packet bus

with a request to receive a packet from the packet channel in the target. The target then

sets its packet channel status to indicate that it is ready to send a packet. When the first

allocated time-slot begins, the initiator doesn’t yet know that the target is ready to send

a packet so it must read the packet channel status. Once the packet channel status has

been read, the initiator knows that the target packet channel is ready as well as the

28

location and size of the packet. The initiator then uses this information to form an

RMAP read transaction to transfer the packet from the target to the initiator which is

executed in the next allocated time-slot. The operation has now been completed so, in

the third allocated time-slot, the initiator uses an RMAP write transaction to indicate

to the target that the packet channel is now free.

2.3.2.3 Schedules

Each initiator in a SpaceWire-D network contains its own schedule, in the form of

time-slots allocated to virtual buses. The schedule controls which network resources

and targets the initiator can interact with and when. An example of a set of initiator

schedules is shown in Table 2-3.

Table 2-3: Initiator Schedules

Time-Slot Initiator 1 Initiator 2 Initiator 3

0 Static bus 0 Empty Dynamic bus 0

1 Async bus 1 Packet bus 1 Dynamic bus 0

2 Empty Async bus 2 Empty

3 Empty Empty Static bus 3

4 Empty Async bus 2 Packet bus 4

… … … …

62 Async bus 1 Async bus 62 Packet bus 4

63 Static bus 63 Static bus 63 Static bus 63

In Table 2-3, the schedules for three initiators are listed. A schedule can contain any

combination of virtual buses and different initiators can have different virtual buses in

the same slot. The schedules should be designed so that they adhere to the no-blocking

rule of SpaceWire-D. For example, in time-slot 1, each initiator has a virtual bus

allocated. These virtual buses should be independent i.e. no two virtual buses share a

common link. Otherwise, it would be possible for blocking to occur between packets

29

on different virtual buses, which could result in extended transaction execution times

and missed deadlines.

2.4 Missions

SpaceWire has been widely used for payload communication networks by the world’s

major space agencies including ESA, NASA, JAXA and Roscosmos (European Space

Agency 2015 B).

The following sections focus on three specific SpaceWire missions: the

Magnetospheric Multiscale (MMS) Mission, ASTRO-H and the JUpiter ICy moons

Explorer (JUICE). These missions were chosen as they use SpaceWire to handle

payload communications as well as telemetry and telecommands and they are NASA,

JAXA and ESA missions, respectively, which gives an insight into the international

use of SpaceWire.

2.4.1 Magnetospheric Multiscale Mission

The aim of the MMS mission is to research the transfer of energy between the Sun and

Earth’s magnetic fields, known as magnetic reconnection. The mission intends to

improve space weather forecasting which will, in turn, improve technologies that are

affected by it such as communications networks, Global Positioning System (GPS)

and power grids (NASA GSFC 2015).

The MMS mission consists of four satellites with identical instrument suites and was

launched on the 12th of March 2015. It was carried by an Atlas V launch vehicle and

inserted into an elliptical orbit around Earth. The four spacecraft fly in a pyramid

formation allowing them to collect three dimensional data.

SpaceWire is used in the MMS spacecraft to handle telemetry, telecommands and

payload data using a single network (Raphael, et al. 2014). The nodes include a signal

30

processing card, communication card, processor card, analogue card, instrument data

multiplexer, engine valve drive and power subsystem monitor. Each device is

redundant in case of failure of the nominal device. Redundancy is cold for all devices

except the redundant communication board which is powered on so that it can receive

and decode telecommands at any time. However, for simplicity, only the nominal

devices are shown in Figure 2-13.

Signal processing
card

Analogue
card

CIDP

Engine valve
drive

Power subsystem
monitor

S-band
transponder

Accelerometer

Digital sun sensor

Star sensor
Communication

card
Processor

card

Analogue
telemetry

Figure 2-13: MMS Network (Raphael, et al. 2014)

In Figure 2-13, the unbroken blue arrows represent SpaceWire links and the dashed

black arrows represent other digital or analogue connections. There are two SpaceWire

routers, one inside the communication card and one inside the processor card. The

processor card is connected by SpaceWire links to the communication card, power

subsystem monitor and engine valve drive and connected to the sensors via Universal

Asynchronous Receiver/Transceiver (UART) interfaces. The communication card and

the S-band transponder are also connected via UART.

Each MMS satellite contains an identical suite of 11 instruments divided into three

classes: Hot Plasma, Energetic Particles Detector and Fields. The Hot Plasma

31

instruments are used to investigate plasma detected during magnetic reconnection, the

Energetic Particles Detector instruments record fast-moving particles and the Fields

instruments measure electric and magnetic fields. The instruments are connected to

the SpaceWire network through the Central Instrument Data Processor (CIDP) shown

in Figure 2-13. The CIDP contains a SPARC processor, a 96 Gbyte mass-memory

module and a power/analogue card (Klar, et al. 2013).

The processor card contains a radiation-hardened ColdFire microprocessor operating

at a clock rate of 40 MHz. Additional processing is provided by an Arbiter FPGA

which implements features such as an interrupt controller, DMA and memory

controllers and a flight software bootloader as well as interfaces to peripherals like the

SpaceWire router and sensors.

The accelerometer and the star sensor send data periodically across the UART links

between the sensors and the processor card at a rate of 4 Hz. Data is sent from the

digital sun sensor in a similar manner but at a rate of three times a minute, once per

spacecraft revolution. This data is used by the ACS flight software to calculate thruster

commands which are transmitted over SpaceWire to the engine valve drive. The

communication card receives housekeeping telemetry from the S-band transponder via

UART which is sent to the processor card over SpaceWire. Housekeeping telemetry

is gathered from the communication card by the processor card using SpaceWire at a

rate of 1 Hz. Instrument telemetry and payload data is gathered by the CIDP and stored

in mass-memory before being sent to the communication card over SpaceWire and

downlinked to Earth via the S-band transponder.

32

To help with spacecraft rotation, system-time synchronisation and flow-control, GSFC

have modified the SpaceWire protocol to implement distributed event signalling using

time-codes.

2.4.2 ASTRO-H

ASTRO-H is an x-ray space observatory developed by JAXA, in collaboration with

NASA. Its main objectives are to investigate the evolution of large astronomical

structures such as galaxy clusters and supermassive black holes; to research extreme

environments such as the effects of matter near black holes; to explore the role of

astronomical events such as collisions on the energising of cosmic rays; and to study

dark matter and energy and their effects on the evolution of galaxy clusters (Takahashi,

et al. 2012).

The ASTRO-H mission is a single spacecraft and was launched in February 2016 on-

board an H-IIA launcher. The scientific instruments suite consists of a hard x-ray

imaging system (HXI) containing two identical pairs of hard x-ray telescopes and

imagers; a soft x-ray spectrometer system (SXS) with a soft x-ray telescope and a

calorimeter spectrometer; a soft x-ray imaging system (SXI) containing a soft x-ray

telescope and an imager; and, finally, a soft gamma-ray detector (SGD).

SpaceWire is used on-board ASTRO-H to handle telemetry, telecommands and

payload data using a single network. The network is connected physically but logically

divided into two subnets. The first subnet contains the instruments, downlink

telemetry, mass-memory and the main on-board computer. The second subnet contains

the attitude and orbit control sensors and actuators (Yuasa, et al. 2011). The attitude

and orbit control computer connects the two subnets, but no packets from either subnet

33

can reach the other. The network topology for ASTRO-H, simplified with no

redundancy, is illustrated in Figure 2-14.

TCIM

SMU Router DR

AOCP

Router

SGD CPUHXI CPU SXI CPU Router

Sensors

Actuators

HXI FPGA SGD FPGA SXI FPGA SXS CPU

SXS
components

SXS cooler
controller

HXI
components

SGD
components

SXI
components

SXS FPGA

Figure 2-14: ASTRO-H Network (Ozaki, et al. 2010)

Similar to the previous network topology diagram for the MMS mission, the blue

arrows in Figure 2-14 represent SpaceWire links and the dashed black lines represent

non-SpaceWire links. The telemetry command interface module (TCIM) is used to

receive telecommands and downlink housekeeping telemetry and payload data. The

satellite management unit (SMU) is the main on-board computer and the initiator of

all traffic on the data-handling subnet. The data recorder (DR) is the mass-memory

device and is used to store housekeeping telemetry and payload data before being

downlinked to a ground station. Each instrument has a SpaceWire enabled CPU board

to connect it to the network which is also connected, via SpaceWire, to an FPGA

board. The SXS system also has its own router to connect to both the SXS instrument

and the cooling controller. The FPGA boards are then connected to a number of

34

instrument components via non-SpaceWire links. The attitude and orbit control

processor (AOCP) is the barrier between the data-handling and control subnets and it

is the initiator of all traffic to the control sensors and actuators.

ASTRO-H uses a deterministic network protocol based on an early version of

SpaceWire-D to schedule its traffic. All communication on the network is done with

RMAP transactions initiated by the SMU on the data-handling subnet and the AOCP

on the control subnet. The SMU acts as the time-code master and distributes time-

codes at a rate of 64 Hz, giving one schedule epoch per second. The schedule for the

SMU consists of slots dedicated to telecommand distribution, housekeeping telemetry

gathering, time data distribution, auxiliary data distribution and payload data

gathering. Every fourth slot is dedicated to command distribution and housekeeping

telemetry gathering. The remaining groups of three slots are dedicated to payload data

gathering except for the first and last group. The former is used to distribute time and

auxiliary data to other nodes and the latter is used to collect housekeeping telemetry

from the routers (Yuasa, et al. 2011).

After ASTRO-H was launched in February 2016, an attitude adjustment was executed

on 26th March 2016. The ACS then reported incorrect attitude values which caused a

reaction wheel to erroneously attempt to correct the attitude. This caused ASTRO-H

to start rotating and the increasing rotation resulted in the satellite separating into

several pieces and ASTRO-H being lost (JAXA 2016).

2.4.3 JUpiter ICy moons Explorer

The JUICE mission is being developed by ESA under the Cosmic Vision Program. Its

aim is to investigate Jupiter and three of its moons: Ganymede, Europa and Callisto,

to determine if they have potential to support life (Grasset, et al. 2013).

35

JUICE is a single spacecraft due to be launched in 2022 on an Ariane 5 launcher in

order to reach Jupiter by 2030. It will then travel to Callisto, execute multiple flybys

around Jupiter and Europa before eventually transferring into orbit around Ganymede

in 2032 (European Space Agency 2011). The instrument suite contains 10 different

instruments: a camera, two spectrometers, a wave instrument, a laser altimeter, an ice

penetrating radar, a magnetometer, a particle environment sensor package, a radio

plasma wave instrument and a radio science package. One additional experiment

makes use of the spacecraft’s telecommunication device to pinpoint the spacecraft’s

position and velocity.

SpaceWire is used on-board JUICE to handle telemetry, instrument telecommands and

payload data. The network architecture is illustrated in Figure 2-15.

JANUS

GALA

J-MAG

RIME

SWI

UVS

MAJIS

RPWI

PEP-NU

PEP-ZU

RADEM

Spare

SpaceWire
Router

Payload
SSMM

X-Band A

Ka-Band A

X-Band B

Ka-Band B

OBC Processor A

OBC Processor B

Figure 2-15: JUICE Network (Airbus Defence & Space 2015)

As shown in Figure 2-15, the network is based around a central router. The router is

connected, via redundant SpaceWire links, to each of the instruments, the redundant

OBCs and the mass-memory device. For simplicity, the redundant SpaceWire links

36

are not shown in Figure 2-15. In addition, there are point-to-point redundant

SpaceWire links between the SSMM and the telecommunications devices.

Each instrument generates a number of payload data packets, ranging mostly from

10.6 to 310 per second with one more demanding instrument, Moons and Jupiter

Imaging Spectrometer (MAJIS), generating a burst-rate of 1500 per second. The

payload data packets are sent to the SSMM for storage before downlinking. The

instruments also send two housekeeping telemetry packets per second to the OBC and

receive up to five telecommands per second from the OBC.

2.5 Other Communication Networks

In addition to SpaceWire-D, there are a number of communication networks that have

been used historically for command and control traffic in space applications. This

section looks at two technologies that have been adopted for use in space by ESA and

extended by ECSS standardisation, then compares them with SpaceWire-D.

2.5.1 MIL-STD-1553

The MIL-STD-1553 serial data bus is a US military standard that was first published

in 1975 with a revision, referred to as MIL-STD-1553B, published in 1978 (US

Department of Defense 1978). Originally designed for use in real-time systems in

aircraft, it has been widely adopted for space applications and the ECSS published a

standard in 2008 to extend the standard and improve compatibility between

technologies utilising MIL-STD-1553B in ESA missions (ECSS 2008 B).

2.5.1.1 Node Types

A MIL-STD-1553B bus can consist of three types of nodes: a bus controller (BC)

which controls the flow of data by initiating transfers or commanding other nodes to

execute a transfer; up to 31 remote terminals (RT) which are the data sources and

37

destinations; and bus monitors (BM) which are passive and used to capture and analyse

bus traffic (Bracknell 1988). Figure 2-16 illustrates an example MIL-STD-1553B bus

architecture containing each type of node.

Figure 2-16: Example MIL-STD-1553B Bus Architecture

As shown in Figure 2-16, the example bus contains a single BC, three RT’s indexed

from 0 to 2, and a single BM. The BC may initiate transfers to any of the RT’s or

command any of them to execute transfers with another. The BM has a passive role

and can capture any of the transfers being executed between the BC and the three RT’s

for analysis.

2.5.1.2 Transfer Types

The operation of a MIL-STD-1553B bus is controlled by the BC. The BC is

responsible for transferring data from the BC to an RT, commanding an RT to transfer

data back to the BC or commanding an RT to send data to another RT. These three

types of transfers are implemented using three types of words: command words which

are sent only by the BC and contain an RT address and information about the required

transfer; data words which can be sent by both the BC and RTs and contain the actual

38

data to be transferred; and status words which are sent only by RTs and contain a

response to a command word.

BC to RT

The BC to RT transfer type allows the BC to send between 1 and 32 16-bit data words

to an RT, as illustrated in Figure 2-17.

Receive
Command

Data Word 0 Data Word 1 Data Word N-1 Status Word... Response
Time

Figure 2-17: BC to RT Transfer (US Department of Defense 1978)

As shown in Figure 2-17, the BC first transmits a receive command word which is

addressed to an RT. Following this are the data words to be transferred. The RT then

verifies the command and data words and, after a response time delay, transmits a

status word to indicate if the transfer was successful or not.

RT to BC

The RT to BC transfer type allows the BC to command an RT to send between 1 and

32 16-bit data words to the BC, as illustrated in Figure 2-18.

Transmit
Command

Status Word Data Word 0 ...Response
Time

Data Word 1 Data Word N-1

Figure 2-18: RT to BC Transfer (US Department of Defense 1978)

As shown in Figure 2-18, the BC first transmits a transmit command word which is

addressed to an RT and contains information about the data to be transferred. The RT

then verifies the command and, after a response time delay, transmits a status word

followed by the requested data words.

39

RT to RT

The RT to RT transfer type allows the BC to command an RT to send between 1 and

32 16-bit data words to another RT, as illustrated in Figure 2-19.

Receive
Command

Data Word
0

...Response
Time

Data Word
1

Data Word
N-1

Transmit
Command

Status
Word

Response
Time

Status
Word

Figure 2-19: RT to RT Transfer (US Department of Defense 1978)

As shown in Figure 2-19, the BC first transmits a receive command word addressed

to the receiving RT followed by a transmit command word addressed to the

transmitting RT. The transmitting RT verifies the command then, after a response time

delay, transmits a status word followed by the requested data words. After the data

transfer is complete, the receiving RT verifies the data words and, after a response

time delay, transmits a status word to indicate if the transfer was successful or not.

2.5.1.3 ECSS Standardisation

The ECSS MIL-STD-1553B standard defines a set of services to provide time

distribution, time-division multiplexing, data transfers and node management for

devices implementing MIL-STD-1553B. The standard’s aim is to improve reusability

across missions and provide guidance to engineers (ECSS 2008 B).

Time Distribution

Time distribution is provided by the BC acting as a time-master which synchronises

time in a two-step process. The first step is to transmit time data to the RTs and the

second step is to transmit a time synchronisation command to tell the RTs to update

their on-board time based on the data from the first step.

40

Time-Division Multiplexing

Time-division multiplexing is implemented by dividing network time into

communication frames which are controlled by the time synchronisation commands

transmitted by the BC. These communication frames can be further divided into minor

frames. A schedule can then be designed to transmit messages in specific minor frames

in order to meet the bandwidth requirements of a mission. The ECSS standard

describes two types of scheduled data transfers. The first is pre-allocated bandwidth

with populated content, which could be periodic traffic or aperiodic traffic with

deadlines. This type of data transfer is preconfigured in the schedule to ensure that

periodic traffic can meet its rate requirements and that aperiodic traffic can satisfy its

latency requirements. The second type of data transfer is pre-allocated bandwidth with

unpopulated content, which could be used for rarely seen traffic or payload data. This

type of data transfer has bandwidth reserved in the schedule but no data transfers are

preconfigured. When a data transfer is required, it is inserted into the next free

unpopulated content frame.

Data Transfers

The ECSS standard defines Set Data and Get Data services which implement BC to

RT and RT to BC transfers, respectively. In addition, a Data Block Transfer service is

used to transfer blocks of data that exceed the basic length limitation of a MIL-STD-

1553B data transfer.

To transmit data from a BC to an RT using the Set Data service, the user application

calls the SendData.Submit primitive and passes it the data to transfer. If the requested

transfer is intended for a populated minor frame, it is executed within the relevant

populated minor frame in the next communication frame. Otherwise, it is executed in

41

the next unpopulated minor frame, in the next communication frame, as long as there

are no higher priority transfers waiting to be executed. The Get Data service operates

in a similar manner with the user application using the ReceiveData.Submit primitive

to set up a receive data operation and the ReadData.Submit primitive to read the

received data.

The Data Block Transfer service allows for data transfers with a maximum data length

of 4096 bytes, compared to the maximum of 64 bytes for basic data transfers. Data

blocks are segmented into a number of individual transfers and transferred from the

BC to an RT using Data Distribution transfers and from an RT to the BC using Data

Acquisition transfers.

When the user application wants to send a block of data to an RT, it calls the

SendData.Submit primitive and passes it information about the required data block

and its destination in the RT. The BC then sends the data block and also sends a

descriptor to a specific location in the RT. Meanwhile, the RT polls the descriptor

location to see if any new data has been written. If so, it writes a confirmation to a

specific location which is then read by the BC to check the status of the operation.

Receiving a block of data works in reverse. First the RT calls the SendData.Submit

primitive and passes it information about the required data block which is stored in a

specific location in the RT. The BC polls all RTs implementing the Block Transfer

service to determine if there is a data block to transfer. If so, the BC reads the data

block and sends a confirmation to a specific location in the RT to indicate the status

of the operation.

42

Management

The management of remote terminals is mission-specific and can be done by reading

status information via the standard Get Data and Set Data services. The basic MIL-

STD-1553B standard also defines some flags within the status words transmitted by

remote terminals after receiving a command or after being probed directly by the BC,

which can be used to signal problems to the management software.

2.5.2 Controller Area Network

The Controller Area Network (CAN) bus standard was originally designed for use in

the automotive industry. The first version was developed by Robert Bosch GmbH and

published in 1986, with a second and the latest version released in 1991 (Robert Bosch

GmbH 1991). In addition to the automotive industry, CAN bus has been adopted for

use in embedded systems in other industries, including space, and the ECSS is in the

process of publishing an extension standard (ECSS 2013).

2.5.2.1 Message Identifiers

Nodes are not assigned individual addresses in a CAN bus. Instead, nodes receive

messages they are interested in by filtering them based on the unique message

identifiers. If a node is interested in a message based on its identifier, it can receive it

and notify the user application, otherwise, the message can be ignored.

2.5.2.2 Arbitration

In a CAN bus, each node can initiate data transfers with any other node. Access to the

bus is controlled by a priority-based arbitration mechanism to ensure that two nodes

can’t attempt to send different messages at the same time.

An implementation of a CAN bus defines one binary value as the dominant value and

the other as the recessive value. For example, in an implementation with a dominant

43

zero-bit, the bus acts as an AND gate where the value of the bus is zero if one or more

nodes transmit a value of zero and one if all nodes transmit a value of one. If two or

more nodes wish to transmit at the same time, they can each transmit the first bit of

their message identifiers then immediately check the value of the bus. If the value does

not match the one transmitted, the node has been dominated by another and it must

wait until the next time the bus is free to try again. If the value matches the one

transmitted, the node can continue with the next value of the identifier, and so on until

only one node remains. The final node wins access to the bus after its entire message

identifier has been transmitted without being dominated. Table 2-4 shows an example

of arbitration between four 11-bit message identifiers on an AND gate CAN bus

implementation where identifiers with lower values have higher priority.

Table 2-4: CAN Bus Identifier Arbitration

Message Identifier Value

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 1 1 1

0 1 1 0 0 1 1 1 0 0 0

1 0 1 1 1 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 1

Bus Value

0 0 0 0 0 0 0 0 0 1 1

In Table 2-4, there are four message identifiers being transmitted at the same time by

four different nodes. The bottom row shows the value output on the bus after each

value is transmitted. After the first value is transmitted, the third message identifier is

dominated by the others so the message transmission is cancelled by its node. The

second message is cancelled after the second value is transmitted and the first message

is cancelled after the ninth value is transmitted. Therefore, the fourth message

successfully gains access to the bus as its identifier was fully transmitted.

44

2.5.2.3 Transfer Types

CAN bus messages are transferred using different types of frames, each with either an

11-bit standard identifier or 29-bit extended identifier. Each message is separated by

an inter-frame space which allows the receiving nodes to deal with a message before

receiving the next.

Data Frame

Data frames are used to transmit up to eight bytes of data from a source node to one

or more destination nodes. Each data frame has a 16-bit cyclic redundancy check

(CRC) to allow the receiving nodes to perform error checking. In addition, each data

frame has an acknowledgement slot to allow receiving nodes to signal to the

transmitter that they have correctly received the message.

Remote Frame

Remote frames are transmitted by a node to request the transmission of a data frame,

with the same message identifier as the remote frame, from another node. If a remote

frame and data frame with the same message identifier are sent at the same time, the

data frame wins the arbitration. This is because it has a dominant flag after the message

identifier to indicate that it is a data frame and not a remote frame.

Error Frame

If a receiving node detects an error in a message, it can transmit an error frame during

the inter-frame space after the erroneous message. The error frame is detected by the

other nodes and causes them to transmit their own error frames. After all nodes have

transmitted their error frames, the node that transmitted the original erroneous frame

can attempt to retransmit the original frame.

45

Overload Frame

Overload frames are transmitted by a node during the inter-frame space to indicate

that the node requires an additional delay before the next frame is transmitted.

ECSS Standardisation

The ECSS CAN bus standard (ECSS 2013) extends the original standard to describe

the use of the CANopen protocol (CAN in Automation 2011). CANopen provides an

object abstraction on top of CAN messages and defines methods for time distribution

and redundancy management.

CANopen

The CANopen protocol is a higher layer protocol used on top of a standard CAN bus

which defines how the message identifiers and frames are used. The version of

CANopen recommended for use in the ECSS standard is a minimal implementation in

order to reduce the hardware and software resources required.

CANopen functions are implemented as a number of different objects. Each device

has an Object Dictionary (OD) which has a number of entries containing

configuration, status or other data. Each OD entry can be accessed using Service Data

Objects (SDO) which request to read or write to an entry in the OD by embedding an

entry identifier in the data section of the frame. Process Data Objects (PDO) allow a

node to query another node’s OD entry or transmit an entry from its own OD without

being prompted. PDOs remove the protocol overhead of SDOs by using a direct

mapping between a message identifier and an OD entry. Synchronisation Objects are

used to signal a time-dependent event to other nodes. Emergency Objects are used to

report any detected errors across the bus. Finally, Network Management Objects allow

a management node to control and monitor the other nodes.

46

Time Distribution

Time is distributed by a single time-master node that transmits a PDO containing the

system time information which is received by any other interested nodes. In addition,

if a node also has a local time it can be read by using another PDO. Finally,

Synchronisation Objects can be used to inform other nodes that a time-dependent

event has occurred or that an action should be taken.

Redundancy and Network Management

A single node can be assigned as the Redundancy and Network Management master,

which is responsible for monitoring and controlling the other nodes. Monitoring the

status of the nodes is done by each node transmitting a heartbeat at regular intervals.

If a node misses a heartbeat, the Redundancy and Network Management master can

perform a mission-specific redundancy management function to recover. In addition

to redundancy management, the master can use Network Management objects to start,

stop and reset the other nodes on the network.

2.5.3 Other Networks

In addition to the communication networks being standardised by ECSS, there are

other networks that have already been used in space or are currently under

investigation for use in space.

SpaceFibre is the successor to SpaceWire and provides very high data-rate links as

well as built-in quality of service mechanisms (Parkes, McClements and McLaren, et

al. 2015) and runs over electrical or fibre cables. There are three levels of quality of

service included in SpaceFibre: prioritised traffic, bandwidth reservation and

scheduled traffic. Time-Triggered Ethernet is an extension to Ethernet that provides

deterministic mechanisms for real-time systems (Kopetz, Ademaj, et al. 2005).

47

Wireless networking technologies have been investigated for use in space

(Vladimirova, et al. 2007) but have not yet been widely adapted for on-board

communications.

2.5.4 Comparison

In this section, a comparison between MIL-STD-1553B, CAN and SpaceWire-D is

given in relation to various features that are important for a deterministic network.

These two communications networks were chosen for this comparison because they,

in addition to SpaceWire-D, are in the process of standardisation for use in space by

the ECSS. The versions of MIL-STD-1553B and CAN used for this comparison are

described in (ECSS 2008 B) and (ECSS 2013), respectively.

2.5.4.1 Time-Division Multiplexing

MIL-STD-1553B provides TDM by dividing system time into major and minor

communication frames. The bus controller sends time information to each node on the

bus then distributes a synchronise command that tells each node to update their time.

Repeating, periodic traffic or aperiodic traffic with deadlines can be scheduled within

populated pre-allocated bandwidth. Sporadic or payload traffic can be prioritised and

scheduled within unpopulated pre-allocated bandwidth.

CAN provides TDM by having a SYNC producer which transmits Synchronise

Objects. This indicates to the SYNC consumers, i.e. the other nodes, that a time-

dependent event like a time-slot should begin. Within the time-slots, traffic can be

scheduled using the message identifier arbitration system to ensure that traffic is

prioritised and deterministic.

SpaceWire-D provides TDM using time-slots controlled by the distribution of

consecutive time-codes by a single time-code master. When a new time-slot begins,

48

the initiators execute any transaction groups for the virtual buses, if any, allocated to

the time-slot.

2.5.4.2 Exclusive or Non-Conflicting Access to Network

MIL-STD-1553B provides exclusive and non-conflicting access to the network by

ensuring that there is a single bus controller in operation at any one time. The bus

controller controls all traffic on the bus so there are no conflicts with other nodes

attempting to transmit at the same time.

CAN provides exclusive and non-conflicting access to the network through its

message identifier arbitration system. The system must adhere to the rule that each

message is assigned a unique identifier. Then, if two or more nodes attempt to transmit

a message, the node with the highest priority message will win access to the bus. The

other nodes will wait until the bus is free again to re-attempt to transmit.

SpaceWire-D provides exclusive and non-conflicting access to the network through

its virtual bus abstraction and scheduling. The system must adhere to the rule that no

two virtual buses are allocated the same time-slot if they share one or more SpaceWire

links. Then, in each time-slot, the initiators have exclusive access to their segment of

the network. Therefore, packets on one virtual bus cannot interfere with packets on

any other.

Each of the networks allow for exclusive or non-conflicting access to the network,

with MIL-STD-1553B providing the most robust option because it is reliant solely on

the bus controller. CAN and SpaceWire-D also rely on the other nodes adhering to the

unique message identifier rule or non-conflicting virtual bus scheduling rule,

respectively.

49

2.5.4.3 Data Rates and Protocol Overhead

MIL-STD-1553B operates at 1 Mbit/s and has a minimum transmit and receive data

size of 2 Bytes and a maximum of 64 Bytes per transfer. Transmit operations are done

through BC-RT transfers and consist of a receive command, one or more data words

each containing 2 bytes of data and one status word. Each word is 20 bits, giving a

protocol overhead of 73.33% for a 2 Byte BC-RT transfer and 24.71% for a 64 Byte

BC-RT transfer. Receive operations are done through RT-BC transfers and have the

same protocol overhead as BC-RT transfers. The final transfer type, RT-RT, allows a

BC to request one RT to transmit data to another and consists of a receive command

sent to one RT and a transmit command to the other, a status word from the

transmitting RT, one or more data words and a status word from the receiving RT.

This gives a protocol overhead of 84% for a 2 byte RT-RT transfer and 28.89% for a

64 Byte RT-RT transfer.

CAN operates at 1 Mbit/s and has a minimum transmit and receive data size of 1 Byte

and a maximum of 8 Bytes per message. Each CAN frame consists of a start-of-frame

bit, an arbitration field, a control field, a data field, a CRC field, an acknowledgement

field and an end-of-frame field, giving a total of 44 bits of protocol overhead for

standard frames and 64 bits for extended frames. Transmit operations, for PDOs, are

done through data frames, giving a protocol overhead of (84.62%, 88.89%), where the

two parenthesised values are for normal and extended frames, for a 1 Byte message

and (40.74%, 50%) for an 8 Byte message. Receive operations, for PDOs, are done

through a combination of a remote frame sent by the destination node and a data frame

sent by the source node, giving a protocol overhead of (91.67%, 94.12%) for a 1 Byte

message and (57.89%, 66.67%) for an 8 Byte message. For SDOs, 4 bytes of the data

field are taken up by the OD addressing information, therefore the protocol overhead

50

is (90.48%, 92.31%) for a 1 Byte transmit message, (70.37%, 75%) for a 4 Byte

transmit message, (95%, 96%) for a 1 Byte receive message and (82.61%, 87.5%) for

a 4 Byte receive message.

SpaceWire-D operates at variable transmission rates of between 2 and 200 Mbit/s per

link. SpaceWire-D uses RMAP transactions which have a minimum transmit and

receive data size of 1 Byte and a maximum of 16 Mbytes per transaction. Transmit

operations are done through acknowledged RMAP write transactions which consist of

a write command header, a write data section, a command EOP, a reply header and a

reply EOP, giving a total of 258 bits of protocol overhead and an additional 2 bits for

every byte in the data section. For an acknowledged RMAP write transaction using a

logical address, this gives a protocol overhead of 97.07% for a 1 Byte write and 20%

for a 16 Mbyte write. Receive operations are done through RMAP read transactions

which consist of a read command header, a command EOP, a reply header, a read data

section and a reply EOP, giving a total of 298 bits of protocol overhead and an

additional 2 bits for every byte in the data section. For an RMAP read transaction using

a logical address, this gives a protocol overhead of 97.4% for a 1 Byte read and 20%

for a 16 Mbyte read. Although, technically, RMAP transactions can contain up to 16

Mbytes of data, this is implicitly limited by the length of the slots used by the virtual

bus executing the transaction. In practice, it is likely that the maximum transaction

size would be smaller. For a payload data transfer containing 4 Kbytes of data, the

protocol overhead would be 20.51% for a transmit operation and 20.58% for a receive

operation. To compare the protocol overhead with the largest MIL-STD-1553 transfer,

the protocol overhead is 43.3% for a 64 Byte write transaction and 45.42% for a 64

Byte read transaction. In addition, if the RMAP transactions are using path addressing,

this will result in higher protocol overhead as a list of path address bytes will be

51

required at the start of each packet and in the return path section of the command

header.

2.5.4.4 Acknowledgements

MIL-STD-1553B provides acknowledgements through remote terminals transmitting

status words after receiving commands. A status word contains the 5-bit address of the

remote terminal and 11 single bit flags. The flags are used to report a successful

command, an error in the received message or inform the bus controller of errors in

the remote terminal itself.

CAN has an acknowledgement slot in each of its messages during which any receiving

nodes may transmit a dominant bit if it detects an error in the message. The

transmitting node can read the value on the bus after the acknowledgement slot to

determine if the message was successfully received by all interested nodes or if any

receiving nodes have reported an error.

SpaceWire-D provides acknowledgements through RMAP replies sent by a target that

has received a command. Each RMAP reply contains an 8-bit status field that

describes if the command was received and authorised successfully or if there was an

error to be reported to the initiator.

2.5.4.5 Multiple Initiators

MIL-STD-1553B has a single bus controller responsible for controlling all traffic on

the bus. However, the role of the bus controller can be switched between nodes using

dynamic bus control. If the bus controller wants to give control of the bus to another

node it issues a dynamic bus control request command to the node. If the node is able

to accept the role of bus controller it issues a status word with the dynamic bus control

52

acceptance bit set. If the bit is set when the initial bus controller receives the status

word, it ceases to act as the bus controller and the new node takes over the role.

Any CAN node can act as an initiator, assuming it wins the message identifier

arbitration at the start of transmission and gains access to the bus. However, as with

MIL-STD-1553B, only one node can act as the initiator at any one time due to CAN

being a bus and not a point-to-point network.

SpaceWire-D networks can have multiple concurrent initiators but this is dependent

on the network architecture and the schedule. The number of possible concurrent

initiators in each time-slot is the number of independent virtual buses allocated to that

time-slot.

2.5.4.6 Fault Detection, Isolation and Recovery

MIL-STD-1553B provides status words for each command, as described in Section

2.5.4.4, which are used to report errors to the bus controller. The handling of the errors

is mission specific and left to the system designer. However, MIL-STD-1553B does

provide various mode commands to aid in the handling of errors and recovery. These

mode commands provide features such as dynamic bus control, as explained in Section

2.5.4.5; reading the last status word transmitted, or the last command received from a

remote terminal; self-test initiation, to instruct a remote terminal to perform diagnostic

tests; remote terminal transmission enable or disable; and remote terminal reset. In

addition, there can be a redundant bus in case the primary bus or a node fails. If a node

is babbling, commands can be sent to the babbling node on the redundant bus to

disable or reset it.

CAN provides an acknowledgement slot in all of its messages, as described in Section

2.5.4.4, to report that one or more receiving nodes have detected an error. In addition

53

to acknowledgement errors, bit errors are detected if the transmitting node senses an

incorrect bit after transmission, stuff errors are detected if there are 6 consecutive bits

with the same value, CRC errors are detected if the 15-bit CRC calculated by the

receiver differs from that of the transmitter and form errors are detected if a fixed-

value bit has an unexpected value. The ECSS CAN standard describes two methods

for redundancy using either a selective bus architecture where only one bus is active

at a time or a parallel bus architecture where nodes can transmit on both buses

simultaneously. A single node acts as the redundancy master and is responsible for

transmitting master heartbeat messages on the active bus so that the other nodes know

which bus is regarded as the primary. The redundancy master is also responsible for

receiving heartbeat messages from the other nodes so that it knows if a node has failed.

SpaceWire-D targets provide a reply for each RMAP command, as described in

Section 2.5.4.4, to report if any errors were detected in the command packet or in the

authorisation or execution of the command. RMAP packets also contain 8-bit CRCs

which cover the header values of all packets and data sections of write command

packets and read reply packets. RMAP reply errors, as well as any others detected by

the initiators such as incomplete transaction errors, are compiled into a list and

reported to the network manager at the end of each schedule epoch. The detection and

reporting of errors is defined in the SpaceWire-D standard but the handling of the

errors is mission specific and left to the system designer. SpaceWire networks provide

flexible redundancy capabilities through redundant links, nodes or routers, depending

on the requirements of the mission.

2.5.4.7 Comparison Summary

The comparison between MIL-STD-1553B, CAN bus and SpaceWire-D is

summarised in Table 2-5.

54

Table 2-5: Communication Network Comparison

Feature MIL-STD-1553B CAN SpaceWire-D

Time-Division Multiplexing + + +

Exclusive Network Access ++ + +

Data Rates and Overhead - - ++

Acknowledgements + + +

Multiple Initiators + + ++

FDIR + + +

In Table 2-5, each row lists a feature and gives a corresponding score for MIL-STD-

1553B, CAN bus and SpaceWire-D.

The networks score equally with regards to TDM because they each provide the

capability to divide time into time-slots in which scheduled and prioritised traffic can

be executed.

MIL-STD-1553B has an advantage when it comes to exclusive or non-conflicting

access to the network because it depends only on the bus controller. CAN and

SpaceWire-D rely on all of the nodes on the network adhering to rules that ensure that

traffic doesn’t conflict.

