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ABSTRACT:

This paper proposes to use compression-based similarity measures to cluster spectral signatures on the basis of their similarities. Such
universal distances estimate the shared information between two objects by comparing their compression factors, which can be obtained
by any standard compressor. Experiments on spectra, both collected in the field and selected from a hyperspectral scene, show that
these methods may outperform traditional choices for spectral distances based on vector processing such as Spectral Angle, Spectral
Information Divergence, Spectral Correlation, and Euclidean Distance.

1 INTRODUCTION

The processing of hyperspectral images for detection and clas-
sification purposes often relies on estimating the similarities be-
tween spectra, represented by vectors composed of the values in
each image element (or pixel) across all the spectral bands. Spec-
tral matching has at its core the use of a distance measure as a
mean to quantify the distance between any pair of such spectra.
Among the adopted measures, often having their origins in vector
processing, popular choices are the Euclidean distance (ED), the
Spectral Angle (SA) (F.A. Kruse, 1993), the Spectral Correlation
(SC) (De Carvalho and Meneses, 2000), and the Spectral Infor-
mation Divergence (SID) (Du et al., 2004). The performances of
these spectral distances have been compared in (Robila and Ger-
shman, 2005) and (Van der Meer, 2006), with both works agree-
ing on considering SID as a slightly more discriminative distance
among the mentioned ones.

This paper proposes to use compression-based similarity mea-
sures as a valid alternative to quantify the similarity between
spectral signatures. These measures employ general off-the-shelf
compressors in an unusual way, by exploiting them to estimate
the amount of information shared by two objects. They can be
employed for clustering and classification on diverse data types,
outperforming general distance measures (Keogh et al., 2004).
Experiments on satellite images using these techniques have been
presented in (Cerra et al., 2010).

To assess the quality of the distances obtained with the proposed
method we perform an unsupervised hierarchical clustering with
all the distances mentioned above on two sets of spectral signa-
tures: one collected on the field and related to different kinds of
rocks, and another related to different roofs materials and selected
from a hyperspectral scene acquired by the satellite HyMAP. Re-
sults suggest that compression-based methods could outperform
traditional similarity measures employed in spectral matching at
capturing similarities between the spectra which could be not ob-
vious at a first inspection.

The work is structured as follows. Section 2 introduces the pro-
posed Normalized Compression Distance (NCD), while Section 3
presents a brief reminder on well-known spectral distances. Sec-
tion 4 reports experiments on rocks and roofs categorization. We
conclude in Section 5.
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Figure 1: Computation of a distance between two general objects
x and y by means of a standard compressor C. The sizes of the
objects compressed separately and jointly are compared, yielding
a distance ranging from 0 to 1.

2 NORMALIZED COMPRESSION DISTANCE

The most widely known and used compression based similarity
measure for general data is the Normalized Compression Dis-
tance (NCD). The NCD derives from the notion of the Kolmogorov
complexity K(x) of an object x, which quantifies how difficult
it is to compute or describe x (Kolmogorov, 1968). The quantity
K(x) is incomputable in se, but can be approximated by com-
pression algorithms and on its basis the NCD is defined for any
two objects x and y as:

NCD(x, y) =
C(x, y)−min{C(x), C(y)}

max{C(x), C(y)} , (1)

where C(x) represents the size of x after being compressed by a
general off-the-shelf compressor (such as Gzip), and C(x, y) is
the size of the compressed version of x appended to y (Fig. 1).
The NCD ranges approximately from 0 to 1, representing max-
imum and minimum similarity, respectively. The idea is that if
x and y share common information they will compress better to-
gether than separately, as the compressor will be able to reuse
recurring patterns found in one of them to more efficiently com-
press the other. One of the main advantages of such distance
is its parameter-free approach, which makes it applicable to di-
verse data types (Cilibrasi and Vitányi, 2005), as the NCD only
depends on the compressor adopted and its internal parameters.
Anyway performance comparisons for general compression al-
gorithms have shown this dependance to be loose (Cebrian et al.,
2005). Furthermore, this distance has been shown to be resistant
to noise (Cebrian et al., 2007). To compute the NCD between two
spectra, a compressor belonging to the lz-family (Ziv and Lem-
pel, 1978) has been applied to the spectra converted into ASCII
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text files.

3 SPECTRAL DISTANCES

In all the following definitions, unless otherwise stated, x and
y are assumed to be n-dimensional vectors representing spectra,
with n being the number of bands in each spectrum.

3.1 Euclidean Distance

The Euclidean Distance (ED) quantifies the distance between two
vectors x and y as:

ED(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2)

As simple as it may be, this distance often gives the best results
in several data mining problems (Keogh et al., 2004).