SpaceWire-D has an advantage in relation to the data rates and protocol overhead as

it can operate at up to 200 Mbit/s compared to 1 Mbit/s for MIL-STD-1553B and CAN

bus. SpaceWire-D also has a much larger maximum single transfer size at 16 Mbytes

compared to 64 Bytes for MIL-STD-1553B and 8 Bytes for CAN bus, allowing for

reduced protocol overhead.

55

The networks score equally with regards to acknowledgements because MIL-STD-

1553B and SpaceWire-D provide acknowledgements with status and error information

for every transfer. CAN bus provides an acknowledgement slot and error frames

containing the error information if any remote terminal detects an error.

Although MIL-STD-1553B and CAN bus can have multiple initiators, only one can

operate at any time due to the bus architecture of these networks. SpaceWire-D is at

an advantage because it can have multiple concurrent initiators as long as no two

initiators use a common SpaceWire link during the same time-slot.

MIL-STD-1553B provides FDIR through its status words and various mode

commands to aid in the handling of errors and recovery. The manner in which these

are used are mission specific and left to the system designer. Each MIL-STD-1553B

data word has a parity bit but the commands, data words and status words are not

protected by a CRC. CAN bus provides FDIR through its acknowledgement slots and

error frames and each CAN bus message is protected by a 15-bit CRC. SpaceWire-D

provides FDIR through RMAP replies and checks at various points during the

execution of the schedule. RMAP commands are checked for correct parameter values

before transmission and RMAP transaction groups are checked to make sure they will

fit within their intended time-slots. If time-codes arrive early, late or go missing an

error is recorded. At the end of each schedule epoch, the list of errors is reported to

the network manager. Each of the networks provides their own methods for

redundancy.

2.6 On-Board Data Systems

Current on-board data systems are typically divided into two segments: the platform

and the payload (Hult and Parkes 2014). The platform is responsible for critical tasks

56

such as receiving and handling telecommands, generating telemetry frames,

performing housekeeping and performing control applications. The payload is

responsible for moving data between the spacecraft’s instruments and its data storage,

and possibly processing the data and generating the payload telemetry frames. The

architecture of a typical on-board data system is illustrated in Figure 2-20.

Figure 2-20: On-Board Data Systems (European Space Agency 2014 A)

As shown in Figure 2-20, the on-board data system is divided into the platform

segment on the left and the payload on the right. The communication network used in

the platform may require determinism, FDIR and QoS mechanisms, but relatively low

data-rates. In contrast, the communication network used in the payload may require

much higher data-rates but lower levels of FDIR and QoS.

Currently, MIL-STD-1553B is most often used for the platform communication

network because it provides determinism. However, it supports relatively low data-

rates so for missions with higher data-rate requirements it is not also suitable for use

57

in the payload. Instead, a high data-rate communication network like SpaceWire or

SpaceFibre is used.

As explained in Section 2.3.1, SpaceWire is not deterministic due to the problem of

blocking and therefore, it may not be suitable for use in the platform. The aim of

SpaceWire-D is to solve this problem and allow a single communication network to

support determinism in the platform and high data-rates in the payload.

The Consultative Committee for Space Data Systems (CCSDS) Spacecraft On-Board

Interface Services (SOIS) document (CCSDS 2013) describes a set of standard on-

board data services which are abstracted in layers above the specific communication

networks that are used to implement them e.g. MIL-STD-1553B or SpaceWire. Some

of these services, such as the Command and Data Acquisition Service, require

deterministic and prioritised access to the underlying network which is not provided

by a regular SpaceWire network but is provided by the virtual bus system in a

SpaceWire-D network.

This thesis demonstrates that SpaceWire-D can be used to support deterministic

platform traffic and high data-rate payload traffic on the same communication

network. The benefits of achieving this include reducing complexity by removing the

need for multiple communication networks and possibly reducing mass by reducing

the number of cables and connectors required.

2.7 Summary

This chapter started with a description of the subsystems found on-board spacecraft.

Attitude and orbit control subsystems measure and adjust the orientation and velocity

of the spacecraft through the use of various sensors and actuators. Communications

subsystems provide a link between the spacecraft and Earth in order to send data and

58

telemetry to its operators and receive telecommands. On-board computers manage and

control the other subsystems on the spacecraft. Finally, scientific instruments, which

are the payload of a spacecraft, gather data or provide a service in space.

Next, the SpaceWire and SpaceWire-D protocols were described. SpaceWire allows

for communication between the different subsystems on-board a spacecraft and is

primarily used to handle payload data. SpaceWire-D was designed to provide

deterministic capabilities on top of existing SpaceWire equipment. It uses time-slots,

a virtual bus abstraction and scheduling to regulate traffic so that there are no conflicts

on the network which may cause non-deterministic delays.

Following the description of SpaceWire and SpaceWire-D, three missions that utilise

SpaceWire were described. These three missions use SpaceWire for handling payload

data as well as more critical traffic such as telecommands or telemetry. MMS is a

NASA mission consisting of four satellites used to research the transfer of energy

between the Sun and Earth’s magnetic fields. ASTRO-H was a JAXA mission which

had the intention of investigating large astronomical structures, to research extreme

space environments, to measure the effect of astronomical events on the energising of

cosmic rays and to study dark matter and energy’s effect on the evolution of galaxy

clusters. Finally, JUICE is an ESA mission that aims to investigate Jupiter and three

of its icy moons in order to determine if they have the potential to support life.

In the final sections of the chapter, two existing communication networks were

described and compared to SpaceWire-D. The first, MIL-STD-1553, is a US military

standard originally published in 1975 with a revision, MIL-STD-1553B, published in

1978. It is a bus architecture that uses a single bus controller to send messages to

remote terminals at a data-rate of up to 1 Mbit/s. The second, CAN, is a standard

59

originally developed for the automotive industry. Again, it is a bus architecture and

uses a message identifier arbitration system to allow all nodes to act as transmitters

and compete for prioritised access to the network. Both of these networks have been

extended for use in space by ECSS standardisation.

60

Chapter 3

Research Questions

SpaceWire-D is a deterministic extension to the SpaceWire protocol that uses time-

division multiplexing, a virtual bus abstraction and scheduling to allow payload and

real-time traffic to share a network. The main research aim is to answer the following

question:

How can the SpaceWire-D protocol be used to fulfil the bandwidth requirements of a

space mission?

As SpaceWire-D is a new technology, it is necessary to explore how to design an

efficient SpaceWire-D software layer and how to prototype a system that utilises the

protocol. In addition, once a prototype system has been designed, an investigation in

to how the protocol can be used to meet the demands of a space mission is required.

Therefore, the main research question above was further divided into three sub-

questions which are listed in the following sections along with a description of how

they will be answered.

3.1 Research Questions

The research questions are as follows:

61

3.1.1 Designing a SpaceWire-D Software Layer

Question 1: How can an efficient SpaceWire-D software layer be designed on top of

existing SpaceWire devices?

An initiator that is using the SpaceWire-D protocol must minimise the section of each

time-slot consumed by the software overhead of the protocol in order to maximise the

available time spent executing RMAP transactions. In addition, the design of the

SpaceWire-D layer must take into account the deterministic requirements of a system

utilising the protocol as well as the relatively low amount of memory and CPU power

available in an on-board computer.

In Chapter 4, an efficient SpaceWire-D software layer is described, built on-top of the

RTEMS real-time operating system and running on a LEON2-FT based processor

board. RTEMS support for the processor board was required so the chapter begins by

explaining how the operating system was ported to the board based on existing LEON

support in the RTEMS source tree.

After RTEMS was successfully running on the processor board, a SpaceWire-D

software layer was designed to allow on-board software to open, load and close virtual

buses which are executed during each time-slot. The time-slot processing in the

SpaceWire-D layer went through several designs until the initiator processing time

was reduced to a suitable level.

3.1.2 Designing a SpaceWire-D Demonstrator

Question 2: How can a system using the SpaceWire-D protocol be prototyped in order

to demonstrate the standard?

62

After the SpaceWire-D layer was designed for a single initiator board, a prototype

SpaceWire-D system was designed in order to test the protocol in a representative

spacecraft on-board data-handling network.

In Chapter 5, the design of a SpaceWire-D Demonstrator is described. The system

consists of two LEON2-FT based processor boards acting as the initiators, three

RMAP interface boards each containing four RMAP targets, a network manager

board, two router boards and a host PC processor board. The host PC runs a suite of

software used to configure, control and monitor the other devices on the network.

During this activity, a time-slot triggered scripting system was designed in order to

automate tests using the SpaceWire-D Demonstrator. A description of three example

scripts is given and the results from running the automated tests are presented and

described in Chapter 6. This system and the Demonstrator were used to create and run

all of the tests during the verification activity of the ESA SpaceWire-D project and the

Demonstrator was delivered to ESA and installed at ESTEC.

3.1.3 Scheduling SpaceWire-D Networks

Question 3: How can a SpaceWire-D mission’s bandwidth requirements be

represented and satisfied computationally?

After SpaceWire-D was prototyped in a full system, scheduling mechanisms for space

missions were explored. The scheduler takes a network specification consisting of a

list of bandwidth requirements, a network topology and network parameters. The

scheduler then transforms the specification into a selection of paths between initiators

and targets and an allocation of transactions into time-slots to form the required virtual

buses and network schedule.

63

Firstly, SpaceWire-D scheduling was formalised by describing the different types of

bandwidth requirements, the network topology format, the network parameters used

to calculate RMAP execution times and the format of a solution. Secondly, methods

for selecting the paths between the initiators and targets were explored in order to

attempt to reduce the number of possible collisions between initiator/target pairs.

Thirdly, methods for allocating periodic and aperiodic bandwidth requirements were

designed and the problem of allocating payload data bandwidth requirements was

transformed into a variation of the classic bin-packing problem. The scheduling

algorithm was then evaluated on a suite of test cases as well as a case study of the

JUICE mission.

3.1.4 Summary

In this chapter, the research questions were listed and a description of how they were

answered was given. The research started by looking at how a SpaceWire-D software

layer could be designed using a LEON2-FT based processor board on top of the

RTEMS real-time operating system. Next, two initiators using the SpaceWire-D

software layer were combined with several target boards, a network manager, routers

and a host PC running a suite of programs to create a prototype SpaceWire-D system

that was used to demonstrate and verify the SpaceWire-D standard. Lastly, scheduling

mechanisms were explored to allow SpaceWire-D to satisfy the bandwidth

requirements of space missions. Missions are specified as a list of bandwidth

requirements, a network topology and a list of network parameters. The scheduler then

transforms the specification into a set of paths between initiators and targets and a

SpaceWire-D network schedule.

64

Chapter 4

SpaceWire-D Software Layer

In order to evaluate, verify and demonstrate the SpaceWire-D protocol, a prototype

system needed to be designed and created to integrate initiators, targets, routers and

analysis devices into a SpaceWire network using real, standard-conforming

equipment. The system consists of multiple devices taking on the various roles within

a SpaceWire-D network, one such role being that of the initiator. Initiators are

responsible for controlling all traffic within the SpaceWire-D network. They transmit

RMAP commands based on a schedule, and they process RMAP replies returned from

target devices.

If a SpaceWire-D network is to operate efficiently and responsively, the SpaceWire-

D layer within each initiator must be designed to reduce software overhead. This

means minimising the processing time required for an initiator to begin executing

transactions when a time-code is received. This reduces the delay at the start of each

time-slot and increases the percentage of each time-slot available to the initiators to

execute transactions.

This chapter describes the design of a SpaceWire-D layer running on top of the Real-

Time Executive for Multiprocessor Systems (RTEMS) (The RTEMS Project 2017)

real-time operating system (RTOS). The SpaceWire-D layer executes within each of

65

the LEON2-FT processor boards, provided by STAR-Dundee, acting as initiators in

the SpaceWire-D prototype system.

4.1 Overview

The initiator is a multi-layered system comprising of the LEON2-FT processor board

hardware at the lowest layer, including the embedded peripherals that allow the

initiator to communicate with other devices. Above that is the RTEMS and driver

layer, connecting the hardware to the software through registers and interrupts. Next

is the SpaceWire-D layer which implements the protocol and provides an application

programming interface (API) to the final layer, the application. The multi-layered

system is illustrated in Figure 4-1.

Figure 4-1: Initiator Layers

66

In Figure 4-1, each layer talks to the layers immediately above and below. All

SpaceWire traffic travels through links connected to the SpaceWire router and one of

the SpaceWire or RMAP engines. This causes a change in one or more status registers

as well as an interrupt to be raised. The interrupt may or may not be signalled to the

RTEMS board support package (BSP) depending on if the specific interrupt has been

enabled. If an interrupt is signalled to the BSP, the operating system’s interrupt handler

is responsible for calling a peripheral driver’s interrupt service routine (ISR) which

handles it then clears the interrupt.

The SpaceWire-D layer issues system calls to the RTEMS layer to deal with operating

system constructs such as semaphores and invokes driver functions to perform IO

operations or configure hardware.

Between the SpaceWire-D layer and the application, an API is provided to allow the

user to call the various services of the SpaceWire-D protocol such as opening, loading

and closing different types of virtual buses and configuring management parameters.

A more in-depth description of the LEON2-FT processor board at the hardware layer

is given in Appendix 1. The following sections provide a description of the RTEMS

BSP then the SpaceWire-D layer.

4.2 RTEMS Board Support Package

RTEMS is a real-time operating system, meaning that it prioritises predictability,

precise scheduling of tasks and the satisfaction of temporal constraints over raw power

and generality (Stankovic and Rajkumar 2004). The design and development of

RTEMS began as a United States Army Missile Command project in 1988. It has since

grown into a free and open-source software project used in a variety of industries

including military, space and automotive (The RTEMS Project 2015).

67

Compared to large, general-purpose operating systems like Windows or Linux,

RTEMS has a relatively small set of features. It provides real-time task scheduling

algorithms, standard data structures and a range of libraries for providing common

operating system mechanisms such as synchronisation, inter-task communication and

event-handling.

Real-time systems are usually built for a specific purpose and embedded in an

environment to run for long periods of time. This might mean that a specialised

hardware configuration was designed for the system’s mission. If so, a layer of

software is required to connect the different parts of the operating system to the

hardware. This layer is known as a board support package, and RTEMS provides a set

of guidelines to aid in the design of BSPs for different hardware configurations. An

RTEMS software project is the combination of the RTEMS operating system, the BSP

and the application code.

4.2.1 RTEMS in Space

NASA Goddard Space Flight Center (GSFC) developed a platform independent

software framework called the Core Flight Executive to promote reusability and

standardisation during the creation of flight software (McComas 2012). RTEMS is

one of the three operating systems supported by the framework alongside VxWorks

and Linux.

EADS Astrium developed two versions of a space-qualified version of RTEMS by

performing source code verification, extensive testing and documentation before

arriving at what they call RTEMS Product 1.0 and RTEMS Product 1.0.1 (Rossignol

and Seronie-Vivien 2012). RTEMS Product Version 1.0 for the ERC32 platform was

used in TerraSAR X, Pleiades, and SMOS Instrument. Version 1.0.1 for the ERC32

68

platform was used in Galileo IOV, Aeolus, Lisa PF, Bepi Colombo, Sentinel 2 and

Earthcare. The payload controller on-board Alphasat and the ExoMars rover use

Version 1.0.1 for the LEON2 processor. Finally, Spot 6, Spot 7, KRS, Sentinel 5P and

CSO use Version 1.0.1 for the LEON3 processor.

The RTEMS Project maintains a list of space missions that use RTEMS. The list

currently contains over 30 ESA and NASA missions as of October 2013 (The RTEMS

Project 2013).

As described above, RTEMS or a qualified derivative has been used in a range of

space missions. In addition, RTEMS has support for multiple LEON processor boards

included in its source tree. This made it an ideal choice to be used as the initiator

operating system in the SpaceWire-D prototype system.

4.2.2 Porting Process

To port RTEMS to a new hardware system, the intended version of the operating

system should first be checked for existing support. RTEMS may already support the

processor architecture, the specific system-on-chip or any embedded peripherals. If a

BSP or drivers exist for the required hardware, it may be possible to reuse some or all

of the software without creating it from scratch.

4.2.2.1 Existing LEON Support

The SPARC architecture and LEON processor family has extensive support within

RTEMS. This is demonstrated by the use of a SPARC instruction simulator for GDB

in the example tutorials and the existence of BSPs for LEON1, LEON2 and LEON3

boards.

However, the LEON2-FT processor board used in the SpaceWire-D prototype system

is quite different from the board in the existing LEON2 BSP. The registers and

69

memory architecture are different as are most of the embedded peripherals. This meant

that it was simpler to create a new BSP using the shared SPARC functionality, with

the existing LEON2 BSP as a starting-point and reference.

4.2.2.2 Cross-Compiling Toolchain

A cross-compiler takes a program written in a high-level programming language like

C, and translates it into an executable and linkable format (ELF) file for a specific

architecture. The compiler framework used in the RTEMS project is the GNU

Compiler Collection (GCC) (Stallman 2001). For the creation of the LEON2-FT

processor board BSP and SpaceWire-D layer, the Windows port of GCC, MinGW

(MinGW 2015), was used for cross-compilation.

4.2.2.3 Loading and Debugging

The LEON2-FT processor provides hardware debug support through its debug

communications link (DCL) and debug support unit (DSU). The DCL uses the

processor’s dedicated debug UART and a simple protocol to allow an external device

to read and write to the processor’s on-chip memory or any other device connected to

the Advanced High-Performance Bus (AHB). The DSU provides common debugging

operations such as setting breakpoints and stepping through execution.

To utilise the debugging and loading capabilities of the LEON2-FT, the STAR-

Dundee STAR-Gate (STAR-Dundee Ltd 2015) software is used. STAR-Gate is a

GDB RSP program and a USB-to-UART bridge is used to connect the development

and debugging PC to the LEON2-FT processor board’s debugging UART.

The process to load a program from a development environment host to the target

LEON2-FT processor board is illustrated in Figure 4-2.

70

Figure 4-2: Loading an RTEMS Program to the LEON2-FT

In Figure 4-2, the loading process begins at the development environment host where

a program has been written in C. Next, the high-level code is sent to the cross-compiler

and linked to any required RTEMS libraries, resulting in an ELF file. The next step is

to connect GDB to the STAR-Gate service and issue a GDB load command. GDB

then parses the ELF file and sends a series of commands to the STAR-Gate service

which are translated into RSP commands and sent to the LEON2-FT DSU via the

UART connection. These commands write each section of the program to the correct

location in memory. When the loading process is complete, the host is able to execute

and debug the program using GDB commands, translated by STAR-Gate into further

interactions with the DSU.

4.2.3 Creating the BSP

To create a BSP for a new SPARC architecture board, a directory must be created in

the libbsp/sparc section of the RTEMS source tree. This new directory stores all of the

configuration files, scripts and source files which make up the BSP.

4.2.3.1 Configuration Files

There are two configuration files required to support the automake and autoconf tools

used in the RTEMS project to configure and build a BSP. In the LEON2-FT processor

board BSP, the autoconf file is a simplified version of the file from the existing

71

LEON2 BSP, and the automake file is a modified version of the file from the existing

LEON2 BSP. The automake file has been changed to refer to the source code files in

the new BSP and add the “-mcpu=v8” compiler flag to enable the hardware multiply

and division operations supported by the SPARC V8 instruction set.

4.2.3.2 Linker Command Script

A linker command script is used by the linker which, in this case, is the GNU linker

(GNU Project 2015 A), to transform a number of compiled objects into an ELF file.

This file describes where each section of the program should be placed in memory

(GNU Project 2015 B).

The memory layout of the LEON2-FT processor board used in the SpaceWire-D

Demonstrator differs from that of the existing LEON2 BSP board. In addition, the

SpaceWire-D layer’s need for memory-mapped data structures required a new linker

command script to be created.

The LEON2-FT processor board has two regions of memory. The first is 128 Kbytes

of internal SRAM which is located at memory address 0x81000000 and the second is

256 Mbytes of external DDR3 located at memory address 0x60000000. The new linker

command script instructs the linker that the executable code and initialised data should

be loaded into the internal memory region. The memory-mapped data structures,

uninitialized data, RTEMS workspace and the program stack should use the external

memory region.

The external memory requires the LEON2-FT memory configuration registers to be

set to specific values before it is enabled. Therefore, it is necessary to place the

executable code and initialised data into the internal memory region because those

sections require writing values to memory. The memory configuration registers have

72

their values set during execution of the board initialisation code. Therefore, the code

is loaded into internal memory which does not require enabling via memory

configuration registers.

The RTEMS operating system combined with the SpaceWire-D layer take up the

majority of the 128 Kbytes of internal memory. After the external memory has been

enabled during board initialisation, the remaining program sections are placed in the

external memory.

The layout of an RTEMS program using this BSP is illustrated in Figure 4-3.

Figure 4-3: RTEMS Program Memory Layout

As shown in Figure 4-3, any program sections that require values to be written to

memory i.e. the executable code and initialised data, are loaded into the 128 Kbytes

of internal memory. Any unused space extends from the end of the initialised data

section to the top of the internal memory region at address 0x8101FFFF. In the 256

Mbytes of external memory, the memory-mapped data structures are located at the

bottom of the memory region at address 0x60000000. This is followed by any

73

uninitialized data, the RTEMS workspace and the program stack. The downward-

growing program stack is allocated a 1 Mbyte region at the top of the external memory

region and the RTEMS workspace, containing the operating system data structures

and the heap, extends to fill any memory unused by the other sections.

4.2.3.3 Board Initialisation

The board initialisation process is the very first section of code that executes when a

board is reset and is historically known as the crt0 file, meaning the C runtime zero

file. Within many of the BSPs in the RTEMS project it is called the start.S file. The

crt0 or start.S file is architecture dependent and it is usually written in assembly

language. Its purpose is to configure hardware, initialise memory and perform any

operating system initialisation that is required before the user application is called.

On the SPARC V8 architecture, the start.S file begins with a trap table which is a list

of instructions, four for each type of trap. When an interrupt is raised or the processor

detects an exceptional circumstance that must be handled by software, the program

counter jumps to the trap’s location in the trap table. The four instructions for each

trap in the table might contain a function call to an interrupt vectoring routine if an

interrupt is raised or, if the trap is an unrecoverable error, the instructions may cause

the processor to halt.

The first trap is the board reset trap and tells the processor to jump to the instruction

directly after the trap table where the initialisation code is located. The processor

registers are then set to their initial values and any hardware that requires initialisation,

such as the external memory, is configured. Programs written in C expect uninitialized

data to be zeroed and because the initial value of memory may be undefined, the next

step is to clear the entire uninitialized data section, referred to as the bss section.

74

Finally, the RTEMS initialisation function is called which initialises all of the

operating system data structures, calls any device driver initialisation functions,

creates the idle task then starts the user application.

The board initialisation file used in the LEON2-FT processor board BSP is a modified

version of one provided by STAR-Dundee from the SPARC V8 Software

Development Environment (STAR-Dundee Ltd 2015). The file was changed to

configure the trap table to call the correct trap handlers, enable the external memory

and call the RTEMS initialisation routine.

4.2.3.4 Interrupt Vectoring

When an interrupt is raised to the processor it causes the processor to trap into

software. This makes the program counter jump to an entry in the trap table starting at

the address indicated by the value of the SPARC Trap Base Register (TBR). In the

LEON2-FT processor board BSP, the TBR is initialised to the value 0x81000000

which is the lowest address of the internal memory region.

Each of the interrupt trap entries in the trap table, from 0x11 to 0x1F, contain a

function call to the RTEMS ISR handler. The ISR handler then looks up a table of

ISRs and, if an ISR has been installed for a specific interrupt number, the ISR handler

vectors the interrupt to the corresponding ISR. It is then the responsibility of the ISR

to handle and clear the interrupt.

In the LEON2-FT processor board, each SpaceWire protocol engine shares a single

processor level interrupt. In the RTEMS ISR handler, which is part of the operating

system and doesn’t know about specific peripherals, there is no way to discern if the

SpaceWire protocol engine interrupt was raised by one of the DMA channels, the

RMAP initiator or the RMAP target.

75

Once method of dealing with a shared interrupt is to demultiplex it by calling an ISR

for each of the possible sources of the interrupt where each ISR only deals with their

own interrupts. However, this results in code duplication in each ISR and wasted

function calls if an ISR is called unnecessarily. A simple way to solve this problem is

to install a demultiplexing ISR handler as the ISR for SpaceWire protocol engine

interrupts. The demultiplexing ISR handler is responsible for checking which

components of the engine are causing the interrupts and forwarding them to the

corresponding drivers or second-level ISRs.

To do this, a SpaceWire ISR table is created which has entries for the DMA engines,

RMAP initiators and RMAP targets for each of the SpaceWire protocol engines. The

entries are pointers to second-level ISRs which can be installed or uninstalled. During

RTEMS initialisation, the SpaceWire ISR handler is installed as the ISR for all three

SpaceWire protocol engine interrupts. When one of the SpaceWire protocol engines

raises an interrupt to the processor, the SpaceWire ISR handler is called which checks

the source engine of the interrupt and which component of the engine it came from.

The interrupt is then forwarded to the corresponding second-level ISR via the entry in

the SpaceWire ISR table. If more than one component raises an interrupt at the same

time, each is forwarded to the corresponding second-level ISR. The SpaceWire

interrupt vectoring process is illustrated in Figure 4-4.

76

Figure 4-4: SpaceWire Protocol Engine Interrupt Vectoring

In Figure 4-4, two interrupts have been raised at the same time by separate components

of the SpaceWire protocol engine: DMA channel 0 and the RMAP initiator. The two

interrupts are combined into a single interrupt by the SpaceWire protocol engine which

is then raised to the LEON2-FT processor. The initial interrupt is handled by the

RTEMS ISR handler which calls the SpaceWire ISR handler. The possible sources of

the interrupts are checked and forwarded to the corresponding second-level ISRs by

calling the entries in the SpaceWire ISR table.

Handling the vectoring of SpaceWire protocol engine interrupts in this manner

removes the need for the individual ISRs to check if they are the source of a shared

interrupt. This results in the minimum number of ISR calls per shared interrupt rather

than calls to the ISR of each possible source.

77

Using interrupts introduces problems such as interrupt overload, where interrupt

handling starves tasks, resulting in missed deadlines. It also increases the difficulty of

calculating the stack memory requirements due to nested interrupts. Furthermore, it

increases the complexity of worst-case execution time (WCET) analysis because of

the asynchronous and non-deterministic nature of interrupts (Regehr 2007). Interrupts

are necessary if an event must be dealt with as soon as possible after it occurs and a

state-monitoring task is not suitable (Kopetz, Real-Time Operating Systems 2011).

However, in real-time systems, especially critical systems like spacecraft, non-

essential interrupts should be used sparingly to minimise sources of non-determinism.

4.2.3.5 Example: Ticker

The RTEMS test suite includes a program called Ticker to test that the basics of a BSP

are working. The program creates three tasks: TA1, TA2 and TA3 and schedules them

to print a message every 5, 10 and 15 seconds respectively until 30 seconds have

passed.

Running the Ticker program demonstrates that:

1. The cross-compiling toolchain has been setup correctly to:

a. Compile RTEMS and the BSP

b. Link applications with RTEMS and the BSP

c. Load a program to the board

d. Execute and debug a program

2. The board and RTEMS are initialised at the start of execution

3. The application is able to create and run tasks

4. The application can use the C standard library to print to standard output

5. Multiple tasks can be created and switched between

78

6. The LEON2-FT timer is generating interrupts which are being vectored to the

RTEMS clock driver, allowing for a system-wide clock tick

After the operating system libraries, the BSP and the sample applications have been

compiled, the first step in running the Ticker program is to connect to the LEON2-FT

processor board with STAR-Gate so it can be used as the GDB RSP server, as shown

in Figure 4-5.

Figure 4-5: Using STAR-Gate to Connect to the LEON2-FT Processor Board

In Figure 4-5, a Windows terminal is used to issue a command to execute STAR-Gate,

targeting a LEON2 board using serial port 3 with no default initialisation. The output

received from this command shows that the connection was successful. In addition, it

displays the values of some of the processor’s registers, information about the register

windows and caches, and the processor clock rate. Once executed, STAR-Gate runs

as a service and waits for commands from GDB.

Once the STAR-Gate GDB RSP server is running, it can be connected to and a

program can be loaded using GDB.

79

To view the output of the program, a serial port terminal can be used to receive any

bytes transmitted over the UART. In this case, a simple freeware program called

Termite (CompuPhase 2015) is used, as shown in Figure 4-6.

Figure 4-6: Ticker Program UART Output

In Figure 4-6, Termite is used to connect to the LEON2-FT DSU UART using a baud

rate of 115200, 8 data bits, no parity bits and 1 stop bit. After issuing an execution

command in GDB, the output of the Ticker program is captured in Termite and

displayed as ASCII characters.

4.3 SpaceWire-D Layer

The SpaceWire-D layer consists of a number of modules written in the C language

and running on top of the RTEMS real-time operating system and the LEON2-FT

processer board BSP described in the previous sections. It handles the receiving of

time-codes, the execution of time-slots and virtual buses, local-timer synchronisation,

80

error detection and reporting, user notifications. It also provides an API to the user

application to open, load and close virtual buses as well as configure the network

management parameters.

Determinism was of high-priority when designing the SpaceWire-D layer so the

software uses no dynamic memory so that the memory footprint is well defined. In

addition, after several iterations of the time-code receiving and time-slot execution

process, no interrupts are used.

4.3.1 Architecture

A block diagram illustrating the top-level software architecture of the SpaceWire-D

layer is shown in Figure 4-7.

Figure 4-7: SpaceWire-D Layer Software Architecture

The following sections describe each block of Figure 4-7.

4.3.1.1 Application

The Application is responsible for initialising the SpaceWire-D layer and executing

the control loop which is used to detect when a new time-slot should begin and when

commands have been sent to the initiator by a configuration program, as described in

Section 5.6.1. When a new time-slot is detected, either by a time-code or by local-

81

timer synchronisation, the dispatcher is told to execute the new time-slot. When a

command is detected, it is passed to the command handler for execution.

4.3.1.2 API

The API provides functions for each service of the SpaceWire-D standard that can be

called by a user application:

• Get/set parameters using the Management Service.

• Open/load/close static buses using the Static Bus Service.

• Open/load/close dynamic buses using the Dynamic Bus Service.

• Open/load/close asynchronous buses using the Asynchronous Bus Service.

• Open/close packet buses and receive/send packets packet buses using the

Packet Bus Service.

4.3.1.3 Script Interpreter

The Script Interpreter executes time-code synchronised commands on behalf of the

SpaceWire-D Demonstrator user, as described in Section 5.2.1.

4.3.1.4 Script

The Script is a data structure representing the time-triggered commands written by the

SpaceWire-D Demonstrator user, as described in Section 5.2.1. It is divided into 64

different arrays of commands, one for each time-slot.

4.3.1.5 Command Handler

The command handler is responsible for executing commands sent by the SpaceWire-

D Demonstrator user, as described in Section 5.6.1.

82

4.3.1.6 RMAP Driver

The RMAP Driver initialises the hardware RMAP initiator engine and is used by the

Dispatcher to initiate groups of RMAP transactions.

4.3.1.7 Dispatcher

The Dispatcher is responsible for controlling the time-slot execution process, as

described in Section 4.3.4.

4.3.1.8 Error Handler

The Error Handler holds a list of errors which are reported to the Network Manager at

the end of each schedule epoch. Each error is a 32-bit value which contains the error

type, the time-slot in which it occurred and a transaction ID if relevant.

4.3.1.9 Notification Handler

The Notification Handler holds an inbox of notifications which the user can use to

read the latest events that have occurred.

4.3.1.10 Schedule

The Schedule data structure contains arrays of each type of virtual bus and it has an

array of schedule entries which represent the virtual bus assigned to each time-slot.

4.3.1.11 Control

The Control data structure contains the initiator and target parameters which can be

configured using the Management Service.

4.3.1.12 Memory Map

The Memory Map is used to lay out the Control and Schedule data structures in

contiguous memory at a pre-determined address so that it can be read from and written

to directly by a remote device.

83

4.3.1.13 Static Bus

The Static Bus data structure is used by the Static Bus API to create and assign Static

Buses to the schedule. It can be loaded with a single transaction group which is

executed in the next occurrence of its allocated slot and can be in one of two modes:

single-shot or repeated.

4.3.1.14 Dynamic Bus

The Dynamic Bus data structure is used by the Dynamic Bus API to create and assign

Dynamic Buses to the schedule. It can be loaded with two transaction groups; the

current group is executed in the next allocated slot after which the next group becomes

the current group.

4.3.1.15 Asynchronous Bus

The Asynchronous Bus data structure is used by the Asynchronous Bus API to create

and assign Asynchronous Buses to the schedule. It can be loaded with single

transactions which are held in a prioritised queue. In the time-slot preceding an

allocated slot, a subset of transactions is pulled from the head of the queue and

executed in the following slot.

4.3.1.16 Packet Bus

The Packet Bus data structure is used by the Packet Bus API to create and assign

Packet Buses to the schedule. It can be loaded with requests to send or receive packets

from a remote target device, which is implemented in three stages: first the Packet Bus

checks if the relevant target’s packet channel is ready to receive or send a packet, next

the packet is transferred between the initiator and target in one or more segments and

finally the Packet Bus writes an EOP to the target’s packet channel to indicate that the

operation is complete.

84

4.3.1.17 Asynchronous Queue

The Asynchronous Queue is used by the Asynchronous Bus to extract a transaction

group for execution from the set of single loaded transactions. When an Asynchronous

Bus is loaded with a transaction, the transaction is inserted into the queue with the

requested priority level. In the time-slot preceding one allocated to the Asynchronous

Bus, transactions are pulled from the head of the queue until their combined execution

time fills the slot, forming the transaction group to be executed in the following slot.

4.3.1.18 Packet Queue

The Packet Queue is used by the Packet Bus to extract a transaction group for

execution from the set of loaded packet transfer requests. When a Packet Bus is loaded

with a packet transfer request, the request is inserted into the queue with the requested

priority level. In the time-slot preceding one allocated to the Asynchronous Bus, a set

of channel status requests, packet segment transactions or EOPs are pulled from the

head of the queue until their combined execution time fills the slot, forming the

transaction group to be executed in the following slot.

4.3.1.19 Packet Operation

The Packet Operation data structure describes a single Packet Bus packet receive/send

request. The operation holds data such as the target logical address, the packet channel

identifier and the current stage of the request which is used by the Packet Queue to

form a transaction.

4.3.1.20 Transaction

The Transaction data structure describes a single RMAP transaction including the

read/write buffer locations, notification buffer locations and the header values.

85

4.3.1.21 Transaction Group

The Transaction Group data structure contains an array of RMAP transactions.

4.3.2 Virtual Buses

There are four types of virtual bus: static, dynamic, asynchronous and packet. Each

type of bus inherits from a shared virtual bus data structure containing an ID, an

application handle, a 64-bit allocated time-slot vector and a 224-bit permitted target

vector. The bit vectors are used in place of lists of bytes because they do not require

any dynamically allocated memory and they require less static memory than

equivalent lists of bytes.

Static buses extend the shared virtual bus data structure with a static bus mode value,

which is set to either single-shot or repeating, and a pointer to an RMAP transaction

group. Dynamic buses extend the shared virtual bus data structure with two pointers

to RMAP transaction groups; one for the current group and one for the next group.

Asynchronous and packet buses extend the shared virtual bus data structure with their

own specialised priority queues containing either asynchronous bus transactions or

packet bus operations.

The priority queues are implemented as min-heaps (Cormen, et al. 2009) with a fixed

size, configurable at compile time, in order to keep a bounded memory footprint. Each

queue item has a 32-bit label consisting of a 3-bit priority level and a 29-bit counter

value which is incremented for each inserted item. This allows items to be extracted

during the asynchronous or packet bus preparation processes and re-inserted at the

same position, if required. In the time-slot preceding any allocated to an asynchronous

or packet bus, a transaction group is prepared by processing the priority queue

belonging to the bus.

86

For an asynchronous bus, the preparation process involves extracting the transactions

from the head of the queue and checking if they will fit within the next time-slot’s

duration. If a transaction fits, it is added to the transaction group, otherwise it is

ignored. When all of the queue’s transactions have been checked, any ignored

transactions are reinserted into the queue and the pre-extraction prioritised order is

maintained because of the item label.

For a packet bus, the preparation process involves extracting the operations from the

head of the queue and checking if the transaction related to the current stage of the

operation will fit within the next time-slot’s duration. A packet bus operation can be

in one of three stages. Firstly, a transaction is formed to check the status of the relevant

packet channel in the target. Secondly, one or more transactions are formed to transfer

the packet in segments. Finally, in the third stage, a transaction is formed to write an

EOP to the relevant packet channel in the target. When a packet bus operation is

extracted from the queue, the relevant type of transaction is formed. If it fits within

the next time-slot, the transaction is added to the transaction group. Otherwise, the

packet bus operation is ignored and later re-inserted into the queue in the same way as

the asynchronous bus preparation process.

4.3.3 Management

There are several SpaceWire-D management parameters that can control the operation

of the initiator and are used to calculate RMAP transaction group execution times:

• Activated: indicates whether or not the initiator is currently executing its

schedule

• Logical address: the logical address of the initiator

87

• Active schedule: switches between different schedules if there are more than

one available

• Processing time: the overhead time required at the start of each time-slot

• Post-processing: the latency between an RMAP reply being received and the

next RMAP command being transmitted

• Time-slot duration: the expected duration of a time-slot

• Switching time: the router switching time

 In addition to the initiator parameters, each target has its own parameters:

• Number of routers: the number of routers in the path between the initiator

and the target

• Slowest link: the slowest link speed in the path between the initiator and the

target

• Response time: the latency between a command being received and a reply

being sent by the target

• Packet channels: the location of the packet channel data structures in the

target

For all parameters related to timing, the worst-case values should be used to make sure

that the SpaceWire-D layer is accounting for the maximum transaction execution

times.

4.3.4 Executing Time-Slots

The execution of a time-slot takes place after a time-code has been received by the

initiator and handed to the dispatcher. The dispatcher then executes a time-slot in three

stages. Firstly, the pre-execution stage reads and resets the time-code watchdog,

checks for any outstanding transactions that need to be cancelled and copies the status

88

of any completed transactions into local buffers to perform error checking in the third

stage. Secondly, the execution stage checks if there is a schedule entry for the current

slot and if so, the corresponding virtual bus is executed. Finally, the post-execution

stage checks the time-code watchdog to detect any early or late time-codes and

performs error checking on the previous slot’s transactions. Additionally, if there is an

asynchronous or packet bus allocated to the following slot, this stage performs the bus

preparation process.

4.3.4.1 Initiator Processing Time

The initiator processing time is the latency between a time-code being received by the

initiator and the first RMAP command being transmitted in a time-slot. It is important

to reduce this latency so that the maximum percentage of each time-slot can be used

to execute RMAP transactions.

In the SpaceWire-D layer, the time-slot execution process went through several

revisions in order to reduce the initiator processing time to a usable level. In order to

measure the initiator processing time, a STAR-Dundee Link Analyser Mk2 (Scott and

Parkes 2010) was placed between an initiator and an RMAP target. A STAR-Dundee

Brick Mk2 (STAR-Dundee Ltd 2017) was used as the time-code master and the

initiator schedule was configured to send RMAP commands in each time-slot which

were captured using the Link Analyser. The initiator processing time was then

measured by recording the worst observed latency, over several schedule epochs,

between a time-code being received by the initiator and the first byte of the first

transaction executed in each time-slot. The following section describes the

optimisation of the initiator processing time.

89

4.3.4.2 Optimisation

In a traditional OS device driver framework, the OS provides the user with a common

interface of system calls which, in turn, call device-specific driver functions. In POSIX

environments, these functions include the open, close, read, write and ioctl

(input/output control) calls and operate on a device file, allowing a user to interface

with a device as if it was a normal file. This approach means that the user-space

interface for drivers is standardised across all devices, allowing for a driver to be

replaced by another more easily (Corbet, Rubini and Kroah-Hartman 2005).

The SpaceWire-D layer used a multi-task and device file driver approach for the first

revision of the time-slot execution process. The full process was as follows:

1. Time-code IRQ handled by the router driver ISR

2. Router driver ISR sends the time-code event to the timer manager

3. Timer manager sends the next slot event to the dispatcher

4. Dispatcher opens the RMAP driver file

5. Dispatcher sends a queue command to the RMAP driver

6. RMAP driver copies the transactions into the driver buffers

7. Dispatcher sends a start command to the RMAP driver

8. RMAP driver executes the transaction group

The first revision of the time-slot execution process was a design with multiple tasks

that had specific purposes and a kernel-space driver that used the POSIX style user-

space interface. However, the software overhead of this design was extremely high,

with an initiator processing time of ~2.7 ms for groups of 16 transactions and ~4.7 ms

for groups of 32 transactions.

90

Although the SpaceWire-D standard does not define minimum and maximum time-

slots, the protocol is intended to be able to operate at a minimum time-slot of 1 ms and

a maximum time-slot of 1 second. Therefore, when measuring the efficiency of the

initiator processing time, it is measured in the context of the worst-case in which a

SpaceWire-D network is using 1 ms time-slots. Taking this into consideration, the

initiator processing time required improvements before it would be suitable when

using 1 ms time-slots.

To determine which sections of the time-slot execution process were causing the

initiator processing time to be so high, support for logic analyser output was added to

the LEON2-FT processor board by STAR-Dundee. A register was added that, when

written to and enabled, outputs values to a logic analyser port. The embedded software

was extended to write values to the logic analyser register at important points during

the time-slot execution process. For example, at the start of the interrupt vectoring

process; before and after context switching; before and after calling operating system

functions; and before and after calling SpaceWire-D API functions. These

measurements were then used to identify which sections of the time-slot execution

process were consuming the most time.

To measure the overall initiator processing time, a STAR-Dundee Link Analyser Mk2

(Scott and Parkes 2010) was used. The Link Analyser allowed for traffic to be captured

in both directions on a link before and after a configured trigger point. In this case, the

Link Analyser was configured to trigger on the header bytes of any packets being

transmitted out of the initiator. The initiator processing time was then defined as the

time between a time-code being received by the initiator and the first byte of the first

RMAP command transmitted by the initiator. This allowed the time-code interface

and RMAP initiator hardware overheads to be included in the initiator processing time.

91

In order to reduce the initiator processing time, the first change that was made was to

introduce a zero-copy version which used the user-supplied transaction buffers rather

than copying the transactions into the driver buffers. The intention was that this would

also keep the initiator processing time consistent no matter how many transactions

were in a group because only a single pointer to the transaction group is copied. This

change had a significant effect on the initiator processing time and reduced it to ~750

µs for all sizes of transaction groups up to the maximum of 32.

The second change that was made was to remove the device file system calls from the

process. This optimisation was identified by the logic analyser output showing a

substantial amount of processing time caused by the system calls. Normally, system

calls are required to access driver functions because user applications aren’t permitted

to access restricted memory and functions such as those found in a driver. However,

because RTEMS for the SPARC architecture operates with a flat address space,

meaning a program can access all memory, there is no hard separation between user

and kernel space. This allows the option to call the driver functions directly without

switching to kernel space. The next revision of the time-slot execution process

bypassed the system calls which further reduced the initiator processing time to ~389

µs.

Next, the event signalling was removed by using a callback function in the timer

manager instead of issuing an event. The callback function then manually resumed the

dispatch task which had suspended itself rather than waiting for the timer manager

event, reducing the initiator processing time to ~201 µs. Again, this optimisation was

identified using the timing information gathered using the logic analyser output.

92

The final version of the time-slot execution process made some additional

optimisations. Firstly, in place of a time-code receive IRQ and timer manager ISR, the

SpaceWire-D layer uses a control loop. This loop polls the time-code receive flag in

one of the router registers as well as checks the local-timer synchronisation timer, as

described in the following section. Secondly, the dispatch task was removed and the

dispatching is now done in the main task, as soon as a time-code is received. Thirdly,

the error checking and time-code watchdog was divided into a pre-execution stage,

where the corresponding status values are saved to local variables, and a post-

execution stage, where the status values are then checked. The final version using these

optimisations reduced the initiator processing time to ~90 µs. These optimisations

were identified firstly by the logic analyser timing output and secondly, during the

architecture change to use polling instead of interrupts.

In the first version of the time-slot execution process, it was possible for three levels

of nested interrupts. Interrupts could occur when time-codes were received, when

transaction groups completed execution and when the operating system clock driver

ticked. In the final version, the SpaceWire-D layer uses no interrupts in order to

increase determinism. It polls the time-code status register to determine if time-codes

have arrived, it uses status descriptors written to by the RMAP initiators rather than a

completion interrupt and the system clock driver is disabled because the local-timer

synchronisation mechanism uses polling.

4.3.5 Local-Timer Synchronisation

In order to provide redundancy in case time-codes are late or missing, SpaceWire-D

allows an initiator to synchronise the receiving of time-codes with a local timer. This

is used to automatically execute time-slots at the expected time-code intervals. The

SpaceWire-D layer uses one of the LEON2-FT processor board’s on-board timers to

93

perform the local-timer synchronisation. A rolling average of time-code intervals is

calculated which is updated whenever a time-code is received. During the SpaceWire-

D control cycle, the local-timer is checked for expiration and if it has expired, a

missing time-code error is flagged and the next time-slot is executed in the same way

as if the next time-code had been received.

4.3.6 Error Detection and Reporting

During the time-slot execution process, any transactions executed in the previous time-

slot are checked for errors which may be categorised as encoder, decoder or

incomplete transaction errors. If an RMAP command had erroneous values in its

header parameters or an error occurs resulting in the command not being able to be

sent, it is recorded as an encoder error. If an RMAP reply comes back with an error or

if an error occurs resulting in the reply not being able to be processed, it is recorded

as a decoder error. Finally, if a transaction is still outstanding when its time-slot ends,

the transaction is cancelled and an incomplete transaction error is recorded. In addition

to the RMAP errors, early or late time-code errors can be recorded by the time-code

watchdog and missing time-code errors can be recorded by the local-timer

synchronisation module.

When the errors are recorded, they are added to an error list located at a specific

memory address in the initiator which is prepended by an error count value. At the end

of each schedule epoch, this error list is reported to the network manager via an RMAP

write transaction.

The SpaceWire-D layer is responsible for detecting and recording different types of

errors and allowing them to be reported to the network manager but it doesn’t perform

94

any error isolation or recovery. This is left to the system designer to add as an

additional layer on top of SpaceWire-D or to handle in the application.

4.3.7 Notifications

The SpaceWire-D layer uses a notification queue to inform the user application of

events that occur during the execution of the schedule. Whenever a virtual bus is

executed, a transaction group is completed, a time-code error occurs or an RMAP error

occurs, a notification is formed and added to the end of the notification queue. The

user can then read the notifications at a suitable time and be updated on the status of

the schedule and transactions.

4.3.8 Testing and Verification

In order to test and verify the SpaceWire-D layer, testing was undertaken in two

separate activities. Firstly, during development of the SpaceWire-D layer, a suite of

unit tests was created to verify that the embedded software continued to work correctly

after each change. Secondly, a protocol verification activity was undertaken to ensure

that the SpaceWire-D layer was fully and correctly implemented as specified in the

SpaceWire-D standard (Parkes, Gibson and Ferrer 2015 B).

4.3.8.1 Unit Testing

A suite of unit tests was created using a minimal implementation of an xUnit style test

framework (Meszaros 2007). These tests used the SpaceWire-D user and internal APIs

to call functions with correct and incorrect parameters and validate the results. The

unit test suite was helpful in confirming that optimisation or implementation changes

in the embedded software did not introduce errors into the SpaceWire-D layer.

95

4.3.8.2 Protocol Verification

The SpaceWire-D layer was used by the initiators in the SpaceWire-D Demonstrator

used to complete the ESA SpaceWire-D protocol verification activity. The aim of this

activity was to map every clause of the SpaceWire-D standard that was possible to

explicitly verify with a test using the SpaceWire-D layer. These tests were specified

by the author in the SpaceWire-D Verification Test Specification Document

(University of Dundee 2015) which was delivered to ESA as part of the SpaceWire-D

project.

The tests consisted of multiple verification test set-ups each defined with a network

architecture, initiator schedules, time-slot mode settings, a list of test procedures and

a list of pass criteria. The test set-ups included single and multiple initiator tests, local-

timer synchronisation, time-code watchdog, target initialisation tests, static bus,

dynamic bus, asynchronous bus, packet bus tests, and fault prevention, detection and

isolation tests.

Each clause of the standard was mapped to a specific test set-up and a description of

how the pass criteria of the test verifies the clause was given. The tests were executed

by the author and the results were gathered and presented in the SpaceWire-D

Verification Report (University of Dundee 2016 A) which was then delivered to ESA

as part of the SpaceWire-D project. This activity shows that the SpaceWire-D protocol

is fully verified, possible to use and that the SpaceWire-D layer is compliant with it.

4.4 Summary

This chapter described the design of the SpaceWire-D software layer running on top

of the RTEMS real-time operating system and used to allow the LEON2-FT based

processor boards to act as SpaceWire-D initiators.

96

Firstly, the RTEMS real-time operating system was ported to the LEON2-FT

processor board by creating a board-support package based on existing LEON support

in the RTEMS source tree. The existing BSP was extended to support the different

register layout, interrupt vectoring, peripherals and memory layout of the LEON2-FT

processor board.

Next, a SpaceWire-D software layer was designed on top of the RTEMS BSP. The

layer provides the virtual buses, network management, time-slot execution, local-time

synchronisation, error detection and user notification functionality of a SpaceWire-D

initiator. In addition, it provides an API to the user application to allow it to open, load

and close virtual buses as well as configure network management parameters and

receive notifications of SpaceWire-D related activity.

The SpaceWire-D layer was used in the SpaceWire-D protocol verification activity

during the ESA SpaceWire-D project. This resulted in two deliverables to ESA: a

verification test specification (University of Dundee 2015) and a verification report

(University of Dundee 2016 A). The SpaceWire-D layer for the LEON2-FT processor

board was the first system to implement the latest version of the standard as it was

designed in collaboration with the drafting of the standard.

97

Chapter 5

SpaceWire-D Demonstrator

The SpaceWire-D Demonstrator is a system comprised of many different devices,

housed within a 19-slot PXI (PXI Systems Alliance 2004) rack. It was used to

complete the verification activity of the ESA SpaceWire-D project as well as

demonstrate the features of SpaceWire-D.

Each device has a role, either as an initiator, a target, a router, the network manager,

or the host PC running a suite of software used to configure, control and monitor the

SpaceWire-D network. There are two initiator boards, twelve targets contained within

three RMAP interface boards, two 8-port SpaceWire routers, one network manager

and one PXI system controller acting as the host PC.

This chapter describes the design of the SpaceWire-D Demonstrator and the

collaboration between the different devices contained within the Demonstrator and the

software running on the host PC.

5.1 Overview

In order to verify the SpaceWire-D standard and demonstrate its features, a

SpaceWire-D Demonstrator was required. It was specified in the SpaceWire-D D3

Demonstrator Specification Document (University of Dundee 2014) as part of the

ESA SpaceWire-D project. The document described the requirements of the initiators,

98

targets and network manager as well as the required verification and validation

software and validation test scenarios.

The SpaceWire-D Demonstrator consists of:

• Two PXI LEON2-FT processor boards acting as the initiators and controlling

the execution of all RMAP transactions

• Three PXI RMAP interface boards each containing four individual RMAP

targets with separate memory regions, resulting in a total of 12 RMAP targets

• One PXI RMAP interface board acting as the network manager used to receive

and store statistics and error information reported by the initiators

• Two PXI 8-port SpaceWire routers providing the network between the devices

• One PXI system controller running Windows 7 acting as the host PC and

running a suite of software used to configure, control and monitor the

SpaceWire-D network

A photograph of the SpaceWire-D Demonstrator is shown in Figure 5-1.

Figure 5-1: SpaceWire-D Demonstrator PXI Rack

99

In Figure 5-1, the PXI rack contains the following boards from left to right: Initiator

0, Initiator 1, Router 0, Router 1, Network Manager, Target Interface 0, Target

Interface 1 and Target Interface 2. To the left of Initiator 0, partially in shot, is the

Host PC.

There are 11 SpaceWire 0.5m cables providing the network between the initiators,

targets, routers and network manager. The topology and logical addressing has been

designed so that both initiators can communicate with targets on the same target

interface board without sharing links. This allows, for example, Initiator 0 to

communicate with two targets in Target Interface 0 and Initiator 1 to communicate

with the other two targets within the same time-slot, without violating the no

conflicting virtual buses rule of SpaceWire-D. A network topology diagram for the

SpaceWire-D Demonstrator is shown in Figure 5-2.

Figure 5-2: SpaceWire-D Demonstrator Network Topology

100

In Figure 5-2, the network topology shows that Initiator 0 is connected to Router 0 and

Initiator 1 is connected to Router 1. If Initiator 0 wants to send an RMAP command

to a target, the command is routed from Router 0 to SpaceWire port 1 of the relevant

target interface board and if Initiator 1 wants to do the same, the command is routed

from Router 1 to SpaceWire port 2 of the target interface board. Commands sent to

the Network Manager from the Initiators are routed in a similar manner.

There are Link Analyser devices placed in between Initiator 0 and Router 0, and

Initiator 1 and Router 1. These devices were used to capture the traffic flowing

between the initiators and routers but they are passive and transparent. They were used

only to capture the results presented in this thesis and were not part of the final

SpaceWire-D Demonstrator deliverable.

Each of the target interface boards contains four individual RMAP targets with their

own logical addresses and regions of memory. Targets 0-3, 4-7 and 8-11 are contained

within Interface 0, Interface 1 and Interface 2, respectively. The Network Manager

uses two of its targets. The first is dedicated to receiving Initiator 0’s statistics and

error reports and the second is dedicated to receiving the reports from Initiator 1.

The SpaceWire-D Demonstrator uses logical addressing throughout the network to

route packets between nodes. Logical addressing was selected, rather than path

addressing, because it can be used to allocate an explicit address to each device. It also

increases the efficiency of the network by reducing the addressing overhead to a single

logical address byte compared to multiple path address bytes. The logical addresses

and the available memory regions of each device in the network are listed in Table

5-1.

101

Table 5-1: SpaceWire-D Demonstrator Address Scheme

Device LA Memory (Start) Memory (End)

Initiator 0 (Initiator) 0x30 N/A N/A

Initiator 0 (Target) 0x90 0x60000000 0x61000000

Initiator 1 (Initiator) 0x31 N/A N/A

Initiator 1 (Target) 0x91 0x60000000 0x61000000

Target 0 0x40 0x00000000 0x10000000

Target 1 0x41 0x00000000 0x10000000

Target 2 0x42 0x00000000 0x10000000

Target 3 0x43 0x00000000 0x10000000

Target 4 0x50 0x00000000 0x10000000

Target 5 0x51 0x00000000 0x10000000

Target 6 0x52 0x00000000 0x10000000

Target 7 0x53 0x00000000 0x10000000

Target 8 0x60 0x00000000 0x10000000

Target 9 0x61 0x00000000 0x10000000

Target 10 0x62 0x00000000 0x10000000

Target 11 0x63 0x00000000 0x10000000

Net. Man. (Target 0) 0x70 0x00000000 0x10000000

Net. Man. (Target 1) 0x71 0x00000000 0x10000000

As listed in Table 5-1, each node has a logical address and, if the node is a target, a

memory region. Each initiator board also contains a target with a 16 Mbyte region of

memory starting at address 0x60000000. Each of the targets within the target interface

boards have a 256 Mbyte region of memory starting at address 0x00000000.

Figure 5-2 also shows that the target interface boards, the Network Manager and the

Host PC are connected to the PXI bus backplane. The backplane is used by the Host

PC to read and write to target memory and receive RMAP command notifications from

the targets, as described in Section 5.6.

The interactions between the different devices are illustrated in Figure 5-3.

102

Figure 5-3: SpaceWire-D Demonstrator Interactions

As shown in Figure 5-3, each device interacts with one or more other devices in the

SpaceWire-D Demonstrator. The initiators send RMAP commands to the targets and

the targets send RMAP replies in response. The initiators report statistics and error

information to the Network Manager, which is then read by the Host PC. The Host PC

configures the initiators using RMAP commands and uploads automated test scripts

to control their operation. The targets are configured by the Host PC using a

combination of RMAP commands and memory reading/writing on the backplane. The

targets notify the Host PC whenever they execute an RMAP command.

In the following sections, each type of device is described in more detail.

5.2 Initiators

The initiators are LEON2-FT based processor boards (Parkes, McClements and

Mantelet, et al. 2013), with extensive SpaceWire support. Each board has a SpaceWire

router with eight physical ports and three external ports. The external ports are

connected to three independent SpaceWire protocol engines containing three DMA

103

controllers, an RMAP initiator and an RMAP target. The board’s hardware is

described in Appendix 1.

In addition to the embedded SpaceWire-D software layer running on the initiators,

there is a demonstrator application. The application is responsible for interpreting

scripted commands which are uploaded to the initiators by the Host PC in order to

automate test scenarios.

5.2.1 Automated Test Scripting

To allow the SpaceWire-D Demonstrator to be more flexible and simplify the loading

of test scenarios, an automated test scripting language was designed. The language

allows a user to write a script as a text file containing transaction and transaction group

information, packet bus operations and time-triggered commands to open, load and

close different types of virtual buses. These commands are executed at specific times

during the execution of the schedule.

The user can use the Host PC software to compile a script into a block of data and

instructions, which is then uploaded into initiator memory. Throughout the execution

of the SpaceWire-D Demonstrator, the initiators check the list of instructions and

execute the appropriate commands as required.

5.2.1.1 Scripting Language

The requirements of the SpaceWire-D Demonstrator scripting language were very

specific and simple. The language must allow RMAP transactions, transaction groups,

packet bus operations and buffers to be defined. It must also allow virtual buses to be

manipulated at specific times, synchronised with the receiving of SpaceWire time-

codes by the initiator executing the script.

104

Creating a small scripting language to meet these requirements was simpler than using

an existing general purpose scripting language such as Python, and has reduced

memory requirements because of its very specific nature.

There are four stages in the automated test scripting process. Firstly, a user writes a

script file. Secondly, the script file is compiled by a host PC application, using a simple

text parser, and turned into a data structure describing the transactions, transaction

groups, packet bus operations and time-slot triggered commands. Thirdly, a host PC

application writes the data structure to a pre-determined location in an initiator and

uses RMAP write transactions to configure any target data buffers as described in the

script. Finally, the initiator begins executing the time-slot triggered commands,

synchronised by the receiving of time-codes.

The data structure created by the host PC application and written to the initiator

contains up to 64 arrays of commands, one for each time-slot. At the start of the data

structure, a token is written so that the initiator can determine when a new script has

been written to the script memory address. Following this are the 64 arrays of

commands, each prefixed by a script header that describes the relevant time-slot and

the number of commands contained in the array. Each command consists of a number

of operands and an instruction describing the opcode to execute and its timing

parameters, as described in Section 0.

Without an automated scripting language, it would be necessary for a user of the

SpaceWire-D Demonstrator to write an RTEMS application for each test they want to

run. This application would then need to be loaded and executed using GDB or a

similar loader. Using the scripting language allows for scripts to be easily written

105

without knowledge of RTEMS or the embedded software, using the simple language

then modified or extended, and loaded during run-time.

5.2.1.2 Examples

In the following sections, three example scripts are described. The first is a simple

script which creates a schedule containing one static bus. The second creates a more

complex script with multiple static buses. Finally, the third script creates a schedule

containing all types of virtual buses. The scripts are executed and the results are

captured and described in Section 0.

Example Script 1 – Simple Static Bus Schedule

The first example script, listed in Figure 5-4, creates four transactions and assigns

them to two transaction groups. In time-slot 62, the initiator is instructed to open two

static buses and load them with the transaction groups.

1 // Transactions

2 transaction(0, 64, read, 32, 0x00000000, 32, 0x60000000)

3 transaction(1, 80, write, 32, 0x00000000, 32, 0x60000020)

4 transaction(2, 96, read, 32, 0x00000000, 32, 0x60000040)

5

6 // Statistics/errors transaction

7 transaction(3, 112, write, 32, 0x00000000, 2048, 0x8101B800)

8

9 // Transaction groups

10 transaction_group(0, (0, 1, 2))

11

12 // Statistics/errors transaction group

13 transaction_group(1, (3))

14

15 slot(62):

16 open_sbus(1, 0, 0, 0, 1, (64, 80, 96))

17 open_sbus(1, 0, 0, 63, 1, (112))

18

19 load_sbus(1, 0, 0, 0, 0, repeat)

20 load_sbus(1, 1, 0, 63, 1, repeat)

Figure 5-4: Example Script 1 – Simple Static Bus Schedule

In Figure 5-4, the script is divided into two sections. The first section, from lines 1 to

14, is the preamble which contains the transaction and transaction_group commands

106

used to create transactions and assign transactions to transaction groups. The second

section, from lines 15 to 20, is the time-slot triggered commands section used to

instruct the initiator to perform various actions at specific times.

The first command, on line 2, creates a transaction:

Figure 5-5: Transaction Command

In this line, the command is called “transaction” and it contains a parenthesised

parameter list with seven parameters. The first parameter is the transaction number,

used in other commands to reference this specific transaction. The second parameter

is the logical address of the target which the command will be sent to. The third

parameter is the command type, which may be “read”, “write” or “rmw”. The fourth

parameter is the key value. The fifth parameter is the target memory address i.e. the

location in the target that will be read from or written to. The sixth parameter is the

length, in bytes, of the data section of the RMAP command. Finally, the seventh

parameter is the initiator memory address i.e. the location of the buffer to read memory

into or used to write to the target.

In this example, there are four transactions. The first three, on lines 2 to 4, make up

the transaction group loaded into the static bus. The fourth transaction, on line 7,

107

contains the statistics and error information that will be reported to the Network

Manager at the end of each schedule epoch.

The command, on line 10, creates a transaction group:

Figure 5-6: Transaction Group Command

In this line, the command is called “transaction_group” and it contains a parenthesised

parameter list with two parameters. The first parameter is the transaction group

number, used in other commands to reference this specific transaction group. The

second parameter is a parenthesised list of transaction numbers, referencing any

transactions created using “transaction” commands.

In this example, there are two transaction groups. The first, on line 10, contains

transactions 0, 1 and 2. The second, on line 13, contains transaction 3.

The command, on line 15, starts a time-slot triggered command group:

Figure 5-7: Slot Command

In this line, the command is called “slot” and it contains a parenthesised parameter list

with one parameter. The parameter is the number of the time-slot which triggers any

commands contained in the group.

In this example, there is one time-slot triggered command group for time-slot 62 and

it contains four commands from lines 16 to 20.

108

The command, on line 16, opens a static bus:

Figure 5-8: Open Static Bus Command

In this line, the command is called “open_sbus” and it contains a parenthesised

parameter list containing six parameters. The first three parameters are the number of

times the command will be executed, the starting epoch and the prescaler which will

be described in detail below. The fourth parameter is the ID of the static bus, i.e. the

number of the time-slot allocated to it. The fifth parameter is the length of the virtual

bus’s slot, allowing for a slot containing multiple consecutive time-slots. Finally, the

sixth parameter is a parenthesised list of targets that the static bus is permitted to send

commands to.

The first three parameters allow for more flexibility with regards to how many times,

and when, the command is executed rather than using only the time-slot. The first

parameter is an 8-bit integer and controls how many times the command is executed.

This value is decremented upon each execution and when the number of executions

reaches zero, the command will be ignored. If the command is required to be executed

for an infinite number of times, a special value of 255 can be used. The second

parameter is an 8-bit counter that is decremented every time the relevant time-slot

occurs. If the time-slot occurs and the counter is already zero, the command is

executed and the counter is reloaded with the value of the third parameter, the 8-bit

109

prescaler. This allows a command to be executed in intervals greater than a schedule

epoch or, by setting an initial counter value, defining a delay until the command’s first

execution.

Three examples of command execution parameter values are listed in Table 5-2.

Table 5-2: Example Command Execution Parameters

Number of Executions Counter Prescaler

2 0 0

255 0 0

255 1 1

If commands with these execution parameter values were assigned to time-slot 0 in a

script, the resulting command executions would look like Figure 5-9.

Figure 5-9: Controlling Command Execution

In Figure 5-9, the diagram shows four schedule epochs containing boxes where the

commands would be executed. Each row of boxes represents the same row of

command execution parameter values from Table 5-2.

The top row shows that the first command would be executed twice in the first two

epochs and then ignored in future epochs because its execution count would be

decremented twice until it was zero. The middle row shows that the second command,

with the special execution count of 255, would be executed in every epoch. Finally,

the bottom row shows that the command is first executed in the second epoch, because

110

it has an initial counter value of 1. After this, the command is executed in every second

epoch due to its prescaler value being 1.

Controlling the execution of the commands using these parameters is advantageous

because it reduces the need for an additional timer, with the corresponding interrupts,

to time the execution of commands. Adding interrupts would result in additional

software overhead to handle them. However, because the SpaceWire-D layer is

already detecting when time-slots begin and end, the scripted commands can be

executed at the end of the SpaceWire-D layer’s time-slot execution process.

Additionally, the command execution parameters increase the flexibility of command

execution compared to only using the time-slot. For example, consider a SpaceWire-

D network where time-codes are being broadcast at a rate of 640 Hz. Using only time-

codes, commands in one time-slot could be scheduled with 100 ms between

executions. However, using the prescaler parameter, commands can be scheduled for

execution with a minimum of 100 ms and maximum of 25.6 seconds between

executions, in 100 ms intervals. Additionally, the counter parameter allows for an

initial offset of between 0 ms and 25.6 seconds, again in 100 ms intervals.

In this example script, there are two “open_sbus” commands executed once in the first

occurrence of time-slot 62. The first, on line 16, opens a static bus and allocates it

time-slot 0 with a slot size of 1 and configures the bus to be permitted to send

commands to targets 0x40, 0x50 and 0x60. The second “open_sbus” command, on

line 17, opens a static bus and allocates it time-slot 63 with a slot size of 1 and

configures the bus to be permitted to send commands to target 0x70. This is the target

within the Network Manager dedicated to receiving Initiator 0’s reported statistics and

error information.

111

The command, on line 19, loads a static bus:

Figure 5-10: Load Static Bus Command

In this line, the command is called “load_sbus” and it contains a parenthesised

parameter list containing six parameters. The first three parameters are command

execution parameters as described above. The fourth parameter is the ID of the static

bus, i.e. the first time-slot allocated to the static bus. The fifth parameter is the

transaction group number, referencing a transaction group created using a

“transaction_group” command. Finally, the sixth parameter is the static bus mode for

the loaded transaction group, which may be “repeat” for a repeating transaction group

or “single” for a single-shot transaction group.

In this example, there are two “load_sbus” commands. The first, on line 19, loads

static bus 0 with transaction group 0 in a repeating mode. The second, on line 20, loads

static bus 63 with transaction group 1, also in a repeating mode.

Example Script 2 – More Complex Static Bus Schedule

The next example script, listed in Figure 5-11, creates 13 transactions and assigns them

to four transaction groups. In time-slot 62, the initiator is commanded to open five

static buses and load them with the transaction groups.

112

1 // Transactions

2 transaction(0, 64, read, 32, 0x00000000, 32, 0x60000000)

3 transaction(1, 80, read, 32, 0x00000000, 32, 0x60000020)

4 transaction(2, 96, read, 32, 0x00000000, 32, 0x60000040)

5 transaction(3, 65, write, 32, 0x00000000, 8096, 0x60010000)

6 transaction(4, 81, write, 32, 0x00000000, 8096, 0x60012000)

7 transaction(5, 97, write, 32, 0x00000000, 8096, 0x60014000)

8 transaction(6, 66, write, 32, 0x00000000, 16384, 0x60020000)

9 transaction(7, 82, write, 32, 0x00000000, 16384, 0x60024000)

10 transaction(8, 98, write, 32, 0x00000000, 16384, 0x60028000)

11 transaction(9, 67, read, 32, 0x00000000, 256, 0x60030000)

12 transaction(10, 83, read, 32, 0x00000000, 256, 0x60030100)

13 transaction(11, 99, read, 32, 0x00000000, 256, 0x60030200)

14

15 // Statistics/errors transaction

16 transaction(12, 112, write, 32, 0x00000000, 2048, 0x8101B800)

17

18 // Transaction groups

19 transaction_group(0, (0, 1, 2))

20 transaction_group(1, (3, 4, 5))

21 transaction_group(2, (6, 7, 8))

22 transaction_group(3, (9, 10, 11))

23

24 // Statistics/errors transaction group

25 transaction_group(4, (12))

26

27 slot(62):

28 open_sbus(1, 0, 0, 0, 1, (64, 80, 96))

29 open_sbus(1, 0, 0, 16, 2, (65, 81, 97))

30 open_sbus(1, 0, 0, 32, 4, (66, 82, 98))

31 open_sbus(1, 0, 0, 48, 1, (67, 83, 99))

32 open_sbus(1, 0, 0, 63, 1, (112))

33 load_sbus(1, 0, 0, 0, 0, repeat)

34 load_sbus(1, 0, 0, 16, 1, repeat)

35 load_sbus(1, 0, 0, 32, 2, repeat)

36 load_sbus(1, 0, 0, 48, 3, repeat)

37 load_sbus(1, 1, 0, 63, 4, repeat)

Figure 5-11: Example Script 2 – More Complex Static Bus Schedule

In Figure 5-11, the script creates 13 transactions and 5 transaction groups in the

preamble. The first 12 transactions, on lines 1 to 13, consist of RMAP write or read

commands to targets on all of the target interface boards and with data lengths of 32

bytes, 256 bytes, 8 Kbytes, 16 Kbytes or 32 Kbytes. The 13th transaction, on line 16,

contains the statistics and error information that will be reported to the Network

Manager at the end of each schedule epoch. The first four transaction groups, on lines

19 to 22, each contain three transactions; one to a target on each of the three target

113

interface boards. For example, transaction group 0 contains transactions 0, 1 and 2

which are read transactions to target 64 on Target Interface 0, target 80 on Target

Interface 1 and target 96 on Target Interface 2. The final command in the preamble,

on line 25, creates the transaction group containing the statistics and error transaction.

In this example, there are 10 time-slot triggered commands, on lines 28 to 37, which

are contained within the time-slot triggered command group for time-slot 62. These

commands open five different static buses and load each of them with a different

repeating transaction group.

The five static buses are opened in time-slots 0, 16, 32, 48 and 63 and each bus is

permitted to execute transactions to three targets, one on each target interface board,

except for static bus 63. This static bus is the statistics/error bus and executes

transactions only with the Network Manager. Unlike the first example, where all buses

had a length of 1, two of the static buses in this example are allocated multi-slots.

Static bus 16 has a multi-slot with size 2, so it has been allocated time-slots 16 and 17.

This means that static bus 16 can be loaded with a transaction group that has an

execution time of up to two time-slots. Similarly, static bus 32 has a multi-slot with

size 4, so it has been allocated time-slots 32 to 35 and can be loaded with a transaction

group lasting up to 4 time-slots. The open_sbus commands are executed once in the

first occurrence of time-slot 62 and then ignored for the remaining schedule epochs.

Each of the first four static buses are loaded with a transaction group containing three

transactions, one to each of the permitted targets for each bus. The fifth, static bus 63,

is loaded with a statistics/error information transaction as described in the previous

example. Static bus 0 is loaded with a repeating transaction group containing three 32-

byte read transactions to targets 64, 80 and 96. Static bus 16 is loaded with a repeating

114

transaction group containing three 8 Kbyte write transactions to targets 65, 81 and 97.

Static bus 32 is loaded with a repeating transaction group containing three 16 Kbyte

write transactions to targets 66, 82 and 98. Finally, static bus 48 is loaded with a

repeating transaction group containing three 256 byte read transactions to targets 67,

83 and 99. The load_sbus commands are executed once, as they load repeating

transaction groups, in the first occurrence of time-slot 62 and then ignored for the

remaining schedule epochs.

Example Script 3 – Multiple Different Types of Buses

The last example script, listed in Figure 5-12, creates many transactions, transaction

groups and packet bus operations. In time-slot 62, the initiator is commanded to open

two static buses, one dynamic bus, one asynchronous bus and one packet bus. This is

in addition to static bus 63 which is used to report statistics and error information to

the network manager. During the execution of the script, the static buses are loaded

once with a repeating transaction group, the dynamic bus is loaded repeatedly with

three different transaction groups, the asynchronous bus is loaded every second with

prioritised transactions and the packet bus is loaded every second with prioritised

packet bus operations.