3.2 Spectral Angle

The Spectral Angle (SA) measures the angle between two vec-
tors representing two spectra, and is a widely used distance in
spectral matching for its partial independence from illumination
conditions. It is defined for x and y as the arccosine of the dot-
product between the two vectors (Kruse et al., 1993):

SA(x, y) = cos−1

∑n

i=1
xiyi√∑n

i=1
xi2

√∑n

i=1
yi2

(3)

3.3 Spectral Correlation

We compute the Spectral Correlation (SC) between two spectra x
and y as:

SC(x, y) =

√
1− r(x, y)

2
, (4)

where r(x, y) is the correlation between x and y:

r(x, y) =
σxy

σxσy
, (5)

with σxy being the covariance between x and y, and σx and σy

the standard deviations of x and y (De Carvalho and Meneses,
2000).

3.4 Spectral Information Divergence

The spectral information divergence (SID) (Du et al., 2004) de-
rives from information theory notions. If we consider two spectra
x and y as two probability distributions px(i) and py(i), the SID
is given by the Kullback-Leibler divergence, or relative entropy
(Kullback and Leibler, 1951), between px(i) and py(i):

SID(x, y) = d(px(i)||py(i)) + d(py(i)||px(i)), (6)

where

d(px(i)||py(i)) =
n∑

i=1

px(i) log
px(i)

py(i)
. (7)

4 EXPERIMENTAL RESULTS

We tested the discriminative power of the previously introduced
distances on a set of spectral signatures, chosen from different
materials divided into some categories.

4.1 Rocks Categorization

For this experiments we selected randomly a set of 41 spectra
from the ASTER 2.0 spectral library (Baldridge et al., 2009),
categorized as in Fig. 2. Being the spectral range not constant
across all the spectra, each spectrum has been resampled to the
244 bands of the future EnMAP mission’s sensor (Mueller et
al., 2010), spanning the interval 0.42-2.45 µm, as described in
(Van der Meer et al., 2001). The dataset looks a difficult one at
first sight, as in some occasions the spectra exhibit similar be-
haviour or overlap (Fig. 3).

Figure 2: Categories of the rocks related to the analyzed spectra.

Figure 3: The 41 spectra analyzed, belonging to three classes of
rocks.

We computed a distance matrix related to the 41 spectra accord-
ing to all the introduced distances. Then, we performed on each
distance matrix an unsupervised hierarchical clustering, by deriv-
ing a dendrogram (binary tree) which represents the matrix in 2
dimensions, as described in (Cilibrasi and Vitányi, 2005). Results
are reported in Fig. 4. Each leaf represents a spectrum, with the
spectra which behave more similarly appearing as siblings. The
evaluation is done by visually inspecting if spectra belonging to
the same class are correctly clustered in some branch of the tree,
i.e. by checking how much each class can be isolated by ”cutting”
the tree at convenient points. The NCD is the only method yield-
ing a good separation between the clusters, with the exception
of the acceptable results obtained by the SA. It is surprising how
the SID, which outperforms other distances in (Robila and Gersh-
man, 2005) and (Van der Meer, 2006), results in a quite confused
dendrogram. For the NCD the values have been first quantized in
bytes to provide a meaningful data representation to the compres-
sor used (Keogh et al., 2004). We also tested the other distances
on the quantized data, but this resulted in even worse results. This
suggests that the NCD could be able to capture information inside
the spectra which does not result obvious.



Figure 4: Hierarchical clusterings for the dataset in Fig. 3, with each node in the tree representing an object, color-coded as in the
reported legend. From top-left in clockwise order: results for NCD, SC, SA, ED, and SID distances.

4.2 Roofs Categorization

A second experiment has been carried out on the spectral signa-
tures related to a set of homogeneous areas in an image captured
by the airborne HyMAP sensor over Munich, Germany. Each
area is represented by the average value of the pixels it contains,
each of which has 126 spectral bands, spanning the wavelenght
interval 0.45-2.5 µm, and 5 metres spatial resolution. The pixels
have been manually selected from a set of HyMAP scenes and
belong to roofs composed of different materials (Heldens, 2010),
and are shown in Fig. 5. Sometimes these pixels are not pure: for
example roofs covered by vegetation result mixed with the un-
derlying materials. The hierarchical clusterings reported in Fig.
6 has been derived as in the previous experiment for the NCD
and the SA distances. In this case both clusterings present some
confusion, as not every class has its elements correctly placed in
an isolated cluster. No method is yielding a clear better perfor-
mance: nevertheless, in the SA clustering a pixel belonging to a
zinc roof is placed very far away from the other two, while for the
NCD the misplaced objects are closer to their correct clusters.

5 CONCLUSIONS

In this paper we proposed to use a general similarity measure
based on data compression, the Normalized Compression Dis-
tance (NCD), to categorize spectra belonging to different kinds
of rocks. Being the spectra extracted from different materials, the
task looks quite demanding (Figs. 2 and 3). An unsupervised
hierarchical clustering, carried out on the basis of the NCD dis-
tances between the spectra, resulted in a better performance with
respect to traditional distances used in spectral matching. The
spectra have been analyzed in a spectral range characteristic of
many hyperspectral sensors such as AVIRIS, HyMAP, EnMAP,
and Hyperion. The proposed technique could be then success-
fully employed to characterize the contents of a scene acquired
by such sensors.
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Figure 5: The 27 spectra analyzed, belonging to roofs composed
of 9 materials.
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