1 // Static bus transactions

2 transaction(0, 64, read, 32, 0x00000000, 1024, 0x60000000)

3 transaction(1, 65, read, 32, 0x00000000, 1024, 0x60000400)

4 transaction(2, 66, read, 32, 0x00000000, 1024, 0x60000800)

5 transaction(3, 67, write, 32, 0x00000000, 1024, 0x60000000)

6 transaction(4, 80, write, 32, 0x00000000, 1024, 0x60000400)

7 transaction(5, 81, write, 32, 0x00000000, 1024, 0x60000800)

8

9 // Dynamic bus transactions

10 transaction(6, 64, read, 32, 0x00010000, 1024, 0x60010000)

11 transaction(7, 65, read, 32, 0x00010000, 1024, 0x60010400)

12 transaction(8, 66, read, 32, 0x00010000, 1024, 0x60010800)

13 transaction(9, 67, write, 32, 0x00010000, 1024, 0x60010000)

14 transaction(10, 80, write, 32, 0x00010000, 1024, 0x60010400)

15 transaction(11, 81, write, 32, 0x00010000, 1024, 0x60010800)

16 transaction(12, 67, read, 32, 0x00010000, 1024, 0x60020000)

17 transaction(13, 80, read, 32, 0x00010000, 1024, 0x60020000)

115

18 transaction(14, 81, read, 32, 0x00010000, 1024, 0x60020000)

19

20 // Asynchronous bus transactions

21 transaction(15, 64, read, 32, 0x00020000, 1024, 0x60030000)

22 transaction(16, 65, read, 32, 0x00020000, 1024, 0x60030400)

23 transaction(17, 66, read, 32, 0x00020000, 1024, 0x60030800)

24 transaction(18, 67, write, 32, 0x00020000, 1024, 0x60030C00)

25 transaction(19, 80, write, 32, 0x00020000, 1024, 0x60031000)

26 transaction(20, 81, write, 32, 0x00020000, 1024, 0x60031400)

27

28 // Packet bus transactions

29 pbus_operation(0, 64, 0, 32, 1024, 0x60040000)

30 pbus_operation(1, 65, 0, 32, 1024, 0x60041000)

31 pbus_operation(2, 66, 0, 32, 1024, 0x60042000)

32 pbus_operation(3, 67, 0, 32, 1024, 0x60043000)

33 pbus_operation(4, 80, 0, 32, 1024, 0x60044000)

34 pbus_operation(5, 81, 0, 32, 1024, 0x60045000)

35

36 // Statistics/errors transaction

37 transaction(21, 112, write, 32, 0x00000000, 2048, 0x8101B800)

38

39 // Transaction groups

40 transaction_group(0, (0, 1, 2))

41 transaction_group(1, (3, 4, 5))

42 transaction_group(2, (6, 7, 8))

43 transaction_group(3, (9, 10, 11))

44 transaction_group(4, (12, 13, 14))

45

46 // Statistics/errors transaction group

47 transaction_group(5, (21))

48

49 slot(62):

50 open_sbus(1, 0, 0, 0, 1, (64,65,66,67,80,81))

51 open_sbus(1, 0, 0, 2, 1, (64,65,66,67,80,81))

52 open_dbus(1, 0, 0, (8, 10, 12), 1, (64,65,66,67,80,81))

53 open_abus(1, 0, 0, (16, 18, 20), 1, (64,65,66,67,80,81))

54 open_pbus(1, 0, 0, (32, 34, 36), 1, (64,65,66,67,80,81))

55

56 open_sbus(1, 0, 0, 63, 1, (112))

57

58 load_sbus(1, 0, 0, 0, 0, repeat)

59 load_sbus(1, 0, 0, 2, 1, repeat)

60

61 load_sbus(1, 1, 0, 63, 5, repeat)

62

63 slot(7):

64 load_dbus(255, 0, 0, 8, 2)

65

66 slot(9):

67 load_dbus(255, 0, 0, 8, 3)

68

69 slot(11):

70 load_dbus(255, 0, 0, 8, 4)

71

72 slot(14):

73 load_abus(255, 0, 9, 16, 15, 5)

74 load_abus(255, 0, 9, 16, 16, 3)

75 load_abus(255, 0, 9, 16, 17, 4)

76 load_abus(255, 0, 9, 16, 18, 2)

77 load_abus(255, 0, 9, 16, 19, 0)

78 load_abus(255, 0, 9, 16, 20, 1)

116

79

80 slot(30):

81 receive_pbus(255, 9, 9, 32, 0, 5)

82 receive_pbus(255, 9, 9, 32, 1, 3)

83 receive_pbus(255, 9, 9, 32, 2, 4)

84 send_pbus(255, 9, 9, 32, 3, 2)

85 send_pbus(255, 9, 9, 32, 4, 0)

86 send_pbus(255, 9, 9, 32, 5, 1)

Figure 5-12: Example Script 3 – Multiple Difference Types of Buses

In Figure 5-12, the script creates 22 transactions, 6 transaction groups and six packet

bus operations in the preamble. The first 6 transactions, on lines 1 to 7, make up two

transactions groups, defined on lines 40 and 41, which are loaded into the two static

buses. The next 9 transactions, on lines 10 to 18, make up three transaction groups

which are loaded into the dynamic bus. The next 6 transactions, on lines 15 to 20, are

not contained within any transaction groups but instead, loaded into the asynchronous

bus as single, prioritised transactions. The last transaction, on line 37, is the statistics

and error transaction and it is assigned to the last transaction group on line 47.

On lines 29 to 34, the script creates 6 packet bus operations, which are used to load

the packet bus with prioritised packet transfer requests between the initiator and a

target’s packet channel. The first packet bus operation is created on line 29:

Figure 5-13: Packet Bus Operation Command

In this line, the command is called “pbus_operation” and it contains a parenthesised

parameter list with six parameters. The first parameter is the packet bus operation

117

number, used in other commands to reference this specific packet bus operation. The

second parameter is the logical address of the target which will receive or send a

packet. The third parameter is the packet channel index, identifying a specific packet

channel within a target. The fourth parameter is the RMAP key. The fifth parameter

is the length, in bytes, of the buffer used to send or receive a packet. Finally, the sixth

parameter is the initiator memory address i.e. the location of the buffer where the

packet will be sent from or received to.

In this example, the 6 packet bus operations each have a 1 Kbyte buffer which is used

by the initiator to send a packet to, or receive a packet from, packet channel 0 in targets

64, 65, 66, 67, 80 and 81 using an RMAP key with value 32.

Similar to the previous examples, there is a time-slot triggered command group for

time-slot 62 that is used to open the virtual buses and load the static buses with

repeating transaction groups. However, unlike the previous examples where this was

the only time-slot triggered command group, this example contains multiple groups.

Each group is used to load the different virtual buses at specific points throughout the

execution of the schedule.

The static buses are opened on lines 50, 51 and 56 as described in the previous

examples. Dynamic, asynchronous and packet buses are opened using the

“open_dbus”, “open_abus” and “open_pbus” commands. The parameters of these

commands are identical to the “open_sbus” command except for the fourth parameter.

This parameter is a parenthesised list of allocated slot numbers rather than a single slot

number. On lines 52, 53 and 54, a dynamic, asynchronous and packet bus is opened.

The dynamic bus is allocated time-slots 8, 10 and 12; the asynchronous bus is allocated

time-slots 16, 18 and 20; and the packet bus is allocated time-slots 32, 34 and 36. Each

118

of the buses have a slot length of 1 and is permitted, like all of the virtual buses in this

example, to send commands to targets 64, 65, 66, 67, 80 and 81.

Following the time-triggered command group for time-slot 62 are three further

commands groups for time-slots 7, 9 and 11. These command groups are used to load

the dynamic bus allocated to time-slots 8, 10 and 12. The signature of the “load_dbus”

command is identical to the “load_sbus” command except that there is no sixth

parameter when loading a dynamic bus as the transaction group is implicitly a single-

shot transaction group. In this example, dynamic bus 8 is repeatedly loaded with

transaction groups 2, 3 and 4 in every occurrence of time-slots 7, 9 and 11,

respectively.

Next, there are six “load_abus” commands assigned to time-slot 14 which are used to

load the asynchronous bus allocated to time-slots 16, 18 and 20. The “load_abus”

command is identical to the “load_sbus” command except for the fifth and sixth

parameters. In place of a transaction group number, the “load_abus” command takes

the number of an individual transaction which is loaded into the asynchronous bus

with a priority level described in the sixth parameter. In this example, in every 10th

schedule epoch, the asynchronous bus is loaded with transactions 15 to 20 with priority

levels ranging from 0 to 5. These commands are assigned to time-slot 14 rather than

15 because asynchronous buses and packet buses are prepared in the time-slots prior

to any assigned to them. This means that in order for the transactions to be considered

in the preparation process, they must be loaded before the preparation time-slot begins.

Finally, there are three “receive_pbus” and three “send_pbus” commands assigned to

time-slot 30. These commands are used to load a packet bus with prioritised requests

to either receive a packet from, or send a packet to, a packet channel in a target. The

119

first four parameters in the signature of these commands are identical to the

“load_sbus” command. The fifth parameter is the number of a packet bus operation,

as defined in the script preamble. Finally, the sixth parameter is the priority level of

the request. In this example, in every 10th schedule epoch after the first 10 epochs, the

packet bus is loaded with requests to receive three packets using packet bus operations

0, 1 and 2, and send three packets using packet bus operations 3, 4 and 5. The priority

level of the packet bus operations ranges from 0 to 5.

5.3 Targets

The targets are STAR-Dundee PXI RMAP interface boards (STAR-Dundee Ltd 2016)

with a SpaceWire router containing four physical ports and four external ports, each

connected to an individual RMAP target. The boards have 1 Gbyte of DDR3 memory

which can be divided between the four targets as configured by the user. In the case

of the SpaceWire-D Demonstrator, the targets are configured so that they each have

access to 256 Mbytes of memory.

5.3.1 Command Authorisation

Each of the RMAP targets within the interface boards can be configured to operate in

manual or automatic authorisation modes. The manual authorisation mode requires

software to manually authorise or reject a command based on information stored in a

series of registers accessible by the host application. To reduce the target response

time i.e. the latency between a command being received and a reply being returned,

the SpaceWire-D Demonstrator uses automatic authorisation mode for all targets. In

this mode, the host application configures a series of registers with the permitted

values for the command type, key, protocol ID, target logical address and memory

address. The RMAP target hardware uses the values of these registers to automatically

authorise or reject incoming commands.

120

The configuration registers are set to default values during the SpaceWire-D

Demonstrator’s initialisation process. A Target Configuration program was designed

to allow a user to change the parameters as required. An image of the relevant section

of the program is shown in Figure 5-14.

Figure 5-14: Target Internal Authorisation Parameters

In Figure 5-14, the image shows that the configuration is done in three stages. First,

the user selects the required target, by logical address, using the drop-down menu.

Next, the required parameters are set using the text boxes. Lastly, the user uses the

“Save” button to write the changes to the corresponding registers within the board’s

configuration address space.

5.3.2 Notifications

The target boards have the ability to notify a host application whenever certain events

occur such as the execution of an RMAP command or a request for command

authorisation. The notifications are sent as data structures contained within SpaceWire

121

packets to STAR-System channel 1 across the backplane. They can then be received

by software using the STAR-System API (Mills and Parkes 2015).

Each notification contains the RMAP command header parameters as well as the value

of the current time-code in the target board’s router. The time-code can be used to

determine in which time-slot the command was executed. In the SpaceWire-D

Demonstrator, this information is extracted from the SpaceWire packets by the host

PC’s software so that it can be used to record and display the activity between the

initiators and targets as described in Section 5.6.

5.4 Routers

The routers are STAR-Dundee PXI routers (STAR-Dundee Ltd 2016) with eight

physical ports. They provide the network for the SpaceWire-D Demonstrator, allowing

each initiator to be routed to each interface board without sharing any links.

5.5 Network Manager

The network manager is another STAR-Dundee PXI RMAP interface board (STAR-

Dundee Ltd 2016) as described in Section 5.3. It is controlled by the host PC software

to act as the time-code master for the SpaceWire-D network. It also receives statistics

and error information reported by the initiators via RMAP write commands to two of

the targets within the board.

Each initiator is assigned a separate RMAP target and memory address to write its

statistics and error information into at the end of each schedule epoch. Initiators 0 and

1 are assigned address 0x00000000 within targets 0 and 1, respectively.

The host PC’s Network Manager software is used to listen for RMAP event

notifications coming from the board. The software parses the notifications and then

122

reads the statistics and error reports from address 0x00000000 in the corresponding

target. The information is then parsed and displayed, as described in Section 5.6.

5.6 Host PC

The host PC is an ADLINK PXI-3950 system controller (ADLINK Technology Inc

2016) with an Intel Core2 Duo T7500 2.2 GHz processor and 4 Gbytes of 667 MHz

DDR2 running the Windows 7 32-bit operating system. It is responsible for initialising

the other devices within the SpaceWire-D Demonstrator and running a suite of Qt4.8

(The Qt Company Ltd 2016) based C++ applications used to configure and control the

initiators, targets and network manager. It also displays the network activity reported

to the network manager via RMAP commands by the initiators, and across the

backplane by the targets.

5.6.1 Initiator Configuration

The Initiator Configuration program is used to configure and control each of the

LEON2-FT processor boards acting as the initiators. It has the ability to read and write

the network and target parameters, used by the initiators to calculate RMAP execution

times. Different types of virtual buses can be created and assigned to the initiator’s

schedule. Automated test scripts can be parsed, compiled and uploaded. Finally,

commands can be sent to the initiators to enable and disable the schedule and features

like local-timer synchronisation. Figure 5-15 shows a screenshot of the Initiator

Configuration program.

123

Figure 5-15: Initiator Configuration Program

In Figure 5-15, the top left section allows the user to select which initiator they would

like to configure, and provides buttons to read and write the schedule and upload the

script. In the top right section, the user can send commands to the initiator to read in

the script, enable and disable certain features. Below these two sections is a tab layout

that contains seven separate tabs. The first tab contains fields to set the network

parameters and a table to set the target parameters. Following this are four tabs, one

for creating each type of virtual bus. Next is a tab that allows the user to allocate virtual

buses to the schedule, if they are creating the schedule manually rather than using a

script. Finally, there is a scripting tab which allows a user to open, parse and compile

an automated test script file to be uploaded to the initiator.

124

5.6.2 Target Configuration

The Target Configuration program is used to configure and control each of the RMAP

targets in the three PXI interface boards. It has the ability to read and write the

automatic authorisation parameters. Packet channels can have their buffer locations

and lengths configured. Data and be written to, and read from, the target memory.

Finally, the target interface boards can be enabled as babbling nodes. Figure 5-16

shows a screenshot of the Target Configuration program.

Figure 5-16: Target Configuration Program

In Figure 5-16, the top section allows the user to select which target they would like

to configure. In the middle section, the automatic authorisation parameters can be set

to define the valid key range, valid target logical address range, accessible memory

region and permitted commands. In the bottom section is a tab layout with three

separate tabs. The first tab contains a menu to select a packet channel and fields to set

the location and length of the receive and transmit buffers used by the packet bus to

125

transfer packets between an initiator and the selected packet channel. The second and

third tabs allow the user to write data to and read data from the target’s memory.

Finally, in the second main tab, the user can enable target interface boards as babbling

nodes, which send out randomised transactions on the network.

5.6.3 Network Manager

The Network Manager program is used to configure the time-code master and receive

and display statistics and error information reported to the network manager by the

initiators. It has the ability to set the time-code rate and enable or disable the time-

code master. Statistics reported by the initiator are displayed in a table, divided by type

and time-slot, and errors are displayed in a list. Figure 5-17 shows a screenshot of the

Network Manager program.

Figure 5-17: Network Manager Program

In Figure 5-17, the top section allows the user to set the rate at which the network

manager should broadcast time-codes and provides buttons to enable and disable the

time-code master. The main left section, the statistics view, contains a table for each

initiator. The table lists, for each time-slot, how many transactions have been

126

completed, how many were incomplete at the end of the time-slot, the number of

errors, and the number of late, early and missing time-codes. The main right section,

the error list view, contains a list for each initiator that provides the details of any

errors that have occurred.

When the Network Manager program is initialised, it begins to listen for RMAP event

notifications from the Network Manager target interface board. It does this by

receiving SpaceWire packets on the backplane through STAR-System channel 1.

When a notification is received, the software checks that the parameters of the RMAP

command match those expected by an initiator statistics and error report. If so, the

report is read from target memory and the statistics table for the relevant initiator is

updated. In addition, any errors detected during the last schedule epoch are added to

the initiator’s error list.

5.6.4 Target Monitor

The Target Monitor program is used to display the network activity visually and

statistically through a series of views. It has the ability to display activity in real-time,

by updating a grid that shows if any of the targets were read from or written to during

each time-slot. It shows the number of completed transactions, bytes read from and

written to the target in total and per second, and it also breaks this information up for

each time-slot. Finally, it shows a list of detailed information about all RMAP

transactions taking place across all targets. Figure 5-18 shows a screenshot of the

Target Monitor program.

127

Figure 5-18: Target Monitor Program

In Figure 5-18, the Target Monitor program is divided, vertically, into two main

sections. The left section contains a table, where each row represents a time-slot and

each column represents an RMAP target. If a cell is shaded, it means that there was at

least one RMAP command executed within that time-slot. The cell then fades over

half a second, returning the cell to white. If another command is executed within the

time-slot in a future schedule epoch before the cell is white, the colour is refreshed

and the fade timer restarts. This view allows the user to see the network activity as it

happens in a graphical manner. In the right section of the GUI, there is a tab layout

with four individual tabs. The first three tabs represent a statistical view of the network

activity for each of the RMAP interface boards. Each of these tabs are further divided

into four sections; one for each individual RMAP target within the board. In order to

see the interface more clearly, only two target sections are shown in Figure 5-18. The

last tab displays a detailed list of commands that have been received by all targets.

128

Figure 5-19 shows an image of the left section, the schedule view, illustrating network

activity within the first few rows of the table.

Figure 5-19: Target Monitor Schedule View

In Figure 5-19, the screenshot shows the first 10 rows of the schedule view, showing

the network activity for time-slots 0 to 9 across targets 0x40-0x43, 0x50-0x53 and

0x60-0x63. The shaded cells show that there are six instances of network activity in

this example. These cells, in time-slots 0 and 8, show that there was at least one RMAP

command executed on targets 0x40, 0x50 and 0x60 within these time-slots.

After receiving feedback at the ESA SpaceWire-D project preliminary acceptance

review, which took place at the University of Dundee on the 27th of April 2016, the

Schedule View was updated to add two features to the GUI. Firstly, the shaded cells

are coloured depending on the type of virtual bus that sent the RMAP commands. The

virtual bus type is extracted from the transaction ID which contains the virtual bus ID

and type. Secondly, the logical addresses of the initiators that sent the commands are

displayed within each shaded cell. In order to make this clearer, the Target Monitor

schedule view has been reproduced in black and white in Figure 5-20.

129

Figure 5-20: Updated Target Monitor Schedule View

In Figure 5-20, the figure shows the schedule view of a SpaceWire-D network that

contains two initiators. Each initiator is executing one static, dynamic, asynchronous

and packet bus. The virtual buses in the first initiator are executing transactions with

targets 0x40-0x42, taking up the first three target columns of the diagram. The second

initiator’s virtual buses are executing transactions with targets 0x43 and 0x50-0x51,

shown on the next three target columns of the diagram. Each type of virtual bus is

distinguished using a different shade of grey. There is one static bus executed by each

initiator, shown as the lightest grey cells, and allocated to time-slot 0. The dynamic

buses executed by each initiator, shown as the slightly darker grey cells, are allocated

time-slots 4, 5 and 6. The asynchronous buses executed by each initiator, shown as

dark grey cells, are allocated time-slot 8. Finally, the packet buses executed by each

initiator, shown as black cells, are allocated time-slots 12, 14 and 16.

130

The target statistics view lists the number of errors, commands and bytes read/written

in total, per second and divided by time-slot. Figure 5-21 shows an image of the target

statistics view section for target 0x40.

Figure 5-21: Target Monitor Target Statistics View

In Figure 5-21, the screenshot shows the target statistics view for target 0x40 during

the execution of a schedule containing network activity in time-slots 0 and 8. The total

and per second statistics are shown in the top section and the per time-slot statistics

are shown in the scrollable table.

The final section of the Target Monitor program is the command list view, which

displays a detailed description of every RMAP command received on all targets. An

image of the command list view is shown in Figure 5-22.

131

Figure 5-22: Target Monitor Command List View

In Figure 5-22, the screenshot shows the start of the command list view during the

execution of a schedule containing at least three static buses. The columns are: virtual

bus ID, target logical address, target index, initiator logical address, transaction ID,

RMAP key, command type, memory address, data length and status. In this case, there

are nine transactions executed by static buses 0, 8 and 16. The first three, to targets

0x40, 0x50 and 0x60, and the last three, to targets 0x41, 0x51 and 0x61 are executed

by initiator 0x30. The middle three, to targets 0x40, 0x50 and 0x60, are executed by

static bus 8 in initiator 0x31.

The fifth column of data shows the transaction ID of each RMAP command, which

encodes the virtual bus ID, virtual bus type and an 8-bit counter value. Looking at the

counter value, the second byte in the ID, shows that the transactions are not listed in

order for the first two groups of three transactions. This is due to the non-deterministic

nature of the cPCI bus on which the RMAP notifications are sent by the RMAP

interface boards and received by the Target Monitor program. Therefore, the Target

Monitor program is used to display a real-time view of the network activity but in

order to fully analyse the traffic, a device such as the STAR-Dundee Link Analyser

Mk2 is required to capture the traffic flowing over the SpaceWire links.

5.7 Summary

This chapter has described the design of the SpaceWire-D Demonstrator which was

created to facilitate the verification process of the SpaceWire-D standard and

132

demonstrate its features. The system consists of a PXI rack containing a host PC

processor board, two LEON2-FT based processor boards acting as the initiators, three

RMAP interface boards providing twelve RMAP targets, a network manager interface

board and two 8-port routers.

A novel automated test scripting language and system was designed to simplify the

execution of tests using the SpaceWire-D Demonstrator. The scripting system allows

a user to describe RMAP transactions, transaction groups, packet bus operations and

data buffers as a text file using a simple syntax. Time-slot triggered commands can

then be used to open, load and close different types of virtual buses at specific times

during the execution of the test. This system allows users to control the SpaceWire-D

Demonstrator without knowledge of RTEMS or the embedded software and was used

in all of the tests in the verification activity of the ESA SpaceWire-D project.

A suite of software programs was designed and created to run on the host PC to

configure, control and monitor the other devices in the system. The Initiator

Configuration program allows the user to set the network and target parameters, create

virtual buses and assign them to the schedule, and upload automated test scripts. The

Target Configuration program is used to set the RMAP authorisation parameters of

each target, configure the packet channel buffers, and read and write to target memory.

Statistics and errors reported to the network manager board are received and displayed

by the Network Manager program. Finally, the Target Monitor program is used to

visualise the network activity through a combination of a graphical network activity

grid, a statistical view of each target and a list of RMAP commands received across

all targets.

133

Chapter 6

Verification of the SpaceWire-D

Demonstrator

In this chapter, each of the example automated test scripts described in Section 5.2.1

are executed on the SpaceWire-D Demonstrator. The results are captured using a

combination of the Target Monitor program and a STAR-Dundee Link Analyser Mk2

device placed between Initiator 0 and Router 0. In each case, the Network Manager is

broadcasting time-codes at a rate of approximately 640 Hz. Due to the microsecond

resolution of the Network Manager’s time-code master, this gives a time-slot duration

of 1.562 ms and a schedule epoch of 999.68 ms.

These tests are intended to demonstrate that the SpaceWire-D protocol and

Demonstrator is capable of running a network combining periodic traffic, aperiodic

traffic, prioritised payload traffic and prioritised payload traffic with flow-control

traffic. The first test shows the simplest SpaceWire-D network, with a single initiator

executing periodic traffic. Next, the second test shows multiple initiators executing

multiple instances of periodic traffic. Finally, the last test shows multiple initiators

executing a combination of all types of traffic.

In addition to the tests described in this chapter, the SpaceWire-D Demonstrator was

validated as part of the ESA SpaceWire-D project. This activity involved taking the

initial validation goals listed in the SpaceWire-D Demonstrator Specification

134

Document (University of Dundee 2014) and designing a series of test scenarios,

initiator schedules and transaction loading procedures used to meet the goals. The

author detailed the validation activity and presented the results in the SpaceWire-D

Validation Report (University of Dundee 2016 B), which was delivered to ESA. This

activity showed that the SpaceWire-D Demonstrator was successful in satisfying the

requirements of the project.

6.1 Running Example Script 1

In this test, there is a single initiator executing one static bus, in time-slot 0, in addition

to the static bus used to report statistics and error information to the Network Manager

at the end of each schedule epoch.

Figure 6-1: Example Script 1 – Target Monitor Schedule View

In Figure 6-1, the screenshot shows the Target Monitor schedule view during the

execution of the script. This shows that in time-slot 0, there are three instances of

network activity with targets 0x40, 0x50 and 0x60.

135

Figure 6-2: Example Script 1 – Time-Slot 0

In Figure 6-2, the Link Analyser screenshot shows the start of time-slot 0 as captured

by the Link Analyser software. The time-slot is triggered by the arrival of time-code

0 at the initiator. After a short period of software overhead, about 51 µs in this case,

to receive the time-code and perform some processing at the start of the time-slot, the

initiator sends out the first RMAP command loaded into static bus 0.

Figure 6-3: Example Script 1 – Static Bus 0, Transaction 0

In Figure 6-3, the Link Analyser screenshot shows the first RMAP transaction

executed by static bus 0 which is a command to read 32 bytes from address

0x00000000 in target 0x40 with a key value of 0x20 and a transaction ID of 0x0001.

136

Figure 6-4: Example Script 1 – Static Bus 0, Transaction 1

In Figure 6-4, the Link Analyser screenshot shows the second RMAP transaction

executed by static bus 0 which is a command to write 32 bytes to address 0x00000000

in target 0x50 with a key value of 0x20 and a transaction ID of 0x0002.

Figure 6-5: Example Script 1 – Static Bus 0, Transaction 2

Finally, in Figure 6-5, the Link Analyser screenshot shows the third RMAP transaction

executed by static bus 0 which is a command to read 32 bytes from address

0x00000000 in target 0x60 with a key value of 0x20 and a transaction ID of 0x0003.

In addition to these transactions being executed shortly after the arrival of time-code

0 at the initiator, the source of the commands can be further verified by looking at the

137

transaction IDs. In a SpaceWire-D transaction, the 16-bit transaction ID is divided into

two bytes. The first byte contains an 8-bit counter and the second byte contains the

virtual bus ID and the virtual bus type. The first two bits of the first byte indicate the

virtual bus type, where 0x00 is a static bus, 0x01 is a dynamic bus, 0x10 is an

asynchronous bus and 0x11 is a packet bus. The remaining six bits are the virtual bus

ID i.e. the first time-slot of the first slot allocated to the virtual bus. In the three

transactions captured in this example, the second byte of each transaction ID is 0x00.

Therefore, the transactions were executed by a static bus with an ID of 0.

Figure 6-6: Example Script 1 – Network Manager Statistics View

In Figure 6-6, the screenshot shows the Network Manager statistics view after a few

seconds of executing the script. This shows that Initiator 0 is reporting that several

RMAP transactions have been successfully completed in time-slot 0. In this

screenshot, there has been 495 completed transactions reported so the initiator has

been executing its schedule for 165 epochs.

This test has shown that the SpaceWire-D Demonstrator can run a SpaceWire-D

network containing a single initiator which has a static bus loaded with multiple

RMAP transactions. The transactions are sent to multiple targets in addition to the

transaction sent by the static bus used for reporting statistics and error information to

the network manager.

138

6.2 Running Example Script 2

In this test, there are two initiators executing four static buses each. The first initiator

is executing its static buses in time-slots 0, 16, 32 and 48, as described in the example

script listed in Figure 5-11. The second initiator is executing the same automated test

script but its static buses are offset by eight time-slots so they are allocated to time-

slots 8, 24, 40 and 56. Each of the initiators are executing their static buses in addition

to the static buses used to report statistics and error information to the Network

Manager at the end of each schedule epoch.

Figure 6-7: Example Script 2 – Target Monitor Schedule View

139

In Figure 6-7, the screenshot shows the Target Monitor schedule view during the

execution of the script. In this figure, transaction groups that execute over multiple

time-slots are surrounded by boxes. In time-slots 0 and 8, the initiators execute their

first static buses as shown by the network activity to targets 0x40, 0x50 and 0x60. The

second static buses, which are allocated a multi-slot with a length of 2, are executed

in time-slots 16-17 for initiator 0 and 24-25 for initiator 1. These static buses execute

their three 8 Kbyte transactions over two time-slots as they won’t fit within a single

time-slot in this case. The third static buses, which are allocated a multi-slot with a

length of 4, are executed in time-slots 32-34 for initiator 0 and 40-42 for initiator 1.

Again, these static buses execute their three 16 Kbyte transactions over three time-

slots as they won’t fit within a single time-slot. Finally, the last static buses are

executed in time-slots 48 and 54 as they are loaded with small 256 byte transactions

that fit within a single time-slot.

Figure 6-8: Example Script 2 – Target Monitor Command List View

In Figure 6-8, the screenshot shows the command list view for a single schedule epoch

of example script 2. The transactions executed by static buses 0, 16, 32 and 48 are

initiated by initiator 0x30, as listed in the fourth column. and those executed by static

140

buses 8, 24, 40 and 56 are initiated by initiator 0x31. This shows that the transactions

match the automated test script listed in Figure 5-11.

During the execution of the script in which the results displayed in Figure 6-7 and

Figure 6-8 were captured, the SpaceWire-D Demonstrator was running its SpaceWire

network at 100 Mbit/s. However, shortly after this time, the network was changed to

run at 200 Mbit/s to allow the maximum data-rate supported by the devices. The effect

of this is that the transaction group executed by static bus 16 finishes its execution in

a single time-slot rather than two, and the transaction group executed by static bus 32

finishes its execution in two time-slots rather than three. The full results for the

execution of the schedule on initiator 0x30 with the network running at 200 Mbit/s can

be found in Appendix 2.

The results in Appendix 2 show that the SpaceWire-D Demonstrator can run a

SpaceWire-D network containing multiple initiators, each with many single or multi-

slot static buses loaded with multiple RMAP transactions to different targets.

6.3 Running Example Script 3

In this test, there are two initiators executing five virtual buses each: two static buses,

one dynamic bus, one asynchronous bus and one packet bus. The first initiator is

executing its static buses in time-slots 0 and 2; its dynamic bus in time-slots 8, 10 and

12; its asynchronous bus in time-slot 16; and its packet bus in time-slots 32, 34 and

36, as described in the script listed in Figure 5-12. The second initiator is executing

the same automated test script but using targets 0x52-0x53 and 0x60-0x63 instead of

0x40-0x43 and 0x50-0x51. Each of the initiators are executing their virtual buses in

addition to the static buses used to report statistics and error information to the

Network Manager at the end of each schedule epoch.

141

Figure 6-9: Example Script 3 – Target Monitor Schedule View

In Figure 6-9, the screenshot shows the Target Monitor schedule view during the

execution of the script. In time-slots 0 and 2, the initiators execute their two static

buses. In time-slots 8, 10 and 12, the initiators execute their dynamic bus which is

repeatedly loaded with a transaction group. Once a second, each initiator loads its

asynchronous bus with a group of prioritised transactions, which is executed in time-

slot 16. Lastly, in time-slots 32, 34 and 36, the initiators execute their packet bus.

The network of the SpaceWire-D Demonstrator was designed so that there are non-

conflicting paths between each initiator and the target interface boards. Therefore,

because the initiators don’t use any of the same targets within the same time-slot, they

can operate in concurrent time-slots without packets being blocked in the routers.

In this example, the static buses operate similarly to the previous examples. The

dynamic bus, with three allocated time-slots, is functionally similar to three individual

142

static buses that are loaded with single-shot transaction groups. Therefore, the

remainder of this section will focus on the asynchronous and packet buses.

Figure 6-10: Example Script 3 – Time-Slot 16

In Figure 6-10, the Link Analyser screenshot shows the start of time-slot 16 which is

triggered by the arrival of time-code 16 at the initiator.

Figure 6-11: Example Script 3 – Asynchronous Bus 16, Transaction 0

In Figure 6-11, the Link Analyser screenshot shows the first transaction executed by

asynchronous bus 16 which is an RMAP write command to write 1 Kbyte to address

0x00020000 in target 0x50. This transaction was loaded into the asynchronous bus

fifth but executed first as it has a priority level of 0.

143

Figure 6-12: Example Script 3 – Asynchronous Bus 16, Transaction 1

In Figure 6-12, the Link Analyser screenshot shows the second transaction executed

by asynchronous bus 16 which is an RMAP write command to write 1 Kbyte to address

0x00020000 in target 0x51. This transaction was loaded into the asynchronous bus

sixth but executed second as it has a priority level of 1.

Figure 6-13: Example Script 3 – Asynchronous Bus 16, Transaction 2

In Figure 6-13, the Link Analyser screenshot shows the third transaction executed by

asynchronous bus 16 which is an RMAP write command to write 1 Kbyte to address

144

0x00020000 in target 0x43. This transaction was loaded into the asynchronous bus

fourth but executed third as it has a priority level of 2.

Figure 6-14: Example Script 3 – Asynchronous Bus 16, Transaction 3

In Figure 6-14, the Link Analyser screenshot shows the fourth transaction executed by

asynchronous bus 16 which is an RMAP read command to read 1 Kbyte from address

0x00020000 in target 0x41. This transaction was loaded into the asynchronous bus

second but executed fourth as it has a priority level of 3.

Figure 6-15: Example Script 3 – Asynchronous Bus 16, Transaction 4

In Figure 6-15, the Link Analyser screenshot shows the fifth transaction executed by

asynchronous bus 16 which is an RMAP read command to read 1 Kbyte from address

0x00020000 in target 0x42. This transaction was loaded into the asynchronous bus

third but executed fifth as it has a priority level of 4.

145

Figure 6-16: Example Script 3 – Asynchronous Bus 16, Transaction 5

In Figure 6-16, the Link Analyser screenshot shows the sixth transaction executed by

asynchronous bus 16 which is an RMAP read command to read 1 Kbyte from address

0x00020000 in target 0x40. This transaction was loaded into the asynchronous bus

first but executed sixth as it has a priority level of 5.

As listed in Figure 5-12, the asynchronous bus transactions are loaded once a second

within time-slot 14, in non-prioritised order. In time-slot 15, a transaction group is

prepared by pulling transactions from the head of the prioritised queue for

asynchronous bus 16. These transactions are then executed, in prioritised order, in

time-slot 16.

Figure 6-17: Example Script 3 – Time-Slot 32

In Figure 6-17, the Link Analyser screenshot shows the start of time-slot 32 which is

triggered by the arrival of time-code 32 at the initiator. The transactions from time-

slots 32, 34 and 36 were captured in the schedule epoch immediately after the Target

Configuration program was used to configure packet channel 0 in target 0x40. The

configuration indicated that there was a 1 Kbyte packet in a send packet buffer located

at address 0x00000000. The targets have four packet channel data structures, each of

which are 16 bytes long, located at address 0x0FFFFFC0.

146

Figure 6-18: Example Script 3 – Packet Bus 32, Packet Channel Status Read 0

In Figure 6-18, the Link Analyser screenshot shows the first transaction executed by

packet bus 32 which is an RMAP read command to read the 16-byte packet channel 0

status data structure located at address 0x0FFFFFC0 in target 0x50. The packet

transfer request related to this transaction was loaded into the packet bus fifth but

executed first as it has a priority level of 0.

Figure 6-19: Example Script 3 – Packet Bus 32, Packet Channel Status Read 1

In Figure 6-19, the Link Analyser screenshot shows the second transaction executed

by packet bus 32 which is an RMAP read command to read the 16-byte packet channel

0 status data structure located at address 0x0FFFFFC0 in target 0x51. The packet

147

transfer request related to this transaction was loaded into the packet bus sixth but

executed second as it has a priority level of 1.

Figure 6-20: Example Script 3 – Packet Bus 32, Packet Channel Status Read 2

In Figure 6-20, the Link Analyser screenshot shows the third transaction executed by

packet bus 32 which is an RMAP read command to read the 16-byte packet channel 0

status data structure located at address 0x0FFFFFC0 in target 0x43. The packet

transfer request related to this transaction was loaded into the packet bus fourth but

executed third as it has a priority level of 2.

Figure 6-21: Example Script 3 – Packet Bus 32, Packet Channel Status Read 3

148

In Figure 6-21, the Link Analyser screenshot shows the fourth transaction executed by

packet bus 32 which is an RMAP read command to read the 16-byte packet channel 0

status data structure located at address 0x0FFFFFC0 in target 0x41. The packet

transfer request related to this transaction was loaded into the packet bus second but

executed fourth as it has a priority level of 3.

Figure 6-22: Example Script 3 – Packet Bus 32, Packet Channel Status Read 4

In Figure 6-22, the Link Analyser screenshot shows the fifth transaction executed by

packet bus 32 which is an RMAP read command to read the 16-byte packet channel 0

status data structure located at address 0x0FFFFFC0 in target 0x42. The packet

transfer request related to this transaction was loaded into the packet bus third but

executed fifth as it has a priority level of 4.

149

Figure 6-23: Example Script 3 – Packet Bus 32, Packet Channel Status Read 5

In Figure 6-23, the Link Analyser screenshot shows the sixth transaction executed by

packet bus 32 which is an RMAP read command to read the 16-byte packet channel 0

status data structure located at address 0x0FFFFFC0 in target 0x40. The packet

transfer request related to this transaction was loaded into the packet bus first but

executed sixth as it has a priority level of 5.

The contents of the data section of the RMAP reply were expanded in this figure to

show the values of the packet channel status data structure. The data structure contains

four values in contiguous memory: the receive buffer memory address, the receive

buffer length, the send buffer memory address and the send buffer length. In this

example, the packet channel’s status data structure indicates that there is no receive

buffer ready, as its values are both 0x00000000, but there is a packet ready in the

transmit buffer located at 0x00000000 with a length of 0x400 (1024) Bytes.

Figure 6-24: Example Script 3 – Time-Slot 34

150

In Figure 6-24, the Link Analyser screenshot shows the start of time-slot 34 which is

triggered by the arrival of time-code 34 at the initiator. In this time-slot, all of the

packet bus operations except the receive operation for target 0x40 remain in the first

stage of the packet transfer process because the packet channel status data structures

they read indicated that there was no relevant buffer ready for them. Therefore, they

repeat their packet channel status read transactions in time-slot 32. However, the

receive operation for target 0x40 is now in the second stage of the packet transfer

process because the packet channel status read transaction indicated that there was a

packet ready to send from the target to the initiator.

Figure 6-25: Example Script 3 – Packet Segment Transfer

In Figure 6-25, the Link Analyser screenshot shows the transaction that is transferring

a packet segment for the packet receive operation for target 0x40. This transaction is

formed by using the packet channel data structure values received in the first stage of

the packet transfer process. The operation is to receive a packet from the target, so it

is implemented as an RMAP read command which is reading a 1 Kbyte packet from

memory address 0x00000000 in target 0x40. As the packet is transferred in one

segment, stage two of the packet transfer process is complete. If the packet was large

151

enough that it required multiple segments, the remaining segments would be

transferred in one or more of the next allocated time-slots.

Figure 6-26: Example Script 3 – Time-Slot 36

In Figure 6-26, the Link Analyser screenshot shows the start of time-slot 36 which is

triggered by the arrival of time-code 36 at the initiator. Similar to time-slot 34, five of

the packet bus operations remain in stage one and the receive operation for target 0x40

moves on to the third and final stage of the packet transfer process.

Figure 6-27: Example Script 3 – EOP Transaction

In Figure 6-27, the Link Analyser screenshot shows the transaction that completes the

packet receive operation for target 0x40. This transaction uses the location of the

packet channel status data structure in the target and clears the packet buffer values by

writing zeroes to the relevant section of the data structure. After this transaction, the

target application can read the packet channel data structure and see that it has been

cleared and that it is ready for another packet to be sent.

152

6.4 Testing and Validation

As part of the ESA SpaceWire-D project, the author performed the validation activity

which is detailed in the SpaceWire-D Validation Report (University of Dundee 2016

B). The activity consisted of taking the initial validation goals outlined in the

SpaceWire-D Demonstrator Specification Document (University of Dundee 2014) and

creating a series of test scenarios, initiator schedules and transaction loading

procedures and gathering the results.

There were 11 test scenarios that were used to satisfy the validation requirements of

the project. In addition to being reported in the SpaceWire-D Validation Report, the

full validation and protocol verification test procedures were demonstrated at both the

preliminary acceptance review and the final acceptance review of the SpaceWire-D

ESA project and accepted successfully. The combination of the protocol verification

activity and report; demonstrator validation activity and report; and the successful

acceptance of the activities at the preliminary and final acceptance reviews was

deemed extensive enough testing for the purposes of this project.

6.4.1 Test 1 - Single Static Bus

The aim of this test was to demonstrate that the SpaceWire-D Demonstrator could

operate in a simple scenario, with a single initiator executing a single static bus

involving several transactions. In this case, one of the initiators was configured to

execute a repeating transaction group in static bus 0. In addition, in all of the tests

described, each initiator executes a repeating transaction group in static bus 63 which

is used to report statistics and error information to the network manager.

153

6.4.2 Test 2 – Multiple Static Buses

The aim of this test was to demonstrate that the SpaceWire-D Demonstrator could

operate in a more advanced scenario, with both initiators executing multiple static

buses involving several transactions. In this case, both initiators were configured to

execute four repeating transaction groups in four separate static buses.

6.4.3 Test 3 - Multiple Different Buses

The aim of this test was to demonstrate that the SpaceWire-D Demonstrator could

operate a network that uses multiple initiators and all types of virtual bus at the same

time. For this test, both initiators execute two static buses, and one dynamic,

asynchronous and packet bus each allocated multiple time-slots.

6.4.4 Test 4 – Slow Link

The aim of this test was to demonstrate the result of a link running at a rate too slow

to handle the required traffic. In this case, one of the links was set to 10 Mbit/s instead

of 200 Mbit/s and the initiators were configured with the same schedules and

transaction loading procedures as in Test 3. This test showed that transactions that no

longer fit within a time-slot due to the slow link were not executed because they failed

the SpaceWire-D layer’s execution time check. In addition, the asynchronous bus that

initially executed its transactions in one slot used three slots instead.

6.4.5 Test 5 – Concurrent Slots

The aim of this test was to demonstrate that independent virtual buses can operate in

concurrent slots without interfering with each other. In this case, both initiators were

configured with the same transaction loading procedure as in Test 3 but allocated the

exact same time-slots. This was a valid schedule because the virtual buses used by

each initiator did not share links.

154

6.4.6 Test 6 – Common Link

The aim of this test was to demonstrate that virtual buses that share a link can over-

utilise the link, causing packets to be blocked. In this case, both initiators were

configured to share a link which resulted in transaction incomplete errors being

reported to the network manager for the blocked transactions.

6.4.7 Test 7 – Multi-Slots

The aim of this test was to demonstrate that transaction groups could be executed over

multiple consecutive time-slots in a multi-slot virtual bus. In this case, one of the

initiators was configured to execute a static bus containing a multi-slot consisting of

four consecutive time-slots.

6.4.8 Test 8 – Changing Schedules

The aim of this test was to demonstrate that the initiators could be commanded by a

network manager to change their schedules. In this case, the network manager was

used to toggle the schedules for both initiators between two different configurations.

6.4.9 Test 9 – Start and Stop Schedules

The aim of this test was to demonstrate that the initiators could be commanded by a

network manager to start and stop the execution of their schedules. In this case, the

network manager was used to start and stop the schedules for both initiators at different

times.

6.4.10 Test 10 – Reset Initiator

The aim of this test was to demonstrate that the initiators could be reset during

operation and recover successfully. In this case, the network manager was used to reset

the initiators and capture the reset process.

155

6.4.11 Test 11 – Error Injection

The aim of this test was to demonstrate that the initiators could detect errors and report

them to a network manager at the end of each schedule epoch. In this case, link

disconnect errors were injected every 150 µs which caused command and reply

packets to be dropped, resulting in errors being detected and reported by the initiators.

6.5 Summary

In this chapter, three experiments were run using the automated test scripting system

of the SpaceWire-D Demonstrator. Firstly, a simple test was run involving one

initiator executing one static bus in addition to the static bus used to report statistics

and errors at the end of each schedule epoch. Next, a more advanced test was run using

two initiators each executing multiple static buses. Finally, the last test involved both

initiators executing a schedule containing two static buses and one dynamic,

asynchronous and packet bus. This demonstrated the prioritised execution of

transactions in an asynchronous bus and the packet transfer process in a packet bus.

The results in this chapter demonstrate that the SpaceWire-D protocol was

successfully operated in a real system using the RTEMS based SpaceWire-D software

layer designed in Chapter 4. In addition, the final experiment showed that SpaceWire-

D can be used to mix periodic repeating traffic, aperiodic traffic, prioritised traffic and

prioritised traffic with end-to-end flow-control on a single network. Furthermore, after

the prototype system was validated and used to complete the verification activity of

the ESA SpaceWire-D project, it was delivered to ESA and installed at ESTEC.

156

Chapter 7

Scheduling SpaceWire-D Networks

The previous chapters have described the features of SpaceWire-D and the design and

development of an efficient SpaceWire-D software layer and a SpaceWire-D

Demonstrator. This chapter explores how SpaceWire-D schedules can be generated to

allow the combination of payload and control traffic on a single network in order to

satisfy the networking requirements of a mission.

To do this, the SpaceWire-D scheduling problem is first formalised by specifying its

inputs and outputs. Following this, a two-stage scheduling strategy is described. In the

first stage, paths between initiators and targets are selected. In the second stage, RMAP

transactions are allocated using a combination of simple first-fit algorithms for

periodic and aperiodic traffic, and a payload-data scheduling algorithm where the

problem is modelled as a variation on the classic bin-packing problem. In the next

chapter, the algorithm is evaluated using a number of randomised test cases and a case

study of a real mission.

7.1 Problem Specification

In this section the SpaceWire-D scheduling problem is formalised by describing the

different kinds of bandwidth requirements on a SpaceWire-D network, the network

topology format, the network parameters required to calculate RMAP execution times

and the format of a solution.

157

7.1.1 Bandwidth Requirements

The bandwidth requirements of a SpaceWire-D network are a list of each type of data-

flow that takes place between the network’s initiators and targets, where each entry is

categorised into one of three classes: periodic, aperiodic or payload data.

7.1.1.1 Periodic Traffic

The periodic traffic class describes bandwidth requirements that are repeating

transactions between initiators and targets at a set rate. For example, an OBC may read

32 bytes of housekeeping information from a star tracker 16 times a second. A static

bus could be used to fulfil this bandwidth requirement as it repeats a transaction group

at the same time during each schedule epoch. For example, the OBC could open a

static bus in time-slot 0 with the star tracker as one of its targets. Using a time-slot

frequency of 1024 Hz, giving a 16 Hz schedule epoch cycle, loading this static bus

with the housekeeping transaction satisfies the periodic bandwidth requirement.

A periodic bandwidth requirement can be notated as 𝑃𝑟 = (𝑖, 𝑡, 𝑜, 𝑠, 𝑟) where 𝑖 is the

initiator, 𝑡 is the target, 𝑜 is the type of RMAP operation, 𝑠 is the size of the

transaction in bytes and 𝑟 is the rate in Hz i.e. how many times the RMAP operation

must be executed per second. For example, 𝑃𝑟
𝑖 = (𝑂𝐵𝐶, 𝑆𝑇𝑅1, 𝑟𝑒𝑎𝑑, 32, 16) lists the

ith periodic bandwidth requirement which is between the OBC initiator and a star

tracker target named STR1 and consists of an RMAP read transaction of 32 bytes with

a rate of 16 Hz.

7.1.1.2 Aperiodic Traffic

An aperiodic bandwidth requirement is a transaction between an initiator and a target

that may require execution at any point in time and must complete execution within a

deadline. For example, an OBC may want to send a command to an instrument

158

instructing it to capture some data after an event has occurred, with a maximum latency

of 10 ms. In order to fulfil this bandwidth requirement, a dynamic bus could be used

with slots allocated at intervals less than the maximum latency so that whenever a

transaction is required, there is a time-slot available within the deadline. In this case,

the OBC could open a dynamic bus in time-slots 0, 10, 20, 30, 40, 50 and 60 with the

instrument as one of its targets. Using a time-slot frequency of 1024 Hz, giving a time-

slot duration of 976.5625 µs, each allocated time-slot is less than 10 ms apart.

Aperiodic bandwidth requirements can be notated as 𝐴𝑟 = (𝑖, 𝑡, 𝑜, 𝑠, 𝑑) where 𝑖, 𝑡, 𝑜

and 𝑠 are the same as the parameters in the periodic bandwidth requirement and 𝑑 is

the deadline in ms. As an example, 𝐴𝑟
𝑖 = (𝑂𝐵𝐶, 𝐼𝑁𝑆𝑇𝑅1, 𝑤𝑟𝑖𝑡𝑒, 64, 10) lists the ith

aperiodic bandwidth requirement which is between the OBC initiator and an

instrument target named INSTR1 and consists of an RMAP write transaction of 64

bytes which must be completed before a 10 ms deadline.

7.1.1.3 Payload Data Traffic

The payload data traffic class specifies a bandwidth requirement as a data-rate required

between an initiator and a target. For example, an instrument might generate 1 Mbyte/s

of payload data in 4 Kbyte packets, giving 256 packets per second, which need to be

stored in a solid-state mass-memory (SSMM) device. An asynchronous bus with

enough time-slots allocated to transfer the required number of packets can be used to

fulfil this requirement, for example, the instrument could open an asynchronous bus

and allocate it time-slots 0, 16, 32 and 48 with the SSMM as one of its targets. Using

a schedule epoch cycle of 16 Hz, the instrument could send 4 packets in each time-

slot, resulting in 4 * 4 * 16 = 256 packets per second, satisfying the bandwidth

requirement.

159

A payload data bandwidth requirement can be notated as 𝐷𝑟 = (𝑖, 𝑡, 𝑜, 𝑠, 𝑛) where

𝑖, 𝑡, 𝑜 and 𝑠 are the same as the parameters in the periodic and aperiodic bandwidth

requirements and 𝑛 is the maximum number of packets that may be sent per second.

For example, 𝐷𝑟
𝑖 = (𝐼𝑁𝑆𝑇𝑅1, 𝑆𝑆𝑀𝑀, 𝑤𝑟𝑖𝑡𝑒, 4096, 256) lists the ith payload data

bandwidth requirement which is between an instrument initiator named INSTR1 and

the SSMM target and consists of 256 RMAP write transactions of 4096 bytes a second

with an overall data-rate requirement of 1 Mbyte/s. The data-rate requirement does not

include the RMAP protocol overhead, which must be taken into account by the

scheduling algorithm.

7.1.2 Network Topology

The network topology can be defined as a list of bidirectional edges, representing

SpaceWire links between SpaceWire devices. There may be more than one SpaceWire

link between two routers so the edges can appear multiple times in the list, forming a

multigraph.

7.1.3 Network Parameters

To accurately calculate the execution time of RMAP transactions and check if

transaction groups fit within a slot, there are a number of parameters that must be

defined at the initiator, target and system levels. These parameters and the RMAP

execution time formula were introduced in (Parkes, Ferrer, et al. 2010) and also used

in a simulated annealing approach to scheduling for an early version of SpaceWire-D

(Chen, et al. 2013).

The initiator parameters are listed in Table 7-1.

160

Table 7-1: Initiator Parameters

Parameter Symbol Unit Description

Processing time 𝐼𝑝 µs Latency between an initiator

receiving a time-code and the first

byte of the first RMAP command

leaving the initiator.

Post-processing time 𝐼𝑟 µs Latency between an initiator

receiving an RMAP reply and the

first byte of the next RMAP

command leaving the initiator in the

worst-case scenario where all RMAP

commands are non-posted.

The target parameters, which are defined on a per initiator basis because paths between

different initiators and targets will differ, are listed in Table 7-2. Note that if the routing

tables are selected dynamically during the execution of the scheduling algorithm, the

𝑇𝑛 and 𝑇𝑙 parameters will be calculated then, rather than pre-defined, as they are

dependent on the paths between the initiators and targets.

Table 7-2: Target Parameters

Parameter Symbol Unit Description

Response time 𝑇𝑟 µs Latency between a target receiving

an RMAP command and the first

byte of the corresponding RMAP

reply leaving the target.

Routers in path 𝑇𝑛 Integer Number of routers in the path

between the initiator and the target.

Slowest link speed 𝑇𝑙 Mbit/s Slowest link speed in the path

between the initiator and the target.

161

The system parameters are listed in Table 7-3.

Table 7-3: System Parameters

Parameter Symbol Unit Description

Switching time 𝑆𝑤 µs Packet switching latency.

Time-slot duration 𝑆𝑡 µs Expected interval between time-

codes being sent by the time-code

master.

Using the parameters listed in the previous tables and the size and type of an RMAP

transaction, the worst-case execution time (WCET) of transactions can be calculated.

7.1.4 RMAP Execution Time

To calculate the execution time of a single RMAP transaction, the round-trip time

from the command being sent by the initiator, processed by the target and the reply

returned and processed by the initiator is measured. In order to calculate the network

propagation time, the size of the RMAP command and reply packets must be known,

which differ depending on the type of operation. Table 7-4 shows the functions used

to calculate the size of a command and reply packet for write, read and read-modify-

write RMAP operations.

Table 7-4: RMAP Command and Reply Packet Sizes

RMAP Operation Command (Bytes) Reply (Bytes)

Write 𝑠𝑖𝑧𝑒(𝐶𝑖) = 𝐷𝑖 + 17 𝑠𝑖𝑧𝑒(𝑅𝑖) = 8

Read 𝑠𝑖𝑧𝑒(𝐶𝑖) = 16 𝑠𝑖𝑧𝑒(𝑅𝑖) = 𝐷𝑖 + 13

Read-modify-write 𝑠𝑖𝑧𝑒(𝐶𝑖) = 2𝐷𝑖 + 17 𝑠𝑖𝑧𝑒(𝑅𝑖) = 𝐷𝑖 + 13

In Table 7-4, a function is defined, named 𝑠𝑖𝑧𝑒 , that takes either a command 𝐶𝑖 ,

meaning the command data structure for the ith RMAP transaction, or a reply 𝑅𝑖 and

162

returns the size of the packet in bytes, which differs depending on the type of operation

and 𝐷𝑖, the length of the data section of the transaction.

Using the network parameters defined in Section 7.1.3, the functions defined in Table

7-4 and the formula introduced in (Parkes, Ferrer, et al. 2010), the WCET of an RMAP

transaction can be calculated as follows:

𝑊𝑡(𝑁𝑖) = 10
𝑠𝑖𝑧𝑒(𝐶𝑖) + 𝑠𝑖𝑧𝑒(𝑅𝑖)

1000000𝑇𝑙
𝑖,𝑗

 + 𝑇𝑛
𝑖,𝑗

𝑆𝑤 + 𝑇𝑟
𝑖,𝑗

+ 𝐼𝑟
𝑖

In the above formula, a function is defined, named 𝑊𝑡, that takes a transaction 𝑁𝑖 and

returns the WCET measured in microseconds. The target parameter terms, with a

superscript of 𝑖, 𝑗, mean to use the target parameters of initiator 𝑖 and the relevant

target 𝑗 for the transaction. The initiator parameter, with a superscript of 𝑖, means to

use the relevant initiator 𝑖. The command and reply packet sizes, measured in bytes,

are multiplied by 10 because SpaceWire’s character level defines a data character as a

10-bit character containing a parity bit, data-control flag and a byte of data (ECSS

2008 A).

Using the function 𝑊𝑡, the WCET of a transaction group can be calculated as follows:

𝑊𝑔(𝐺) = 𝐼𝑝
𝑖 + ∑ 𝑊𝑡(𝐺𝑖)

𝑛−1

𝑖=0

In the above formula, a function is defined, named 𝑊𝑔, that takes a transaction group

𝐺 containing 𝑛 transactions and returns the WCET of the group in microseconds by

summing the WCET of each individual transaction and adding the IPT. The function

163

takes into account the worst-case scenario where each transaction is non-posted i.e.

each transaction is fully executed before the next transaction begins.

7.1.5 Solution Format

The output from the SpaceWire-D network scheduling algorithm should describe

everything required to build a SpaceWire network and implement a schedule that

satisfies the bandwidth requirements of a mission.

Firstly, if the routing tables are not already pre-determined by the system engineer,

they are selected by the algorithm during the path selection phase. Secondly, for the

periodic and aperiodic bandwidth requirements, a list of allocated slots for each

requirement needs to be output. Lastly, for payload data requirements, a list of

allocated slots for each requirement needs to be output as well as a number to indicate

how many transactions are allocated in each slot.

7.2 Solving the Problem

The SpaceWire-D scheduling problem can be solved in two stages. Firstly, given the

network topology and required initiator/target pairs, the paths between the initiators

and the targets need selected. Secondly, the periodic, aperiodic and payload data

bandwidth requirements need their transactions allocated to time-slots until the

requirements are satisfied.

An overview of the solving of the problem is illustrated in Figure 7-1.

164

Figure 7-1: Problem Solving Overview

As shown in Figure 7-1, there are two stages to the problem solving. Firstly, the

network topology and the bandwidth requirements are input into the path selection

algorithm. This results in a set of initiator to target paths that is then passed to the

transaction allocation algorithms along with the bandwidth requirements. These

algorithms then attempt to generate the initiator schedules which satisfy the problem

specification.

Therefore, there are two questions that must be answered when solving the SpaceWire-

D scheduling problem:

1. How should the paths between the initiators and the targets be selected?

2. How can transactions be scheduled in order to satisfy the bandwidth

requirements of the mission?

The following sections describe methods to answer these questions.

165

7.2.1 Selecting Paths

The simplest way to build the network’s routing tables is for the system engineer to

hard-code them. However, if they are not pre-determined, the scheduling algorithm

can select the paths using a heuristic to attempt to improve the available bandwidth by

reducing the number of potential collisions between transactions.

7.2.1.1 Breadth-First Search

The breadth-first search (BFS) algorithm (Moore 1959) (Lee 1961) can be used to

select the shortest path, measured in the number of SpaceWire links, between an

initiator and a target. This algorithm was investigated first because it is simple and the

shortest paths will result in the minimum latency, assuming the link speed is uniform

across the network. However, in a SpaceWire-D network, this is not always the best

choice because it may result in collisions that could otherwise be avoided. An example

topology in which this would be the case is illustrated in Figure 7-2.

Figure 7-2: Network Topology with Potential Collisions

In Figure 7-2, there are two initiators and two targets, with a SpaceWire network in

between them. Consider two bandwidth requirements, the first between INI1 and

TAR1, and the second between INI2 and TAR2. The shortest path between these pairs

is shown in Figure 7-3.

166

Figure 7-3: Shortest Path Selection with Collisions

As shown in Figure 7-3, if the path is selected by a breadth-first-search algorithm, the

paths between INI1 to TAR1 and INI2 to TAR2 will both share the link between RTR2

and RTR5, highlighted as a dashed line, resulting in possible packet blocking. In this

topology, there is a longer path available between INI1 and TAR1 as shown in Figure

7-4.

Figure 7-4: Path Selection with No Collisions

The path between INI1 and TAR1 in Figure 7-4 is one SpaceWire link longer than the

shortest path but it now allows for both paths to be active within the same time-slot.

In order to select these better paths computationally, a heuristic can be used to penalise

the use of links that are already used in other paths.

Using the BFS algorithm to select paths does not take into account that the network

topology may be a multi-graph, i.e. there are multiple links between two routers,

because the BFS algorithm does not assign a value to the links and therefore, shows

no preference between multiple links.

167

7.2.1.2 Weighted Search

A weighted search algorithm like Dijkstra’s algorithm (Dijkstra 1959) uses a metric

other than the number of edges to determine the cost of a path. Each edge is allocated

a cost and the algorithm finds the path from a start node to an end node that minimises

the combined cost of all edges in the path. Dijkstra’s algorithm was investigated

second because, like BFS, it is a relatively simple algorithm but it allows for more

intelligent heuristics to be used when selecting paths between the initiators and targets.

For the SpaceWire-D scheduling problem, the cost of a shared link can be dynamically

increased every time it is selected in the path between an initiator and a target. When

using Dijkstra’s algorithm, this discourages the selection of used links in favour of

unused links when building a path between an initiator and a target. An example of a

network topology with initially uniform edge costs is shown in Figure 7-5.

Figure 7-5: Weighted Search Initial Costs

In Figure 7-5, the cost of each edge is initially set to 1.0. Currently, if Dijkstra’s

algorithm was run over this network with uniform edge costs, the path selected

168

between an initiator and a target would be the same as if the BFS algorithm was used

i.e. the path with the minimum number of edges.

As an example, a number of required initiator/target pairs are listed in Table 7-5 along

with the paths that are selected when using the BFS algorithm.

Table 7-5: Paths Selected with the BFS Algorithm

Initiator Target Path Total Conflicts

INI1 TAR5 INI1 → RTR1 → RTR4 → TAR5 0

INI4 TAR6 INI4 → RTR1 → RTR4 → TAR6 1

INI2 TAR4 INI2 → RTR2 → RTR3 → TAR4 1

INI4 TAR1 INI4 → RTR1 → RTR2 → RTR3 → TAR1 2

Similarly, the same initiator/target pairs and the paths selected when using Dijkstra’s

algorithm with a dynamic penalty of 3.0 whenever a link is used by a path are listed

in Table 7-6.

Table 7-6: Paths Selected with Dijkstra’s Algorithm

Initiator Target Path Total Conflicts

INI1 TAR5 INI1 → RTR1 → RTR4 → TAR5 0

INI4 TAR6 INI4 → RTR1 → RTR2 → RTR4 → TAR6 0

INI2 TAR4 INI2 → RTR2 → RTR3 → TAR4 0

INI4 TAR1 INI4 → RTR1 → RTR4 → RTR3 → TAR1 1

In Table 7-5 and Table 7-6, the fourth column shows the cumulative number of shared

links as each path is selected from top to bottom in the tables. When using the BFS

algorithm, the RTR1 to RTR4 link is used by the first and second initiator/target pairs

and the RTR2 to RTR3 link is shared by the third and fourth. This means that there

are two pairs of conflicting paths that can’t be scheduled within the same time-slot due

to the shared links.

169

When using Dijkstra’s algorithm with dynamic penalties, the second initiator/target

pair’s path avoids the RTR1 to RTR4 link because it is no longer the path with the

lowest cost as shown in Figure 7-6.

Figure 7-6: Weighted Search Costs after First Path Selected

In Figure 7-6, the router to router link used by the first initiator/target pair, RTR1 to

RTR4, has had a penalty cost of 3.0 added. When the algorithm searched for the

cheapest path for the next initiator/target pair, INI4 to TAR6, it avoided the high-cost

edge by selecting the longer but cheaper path from RTR1 to RTR2 to RTR4 before

ending at TAR6.

In comparison to the paths selected using the BFS algorithm which had two pairs or

conflicting paths, using Dijkstra’s algorithm with dynamic penalties results in just one

pair of paths that can’t be scheduled within the same time-slot.

For completeness, the edge costs after all four paths have been selected are shown in

Figure 7-7.

170

Figure 7-7: Weighted Search Costs after All Paths Selected

As shown in Figure 7-7, several links now have a cost of 4.0 meaning that they have

been used in one path, and the link between RTR1 and RTR4 has a cost of 7 because

it has been used in two paths.

In this implementation of Dijkstra’s algorithm, it is extended it to take into account

that the network graph may be a multi-graph. By giving each duplicate edge a label, a

separate cost can be maintained for each edge and it is then the lowest cost edge from

the set of duplicate edges that is selected during the execution of the algorithm. When

a path is selected, the dynamic penalty is only added to the edges that have been chosen

from the sets of duplicate edges.

7.2.2 Scheduling Transactions

This section describes how the scheduling of transactions for the SpaceWire-D

scheduling problem is modelled by transforming it into a combination of simple

allocation algorithms and a variation on the classic bin-packing problem.

171

7.2.2.1 Conflict Graph

A conflict graph is used to describe if the initiator/target pairs share any SpaceWire

links and therefore are unable to be scheduled within the same time-slot. The vertices

in the conflict graph represent each of the initiator/target pairs and there is an edge

between two initiator/target pairs if their paths share a link. An adjacency matrix

representation of the conflict graph for the initiator/target pairs from Table 7-5 is

shown in Figure 7-8.

 (INI1, TAR5) (INI1, TAR6) (INI2, TAR4) (INI4, TAR1)
(INI1, TAR5) 0 1 0 0
(INI1, TAR6) 1 0 0 0
(INI2, TAR4) 0 0 0 1
(INI4, TAR1) 0 0 1 0

Figure 7-8: Example Conflict Graph

An adjacency matrix 𝑀 is a two-dimensional binary array representation of a graph

𝐺 = (𝑉, 𝐸) where each vertex, or node, in 𝑉 is represented by a row and column with

the same index, and the value of a cell 𝑀𝑖,𝑗 is equal to 1 if the edge (𝑉𝑖, 𝑉𝑗) exists. In

this case, the conflict graph is bidirectional so the adjacency matrix is mirrored along

the rising diagonal axis. As shown in Figure 7-8, there are two conflicts between the

(INI1, TAR5) and (INI1, TAR6) initiator/target pair, and the (INI2, TAR4) and (INI4,

TAR1) initiator/target pair, indicated by the value of 1 in the relevant cells.

Using a conflict graph provides a simple data structure for the algorithm to check if

two initiator/target pairs can be scheduled within the same time-slot.

7.2.2.2 Periodic Traffic

A periodic traffic bandwidth requirement 𝑃𝑟 = (𝑖, 𝑡, 𝑜, 𝑠, 𝑟), as described in Section

7.1.1.1, is a cyclic communication between an initiator and a target at a rate 𝑟. The

value of 𝑟 should be a power of two multiple of the system’s control cycle i.e. the

172

number of schedule epochs per second. This is so that the transactions can be placed

at even intervals within the schedule. For example, if the system’s control cycle is 16

Hz i.e. 1024 time-codes per second, a 16 Hz transaction could be implemented as a

static bus in time-slot 0 and a 32 Hz transaction could be implemented as two static

buses in time-slots 0 and 32. This is a current limitation of the scheduling algorithm

implementation which should be updated in the future to allow for any value of 𝑟.

On a spacecraft, the source of periodic traffic could be one or more OBCs reading or

receiving housekeeping information from other devices on the network. It is likely that

there will be few initiators requiring periodic traffic but if there is more than one

initiator, there must be a check to make sure that the initiator/target pair’s path does

not conflict with any paths used by other initiator’s static buses operating in the same

time-slot.

Additionally, a periodic transaction should only be added to an existing static bus if

the combined execution time of the existing transactions and the new transaction fits

within the time-slot.

Once a non-conflicting time-slot that has enough room for the transaction has been

found, if the rate of the periodic bandwidth requirement is a multiple of the control

cycle it will require additional transactions at uniform intervals throughout the

schedule. The algorithm must check that the first suitable slot is early enough in the

schedule that additional transactions can be scheduled before the end of the schedule,

otherwise the bandwidth requirement is not schedulable.

The periodic bandwidth requirement scheduling algorithm, written in Python, is listed

in Figure 7-9.

173

Figure 7-9: Periodic Bandwidth Scheduling Algorithm

In Figure 7-9, a function is defined, called schedule_periodic, which takes a

list of periodic bandwidth requirements and attempts to allocate the transactions for

each requirement to one or more static buses. In line 3, the requirement’s rate is

divided by the control cycle in order to find the number of slots required for static

buses and in line 4, the schedule length of 64 is divided by the number of slots to get

the interval between the static buses. In lines 5 to 7 the time-slots are iterated starting

at time-slot 0 until a slot is found that doesn’t contain any conflicting initiator/target

pairs and has room for the requirement’s transaction, using the conflict and fit

functions. Lines 8 and 9 check if the slots needed by the requirement fit within the

remainder of the schedule, starting at slot. Finally, lines 10 to 14 check each slot to

make sure it is suitable then extends the static buses in the required slots to add the

new requirement by calling the add_to_sbus function.

A block diagram of the algorithm used to schedule a periodic bandwidth requirement

is shown in Figure 7-10.

1 def schedule_periodic(reqs):

2 for req in reqs:

3 nslots = req.r / CTRL_CYCLE

4 ivl = 64 / nslots

5 slot = 0

6 while conflict(slot, req) or not fit(slot, req):

7 slot = slot + 1

8 if slot > 63 or slot > (ivl - 1):

9 return False

10 for i in range(0, nslots):

11 next = slot + i * ivl

12 if not is_slot_good(next, req):

13 return False

14 add_to_sbus(next, req)

15 return True

174

Figure 7-10: Periodic Bandwidth Scheduling Algorithm Block Diagram

As shown in Figure 7-10, the algorithm starts with a periodic requirement. Next, the

number of slots required is calculated, then the periodic interval. The first valid slot is

then found by iterating over the slots. If no valid slot is found, the algorithm fails. If a

valid slot is found, the remaining required slots are checked for validity. If any of the

remaining required slots are invalid, the algorithm fails. If all of the required slots are

valid, the requirement is assigned to the schedule and the algorithm succeeds.

To demonstrate periodic traffic scheduling, an example of scheduling a number of

periodic bandwidth requirements from two initiators with some conflicting

initiator/target pairs is described next. The periodic bandwidth requirements used in

the example are shown in Table 7-7

175

Table 7-7: Example Periodic Bandwidth Requirements

Initiator Target Operation Size Rate

INI1 TAR1 Read 128 16 Hz

INI1 TAR2 Read 128 32 Hz

INI2 TAR1 Read 256 16 Hz

INI2 TAR3 Read 128 64 Hz

The conflict graph for the example, with one conflict between (INI1, TAR1) and

(INI2, TAR1) is shown in Figure 7-11.

 (INI1, TAR1) (INI1, TAR2) (INI2, TAR1) (INI2, TAR3)
(INI1, TAR1) 0 0 1 0
(INI1, TAR2) 0 0 0 0
(INI2, TAR1) 1 0 0 0
(INI2, TAR3) 0 0 0 0

Figure 7-11: Example Periodic Bandwidth Requirements Conflict Graph

Using the periodic bandwidth requirement scheduling algorithm from Figure 7-9 and

a control cycle of 16 Hz, the resulting static buses are listed in Table 7-8

Table 7-8: Example Periodic Bandwidth Requirements Static Buses

Initiator Targets Slot Size

INI1 TAR1, TAR2 0 1

INI1 TAR2 32 1

INI2 TAR1 1 1

INI2 TAR3 0 1

INI2 TAR3 16 1

INI2 TAR3 32 1

INI2 TAR3 48 1

As shown in Table 7-8, seven static buses have been created to satisfy the bandwidth

requirements listed in Table 7-7. The first requirement has been added to static bus 0,

the second has been added to static buses 0 and 32, the third has been added to static

bus 1 because it cannot be added to static bus 0 due to the (INI1, TAR1) and (INI2,

176

TAR1) paths conflicting and the fourth requirement has been added to static buses 0,

16, 32 and 48.

7.2.2.3 Aperiodic Traffic

An aperiodic traffic bandwidth requirement 𝐴𝑟 = (𝑖, 𝑡, 𝑜, 𝑠, 𝑑), as described in Section

7.1.1.2, is a transaction between an initiator and a target that can be loaded at any time

and must be completed within a deadline 𝑑. A dynamic bus can be used for aperiodic

traffic with time-slots placed at intervals less than the deadline so that no matter when

a transaction is loaded, an allocated time-slot will be available to execute the

transaction before the deadline expires.

On a spacecraft, the source of aperiodic traffic could be an OBC sending commands

to another device after receiving confirmation of an event occurring. For example, if

a sensor on the spacecraft detects that a change in the environment warrants recording,

it could notify the OBC which would then need to send a command to an instrument

to capture the event, which must reach the instrument within a deadline.

When allocating time-slots to a dynamic bus, the minimum number of time-slots

which satisfy the aperiodic requirement should be used so that bandwidth is not wasted

by over-allocating time-slots which could be used for other virtual buses.

The aperiodic bandwidth requirement scheduling algorithm, written in Python, is

listed in Figure 7-12.

177

Figure 7-12: Aperiodic Bandwidth Requirement Scheduling Algorithm

In Figure 7-12, a function is defined, named schedule_aperiodic, which takes

a list of aperiodic bandwidth requirements and attempts to allocate the transactions for

each requirement to a dynamic bus. Line 3 calculates the maximum interval between

time-slots in order to satisfy the aperiodic requirement. Line 4 finds the first suitable

slot that is available for the requirement and line 5 adds the slot to a list. Line 6 begins

a loop that runs until the algorithm completes or fails. Line 7 checks if there is no

suitable first slot or if the first suitable slot is too far into the schedule to meet the

interval requirements, and if so returns false on line 8. Line 9 defines a flag that is used

to reset the process and increment the first slot, in lines 16-18, to retry scheduling from

another first slot. Lines 10-15 attempt to find the next suitable slot between the last

selected slot and the maximum interval. If a suitable next slot is found, it is added to

1 def schedule_aperiodic(reqs):

2 for req in reqs:

3 max_ivl = (req.dl * 1000 / SLOT_LENGTH) - 1

4 first = first_good_slot(req)

5 slots = [first]

6 while not is_allocated(slots, req):

7 if first_slot > 63 or first > (max_ivl – 1):

8 return False

9 reset = False

10 next = min(slots[-1] + max_ivl, 63)

11 while not is_slot_good(next, req):

12 next -= 1

13 if next <= slots[-1]

14 reset = True

15 break

16 if reset:

17 first += 1

18 slots = [first]

19 else:

20 slots.append(next)

21 for slot in slots:

22 add_to_dbus(slot, req)

23 return True

178

the list in line 20. Finally, lines 21 and 22 extend the dynamic buses in the required

slots to add the new requirement by calling the add_to_dbus function.

A block diagram of the algorithm used to schedule an aperiodic bandwidth

requirement is shown in Figure 7-13.

Figure 7-13: Aperiodic Bandwidth Scheduling Algorithm Block Diagram

As shown in Figure 7-13, the algorithm starts with an aperiodic requirement. Next, the

maximum interval is calculated. The allocation loop is then entered which attempts to

schedule the requirement starting at the first valid slot. If, at this point, the allocation

won’t fit within the schedule based on the first slot, the algorithm fails. The slot at the

next maximum interval is then determined. This slot is checked for validity, and

decremented if it is invalid. If the slot is decremented so that the assignment of the

interval slot fails, the allocation loop is reset starting at an incremented first slot. If the

assignment of the interval slot succeeds, the next interval slot is tried or, if the

allocation is complete at this point, the requirement is assigned to the schedule and the

algorithm succeeds.

179

7.2.2.4 Payload Data Traffic

Once the periodic and aperiodic traffic bandwidth requirements have been satisfied,

the remaining non-conflicting or free time-slots can be used for payload data traffic.

A payload data traffic bandwidth requirement 𝐷𝑟 = (𝑖, 𝑡, 𝑜, 𝑠, 𝑛) , as described in

Section 7.1.1.3, is a data-flow between an initiator and a target that must be allocated

enough space within the schedule to read or write 𝑛 packets of data with size 𝑠 per

second. One or more asynchronous buses can be used for payload data traffic with

enough time-slots allocated throughout the schedule to transfer the required number

of packets per second between the initiator and the target.

On a spacecraft, the source of payload data traffic is one or more scientific instruments

that generate a number of data packets a second that must be stored in a mass-memory

device before being transmitted back to Earth.

The objective of the payload data traffic scheduling algorithm is to allocate

transactions to the minimum number of time-slots possible. It is possible for the

algorithms to allocate to more than 64 time-slots during their execution This is so that

its performance can be measured to determine how far away it is from an acceptable

solution, but a solution is not acceptable unless it fits within 64 time-slots.

Bin Packing

Scheduling payload data traffic can be modelled as a variation on the bin-packing

problem (BPP) which uses conflicts (Epstein and Levin 2006) and multi-capacity bins

(Leinberger, Karypis and Kumar 1999). The BPP is an NP-hard combinatorial

optimisation problem where the aim is to place a finite number of items with varying

sizes into a minimum number of bins with limited capacities.

180

In the model, there is a number of payload data packets that must be encapsulated

within RMAP transactions and executed within the 64 time-slots. The number of

packets that must be executed across a schedule epoch is determined by the payload

data requirement’s number of packets divided by the number of schedule epochs per

second. Each transaction has a size which is its execution time and each time-slot is a

bin that has multiple sub-bins, one for each initiator, where each sub-bin’s capacity is

the time-slot duration minus the initiator processing time. The conflict graph

determines if transactions from two different initiators can be placed in the same time-

slot and any conflicts from the periodic and aperiodic transactions already scheduled

must also be taken into account.

As an example, consider the following four payload data traffic requirements:

Table 7-9: Example Payload Data Bandwidth Requirements

Initiator Target Operation Size Packets/Second

INI1 TAR1 Write 4096 4

INI2 TAR2 Write 4096 6

INI3 TAR1 Write 4096 8

INI4 TAR2 Write 4096 2

With the following conflict graph:

 (INI1, TAR1) (INI2, TAR2) (INI3, TAR1) (INI4, TAR2)
(INI1, TAR1) 0 0 1 0
(INI2, TAR2) 0 0 0 1
(INI3, TAR1) 1 0 0 0
(INI4, TAR2) 0 1 0 0

Figure 7-14: Example Payload Data Conflict Graph

As shown in Table 7-9 and Figure 7-14, there are four payload data bandwidth

requirements with a combined 20 packets per second that need to be scheduled and

181

there is a conflict between (INI1, TAR1) and (INI3, TAR1) as well as between (INI2,

TAR2) and (INI4, TAR2).

Assuming a simplified schedule with two time-slots, each of which has the capacity

to execute eight RMAP transactions with a data size of 4096 bytes, and a control cycle

of 1 Hz, a possible allocation is shown in Figure 7-15.

Figure 7-15: Example Payload Data Allocation

As shown in Figure 7-15, there are two time-slots which have been allocated a number

of RMAP transactions and each row of transactions represents an initiator sub-bin.

Transactions with the same shade are conflicting and have not been allocated within

the same time-slot. In the slots used by the (INI1, TAR1), (INI2, TAR2) and (INI4,

TAR2) initiator/target pairs, there is some additional space at the end of the slots for

any additional transactions sent by the initiator because the time-slots haven’t been

completed consumed.

In a more complex scenario with additional bandwidth requirements, it may be

possible to use some of the free space in one of the initiator sub-bins. Selecting which

182

time-slot to use can be done heuristically using different criteria to choose an

allocation of transactions.

First-Fit Heuristic

The first-fit (FF) heuristic (Coffman, et al. 2013) is a simple algorithm that begins

looking at the first bin and determines if there is enough remaining capacity for the

item to fit. If there is enough room, the item is placed in the bin, otherwise the

algorithm moves to the next bin and so on until the item is allocated. If there are no

bins with enough capacity for the item, a new bin is opened and the item is allocated

there.

For each payload data requirement in this model, the FF heuristic scans the schedule

and finds the first time-slot which has enough remaining capacity for at least one

transaction from a payload data bandwidth requirement and inserts as many as possible

until the requirement has been satisfied or no more will fit in the time-slot. The

heuristic then repeats this process until all transactions for the payload data

requirement have been allocated.

The intention of this heuristic is to allocate transactions using the simplest possible

method so that it can be used as a benchmark against which other heuristics can be

measured.

A block diagram of the algorithm used to schedule a payload data bandwidth

requirement using the first-fit heuristic is shown in Figure 7-16.

183

Figure 7-16: First-Fit Heuristic Block Diagram

As shown in Figure 7-16, the algorithm starts with a payload data requirement. Next,

the cost, i.e. the execution time, of a single RMAP transaction from this requirement

is calculated. Following this, the transaction count is calculated which determines how

many transactions are required to be scheduled in each schedule epoch. Finally, the

algorithm enters a loop which allocates the maximum possible number of transactions

to the first-found valid slots until the requirement is satisfied.

Best-Fit Heuristic

The best-fit (BF) heuristic (Coffman, et al. 2013) looks at every open bin and finds the

bin that has the most remaining capacity in which to allocate the item. If there are no

bins with sufficient capacity for the item, a new bin is opened and the item is placed

there.

For each payload data requirement in this model, the BF heuristic finds the time-slot

that has the most space available in the initiator sub-bin for the requirement and inserts

184

as many transactions as possible until the requirement has been satisfied or no more

will fit in the time-slot. The heuristic then repeats this process until all transactions for

the payload data requirement have been allocated.

Using the FF heuristic, it’s possible for transactions to be split across many nearly full

time-slots. For example, consider a payload data requirement that requires five large

transactions to be allocated to the schedule. In this example, the first four slots are

partially full and can only fit one of the transactions but the fifth slot is completely

empty. The FF heuristic will first allocate one transaction to each of the first four slots

and the last transaction to the empty fifth slot, as shown in Figure 7-17.

Figure 7-17: First-Fit Heuristic Allocation

If there is another payload data requirement that must be allocated eight small

transactions which conflict with the large transactions, they can’t be allocated to any

of the first five slots. However, if the algorithm had allocated more transactions to the

empty fifth slot, it would allow the small transactions to be allocated to one or more

of the first four slots as shown in Figure 7-18.

185

Figure 7-18: Best-Fit Heuristic Allocation

The intention of the BF heuristic is to insert transactions into as few time-slots as

possible in order to maximise the number of time-slots available for other conflicting

payload data requirement transactions.

A block diagram of the algorithm used to schedule a payload data bandwidth

requirement using the best-fit heuristic is shown in Figure 7-19.

Figure 7-19: Best-Fit Heuristic Block Diagram

186

As shown in Figure 7-19, the algorithm starts with a payload data requirement. Next,

the transaction cost and transaction count are calculated in the same way as in the first-

fit heuristic. Following this, the algorithm enters a loop that finds the least full slot and

allocates the maximum number of transactions to it. This loop repeats until the

bandwidth requirement is satisfied.

Least-Conflicting Heuristic

The least-conflicting (LC) heuristic searches for the bin which will introduce the least

additional conflicts with other potential items within the same bin if the item is

allocated within it. If there are multiple least-conflicting bins, the item is inserted into

one of them by using the BF heuristic and if there are no open bins with enough space

for the item, a new bin is opened and the item is placed there.

For each payload data requirement in this model, the LC heuristic finds the time-slot

that, when a transaction is allocated to it, the minimum number of conflicts with other

transactions are added. For example, consider a payload data requirement that must be

allocated transactions that conflict with three other transactions in the network. There

is a schedule with two slots: the first is completely free while the second is partially

full and there have been some transactions allocated which share two of the three

conflicts with the new requirement. If the new transactions are allocated to the

completely free first slot, three conflicts will be added to the time-slot. However, if

the transactions are allocated to the second slot, only one conflict will be introduced

into the slot as the other two are already present.

The intention of the LC heuristic is to allocate transactions to the schedule while

introducing the minimum number of potential conflicts, therefore allowing more

conflicting transactions to be allocated to other slots.

187

A block diagram of the algorithm used to schedule a payload data bandwidth

requirement using the least-conflicting heuristic is shown in.

Figure 7-20: Least-Conflicting Heuristic Block Diagram

As shown in Figure 7-20, the algorithm is very similar to the first-fit and best-fit

heuristics. The only difference is the block that determines the most appropriate slot

measures the number of conflicts and selects the slot with the most conflicts shared

with the bandwidth requirement.

7.2.3 Complete Algorithm

The algorithm for scheduling a SpaceWire-D network based on a list of bandwidth

requirements is a combination of path selection, periodic, aperiodic and payload data

traffic scheduling as shown in Figure 7-21.

188

Figure 7-21: Complete SpaceWire-D Scheduling Algorithm

Figure 7-21 shows an example of the strategy design pattern where the complete

algorithm consists of four steps which may be implemented in various ways by

selecting the different heuristics.

The top-level design of the scheduling algorithm is illustrated in Figure 7-1. There is

a network topology and a list of bandwidth requirements that are input into the path

selection and transaction allocation stages of the algorithm. The path selection

strategies are described in Section 7.2.1 and the transaction allocation strategies are

described in Section 7.2.2. Each type of bandwidth requirement is allocated using a

different algorithm. Periodic bandwidth requirements are allocated using the algorithm

listed in Figure 7-9 and illustrated in Figure 7-10; aperiodic bandwidth requirements

are allocated using the algorithm listed in Figure 7-12 and illustrated in Figure 7-13;

and finally, payload data bandwidth requirements are allocated using a bin-packing

algorithm and the heuristics illustrated in Figure 7-16, Figure 7-19 and Figure 7-20.

This scheduling strategy uses a combination of approximation algorithms to attempt

to find a solution that satisfies the problem specification. This means that if a solution

is found, it is not guaranteed that it is the optimal solution. In future work, it may be

necessary to explore exhaustive algorithms to find optimal solutions to the SpaceWire-

D scheduling problem. However, as described in Chapter 8, the scheduling strategy

presented here generates good results for both the randomised test cases and a real-life

test case.

1 def schedule_spwd_network(preqs, areqs, pdreqs):

2 select_paths(preqs, areqs, pdreqs)

3 schedule_periodic(preqs)

4 schedule_aperiodic(areqs)

5 schedule_payload_data(pdreqs)

189

7.3 Summary

In this chapter, a novel strategy for scheduling SpaceWire-D networks was proposed.

The scheduling algorithm takes a network topology and a list of bandwidth

requirements as input and generates a set of transaction to time-slot allocations as

output. The allocations attempt to satisfy the bandwidth requirements whilst adhering

to the rules of SpaceWire-D.

First, the problem was specified in terms of periodic, aperiodic and payload data

bandwidth requirements. The network topology and parameters were also specified

which are required to model the performance of the SpaceWire-D network with

regards to the initiators, targets, routers and links.

Next, a number of algorithms were described to perform path selection and transaction

scheduling. The simplest path selection algorithm involved choosing the shortest paths

using BFS. The second path selection algorithm was a weighted search path selection

technique using a modified version of Dijkstra’s algorithm. This algorithm

dynamically penalised the cost of links if they were shared between multiple

initiator/target paths, with the intention of reducing conflicts in the network. For

transaction scheduling, two simple algorithms were described for allocating periodic

and aperiodic transactions and the payload data transaction allocation process was

modelled as a variation of the classic bin-packing problem.

190

Chapter 8

Evaluating the Scheduling Strategy

In the previous chapter, a two-stage scheduling strategy was described for generating

SpaceWire-D initiator schedules. In this chapter, the strategy is evaluated by using it

to schedule a variety of randomised test cases consisting of network topologies and

bandwidth requirement lists. Following this evaluation, the scheduling strategy is used

in a case study of a real space mission, the JUpiter ICy moons Explorer (European

Space Agency 2011).

8.1 Test Cases

The process of generating test cases was done in two steps: firstly, a semi-randomised

network topology is built to represent the SpaceWire network for the mission; and

secondly, a bandwidth requirement list is generated consisting of periodic, aperiodic

and payload data requirements. There are five parameters input into the test case

generation algorithm: the number of nodes, routers, periodic, aperiodic and payload

data requirements.

8.1.1 Generating Network Topologies

The network topology of a test case is semi-randomised because it creates randomised

links but adheres to some structural rules. The first rule is that the network graph must

be connected i.e. it is possible to route a packet from any node to any other node on

191

the network through one or more routers. Secondly, each node is connected to a single

router but routers may be connected to multiple nodes or other routers.

Generating the network topology is done in a number of stages. The first stage

connects each of the nodes to a random router. The second stage connects some routers

together by adding in random router to router links. At this point it’s possible but not

guaranteed that the network graph is connected, so there is another stage which merges

each of the connected components until the entire graph is connected.

Firstly, the list of connected components is determined by doing a series of graph

traversals. Starting at node 0, an exhaustive search is done to note which nodes were

discovered during this process, forming the first connected component. Next, the same

is done for the first undiscovered node to form another connected component. This

process is continued until all the nodes have been discovered and a list of the connected

components is created.

To merge the connected components into a single connected graph, the process starts

at the first component and adds a random router to router link to the second connected

component in order to form a new, larger connected component. A random router to

router link is then added between the new connected component and the third

connected component. This process is repeated until all of the connected components

have been merged into one connected graph.

This network topology generation process is illustrated in Figure 8-1.

192

Figure 8-1: Generating Network Topology Stages

In Figure 8-1, there is a graph, in the top left diagram, consisting of eight nodes and

four routers with no links. In the second stage, in the top right diagram, each node is

connected to one of the routers. Next, each router is connected to one of the other

routers. In this example, the top two and bottom two routers are mutually connected

to each other which forms two connected components. In the final stage, the top

connected component is linked to the bottom connected component by adding a link

between the top right and bottom left router.

While the third stage could be left out and the algorithm could just merge the

connected components each consisting of a router plus one or more nodes, the third

stage adds the possibility of multiple links being created between routers. These are

193

likely to occur in a SpaceWire network in order to reduce the bottleneck of a single

link and increase the available bandwidth between routers.

8.1.2 Generating Bandwidth Requirements

The generation of bandwidth requirements is relatively simple in comparison to the

network topology. The initiator and target are selected at random from a subset of

nodes, depending on the type of requirement. Periodic and aperiodic requirements

select an initiator from the first two nodes and a random target from any other node,

mimicking the housekeeping or command transactions between one or two on-board

computers and other devices on the network. Payload data transactions randomly

select an initiator and target from any node on the network.

RMAP operation types are randomly set to a read or write operation and the size of

the transaction is dependent on the type of bandwidth requirement. Periodic and

aperiodic requirements select a random size from the following values: 32, 64, 128 or

256 bytes. Payload data requirements select a random size from the following values:

512, 1024, 2048 or 4096 bytes and a packet count randomly selected from the

multiples of 16 between 64 and 256.

Periodic bandwidth requirement rates are selected based on a multiple of the control

cycle, which is assumed is 16 Hz i.e. 1024 SpaceWire time-codes per second and a

time-slot interval of 976.5625 ms for these test cases. The periodic requirement rates

are randomly selected from the following values: 16, 32 or 64 Hz. Each aperiodic

bandwidth requirement has a deadline which is randomly selected from the following

values: 10, 15, 20, 25 or 30 ms.

194

8.1.3 Test Case Generation Algorithm

There are two stages to the test case generation algorithm: firstly, the random network

topology is generated using the process described in Section 8.1.1; and secondly, the

random periodic, aperiodic and payload data bandwidth requirements are generated

using the processes described in Section 8.1.2.

The random network topology generation algorithm is illustrated in Figure 8-2.

Figure 8-2: Network Topology Generation Algorithm Block Diagram

As shown in Figure 8-2, the algorithm begins by taking a number of nodes and routers

as input. Next, each node is attached to a router then each router is attached to another

router. Following this, random router to router links are added. At this point, the

network may be connected but it’s more likely to have multiple connected components

so a process begins to merge them into a single connected network. Firstly, the nodes

are removed from the components so that only router to router links are added in the

next stage. Components are merged starting at the second component by adding a

195

random link between it and the first component. This process repeats until all

connected components are merged into a connected network at which point the

algorithm returns a list of edges to the application. Figure 8-1 illustrates an example

of the algorithm generating a network with 8 nodes and 4 routers.

The random bandwidth requirement generation algorithm is illustrated in Figure 8-3.

Figure 8-3: Requirement Generation Algorithm Block Diagram

As shown in Figure 8-3, the algorithm begins by taking the number of nodes and

requirements as input. A random initiator and target are then selected based on the

constraints for each bandwidth requirement as described in Section 8.1.2. For

example, periodic and aperiodic constrain the initiators to the first 2 nodes and the

targets to the remaining nodes to emulate OBCs as initiators and other devices as

targets. Payload data bandwidth requirements select any pair of nodes as the initiator

and target. Next, the requirement’s parameters are randomly selected based on the

constraints described in Section 8.1.2. Additional requirements are generated until the

required number is met, then the list is returned to the application.

196

The test case generation algorithm software was implemented in Python 3 using the

open-source PyCharm Community Edition IDE from JetBrains (JetBrains 2015). The

software is a command-line based script that takes a list of parameters which are used

to generate the test cases. The script takes the following 7 parameters: the number of

test cases to generate; the number of nodes; the number of routers; the number of

periodic, aperiodic and payload data bandwidth requirements; and a prefix for the test

case filenames. These parameters are then passed to the relevant topology and

bandwidth requirement generating algorithms.

An overview of the test case generation software flow is shown in Figure 8-4. In this

figure, Block A refers to the topology generation algorithm illustrated in Figure 8-2

and Blocks B, C and D refer to the bandwidth requirement generation algorithm

illustrated in Figure 8-3 for periodic, aperiodic and payload data requirements,

respectively.

Figure 8-4: Test Case Generation Software Flow

197

As shown in Figure 8-4, the test case generation software flow begins with a user

executing the test case generation Python script with a list of parameters. These

parameters are then parsed by the script and passed to each of the algorithms which

generate the topology and the periodic, aperiodic and payload data bandwidth

requirements. The topology and the requirements are then written to text files,

describing each test case in the format described in the following section.

8.1.4 File Format

When the test case generation algorithm is complete, the test case is stored as a plain

text file so that it can be easily parsed by the scheduling algorithm. The test case file

format is shown in Figure 8-5.

As shown in Figure 8-5, the file begins with six integers describing the number of

nodes, routers, links, periodic, aperiodic and payload requirements. Following the first

line, the links and requirements are listed. Each link is a pair of integers describing a

bidirectional SpaceWire connection between two numbered devices. The bandwidth

requirements consist of five parameters where the first four are common across all

types: the initiator, target, RMAP operation and size in bytes. The fifth parameter is

nodes routers links periodic aperiodic payload

link_0

…

link_n

periodic_0

…

periodic_n

aperiodic_0

…

aperiodic_n

payload_0

…

payload_n

Figure 8-5: Test Case File Format

198

the rate (Hz) for periodic requirements, the deadline (ms) for aperiodic requirements

and the packet count for payload data requirements. All parameters are integers except

for the RMAP operation with may be “r” or “w” meaning read or write respectively.

An example of a small test case file is shown in Figure 8-6.

In Figure 8-6, the first line indicates that there are four nodes, two routers, five links,

five periodic requirements, two aperiodic requirements and two payload data

requirements. The nodes are always indexed first, followed by the routers so in this

case the four nodes are numbered from 0 to 3 and the two routers are numbered 4 and

5. There are links between each node and one of the routers and the routers are also

connected to each other. The corresponding network architecture for the example test

case is shown in Figure 8-7.

4 2 5 5 2 2

0 4

1 4

2 5

3 5

4 5

0 1 r 128 16

0 2 r 128 16

0 3 r 128 16

0 4 r 128 16

0 5 r 128 16

0 2 w 256 10

0 3 w 64 20

2 1 w 1024 64

3 1 w 2048 128

Figure 8-6: Example Test Case File

199

Figure 8-7: Example Test Case Architecture

As shown in Figure 8-7, there are four nodes represented as grey circles and two

routers represented as black circles. The five SpaceWire links match those described

in lines 2 to 6 of the example test case file in Figure 8-6.

The periodic requirements show that node 0 is reading 128 bytes of housekeeping

information from the other devices, including the routers, at a rate of 16 Hz. Node 0

also has two aperiodic requirements to nodes 2 and 3; the first is writing 256 bytes of

data with a 10 ms deadline and the second is writing 64 bytes of data with a 20 ms

deadline. Finally, there are two payload data requirements; the first is between nodes

2 and 1 and requires 64 packets of 1024 bytes per second and the second, between

nodes 3 and 1, requires 128 packets of 2048 bytes per second.

Using a standard file format to describe each test case allows the ability to easily add

additional test cases based on real or proposed missions rather than random test cases.

8.2 Experimental Setup

The experiments in this chapter were run on a Lenovo ThinkPad laptop with an Intel

Pentium B960 processor running at 2.2 GHz, with 4 Gbytes of RAM on top of the

Windows 7 64-bit operating system. The test generation algorithm and the scheduling

200

algorithms were implemented using the Python 3 programming language and the

open-source PyCharm Community Edition IDE from JetBrains (JetBrains 2015).

Test cases were generated assuming that the SpaceWire link speed is 200 Mbit/s across

the entire network and that the control cycle is 16 Hz. There are three groups of test

cases: small, medium and large, with ten random test cases in each group. The input

parameters for the test case generation algorithm for each class are listed in Table 8-1.

Table 8-1: Test Case Classes

Class Nodes Routers Periodic Aperiodic Payload

Small 16 6 16 8 16

Medium 32 12 32 16 32

Large 64 24 64 32 64

In each class, ten test cases were randomly generated with randomised links between

the nodes and routers, as described in Section 8.1.1. Periodic, aperiodic and payload

requirements were then randomly generated between randomly selected nodes in the

network, as described in Section 8.1.2. Each experiment ran their scheduling strategies

on all test cases and the results were written to plain text files.

8.3 Results

This section describes each experiment and provides the results from scheduling the

test cases using the algorithms and techniques described in the previous sections.

8.3.1 Experiment 1: BFS Path Selection

In this experiment, paths are selected for each bandwidth requirement using the BFS

algorithm to determine the shortest path, based on number of links, between each

required initiator/target pair. Once the paths have been selected, the cost of each

bandwidth requirement’s transactions are determined by calculating the worst-case

201

RMAP transaction execution time using the path information. Next, the conflict graph

is built by pair-wise checking each bandwidth requirement and adding a conflict if two

requirements have different initiators and share one or more SpaceWire links. After

this initial processing, the periodic and aperiodic transactions are allocated first, using

the algorithms from Sections 7.2.2.2 and 7.2.2.3. Finally, the payload data bandwidth

requirements are translated into bin packing items by using the RMAP execution time

as the cost and the packet count as the number of instances of each item. The items are

then allocated using the bin packing heuristics as described in Section 7.2.2.4.

8.3.1.1 Results

The results from running the first experiment on all 30 test cases using the FF, BF and

LC heuristics are listed in Table 8-2.

Table 8-2: Experiment 1: BFS Path Selection Results

Test Case Conflicts
 Total Slots Used Payload Slots

FF BF LC FF BF LC

small_000 107 (60) 61 61 (19) 20 19

small_001 94 (61) 61 61 (12) 12 12

small_002 131 (61) 61 61 (21) 22 21

small_003 207 (61) 61 61 (13) 13 13

small_004 87 (64) 64 64 (14) 14 14

small_005 117 (64) 64 64 (15) 16 15

small_006 76 (64) 64 64 (14) 15 14

small_007 135 (64) 64 64 (19) 20 19

small_008 114 (61) 63 63 (14) 15 14

small_009 126 (61) 61 61 22 (21) 22

medium_000 550 (64) 66 66 (42) 44 44

medium_001 470 (64) 69 69 (32) 36 36

medium_002 371 (64) 65 65 24 25 (23)

medium_003 389 (64) 64 64 (38) 41 38

medium_004 386 (64) 64 64 (33) 33 33

202

Test Case Conflicts
 Total Slots Used Payload Slots

FF BF LC FF BF LC

medium_005 454 (61) 61 61 (42) 43 42

medium_006 508 (65) 66 65 (49) 50 49

medium_007 403 (64) 65 65 (29) 29 29

medium_008 367 (61) 61 61 (19) 21 19

medium_009 501 (64) 64 64 (31) 31 31

large_000 1388 (64) 64 64 (39) 42 39

large_001 1509 (64) 64 64 37 38 (36)

large_002 1076 (64) 68 68 (36) 39 39

large_003 1433 (64) 66 66 (36) 37 38

large_004 1559 78 (77) 78 64 (61) 63

large_005 964 (64) 64 64 (30) 33 32

large_006 1220 (64) 71 71 (43) 49 49

large_007 1247 (68) 68 68 64 (63) 63

large_008 1350 (64) 73 71 (41) 49 47

large_009 1102 (64) 66 66 (43) 43 43

In Table 8-2, each row describes the results of the experiment on the test case listed in

the first column. The second column lists the number of edges in the conflict graph

which describes if different initiator/target pairs share one or more SpaceWire links

and therefore their transactions can’t be allocated within the same time-slot. The third

column is a group of three columns, one for each bin packing heuristic, which lists the

total number of slots required to schedule all of the bandwidth requirements. Finally,

the fourth column lists, for each heuristic, the number of slots containing one or more

payload data transactions. The parenthesised results show the best result for the total

number of slots and the number of payload slots.

8.3.1.2 Analysis

The number of conflicts increases as the instances grow larger, as expected due to the

larger number of initiator/target pairs used by the periodic, aperiodic and payload data

203

bandwidth requirements. This figure is included in the results to compare how the path

selection affects the number of conflicts between the BFS path selection algorithm and

the weighted search path selection algorithm in the next experiment. If the number of

conflicts can be reduced then the number of initiator/target pairs that can be scheduled

at the same time can be increased, which may increase the quality of the schedule by

reducing the number of slots required.

Looking at the total slots used columns shows that there are several test cases in which

one or more heuristic didn’t find a suitable solution using the BFS path selection

within 64 time-slots or less. Additionally, there are three test cases in which no

heuristic found a suitable solution using the BFS path selection: medium_006,

large_004 and large_007.

Although the total number of slots used is a useful metric to determine if a suitable

solution is found, it doesn’t describe much about the quality of the scheduled

transactions, most of which are payload data transactions. For example, if a test case

contained one aperiodic bandwidth requirement with a tight deadline, the schedule

may use many slots but most of which would contain only one transaction. Therefore,

the number of slots that contain one or more payload transactions is included as an

additional quantitative measure of the quality of the schedule.

Looking at the best results for total slots used in each test case, as indicated by the

parenthesised values or those that match the value, shows that the heuristics perform

similarly in many cases in this experiment with the FF heuristic being able to find the

best total slots used result in most of the cases, although it is matched by at least one

of the other heuristics in 18 out of 29 cases and outperformed by the BF heuristic in

the large_004 test case.

204

The best results for the number of payload slots used shows that, again, the FF heuristic

manages to find the best result in many of the cases, being matched by the BF or LC

heuristic in 18 out of 25 cases and outperformed by the BF or LC heuristic in the

small_009, medium_002, large_001, large_004 and large_007 cases.

8.3.1.3 Detailed Result Description

This section provides a more detailed description of this experiment’s results for one

of the test cases, small_000, which contains 16 nodes, 6 routers, 28 links, 16 periodic

requirements, 8 aperiodic requirements and 16 payload data requirements. The

topology of the network is shown in Figure 8-8.

21

16

17 20

19

18

0

13

12

119
2

14

1

10

3

4

5

6

7

8

15

Figure 8-8: Network Topology for Test Case (small_001)

After running the BFS path selection, the paths for each initiator/target pair present in

the complete list of bandwidth requirements are listed in Table 8-3.

205

Table 8-3: Paths for Test Case (small_000)

Initiator Target Path

2 16 2 → 20 → 16

1 3 1 → 16 → 20 → 3

7 1 7 → 20 → 16 → 1

1 13 1 → 16 → 21 → 13

15 5 15 → 21 → 17 → 15

0 7 0 → 16 → 20 → 7

0 12 0 → 16 → 19 → 12

11 0 11 → 20 → 16 → 0

0 16 0 → 16

1 4 1 → 16 → 19 → 4

6 12 6 → 16 → 19 → 12

0 14 0 → 16 → 21 → 14

7 11 7 → 20 → 11

6 4 6 → 16 → 19 → 4

1 11 1 → 16 → 20 → 11

1 2 1 → 16 → 20 → 2

0 8 0 → 16 → 8

0 15 0 → 16 → 21 → 15

1 12 1 → 16 → 19 → 12

16 3 16 → 20 → 3

1 14 1 → 16 → 21 → 14

0 11 0 → 16 → 20 → 11

0 2 0 → 16 → 20 → 2

0 6 0 → 16 → 6

1 8 1 → 16 → 8

1 15 1 → 16 → 21 → 15

5 15 5 → 17 → 21 → 15

1 9 1 → 16 → 21 → 9

0 4 0 → 16 → 19 → 4

13 9 13 → 21 → 9

7 6 7 → 20 → 16 → 6

0 10 0 → 16 → 20 → 10

206

As listed in Table 8-3, the paths for initiator/target pairs are described as a sequence

of nodes from the initiator to the target. Many of the initiator/target pairs share the (16,

20) edge between the two routers, preventing them from being allocated within the

same time-slot. As the BFS path selection uses the lowest cost path with respect to the

number of links, the other possible routes between routers 16 and 20, such as (16, 18,

19, 20), (16, 19, 20) and (16, 17, 19, 20) are not used even though they would allow

concurrent initiator/target node pairs that require a path between routers 16 and 20.

Similar situations arise between other initiator/target pair paths with a shared router to

router link, such as the (16, 21) or (16, 19) links. The BFS path selection algorithm

also does not utilise multiple links between routers as it does not assign a value to the

links. The two initiator/target pairs that use the (17, 21) link in their paths share the

same link even though they wouldn’t need to if they each used one of the two links

between routers 17 and 21.

The bandwidth requirement list along with the transaction allocations found using the

FF heuristic, which was the best result for this test case, is shown in Table 8-4.

Table 8-4: Schedule for Test Case (small_000)

Req. I T Size R/D/C Allocations

Per. 0 0 16 32 32 (0, 1), (32, 1)

Per. 1 1 8 256 64 (0, 1), (16, 1), (32, 1), (48, 1)

Per. 2 1 9 32 16 (1, 1)

Per. 3 0 10 32 64 (0, 1), (16, 1), (32, 1), (48, 1)

Per. 4 1 2 32 64 (1, 1), (17, 1), (33, 1), (49, 1)

Per. 5 0 15 128 32 (0, 1), (32, 1)

Per. 6 1 4 32 32 (0, 1), (32, 1)

Per. 7 0 14 256 64 (0, 1), (16, 1), (32, 1), (48, 1)

Per. 8 0 7 256 64 (0, 1), (16, 1), (32, 1), (48, 1)

Per. 9 1 11 64 64 (1, 1), (17, 1), (33, 1), (49, 1)

Per. 10 1 14 64 32 (1, 1), (17, 1)

207

Req. I T Size R/D/C Allocations

Per. 11 0 12 256 32 (1, 1), (17, 1)

Per. 12 0 11 32 64 (0, 1), (16, 1), (32, 1), (48, 1)

Per. 13 1 12 256 16 (0, 1)

Per. 14 0 6 128 64 (0, 1), (16, 1), (32, 1), (48, 1)

Per. 15 0 4 128 16 (1, 1)

Ape. 0 1 4 64 15 (3, 1), (15, 1), (28, 1), (42, 1), (55, 1)

Ape. 1 1 3 32 10 (2, 1), (11, 1), (20, 1), (29, 1), (38, 1),

(47, 1), (56, 1)

Ape. 2 1 13 64 20 (2, 1), (21, 1), (40, 1), (59, 1)

Ape. 3 0 4 32 15 (2, 1), (14, 1), (27, 1), (41, 1), (54, 1)

Ape. 4 1 12 32 15 (3, 1), (15, 1), (28, 1), (42, 1), (55, 1)

Ape. 5 0 6 64 20 (2, 1), (21, 1), (40, 1), (59, 1)

Ape. 6 0 8 32 15 (2, 1), (15, 1), (29, 1), (43, 1), (57, 1)

Ape. 7 0 12 128 10 (2, 1), (11, 1), (20, 1), (29, 1), (38, 1),

(47, 1), (56, 1)

Pay. 0 0 2 512 512 (3, 23), (4, 9)

Pay. 1 13 9 512 304 (0, 19)

Pay. 2 7 11 1024 496 (2, 14), (3, 14), (4, 3)

Pay. 3 2 16 1024 112 (5, 7)

Pay. 4 7 6 4096 256 (6, 4), (7, 4), (8, 4), (9, 4)

Pay. 5 1 2 4096 240 (10, 4), (12, 4), (13, 4), (14, 3)

Pay. 6 5 15 2048 224 (1, 7), (2, 7)

Pay. 7 0 14 4096 368 (4, 2), (5, 4), (6, 4), (7, 4), (8, 4), (9, 4),

(10, 1)

Pay. 8 6 12 1024 256 (4, 14), (5, 2)

Pay. 9 16 3 1024 416 (15, 14), (18, 12)

Pay. 10 15 5 4096 192 (3, 4), (4, 4), (5, 4)

Pay. 11 1 15 1024 352 (14, 4), (18, 14), (19, 4)

Pay. 12 11 0 512 384 (19, 23), (22, 1)

Pay. 13 1 13 1024 128 (19, 8)

Pay. 14 7 1 512 336 (6, 1), (7, 1), (8, 1), (9, 1), (23, 17)

Pay. 15 6 4 2048 368 (5, 6), (10, 7), (12, 7), (13, 3)

In Table 8-4, each row lists a bandwidth requirement name, either a periodic, aperiodic

or payload requirement; the initiator/target pair involved; the size of the transaction in

208

bytes; the rate, deadline, or packet count; and a list of transaction allocations. The

allocations are in the format (𝑆, 𝑁), where 𝑆 is the time-slot and 𝑁 is the number of

transactions allocated.

As the control cycle is 16 Hz, each bandwidth requirement needs to have 1/16th of its

required transactions scheduled during each epoch. For example, the periodic

requirements with a rate of 64 Hz need to have four transactions evenly spaced

throughout the schedule and the payload requirements need to have 1/16th of their

transactions allocated to any slots within the schedule. Consider payload requirement

0, which has a packet count of 512 packets per second. It has been allocated 23 of its

packets to time-slot 3 and 9 of its packets to time-slot 4, giving a total of 32 packets

per schedule epoch. Multiplied by the number of schedule epochs per second, 16, this

results in 512 payload data packets per second, satisfying the payload data bandwidth

requirement.

8.3.2 Experiment 2: Weighted Search Path Selection

In this experiment, paths are selected using a modified version of Dijkstra’s algorithm

to find the lowest cost paths between initiators and targets. The algorithm has been

modified to take into account that the network topology might be a multigraph i.e.

there may be multiple links between two routers. Each link is given a unique label and

a separate weight value and when the cheapest edge between two vertices is being

determined, if there are multiple edges, the edge with the lowest cost is always

selected. The other modification to the algorithm is the addition of dynamic penalties,

added to the weight of edges that are selected in a path between an initiator and a

target. This encourages the selection of non-conflicting, but possibly longer, paths

rather than shorter paths that may share one or more links. After the paths are selected,

the experiment executes in the same manner as the first experiment.

209

8.3.2.1 Results

The results from running the second experiment on all 30 test cases using the FF, BF

and LC heuristics and a dynamic penalty value of 0.25 are shown in Table 8-5.

Table 8-5: Experiment 2: Weighted Search Path Selection Results

Test Case Conflicts
 Total Slots Used Payload Slots

FF BF LC FF BF LC

small_000 95 (60) 61 61 (15) 16 15

small_001 90 (61) 62 62 (11) 11 11

small_002 102 (61) 61 61 (25) 25 25

small_003 148 (61) 63 63 (13) 14 14

small_004 78 (64) 64 64 (14) 14 14

small_005 107 (64) 64 64 14 (13) 14

small_006 68 (61) 61 61 (13) 14 13

small_007 114 (64) 64 64 (19) 20 19

small_008 89 (61) 61 61 (13) 14 13

small_009 113 (61) 61 61 22 (16) 22

medium_000 412 (64) 66 66 (31) 33 33

medium_001 362 (64) 71 71 (30) 36 36

medium_002 356 (64) 65 65 (21) 21 21

medium_003 342 (64) 64 64 (23) 24 23

medium_004 377 (64) 64 64 (31) 33 31

medium_005 366 (64) 64 64 (34) 34 34

medium_006 509 (64) 70 70 (50) 55 55

medium_007 352 (64) 65 65 30 30 (29)

medium_008 348 (64) 64 64 (22) 23 22

medium_009 422 (64) 64 64 32 (31) 31

large_000 1072 (64) 64 64 37 37 (36)

large_001 1085 (64) 64 64 29 (28) 29

large_002 868 (64) 64 64 (25) 27 26

large_003 1022 (64) 64 64 (28) 29 28

large_004 1193 (64) 64 64 (40) 40 41

large_005 824 (64) 64 64 (31) 32 31

large_006 959 (64) 75 75 (31) 42 41

210

Test Case Conflicts
 Total Slots Used Payload Slots

FF BF LC FF BF LC

large_007 1014 (64) 70 69 (43) 48 47

large_008 1126 (64) 67 66 (41) 43 42

large_009 980 (64) 64 64 38 (37) 38

8.3.2.2 Analysis

It can be seen, by looking at the total used slots columns, that there is an acceptable

solution found for the test cases that the first experiment failed on: medium_006,

large_004 and large_007. There are two test cases in which the second experiment

found a solution requiring more total used slots than the first: medium_005 and

medium_008.

The number of conflicts has been significantly reduced in many cases due to the

weighted search path selection. The ratios of the number of conflicts between the

results of the two experiments are shown in Figure 8-9.

Figure 8-9: Number of Conflicts Ratios

0.60

0.70

0.80

0.90

1.00

1.10

1.20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

N
u

m
b

er
 o

f
C

o
n

fl
ic

ts
 R

at
io

Test Cases

211

In Figure 8-9, a bar chart shows the performance of the second experiment compared

to the first in terms of conflicts. The horizontal line at the y-axis value of 1.00 shows

the reference line for the number of conflicts from the first experiment, which used

the BFS path selection algorithm. Each test case is then represented as a vertical bar

showing the number of conflicts compared to the first experiment. The horizontal axis

labels represent the test case number, going from small_000 as label 0 to large_009 as

label 29.

Given the number of conflicts in a test case from experiment one 𝑐1 and the number

of conflicts from a test case in experiment two 𝑐2, the value of each bar is defined as

𝑐2

𝑐1
. For example, small_000 (labelled as 0) has just under 90% of the number of

conflicts compared to the first experiment, and small_003 (labelled as 3) has just over

70%.

The dotted line shows the linear trend line as the test cases go from small to large. In

all but one test case, the number of conflicts is reduced, and in over half of the test

cases, the weighted search path selection algorithm produces 85% or less conflicts

compared to BFS path selection.

Due to the reduction in the number of conflicts between initiator/target pairs, more

transactions may be able to be scheduled within the same time-slots, reducing the

number of time-slots required for payload data transactions. The ratios of the number

of payload slots required between the best results of the two experiments are shown in

Figure 8-10.

212

Figure 8-10: Payload Slots Used Ratios

As shown in Figure 8-10, the number of slots containing one or more payload data

transactions has been reduced in 20 out of 30 test cases. There are four test cases in

which experiment two performed worse than the first experiment, with regards to

payload slots used, and six cases in which the number of payload slots used are the

same for both experiments. The dotted line shows the linear trend line as the test cases

go from small to large.

To explain why the four test cases performed worse than in the first experiment, the

results of the third test case, which had the worst results compared to the first

experiment, can be analysed. This test case required 25 payload slots in the second

experiment compared to 21 in the first. In the first experiment, the paths used by

payload data bandwidth requirements 2 and 3, which have high data rates, do not

conflict. However, although the total number of conflicts is lower in the second

experiment, the paths used by these requirements in the second experiment do conflict.

In the first experiment, payload data bandwidth requirements 2 and 3 use time-slots 5

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

P
al

yo
ad

 S
lo

ts
 U

se
d

 R
at

io

Test Cases

213

to 11 and 7 to 14, respectively. However, in the second experiment, requirement 2 uses

time-slots 5 to 11 and requirement 3 uses time-slots 12 to 14 and 17 to 21. In addition,

the paths used by payload bandwidth requirements 3 and 8, which also have high data

rates, do not conflict in the first experiment but do in the second. These requirements

have an effect on the schedule because they are high data rate requirements that have

many allocated time-slots. This increases the number of slots required to satisfy these

high data rate requirements, resulting in a schedule that requires a higher overall

number of time-slots allocated to payload data bandwidth requirements.

These results imply that, in some cases, a more intelligent path selection strategy is

required. A load balancing path selection heuristic which attempts to meet this

requirement by taking into account the data rates of bandwidth requirements when

adding dynamic penalties to links is explored in Section 8.4.4.3.

The dynamic penalty value used when executing the weighted search path selection

algorithm can be experimented with to measure its effects. The results above use a

dynamic penalty value of 0.25, which adds a small penalty to each shared link

whenever it is selected in the path between an initiator and a target. To more heavily

penalise the selection of shared links, higher dynamic penalty values can be used.

Figure 8-11 shows the payload slots used ratios for penalty values of 0.25, 3 and 10.

214

Figure 8-11: Experimenting with Dynamic Penalty Values

In Figure 8-11, the black series shows the values from the original execution of

experiment two, and the dark-grey and light-grey series show the results when using

dynamic penalty values of 3 and 10, respectively. Using the new penalty values does

not provide consistent improvements in the results but they do find new best results in

10 out of the 30 test cases. Additionally, in test cases 3, 4, 17, 19 and 28, where the

original dynamic penalty value of 0.25 was not able to improve upon experiment one’s

results, the new values found better solutions.

Using different dynamic penalty values changes how the algorithm selects paths. If a

low penalty value, e.g. 0.25, is added to a link then the path selection algorithm will

favour a path of non-penalised links with a length of up to one SpaceWire link longer

than a path including the penalised link. This is advantageous if, for example, there

are multiple links between two routers which can be used to split traffic. Each path

selected will toggle between using each of the links. This is exactly what occurs in the

case study of the JUICE mission in Section 8.4, where there are two links between a

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

P
al

yo
ad

 S
lo

ts
 U

se
d

 R
at

io

Test Cases

Penalty = 0.25 Penalty = 3 Penalty = 10

215

router and the SSMM. If a high penalty value, e.g. 3, is added to a link then the path

selection algorithm will favour a path of non-penalised links with a length of up to

three SpaceWire links longer than a path including the penalised link. This may be

advantageous in some cases, as shown by the results in Figure 8-11, but it is dependent

on the network architecture. In other cases, the selection of a longer path may

introduce more conflicts between initiator/target pairs which will have a detrimental

effect on the resulting schedule. Therefore, either the network architecture should be

analysed to determine a good dynamic penalty value or a range of dynamic penalty

values should be experimented with in order to find the best result for the specific

network architecture.

8.4 Case Study: JUpiter ICy moons Explorer (JUICE)

The JUpiter ICy moons Explorer, known as JUICE, is an ESA mission under the

Cosmic Vision Program that aims to study Jupiter and three of its icy moons:

Ganymede, Callisto and Europa (Grasset, et al. 2013). The scientific purpose of the

mission is to investigate if the moons are able to support life. The mission has a

proposed launch date of 2022 and would enter orbit around Ganymede in 2033.

8.4.1 Network Topology

JUICE uses SpaceWire to connect the payload instruments, OBC, SSMM and

downlink telemetry and the network handles telecommands, telemetry and payload

data (Airbus Defence & Space 2015). The architecture of the SpaceWire network used

in the JUICE mission is illustrated in Figure 2-15.

As shown in Figure 2-15, the SpaceWire network consists of ten instruments, an OBC

with a redundant processor, SSMM and downlink telemetry, connected via a

SpaceWire router. Each instrument is connected to the router with a pair of SpaceWire

216

links, one nominal and one redundant, except for the PEP instrument that has two pairs

of SpaceWire links. For simplicity, the redundant links are not shown in the network

architecture in Figure 2-15. There is a pair of links between each OBC processor and

the router, and two pairs of links between the SSMM and the router. The SSMM is

connected to the two sets of X and Ka band downlink telemetry transfer frame

generators via pairs of point-to-point links.

The link speeds are not uniform across the network, with the OBC and SSMM running

their links at 128 Mbit/s, the JANUS, MAJIS and SWI instruments running their links

at 100 Mbit/s and the remaining instruments running theirs at 40 Mbit/s.

8.4.2 Time-Slot Duration

Each instrument has the capability to buffer up to 100 ms worth of their peak payload

data generation. Therefore, the schedule epoch needs to be less than or equal to 100

ms in order for an instrument to be able to buffer a full epoch’s worth of data. This is

due to the possibility that the scheduler may allocate an instrument’s transactions in a

number of time-slots in close locality, requiring the instrument to buffer payload data

until the next available slot in which it can send. This is a current limitation of the

scheduling algorithm implementation which should be updated in the future to attempt

to spread the payload data bandwidth requirement’s allocated time-slots throughout

the schedule in order to minimise the buffering requirements.

A time-slot also needs to be long enough to execute the longest transaction without

overlapping with the next slot. In this case, as explained in the next section on payload

data bandwidth requirements, the longest transaction is a 4096 byte RMAP write

command over a path where the slowest link speed is 40 Mbit/s. The initiator

processing time, target response times and router switching times are not available in

217

the JUICE communications scenario document (Airbus Defence & Space 2015) so the

same values as the SpaceWire-D Demonstrator are used. This gives a longest

transaction execution time of 1043.05 µs over the 40 Mbit/s paths and 424.3 µs when

using the 100 Mbit/s paths. A time-slot interval of 976.5625 µs, as in the previous

experiments, is no longer suitable because the longest transaction won’t fit within a

time-slot.

Therefore, a time-slot interval of 1562.5 µs was chosen, giving a schedule epoch of

100 ms and 10 schedule epochs per second. This allows the instrument buffering

limitation to be satisfied and the time-slot duration is long enough to fit one of the

largest transactions at 40 Mbit/s or three at 100 Mbit/s.

8.4.3 Bandwidth Requirements

In this section, the periodic, aperiodic and payload data bandwidth requirements for

the JUICE mission are described as listed in the JUICE communications scenario

document (Airbus Defence & Space 2015).

8.4.3.1 Periodic

Each instrument, except for RADEM, sends housekeeping telemetry to the OBC at a

rate of two 128 byte packets per second. As the schedule is executing at a rate of 10

Hz, this means the bandwidth requirements must be over-allocated and use one time-

slot in each schedule epoch which would allow up to 10 housekeeping packets per

second. In this case, as the periodic rate is low compared to the number of schedule

epochs per second, this results in wasted bandwidth in the 8 out of 10 schedule epochs

per second in which the instruments don’t send housekeeping telemetry to the OBC.

The periodic bandwidth requirements for the JUICE network are listed in Table 8-6.

218

Table 8-6: JUICE Periodic Bandwidth Requirements

Initiator Target Operation Size (B) Rate (Hz)

JANUS OBC Write 128 10

GALA OBC Write 128 10

J-MAG OBC Write 128 10

RIME OBC Write 128 10

SWI OBC Write 128 10

UVS OBC Write 128 10

MAJIS OBC Write 128 10

RPWI OBC Write 128 10

PEP-NU/ZU OBC Write 128 10

As shown in Table 8-6, there are nine periodic bandwidth requirements between the

instruments and the OBC with the same size of 128 bytes and a rate of 10 Hz.

8.4.3.2 Aperiodic

Telecommands are sent by the OBC to the instruments at a peak rate of five commands

per second. Again, the aperiodic requirements must be over-allocated due to the

schedule rate of 10 Hz, resulting in wasted bandwidth in the 5 out of 10 schedule

epochs per second in which the OBC doesn’t send commands to the instruments.

Aperiodic bandwidth requirements are normally suited to dynamic buses; however,

because there is only one time-slot required for each of the OBC to instrument

aperiodic bandwidth requirements, the aperiodic requirements can be simplified using

static buses. Therefore, each aperiodic bandwidth requirement can be transformed into

a periodic bandwidth requirement with a rate of 10 Hz as listed in Table 8-7.

219

Table 8-7: JUICE Transformed Aperiodic Bandwidth Requirements

Initiator Target Operation Size (B) Rate (Hz)

OBC JANUS Write 128 10

OBC GALA Write 128 10

OBC J-MAG Write 128 10

OBC RIME Write 128 10

OBC SWI Write 128 10

OBC UVS Write 128 10

OBC MAJIS Write 128 10

OBC RPWI Write 128 10

OBC PEP-NU/ZU Write 128 10

OBC RADEM Write 128 10

As shown in Table 8-7, there are ten aperiodic bandwidth requirements between the

instruments and the OBC. There is no information about the size of the telecommand

packets within the communication scenario document so the same size as the telemetry

packets, 128 bytes, is used with a rate of 10 Hz.

8.4.3.3 Payload Data

There are nine payload data bandwidth requirements between the instruments and the

SSMM. Each requirement consists of RMAP write transactions with a data length of

4096 bytes and a packet count between 10.6 and 310 packets per second. As the

schedule is executing at a rate of 10 Hz, the packet count of each payload data

bandwidth requirement is increased to the closest multiple of 10. The JUICE

communications scenario document lists the average and peak throughput of the

instrument to SSMM payload telemetry. In a SpaceWire-D network, the schedule must

satisfy the bandwidth requirements in the worst-case, which would be the peak

throughput. The payload data bandwidth requirements for the worst-case throughput

of the JUICE mission are listed in Table 8-8.

220

Table 8-8: JUICE Peak Throughput Payload Data Bandwidth Requirements

Initiator Target Operation Size (B) Packet Count

JANUS SSMM Write 4096 310

GALA SSMM Write 4096 20

JMAG SSMM Write 4096 70

RIME SSMM Write 4096 310

SWI SSMM Write 4096 20

UVS SSMM Write 4096 20

MAJIS SSMM Write 4096 1500

RPWI SSMM Write 4096 20

PEP-NU/ZU SSMM Write 4096 40

As shown in Table 8-8, there are nine payload data bandwidth requirements, most of

which have relatively low packet counts except for the JANUS, MAJIS and RIME

instruments which have higher packet counts of 310, 1500 and 310 packets per second,

respectively.

8.4.4 Scheduling

This section describes the process of scheduling the JUICE mission’s bandwidth

requirements using the results from the experiments described earlier in the chapter.

8.4.4.1 Path Selection

There are two paths between the router and the SSMM, and as the links between the

instruments and the router are not shared by any other initiator/target pairs this allows

for the scheduling of two different bandwidth requirements within the same time-slot

if they each use one of the router to SSMM links. Therefore, it makes sense to use the

weighted search path selection algorithm so that both links will be considered. When

writing the instance file to input to the scheduling algorithm, a single link is used to

represent a redundant pair of links in the network topology. This is because, at any

time, there will be only a single link active between each node, whether that be the

221

nominal or redundant link. This prevents the scheduling algorithm from using both the

nominal and redundant links at the same time.

Using different dynamic penalty values will have no effect in this network topology

because there is no possibility of a longer path being selected for any of the

initiator/target pairs as there is only a single router. However, using a dynamic penalty

value will still split traffic between the two links connecting the router and the SSMM,

so the dynamic penalty value is left at the default of 0.25.

8.4.4.2 Initial Results

The best resulting schedule from running the algorithm on the JUICE network

topology and bandwidth requirements, which in this case was found using the FF

heuristic, is shown in Table 8-9.

Table 8-9: Initial Result for JUICE Schedule

Type I T Size R/D/C Allocations

Periodic JANUS OBC 128 10 (0, 1)

Periodic GALA OBC 128 10 (1, 1)

Periodic J-MAG OBC 128 10 (2, 1)

Periodic RIME OBC 128 10 (3, 1)

Periodic SWI OBC 128 10 (4, 1)

Periodic UVS OBC 128 10 (5, 1)

Periodic MAJIS OBC 128 10 (6, 1)

Periodic RPWI OBC 128 10 (7, 1)

Periodic PEP OBC 128 10 (8, 1)

Periodic OBC JANUS 128 10 (9, 1)

Periodic OBC GALA 128 10 (9, 1)

Periodic OBC J-MAG 128 10 (9, 1)

Periodic OBC RIME 128 10 (9, 1)

Periodic OBC SWI 128 10 (9, 1)

Periodic OBC UVS 128 10 (9, 1)

Periodic OBC MAJIS 128 10 (9, 1)

222

Type I T Size R/D/C Allocations

Periodic OBC RPWI 128 10 (9, 1)

Periodic OBC PEP 128 10 (9, 1)

Payload JANUS SSMM 4096 310 (1-8, 3), (10-11, 3), (12, 1)

Payload GALA SSMM 4096 20 (0, 1), (2, 1)

Payload J-MAG SSMM 4096 70 (0, 1), (13-18, 1)

Payload RIME SSMM 4096 310 (1, 1), (4-8, 1), (10-34, 1)

Payload SWI SSMM 4096 20 (19, 2)

Payload UVS SSMM 4096 20 (3, 1), (35, 1)

Payload MAJIS SSMM 4096 1500 (20-69, 3)

Payload RPWI SSMM 4096 20 (36, 1), (37, 1)

Payload PEP SSMM 4096 40 (70-73, 1)

Table 8-9 shows the time-slots in which each of the transactions for the bandwidth

requirements are allocated. In the allocations column, an allocation in the form (A-B,

N) means that there are N transactions allocated in every time-slot from A to B

inclusive. Looking at the payload data bandwidth requirement transaction allocations

shows that this is not a suitable solution as it would need 74 time-slots in which to

execute transactions, as shown by the allocation of (70-73, 1) for the PEP to SSMM

payload data bandwidth requirement. Therefore, a different strategy is required to

successfully schedule the JUICE bandwidth requirements, as described in the

following section.

8.4.4.3 Load Balancing Dynamic Penalties

To investigate how the scheduling approach can be improved, the network topology

and the bandwidth requirements can be analysed to determine which transactions need

to be scheduled differently to generate a valid schedule.

There is a chokepoint in the network topology of the JUICE mission, illustrated in

Figure 2-15, between the router and the SSMM. There are two SpaceWire links

223

available which must be shared between all instrument to SSMM payload data

bandwidth requirements.

The most demanding payload data bandwidth requirement is between the MAJIS

instrument and the SSMM which requires 1500 transactions per second, each

containing 4096 bytes of data. Ideally, this requirement should conflict with as few of

the other bandwidth requirements as possible as it requires 150 transactions per

schedule epoch spread over at least 50 time-slots. The initiator/target pair paths that

conflict with the MAJIS to SSMM pair are listed in Table 8-10.

Table 8-10: MAJIS to SSMM Conflicting Paths

Initiator Target Path

MAJIS SSMM MAJIS → ROUTER(A) → SSMM(A)

JANUS SSMM JANUS → ROUTER(A) → SSMM(A)

J-MAG SSMM J-MAG → ROUTER(A) → SSMM(A)

SWI SSMM SWI → ROUTER(A) → SSMM(A)

PEP SSMM PEP → ROUTER(A) → SSMM(A)

In Table 8-10, a link in the form ROUTER(A) → SSMM(A) means link A connecting

the SSMM to the router. There are four other payload bandwidth requirements that

share the same router to SSMM link, meaning the other four are using the

ROUTER(B) → SSMM(B) link. Although the path selection algorithm attempts to

balance the use of the two links evenly based on the number of bandwidth

requirements using them, it doesn’t take into account the link utilisation of the

requirements. This means that the level of traffic going across the two links is very

uneven because the MAJIS to SSMM payload data bandwidth requirement, which has

a packet count of 1500, is much more demanding than the other requirements. This

results in 1940 transactions per second allocated across link A and 370 per second

across link B.

224

To combat this, rather than using a constant dynamic penalty value of 0.25, the packet

count can be used as the dynamic penalty value. The effect this has is to increase the

cost of a link used by a high demand requirement much more than a low demand

requirement. The payload bandwidth requirements can also be reordered by

descending packet count so that the MAJIS to SSMM requirement immediately adds

to the cost of link A. Using the load balancing dynamic penalties, the new payload

data allocations, which were found using the FF heuristic, are listed in Table 8-11.

Table 8-11: JUICE Schedule with Load Balancing Dynamic Penalties

Type I T Size R/D/C Allocations

Payload JANUS SSMM 4096 310 (1-8, 3), (10-11, 3), (12, 1)

Payload GALA SSMM 4096 20 (54-55, 1)

Payload J-MAG SSMM 4096 70 (43-49, 1)

Payload RIME SSMM 4096 310 (0, 1), (13-42, 1)

Payload SWI SSMM 4096 20 (56, 2)

Payload UVS SSMM 4096 20 (57-58, 1)

Payload MAJIS SSMM 4096 1500 (0-5, 3), (7-8, 3), (10-51, 3)

Payload RPWI SSMM 4096 20 (59-60, 1)

Payload PEP SSMM 4096 40 (50-53, 1)

As shown in Table 8-11, the algorithm now finds a suitable solution requiring 61 time-

slots, compared to 74 time-slots in the previous attempt. It also shows that during the

execution of the MAJIS to SSMM transactions in slots 0-5, 7-8 and 10-51, there are

more transactions being executed over link B. There are now 1500 transactions using

link A and 810 using link B, compared to 1940 and 370 without using load balancing

dynamic penalties.

In the previous sections, the scheduling strategy has been shown to successfully

generate initiator schedules for randomised test cases of various sizes, showing that it

scales to networks of different sizes. It has now been extended to successfully work

225

for a real mission, showing that it is applicable to real-world scenarios. If a mission

can be specified using the format described in Section 7.1, the scheduling tool

described in this chapter can be used to attempt to generate initiator schedules. Future

work should look at other real missions with a range of architectures to analyse the

generality of the tool.

8.5 Load Balancing Dynamic Penalties

The test cases of the experiments described earlier in the chapter can be revisited with

the new load balancing dynamic penalties and requirement ordering strategies that

were found to give good results in the JUICE case study. Figure 8-12 shows the results

when using the new strategies compared to the best results from the second

experiment.

Figure 8-12: Load Balancing Dynamic Penalties

As shown in Figure 8-12, where the black series is the best results found previously

from experiment two, using load balancing dynamic penalties finds a new best result

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

P
al

yo
ad

 S
lo

ts
 U

se
d

 R
at

io

Test Cases

Previous Best Load Balancing

226

for the number of payload slots used in 11 out of 30 cases. No suitable solution was

found in 64 or less time-slots for test case 29, large_009, as it required 65 time-slots.

8.6 Summary

In this chapter, two experiments were performed using the path selection algorithms

and the transaction scheduling algorithms described in Chapter 7. The algorithms were

run on 30 test cases in three different size classes: small, medium and large and the

results were presented and analysed.

Following the experiments, the JUICE mission was used as a case study for the

scheduling algorithms. The bandwidth requirements and network architecture were

taken from the JUICE communications scenario document (Airbus Defence & Space

2015). During the case study, a new strategy was explored that re-ordered the payload

data bandwidth requirements by decreasing data-rate and used a load balancing

heuristic when performing the path selection process. This allowed the scheduling

algorithm to find a suitable solution which satisfied the bandwidth requirements of the

JUICE mission.

Finally, the original test cases were revisited using the load balancing heuristic found

during the JUICE case study and the results were presented which performed better

than the previous heuristics in 11 of the 30 test cases.

This chapter has proven that the novel scheduling strategy described in Chapter 7 can

successfully schedule SpaceWire-D networks. The strategy has been shown to be

scalable by performing experiments using randomised test cases of increasing size

classes. In addition, the applicability of the scheduling strategy to real-world scenarios

has been demonstrated by extending it with a new heuristic to successfully schedule

the bandwidth requirements of the JUICE mission.

227

Chapter 9

Future Work

In this chapter, several avenues for future work are described. These avenues include

improvements to the efficiency of the SpaceWire-D software layer described in

Chapter 4, a possible hardware implementation of a SpaceWire-D controller,

additional FDIR capabilities for SpaceWire-D and research into scheduling

mechanisms for SpaceFibre, the next generation of on-board data handling.

9.1 SpaceWire-D Efficiency Improvements

Although the software overhead at the start of each time-slot in the SpaceWire-D layer

was reduced to a usable level, it is possible to make it more efficient, depending on

the SpaceWire hardware available to the initiator.

The initiators described in this thesis are based on a LEON2-FT based processor board

which contains three individual SpaceWire protocol engines, giving a total of three

RMAP initiators. In the SpaceWire-D layer described in Chapter 4, only one of the

initiators is used to execute the RMAP transactions at the start of each time-slot.

As described in Section 4.3.4, there are three stages to the RMAP dispatching process:

the pre-execution stage which checks for any outstanding transactions that need to be

cancelled and saves the status values of the previous time-slots transactions, the

execution stage which hands a group of RMAP transactions to the initiator for

execution and the post-execution stage which checks the status values for errors and

228

prepares any asynchronous or packet buses allocated to the subsequent time-slot. The

RMAP initiator used in the LEON2-FT based processor board updates the status of

each executed transaction in an encoder and decoder descriptor. These descriptors are

read at the start of each time-slot to determine if each transaction had an encoder or

decoder error. If there is no decoder error but the transaction is still incomplete, it must

be cancelled by the initiator before the next group of transactions can be executed.

If more than one RMAP initiators are used, the first can check for any errors or

outstanding transactions which need to be cancelled after the second initiator has

already started executing its group of transactions. This would reduce the software

overhead to the minimum by removing the pre-execution stage completely and

moving it to the post-execution stage. However, this would also mean that each

initiator device would require multiple logical addresses in order to de-multiplex

RMAP reply packets and filter them to the correct initiator. This would slightly

increase the complexity of the network and would be a trade-off with the potential

performance gain.

9.2 SpaceWire-D Hardware Controller

Another possibility for improving the efficiency of the SpaceWire-D layer is to design

a hardware SpaceWire-D controller in order to remove the software overhead

completely. With a hardware controller, the user application would have the same

interface to the SpaceWire-D API functions such as opening, loading and closing

virtual buses. However, the implementation of these functions would interact with

registers used to configure and control the SpaceWire-D controller rather than use data

structures and algorithms in software. The hardware would need to be signalled when

a time-code arrives at the board containing the SpaceWire-D controller, which would

then execute any transactions loaded into the virtual bus, if any, allocated to the time-

229

slot. Research could be done to investigate how the SpaceWire-D controller could be

designed in hardware and how it compares to a software implementation.

9.3 SpaceWire-D FDIR

The SpaceWire-D standard defines the detection of errors such as RMAP reply errors

or transaction incomplete errors. The standard says that these errors should be reported

to the network manager for handling, the meaning of which is mission-specific and

left to the system designer. In the SpaceWire-D Demonstrator, the errors are compiled

into a list of 32-bit error descriptors and sent to the network manager in time-slot 63

of each schedule epoch via an RMAP write to a specific address in one of the network

manager’s RMAP targets. The errors are displayed to the user but no further action is

taken to attempt to isolate and recover from the errors.

A possible path for future work would be to research methods for adding an FDIR

layer on top of, or integrated into, SpaceWire-D in order to isolate and recover from

encoder, decoder, incomplete transaction or other types of errors.

9.4 SpaceWire-D On-Board Scheduler

In Chapter 7, scheduling mechanisms were described to transform a list of mission

bandwidth requirements, a network topology and network parameters into a network

schedule. However, this was not prototyped in the SpaceWire-D Demonstrator as a

scheduling layer on top of the SpaceWire-D layer.

Future work could be undertaken to build a scheduling layer that takes the schedule

information and uses it to configure the schedule and load transactions into the correct

virtual buses at the correct times. The user application would then simply hand

transactions to the scheduling layer without having to concern itself with which virtual

buses to use.

230

9.5 SpaceFibre Scheduling

SpaceFibre is the next generation of on-board data handling networks. It provides high

data-rate payload data-handling, built-in QoS and FDIR and runs over electrical and

fibre-optic cables and transceivers (Parkes, McClements and McLaren, et al. 2015).

The built-in QoS includes scheduling of virtual channels (VC), prioritised traffic and

bandwidth reservation. It provides all of the features of SpaceWire-D built into the

protocol and hardware directly without the software overhead and it is backwards

compatible with existing SpaceWire networks.

The built-in QoS allows a lower priority VC to use bandwidth allocated to a higher

priority VC if the higher priority VC has nothing to transmit. This means that unused

pre-allocated bandwidth isn’t wasted like in a SpaceWire-D network. The traffic is

also split up into frames so that if a high-priority VC does require access to the link, it

is only delayed by the time it takes to finish transmitting the current lower-priority

frame rather than waiting for an arbitrary length packet to finish transmission.

Research could be done into scheduling mechanisms and algorithms for SpaceFibre

applications to combine payload and critical traffic on the same network using the QoS

features of SpaceFibre and comparing it to SpaceWire-D and the scheduling

mechanisms presented in Chapter 7.

9.6 Summary

This chapter has described some areas for future work to improve the efficiency of the

SpaceWire-D layer, to investigate a possible hardware version of a SpaceWire-D

controller, to research more advanced FDIR capabilities and also to look at scheduling

mechanisms for SpaceFibre, the next generation of on-board data handling networks.

231

Chapter 10

Conclusions

In this chapter, this thesis is concluded by summarising the results gathered whilst

answering the research questions and describing the novel contributions.

10.1 Research Summary

This following sections summarise how each research question was answered.

10.1.1 Designing a SpaceWire-D Software Layer

Question 1: How can an efficient SpaceWire-D software layer be designed on top of

existing SpaceWire devices?

Chapter 4 answers this question by describing the design of an embedded SpaceWire-

D software layer built for a LEON2-FT processor board and executing on top of the

RTEMS real-time operating system.

In order to run the RTEMS real-time operating system on the LEON2-FT processor

board, a board-support package was required. The BSP was based on the existing

LEON support in the RTEMS source tree but extended to support the different register

layout, interrupt scheme, peripherals and memory layout of the LEON2-FT processor

board. The STAR-Dundee STAR-Gate remote debugging and loading program was

then used to debug the BSP until the basic RTEMS test programs could run

successfully.

232

A SpaceWire-D layer was then designed on top of the RTEMS BSP to allow the

processor board to act as a SpaceWire-D initiator. The SpaceWire-D layer contains

the virtual buses, network management, time-slot execution, local-timer

synchronisation, error detection and user notification functionality of a SpaceWire-D

initiator. It also provides an API to the user application to allow it to open, load and

close virtual buses as well as configure network management parameters and receive

notifications of SpaceWire-D related activity.

The SpaceWire-D layer’s time-slot execution process initially had a relatively high

software overhead which prevented it being used in a SpaceWire-D network using the

minimum time-slot duration of 1 ms. The time-slot execution process was then

optimised over several revisions until a software overhead of less than 100 µs was

achieved.

10.1.2 Designing a SpaceWire-D Demonstrator

Question 2: How can a system using the SpaceWire-D protocol be prototyped in order

to demonstrate the standard?

Chapters 5 and 6 answer this question by describing the design of a prototype

SpaceWire-D system that was used to demonstrate and verify the standard. The system

consists of a PXI rack containing two LEON2-FT processor boards, three RMAP

interface boards each containing four targets, a network manager, two routers and a

host PC. The network topology was designed to allow non-conflicting paths between

each initiator and each target interface board which allows both initiators to access

separate targets within the same board in the same time-slot without blocking. The

initiator boards use the SpaceWire-D software layer running on top of the RTEMS

real-time operating system and they also include a demonstrator application. The

233

demonstrator application is responsible for interpreting and executing automated test

commands uploaded to the initiators by the user using a program on the host PC.

An automated test scripting language was designed to simplify the process of creating

and running tests using the SpaceWire-D Demonstrator. The language allows a user

to define a list of transactions, transaction groups and packet bus operations as a text

file and use time-slot triggered commands to open, load and close virtual buses at

specific times during the execution of the schedule.

Three example scripts are described starting with a simple static bus test, a more

complex static bus test then a test that uses all four types of virtual bus. These scripts

are run using the SpaceWire-D Demonstrator as well as the suite of programs running

on the host PC used to configure, control and monitor the network. The results of the

tests were gathered using a combination of the host PC programs and a STAR-Dundee

Link Analyser Mk2 placed between one of the initiators and a router in order to capture

the RMAP commands and replies. These results showed that the SpaceWire-D

network was operating correctly and that the protocol can be used to combine periodic

traffic, aperiodic traffic, prioritised best-effort traffic and prioritised best-effort traffic

with flow-control on a single SpaceWire-D network

The SpaceWire-D Demonstrator was used to complete the verification activity of the

ESA SpaceWire-D project and was delivered to ESA and installed at ESTEC.

10.1.3 Scheduling SpaceWire-D Networks

Question 3: How can a SpaceWire-D mission’s bandwidth requirements be

represented and satisfied computationally?

Chapters 7 and 8 answer this question by first describing how the SpaceWire-D

scheduling problem can be represented as a list of different bandwidth requirements,

234

a network topology and a list of network parameters. Next, the problem-solving

strategy was described using a multi-stage algorithm that first selects the paths

between the initiators and the targets then allocates transactions into time-slots to

create the network schedule.

The problem representation was specified by first grouping bandwidth requirements

into three categories: periodic bandwidth requirements consist of RMAP transactions

between initiators and targets that are repeated at regular intervals; aperiodic

bandwidth requirements consist of RMAP transactions between initiators and targets

that are sporadic but must be completed within a certain deadline once they are active;

and payload data bandwidth requirements consist of data-rate requirements between

initiators and targets. Secondly, the network topology is defined as a bi-directional

multigraph where the vertices represent the initiators, targets and routers of the

network and the edges represent the SpaceWire links. Lastly, the network parameters

such as worst-case routing latency and response times are described which are required

in order to calculate the execution times of the RMAP transactions.

After the problem representation was specified, it was divided into two algorithmic

stages. Firstly, the path selection methods were described in order to select the sets of

SpaceWire links between the initiators and the targets. Two algorithms were used in

the path selection stage: the BFS algorithm and a variation of Dijkstra’s algorithm that

dynamically increases the cost of a link every time it is used in a path to attempt to

reduce the number of potential conflicts. Secondly, the periodic, aperiodic and payload

data bandwidth requirements are scheduled. Periodic and aperiodic bandwidth

requirements are allocated using simple algorithms which allocate their transactions

to the first suitable time-slots. To allocate the payload data bandwidth requirements,

the problem is transformed into a variation of the classic bin-packing problem where

235

the items are the transactions and the bins are the time-slots, divided into several sub-

bins, one for each initiator. A conflict graph, where the nodes are initiator/target pairs

and the edges represent a collision between two initiator/target pairs, determines if two

transactions can be allocated within the same time-slot. Three heuristics were used in

the bin-packing algorithm: first-fit, best-fit and least-conflicting. The resulting

solution’s quality is measured firstly by the overall number of time-slots required to

satisfy all bandwidth requirements, and secondly by the number of time-slots required

for payload data bandwidth requirements. If a network has an aperiodic bandwidth

requirement with a short deadline, it will require many time-slots most of which may

contain just a single transaction, so the second metric is used to gain additional insight

into the quality of a schedule.

The algorithm was evaluated in two experiments: the first used the BFS path selection

and the second used Dijkstra’s algorithm with the dynamic penalty variation. There

were 30 randomised test cases consisting of 10 small, 10 medium and 10 large

networks. Each test case had different periodic, aperiodic and payload data bandwidth

requirements and the network was assumed to have its SpaceWire links running at 200

Mbit/s with a 1024 Hz time-code rate.

Using the BFS path selection, the algorithm found solutions within 64 time-slots for

27 of the 30 test cases, with the first-fit heuristic performing best or equal with another

heuristic in most cases. With the dynamic penalty weighted search path selection, the

algorithm found solutions within 64 time-slots for the remaining 3 test cases and

reduced the number of conflicts in 29 of the 30 test cases. In over half of the test cases,

the number of conflicts was reduced to at least 85% of the conflicts when using the

BFS path selection. With reduced conflicts, this allowed the algorithm to find better

solutions for 20 of the 30 test cases, worse solutions for 4 and equal solutions for the

236

remaining 6. Additionally, the experiment was redone with different dynamic penalty

values which resulted in new best solutions for 10 of the 30 test cases.

Finally, the scheduling algorithm using weighted search path selection was used in a

case study of the ESA JUICE mission. The JUICE network consists of 10 instruments,

a pair of OBCs, an SSMM and a downlink telemetry module all connected together

with a SpaceWire router. Each link is redundant, with two redundant links between

the router and SSMM and the links run at variable speeds. There were 9 periodic, 10

aperiodic and 9 payload data bandwidth requirements to be scheduled.

Using the weighted search path selection did not find a suitable solution for this

mission, with the best result, using the FF heuristic, finding a solution that required 74

time-slots. Therefore, a new path selection heuristic was designed to perform load

balancing when selecting links rather than applying a constant penalty value when

links were selected in paths. Using the load balancing path selection, the algorithm

found a suitable solution in 61 time-slots. The original test cases were then revisited

using the load balancing path selection which found new best results in 11 of the 30

test cases but failed to find a suitable solution for one.

10.2 Contributions

This thesis contributes a novel scheduling strategy for SpaceWire-D networks. It

allows a mission to be specified as a network topology and a list of periodic, aperiodic

and payload data bandwidth requirements. The system then uses a combination of path

selection algorithms and transaction allocation algorithms to attempt to find a list of

network paths and transaction allocations that satisfy the bandwidth requirements.

An efficient embedded SpaceWire-D software layer, built on top of the RTEMS real-

time operating system, was also contributed. This software layer was the first system

237

to implement the latest draft of the SpaceWire-D protocol and was used to verify the

protocol during the ESA SpaceWire-D project.

The SpaceWire-D software layer was also used in combination with multiple other

target boards, routers and a host PC running a suite of applications to create a

SpaceWire-D Demonstrator. This system contributed a novel automated test scripting

language for SpaceWire-D, as well as a traffic visualisation program used to display

SpaceWire-D traffic in real-time. The SpaceWire-D Demonstrator was validated as

part of the SpaceWire-D project and the results of this activity were delivered to ESA.

The combination of the embedded SpaceWire-D layer, the SpaceWire-D

Demonstrator, the results of the protocol verification activity and the results of the

SpaceWire-D Demonstrator validation activity show that a deterministic SpaceWire

network was contributed which adhered to the new SpaceWire-D specification and the

requirements of the project.

10.3 Outcomes

As the outcomes of this research, three papers have been published with the author as

the primary author and three papers with the author as a co-author. In addition, the

SpaceWire-D initiator software layer described in Chapter 4 and the SpaceWire-D

Demonstrator described in Chapter 5 was used to complete the verification activity of

the ESA SpaceWire-D project. The SpaceWire-D Demonstrator was then delivered to

ESA and installed at ESTEC.

Furthermore, the author has presented work related to this research at two SpaceWire

Working Group meetings at ESTEC and gave an invited tutorial on SpaceWire-D at

the 7th International SpaceWire Conference in Yokohama, Japan, 2016.

238

Bibliography

ADLINK Technology Inc. 2016. PXI-3950. Accessed August 2, 2016.

http://www.adlinktech.com/PD/web/PD_detail.php?cKind=&pid=797&seq=

&id=&sid=&utm_source=#.

Airbus Defence & Space. 2015. JUICE SpaceWire Application Protocol Specification.

Airbus Defence & Space.

Andersson, Jan, Jiri Gaisler, and Roland Weigand. 2010. “Next Generation

Multipurpose Microprocessor.” Proceedings of Data Systems in Aerospace

(DASIA) Conference. Budapest, Hungary. 83-86.

Bracknell, Derek. 1988. “Introduction to the MIL-STD-1553B Serial Multiplex Data

Bus.” Microprocessors and Microsystems 12.1 (Royal Aerospace

Establishment), 3-12.

CAN in Automation. 2011. CiA Standard 301 Version 4.2.0: CANopen application

layer and communication profile. Standard, CiA.

CCSDS. 2013. Spacecraft Onboard Interface Services. CCSDS Informational Report,

Washington, DC, USA: Consultative Committee for Space Data Systems.

Chen, Yang, Mitsutaka Takada, Ryo Kurachi, and Hiroaki Takada. 2013. “A

Scheduling Method of RMAP Packets for SpaceWire-D.” Proceedings of 5th

International SpaceWire Conference. Gothenburg, Sweden. 205-208.

Coffman, Edward G, János Csirik, Gábor Galambos, Silvano Martello, and Daniele

Vigo. 2013. “Bin Packing Approximation Algorithms: Survey and

239

Classification.” In Handbook of Combinatorial Optimization, by Panos M

Pardalos, Ding-Zhu Du and Ronald Graham, 455-531. Springer.

CompuPhase. 2015. Termite: A Simple RS232 Terminal. 18 August. Accessed April

6, 2017. http://www.compuphase.com/software_termite.htm.

Corbet, Jonathan, Alessandro Rubini, and Greg Kroah-Hartman. 2005. “An

Introduction to Device Drivers.” In Linux Device Drivers, by Jonathan Corbet,

Alessandro Rubini and Greg Kroah-Hartman, 1-14. O'Reilly Media, Inc.

Cormen, Thomas H, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.

“Priority Queues.” In Introduction to Algorithms, 162-164. The MIT Press.

Dijkstra, Edsger W. 1959. “A note on two problems in connexion with graphs.”

Numerische mathematik 1.1, 269-171.

ECSS. 2003. ECSS-E-ST-50-12A: SpaceWire - Links, nodes, routers and networks.

Standard, European Cooperation for Space Standardization.

ECSS. 2008 A. ECSS-E-ST-50-12C: SpaceWire - Links, nodes, routers and networks.

Standard, European Cooperation for Space Standardization.

ECSS. 2008 B. ECSS-E-ST-50-13C: Interface and communication protocol for MIL-

STD-1553B data bus onboard spacecraft. Standard, European Cooperation for

Space Standardization.

ECSS. 2013. ECSS-E-ST-50-15C DIR1: CANBus extension protocol. Standard,

European Cooperation for Space Standardization.

ECSS. 2010 A. ECSS-E-ST-50-51C: SpaceWire Protocol Identification. Standard,

European Cooperation for Space Standardisation.

240

ECSS. 2010 B. ECSS-E-ST-50-52C: SpaceWire - Remote memory access protocol.

Standard, European Cooperation for Space Standardization.

Epstein, Leah, and Asaf Levin. 2006. “On Bin Packing with Conflicts.” Proceedings

of the International Workshop on Approximation and Online Algorithms.

Zurich, Switzerland. 160-173.

European Space Agency. 2014 A. Architectures of Onboard Data Systems. 1 May.

Accessed 1 6, 2017.

http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard

_Computer_and_Data_Handling/Architectures_of_Onboard_Data_Systems.

European Space Agency. 2014 B. First Copernicus Satellite Now Operational. 6

October. Accessed April 6, 2017.

http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-

1/First_Copernicus_satellite_now_operational.

European Space Agency. 2015 A. ESA Experimental Spaceplane Completes Research

Flight. 11 February. Accessed April 6, 2017.

http://www.esa.int/Our_Activities/Launchers/IXV/ESA_experimental_space

plane_completes_research_flight.

European Space Agency. 2015 B. SpaceWire Missions. 4 December. Accessed April

6, 2017. http://www.spacewire.esa.int/content/Missions/Missions.php.

European Space Agency. 2011. JUICE: Exploring the emergence of habitable worlds

around gas giants. Assessment Study Report, European Space Agency.

European Space Agency. 2009. Seeing Stars, PROBA-2 Platform Passes Its First

Health Check. 11 November. Accessed April 6, 2017.

241

http://www.esa.int/Our_Activities/Observing_the_Earth/SMOS/Two_new_E

SA_satellites_successfully_lofted_into_orbit.

Fuller, Sam. 2005. RapidIO: The Embedded System Interconnect. John Wiley & Sons.

Gatliff, Bill. 1999 A. “Embedding with GNU: GNU Debugger.” Embedded Systems

Programming 12, 80-95.

Gatliff, Bill. 1999 B. “Embedding with GNU: the gdb Remote Serial Protocol.”

Embedded Systems Programming 12, 108-113.

Gibson, David, Steve Parkes, and Karen Petrie. 2013. “Modeling Deterministic

Spacecraft Networks with Constraint Programming.” Proceedings of 19th

International Conference on Principles and Practices of Constraint

Programming (Doctoral Program). Uppsala, Sweden. 49-54.

Gibson, David, Steve Parkes, Chris McClements, and Stuart Mills. 2016. “SpaceWire-

D Prototype and Demonstration System.” Proceedings of 7th International

SpaceWire Conference. Yokohama, Japan. 275-281.

Gibson, David, Steve Parkes, Chris McClements, Stuart Mills, and David Paterson.

2014. “SpaceWire-D on the Castor Spaceflight Processor.” Proceedings of 6th

International SpaceWire Conference. Athens, Greece. 197-203.

GNU Project. 2015 A. GNU Linker Documentation. 9 September. Accessed April 6,

2017. https://sourceware.org/binutils/docs/ld/index.html#Top.

GNU Project. 2015 B. Linker Scripts. 9 September. Accessed April 6, 2017.

https://sourceware.org/binutils/docs/ld/Scripts.html#Scripts.

Grasset, O, M K Dougherty, A Coustenis, E J Bunce, C Erd, D Titov, M Blanc, et al.

2013. “JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit

242

Ganymede and to characterise the Jupiter system.” Planetary and Space

Science 78, 1-21.

Guasch, J R, S Parkes, and A Christen. 1999. “From IEEE 1355 High-Speed Serial

Links to SpaceWire (Programmable Aspects and Applications).” Proceedings

of Data Systems in Aerospace (DASIA) Conference. Lisbon, Portugal. 117-

122.

Hult, Torbjörn, and Steve Parkes. 2014. “On-Board Data Systems.” In The

International Handbook of Space Technology, by Malcolm Macdonald and

Viorel Badescu, 441-470. Springer.

Hutchinson, Michael, Les Griffiths, Adrian Smith, and Sam Doody. 2012. “The

Sentinel-1 Radar Electronics Subsystem Development.” Proceedings of

European Conference on Synthetic Aperture Radar. Nuremberg. 170-173.

IEEE Computer Society. 1996 A. IEEE-1355-1995: IEEE Standard for

Heterogeneous Interconnect (HIC), (Low Cost, Low-Latency Scalable Serial

Interconnect for Parallel System Construction). Standard, IEEE Computer

Society.

IEEE Computer Society. 1996 B. IEEE-1596.3-1996: IEEE Standard for Low-Voltage

Differential Signals (LVDS) for Scalable Coherent Interface (SCI). Standard,

IEEE Computer Society.

JAXA. 2016. “Supplemental Handout on the Operation Plan of the X-ray Astronomy

Satellite ASTRO-H (Hitomi).” JAXA | X-ray Astronomy Satellite "Hitomi"

(ASTRO-H). 28 April. Accessed November 11, 2016.

http://global.jaxa.jp/projects/sat/astro_h/topics.html.

243

JetBrains. 2015. Python IDE & Django IDE. 29 October. Accessed April 6, 2017.

https://www.jetbrains.com/pycharm/.

Klar, Robert A, Scott A Miller, Michael L Brysch, and R Allison Bertrand. 2013.

“Performance of the Magnetospheric Multiscale Central Instrument Data

Handling.” Proceedings of IEEE Aerospace Conference. Big Sky, MT, USA:

IEEE. 1-7.

Kopetz, Hermann. 2011. “Real-Time Operating Systems.” In Real-Time Systems:

Design Principles for Distributed Embedded Applications, by Hermann

Kopetz, 215-238. Springer Science & Business Media.

Kopetz, Hermann, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer. 2005. “The

Time-Triggered Ethernet (TTE) Design.” Proceedings of Eighth IEEE

International Symposium on Object-Oriented Real-Time Distributed

Computing. Seattle, WA, USA: IEEE. 22-33.

Lee, Chin Yang. 1961. “An algorithm for path connections and its applications.” IRE

Transactions on Electronic Computers 3, 346-365.

Leinberger, William, George Karypis, and Vipin Kumar. 1999. “Multi-Capacity Bin

Packing Algorithms with Applications to Job Scheduling Under Multiple

Constrains.” Proceedings of International Conference on Parallel Processing.

Aizu-Wakamatsu City, Japan: IEEE. 404-412.

McComas, David. 2012. “NASA/GSFC's Flight Software Core Flight System.” Flight

Software Workshop. San Antonio, TX, USA.

Meszaros, Gerard. 2007. xUnit Test Patterns: Refactoring Test Code. Pearson

Education.

244

Mills, Stuart, and Steve Parkes. 2015. “A Software Suite for Testing SpaceWire

Devices and Networks.” Proceedings of Data Systems in Aerospace (DASIA)

Conference. Barcelona, Spain.

MinGW. 2015. MinGW Minimalist GNU for Windows. 8 September. Accessed April

6, 2017. http://www.mingw.org/.

Moore, Edward F. 1959. “The shortest path through a maze.” Proceedings of the

International Symposium on the Theory of Switching. Harvard University

Press. 285-292.

NASA GSFC. 2015. The Magnetospheric Multiscale Mission. 4 December. Accessed

April 6, 2017. http://mms.gsfc.nasa.gov/about_mms.html.

OAR Corporation. 2011. “RTEMS C User's Guide.” RTEMS 4.10.2 On-Line Library.

13 December. Accessed April 6, 2017.

https://docs.rtems.org/releases/rtemsdocs-4.10.2/share/rtems/pdf/c_user.pdf.

Ozaki, Masanobu, Tadayuki Takahashi, Motohide Kokubun, and Takeshi Takashima.

2010. “SpaceWire Driven Architecture for the ASTRO-H Satellite.”

Proceedings of 3rd International SpaceWire Conference. St. Petersburg,

Russia. 445-451.

Parkes, S. 1999. “SpaceWire: The Standard.” Proceedings of Data Systems in

Aerospace (DASIA) Conference. Lisbon, Portugal. 111-116.

Parkes, Steve, Albert Ferrer, Stuart Mills, and Alex Mason. 2010. “SpaceWire-D:

Deterministic Data Delivery with SpaceWire.” Proceedings of 3rd

International SpaceWire Conference. St Petersberg, Russia. 31-40.

245

Parkes, Steve, Chris McClements, David McLaren, Albert Ferrer Florit, and Alberto

Gonzalez Villafranca. 2015. “SpaceFibre: A Multi-Gigabit/s Interconnect for

Spacecraft Onboard Data Handling.” Proceedings of IEEE Aerospace

Conference. Big Sky, MT, USA: IEEE. 1-13.

Parkes, Steve, Chris McClements, Gerald Kempf, Stephan Fischer, Pierre Fabry, and

Agustin Leon. 2007. “SpaceWire Router ASIC.” Proceedings of 1st

International SpaceWire Conference. Dundee, UK. 301-306.

Parkes, Steve, Chris McClements, Guy Mantelet, and Nicolas Ganry. 2013. “The Next

Generation of Spaceflight Processors: Low Power, High Performance, With

Integrated SpaceWire Router and Protocol Engines.” Proceedings of

International Astronautical Congress. Beijing, China. 7807-7814.

Parkes, Steve, David Gibson, and Albert Ferrer. 2015 A. “Experimental Results for

SpaceWire-D.” Proceedings of Data Systems in Aerospace (DASIA)

Conference. Barcelona, Spain.

Parkes, Steve, David Gibson, and Albert Ferrer. 2015 B. SpaceWire-D Standard Draft

E. Standard, Dundee, UK: University of Dundee.

Parkes, Steve, David Gibson, and Albert Ferrer. 2014. “SpaceWire-D: Deterministic

Data Delivery over SpaceWire.” Proceedings of Data Systems in Aerospace

(DASIA) Conference. Warsaw, Poland.

Paterson, David, David Gibson, and Steve Parkes. 2014. “An RTEMS Port for the

AT6981 SpaceWire-Enabled Processor: Features and Performance.”

Proceedings of 6th International SpaceWire Conference. Athens, Greece. 234-

237.

246

PXI Systems Alliance. 2004. PXI Hardware Specification Revision 2.2. Specification,

PXI Systems Alliance.

Raphael, David, Robert F Stone, Damaris L Guevara, and James E Fraction. 2014.

“Command & Data Handling for the Magnetospheric Multiscale Mission.”

Proceedings of IEEE Aerospace Conference. Big Sky, MT, USA: IEEE. 1-12.

Regehr, John. 2007. “Safe and Structured Use of Interrupts in Real-Time and

Embedded Software.” In Handbook of Real-Time and Embedded Systems, by

Insuo Lee, Joseph Y-T Leung and Sang H Son, 16.1-16.12. Chapman &

Hall/CRC.

Robert Bosch GmbH. 1991. CAN Specification Version 2.0. Standard, Robert Bosch

GmbH.

Rossignol, Alain, and Jacques Seronie-Vivien. 2012. “ASTRIUM Satellites

Experiment About RTEMS On-Board Software Product: From an Open

Source Software to an Operational Satellite Real-Time Operating System.”

L’Open Source Pour Les Systèmes Embarqués Temps Réel. Toulouse, France.

Santandrea, S, K Gantois, K Strauch, F Teston, E Tilmans, C Baijot, D Gerrits, A De

Groof, G Schwehm, and J Zender. 2013. “PROBA2: Mission and Spacecraft

Overview.” Solar Physics, 5-19.

Scott, Pete, and Steve Parkes. 2010. “SpaceWire Link Analyser Mk2: A New Analysis

Device for SpaceWire Systems.” Proceedings of 3rd International SpaceWire

Conference. St. Petersburg, Russia. 67-71.

SPARC International, Inc. 2015. Specifications Download. 4 September. Accessed

April 6, 2017. http://sparc.org/technical-documents/specifications/#ARCH.

247

Stallman, Richard. 2001. “Using and Porting the GNU Compiler Collection.” M.I.T.

Artificial Intelligence Laboratory. Boston, MA, USA.

Stankovic, John A, and R Rajkumar. 2004. “Real-Time Operating Systems.” Real-

Time Systems, 237-253.

STAR-Dundee Ltd. 2016. SpaceWire PXI. Accessed August 1, 2016.

https://www.star-dundee.com/products/spacewire-pxi.

STAR-Dundee Ltd. 2015. SPARC V8 Software Development Environment. 9

September. Accessed April 6, 2017. https://www.star-

dundee.com/products/sparcv8-software-development-environment.

STAR-Dundee Ltd. 2017. STAR-Dundee Products. 6 April. Accessed April 6, 2017.

https://www.star-dundee.com/products.

Takahashi, Tadayuki, Kazuhisa Mitsuda, Richard Kelley, and Henri Aarts. 2012. “The

ASTRO-H X-Ray Observatory.” Astronomical Telescopes + Instrumentation.

Amsterdam, Netherlands: International Society for Optics and Photonics.

84431Z-84431Z.

Telecommunications Industry Association. 2012. TIA-644-A: Electrical

Characteristics of Low Voltage Differential Signalling (LVDS) Interface

Circuits, Revision A. Standard, Telecommunications Industry Association.

The Qt Company Ltd. 2016. Qt 4.8. Accessed August 3, 2016. http://doc.qt.io/qt-4.8/.

The RTEMS Project. 2015. Historical Timeline. 6 January. Accessed April 6, 2017.

https://devel.rtems.org/wiki/History/Timeline.

The RTEMS Project. 2013. RTEMS Applications. 30 December. Accessed April 6,

2017.

248

https://devel.rtems.org/wiki/TBR/UserApp/RTEMSApplications#SpaceandA

viation.

The RTEMS Project. 2017. RTEMS Real Time Operating System (RTOS). 5 April.

Accessed April 6, 2017. https://www.rtems.org/.

Torres, Ramon, Paul Snoeij, Dirk Geudtner, David Bibby, Malcolm Davidson, Evert

Attema, Pierre Potin, et al. 2012. “GMES Sentinel-1 Mission.” Remote Sensing

of Environment, 9-24.

University of Dundee. 2014. “SpaceWire-D D3 Demonstrator Specification

Document.” ESA Project Document.

University of Dundee. 2015. “SpaceWire-D D4 Verification Test Specification

Document.” ESA Deliverable.

University of Dundee. 2016 A. “SpaceWire-D D6 Verification Report.” ESA

Deliverable.

University of Dundee. 2016 B. “SpaceWire-D D7 Validation Report.” ESA

Deliverable.

US Department of Defense. 1978. Aircraft Internal Time Division

Command/Response Multiplex Data Bus. Standard, Washington D.C., USA:

US Department of Defense.

Vladimirova, Tanya, Christopher P Bridges, George Prassinos, Xiaofeng Wu, Kawsu

Sidibeh, David J Barnhart, Abdul-Halim Jallad, et al. 2007. “Characterising

Wireless Sensor Motes for Space Applications.” Proceedings of Second

NASA/ESA Conference on Adaptive Hardware and Systems. Edinburgh, UK:

IEEE. 43-50.

249

Wind River. 2016. VxWorks. Accessed April 2, 2016.

https://windriver.com/products/vxworks/.

Yuasa, Takayuki, Tadayuki Takahashi, Masanobu Ozaki, and Motohide Kokubun.

2011. “A Deterministic SpaceWire Network Onboard the ASTRO-H Space X-

Ray Telescope.” Proceedings of 4th International SpaceWire Conference. San

Antonio, TX, USA. 333-336.

Zaccagnino, E, G Malucchi, V Marco, A Drocco, S Dussy, and J Préaud. 2011.

“Intermediate eXperimental Vehicle (IXV), the ESA Re-entry Demonstrator.”

Proceedings of AIAA Guidance, Navigation, and Control Conference.

Portland, OR, USA. 6340-6353.

250

Appendix 1

LEON2-FT Processor Board

Each LEON2-FT processor board combines a LEON2-FT processor with on-chip

memory, DDR and integrated peripherals including SpaceWire DMA engines, RMAP

engines and an embedded SpaceWire router (Parkes, McClements and Mantelet, et

al. 2013). The LEON2-FT processor board’s RMAP engines include an RMAP

initiator implemented in hardware which reduces the software overhead required to

transmit RMAP commands and process RMAP replies. This makes it attractive for

used in SpaceWire-D systems, where reducing the initiator processing time as much

as possible is essential.

The LEON2-FT processor is based on the SPARC V8 architecture (SPARC

International, Inc. 2015) and the FPGA implementation used in the SpaceWire-D

Demonstrator runs at a clock rate of 40 MHz. The processor includes 128 KB of on-

chip memory, two on-chip UARTs, a debug support unit as well as standard processor

elements such as caches and an interrupt controller. A block diagram illustrating the

LEON2-FT processor board’s architecture is shown in Figure 12-1.

251

Figure 12-1: LEON2-FT Processor Board Architecture (Parkes, McClements and

Mantelet, et al. 2013)

In Figure 12-1, the full version of the LEON2-FT processor board is shown, which

includes many peripherals connected through a centralised switch matrix. In addition

to the processor and memory described above, the FPGA version of the LEON2-FT

processor board used for the work in this thesis contains 8 SpaceWire interfaces, a 12-

port SpaceWire router, 3 SpaceWire protocol engines, a debug SpaceWire port and

the configuration registers. The full version of the board may also support the CAN,

MIL-STD-1553B and Ethernet communication networks.

RMAP Engines

The LEON2-FT processor board contains three SpaceWire protocol engines, each

containing SpaceWire DMA channels, an RMAP initiator and an RMAP target. The

RMAP initiator is responsible for transmitting commands and handling replies,

minimising the amount of work that the processor is required to perform.

SpW
Router

Sp
ace

W
ire

Configuration
Registers

SpW Engine

SpW Engine

SpW Engine

Switch
Matrix

Internal RAM 1

Internal RAM 2

CAN CAN

Mil Std 1553

SPARC V8

I-Cache

Debug Port

Internal RAM 3

Mil Std 1553

External Memory
Interface:

PROM, SRAM,
SDRAM, DDRx

Debug SpW

RMAP/PnP Bus

APB Bridge

Internal RAM 4

D-Cache

EthernetEthernet

Peripheral
Peripheral
Interfaces

252

Each RMAP initiator contains a set of configuration and control registers which the

software uses to set up a group of one or more transactions for execution. Each

transaction is split into two data structures: the first contains the RMAP command

header parameters and the second is a descriptor that indicates the command’s settings

and the location of the header and buffers.

In Figure 12-2, the transaction descriptor array is illustrated, showing an array of N

transaction descriptors in the left column. The arrows pointing from the first descriptor

into the diagram on the right show the pointers into memory contained within the

descriptor data structure.

Figure 12-2: RMAP Initiator Descriptor Array

When the processor wants to execute a transaction group, it creates an array of

transaction descriptors and tells the RMAP initiator to begin execution. The initiator

uses the transaction descriptors to form a series of RMAP command packets which

253

are sent out of the SpaceWire router. If any RMAP replies are received, the initiator

matches the replies to the corresponding commands stored in a descriptor table. The

initiator then performs any additional work such as writing received data to a buffer

or updating a notification data structure.

SpaceWire DMA Channels

To handle transmitting and receiving regular SpaceWire traffic, there are a total of

nine SpaceWire DMA channels available, with three on each of the SpaceWire

protocol engines.

The DMA controllers allow a transmitted packet to be defined as a list of chunks at

addresses defined by the user. This list is then used by the controller to construct the

transmitted packet, offloading most of the work to the dedicated hardware and

reducing the CPU overhead. When receiving packets, the DMA controllers write the

received data to memory addresses defined by the user and update a descriptor with

the packet information.

By offloading most of the SpaceWire packet processing to dedicated DMA controllers,

this allows the LEON2-FT processor board to operate three simultaneous SpaceWire

links at the maximum data-rate of 200 Mbits/s.

Although all of the SpaceWire traffic used in the SpaceWire-D layer described in this

thesis use the RMAP engines exclusively, the SpaceWire DMA channels could also

be used for this purpose. However, the benefit of using the RMAP engines is the

decreased overhead because the protocol is implemented in dedicated hardware. If the

SpaceWire-D layer was to use the SpaceWire DMA channels, software would be

required to generate RMAP commands and process RMAP replies.

254

Embedded SpaceWire Router

The LEON2-FT processor board contains an embedded SpaceWire router, based on

the SpW-10X router ASIC (Parkes, McClements and Kempf, et al. 2007). The router

has eight physical SpaceWire ports allowing connections to other devices, three

external ports each connected to one of the SpaceWire protocol engines, a

configuration port and a physical SpaceWire debug port.

Packet Demultiplexer

When a SpaceWire packet is switched into one of the external ports connected to the

SpaceWire protocol engines, the router uses a demultiplexer to determine if the packet

should be forwarded on to the RMAP target, the RMAP initiator or one of the three

DMA channels.

The demultiplexer matches up to four bytes at the head of the packet against patterns

and masks configured in each of the SpaceWire protocol engine’s configuration

registers. For example, RMAP packets conform to the SpaceWire Protocol

Identification standard (ECSS 2010 A) which ensures that each packet is pre-pended

by a one-byte logical address and a protocol identifier. The protocol identifier is

nominally one byte but may be extended to three bytes with the first byte set to zero

to indicate an extended protocol identifier. The demultiplexer configuration to filter

reply packets from an RMAP target with a logical address of 0x20 is shown in Table

12-1.

Table 12-1: Example RMAP Reply Demultiplexer Configuration

Register Byte 0

(Logical Address)

Byte 1

(Protocol ID)

Byte 2

(Instruction)

Byte 3

(Key)

Pattern 0x20 0x01 0x00 0x00

Mask 0x00 0x00 0xBF 0xFF

255

In Table 12-1, the demultiplexer is configured to filter packets if the packet contains

a first byte with the value of the expected logical address (0x20), a second byte with

the value of the RMAP protocol ID (0x01) and a third byte with the seventh bit cleared,

to indicate that the packet is an RMAP reply. The demultiplexer mask uses a clear bit

to indicate that the bit should be used in the matching process. In this case, the mask

is configured to match against the entire first and second bytes, using the value 0x00,

and the seventh bit of the third byte, using the value 0xBF (0b10111111). Any packets

arriving at the SpaceWire protocol engine and matching the pattern and mask of the

RMAP initiator demultiplexer configuration will now be forwarded on to the RMAP

initiator.

Similarly, the demultiplexer configuration to filter command packets from an RMAP

initiator with a logical address of 0x21 is shown in Table 12-2.

Table 12-2: Example RMAP Command Demultiplexer Configuration

Register Byte 0

(Logical Address)

Byte 1

(Protocol ID)

Byte 2

(Instruction)

Byte 3

(Key)

Pattern 0x21 0x01 0x40 0x00

Mask 0x00 0x00 0xBF 0xFF

In Table 12-2, the only difference, in comparison to the initiator’s demultiplexer

configuration, is the logical address and the seventh bit of the third pattern byte is set

to indicate that the packet is an RMAP command.

LEON2-FT in Space

The first two generations of the LEON processor family, LEON1 and LEON2, were

developed at the European Space Agency (ESA). Fault tolerance was added to the

original LEON2 resulting in the LEON2-FT. This version added protection against

single event upsets, when charged particles hit memory causing bit values to be

256

flipped. Two further generations, LEON3 and LEON4, have been developed at Gaisler

Research (Andersson, Gaisler and Weigand 2010).

Currently, the LEON2-FT processor is being used in multiple active spacecraft in a

variety of roles such as controlling an avionics subsystem, controlling a radar

instrument and acting as the main on-board computer.

The Intermediate eXperimental Vehicle (IXV) is an ESA mission to demonstrate an

atmospheric re-entry system. In the IXV, the LEON2-FT processor, running at 50

MHz, is used in the avionics on-board computer. It is in charge of executing guidance,

navigation and control (GNC) tasks; issuing commands to actuators; and encoding,

storing and initiating the transmission of GNC and housekeeping telemetry

(Zaccagnino, et al. 2011). The IXV successfully completed its first flight in February

2015 (European Space Agency 2015 A).

Sentinel-1 is an ESA earth observation mission and is the first in a series of two-

satellite constellations (Torres, et al. 2012) and contains a synthetic aperture radar

(SAR) as its payload. In Sentinel-1, the LEON2-FT processor is used within the SAR

electronics subsystem for instrument control (Hutchinson, et al. 2012). Sentinel-1 was

launched in April 2014 and is currently active (European Space Agency 2014 B).

PROBA2 is the second in the Project for On-Board Autonomy (PROBA) series of

ESA missions to demonstrate in-orbit autonomous technology (Santandrea, et al.

2013). In PROBA2, the LEON2-FT processor is used for all computing requirements

on the spacecraft, excluding the instruments, such as GNC, AOCS, payload data

handling and power management. PROBA2 was launched in November 2009 and is

currently active until its expected mission end in 2018 (European Space Agency 2009).

257

As described above, the LEON2-FT processor is a popular ESA technology and is

being used in multiple missions, making it an ideal and realistic platform to be used in

the design of the SpaceWire-D software layer and prototype system.

258

Appendix 2

Multiple Initiators and Static Buses Results

This section describes the results of running the test described in Section 6.2 using the

SpaceWire-D Demonstrator.

Figure 13-1: Example Script 2 – Time-Slot 0

In Figure 13-1, the Link Analyser screenshot shows the start of time-slot 0 which is

triggered by the arrival of time-code 0 at the initiator.

Figure 13-2: Example Script 2 – Static Bus 0, Transaction 0

In Figure 13-2, the Link Analyser screenshot shows the first transaction executed by

static bus 0 which is an RMAP read command to read 32 bytes from address

0x00000000 in target 0x40.

259

Figure 13-3: Example Script 2 – Static Bus 0, Transaction 1

In Figure 13-3, the Link Analyser screenshot shows the second transaction executed

by static bus 0 which is an RMAP write command to write 32 bytes to address

0x00000000 in target 0x50.

Figure 13-4: Example Script 2 – Static Bus 0, Transaction 2

In Figure 13-4, the Link Analyser screenshot shows the third transaction executed by

static bus 0 which is an RMAP read command to read 32 bytes from address

0x00000000 in target 0x60.

260

Figure 13-5: Example Script 2 – Time-Slot 16

In Figure 13-5, the Link Analyser screenshot shows the start of time-slot 16 which is

triggered by the arrival of time-code 16 at the initiator.

Figure 13-6: Example Script 2 – Static Bus 16, Transaction 0

In Figure 13-6, the Link Analyser screenshot shows the first transaction executed by

static bus 16 which is an RMAP read command to read 8 Kbytes from address

0x00000000 in target 0x41.

261

Figure 13-7: Example Script 2 – Static Bus 16, Transaction 1

In Figure 13-7, the Link Analyser screenshot shows the second transaction executed

by static bus 16 which is an RMAP write command to write 8 Kbytes to address

0x00000000 in target 0x51.

Figure 13-8: Example Script 2 – Static Bus 16, Transaction 2

In Figure 13-8, the Link Analyser screenshot shows the third transaction executed by

static bus 16 which is an RMAP read command to read 8 Kbytes from address

0x00000000 in target 0x61.

262

Figure 13-9: Example Script 2 – Time-Slot 32

In Figure 13-9, the Link Analyser screenshot shows the start of time-slot 32 which is

triggered by the arrival of time-code 32 at the initiator.

Figure 13-10: Example Script 2 – Static Bus 32, Transaction 0

In Figure 13-10, the Link Analyser screenshot shows the first transaction executed by

static bus 32 which is an RMAP read command to read 16 Kbytes from address

0x00000000 in target 0x42.

263

Figure 13-11: Example Script 2 – Static Bus 32, Transaction 1

In Figure 13-11, the Link Analyser screenshot shows the second transaction executed

by static bus 32 which is an RMAP write command to write 16 Kbytes to address

0x00000000 in target 0x52.

Figure 13-12: Example Script 2 – Static Bus 32, Transaction 2

In Figure 13-12, the Link Analyser screenshot shows the third transaction executed by

static bus 32 which is an RMAP read command to read 16 Kbytes from address

0x00000000 in target 0x62.

264

Measuring the time between the first character of the first transaction and the last

character of the third transaction gives a total execution time of 2.513 ms. As this is

more than the time-slot duration of 1.562 ms, this shows that static bus 32 is executing

its transaction group over a multi-slot.

Figure 13-13: Example Script 2 – Multi-Slot Time-Code

In Figure 13-13, the Link Analyser screenshot shows the point at which the transaction

group crosses over the boundary between time-slots 32 and 33. Time-code 33 is

received by the initiator but it doesn’t trigger the start of a new time-slot because the

multi-slot of static bus 32 is still executing.

Figure 13-14: Example Script 2 – Time-Slot 48

In Figure 13-14, the Link Analyser screenshot shows the start of time-slot 48 which is

triggered by the arrival of time-code 48 at the initiator.

Figure 13-15: Example Script 2 – Static Bus 48, Transaction 0

265

In Figure 13-15, the Link Analyser screenshot shows the first transaction executed by

static bus 48 which is an RMAP read command to read 256 bytes from address

0x00000000 in target 0x43.

Figure 13-16: Example Script 2 – Static Bus 48, Transaction 1

In Figure 13-16, the Link Analyser screenshot shows the second transaction executed

by static bus 48 which is an RMAP write command to write 256 bytes to address

0x00000000 in target 0x53.

Figure 13-17: Example Script 2 – Static Bus 48, Transaction 2

266

In Figure 13-17, the Link Analyser screenshot shows the third transaction executed by

static bus 48 which is an RMAP read command to read 256 bytes from address

0x00000000 in target 0x63.

