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Abstract 
At DLR, an optimization framework combining different CFD solvers, Design of 

Experiment methods, optimization algorithms, and various surrogate modeling methodologies 
with sample refinement strategies for efficient surrogate-based global optimization is under 
development. Several Kriging predictors are used because of their ability to approximate 
multi-dimensional, highly-nonlinear functions. In order to find global optima accurately, the 
surrogate model is adaptively refined based on the Kriging error and the Expected Improvement 
Function. With this hybrid refinement strategy, only a few initial samples need to be evaluated, 
which improves the performance of the overall optimization process. Additionally, the strategy of 
running a local optimizer starting from the “optimum” found on the surrogate model is 
investigated in order to further improve the efficiency and accuracy of the framework. Two test 
cases indicate that the developed framework combined with hybrid strategy is more efficient. 
Keywords: Surrogate-based optimization, Optimization framework, Refinement strategy, 
Surrogate Model (SGM) 

I. Introduction 
At present, aerodynamic optimization plays a quite important role in the research field of 

aeronautics. On the algorithmic side, traditional optimization methods can be classified into two 
categories: gradient-based optimization methods and non gradient methods such as genetic 
algorithm. Gradient-based optimization is a local method, which is faster; at the opposite extreme, 
genetic algorithms are global optimization methods which require a large number of flow 
simulations. With the fast development of computer technology, global optimization offers an 
alternative to designers, simultaneously providing more accurate, rational and intuitional results. 
Considering time-consuming high-fidelity simulation tools such as Computational Fluid 
Dynamics (CFD) solvers or Computational Structure Mechanics (CSM) solvers, there still exist 
serious limitations for applying global aerodynamic optimization. One way of overcoming the 
defects is to generate a surrogate model by using a few high-fidelity results or high-fidelity 
results bridged with low-fidelity results, and use it as a predictor instead of the flow solver at an 
unobserved location in the design space.  

At DLR, an optimization framework combining different CFD solvers, Design of 
Experiment (DoE) methods, optimization algorithms and various surrogate modeling 
methodologies with sample refinement strategies for efficient surrogate-based global 
optimization is under development. Figure 1 presents the flowchart of this surrogate-based hybrid 
optimization strategy. DoE methods are used to generate random samples in the design space, 
from where the date to be collected contains the information and the attributes of the design space 
as much as possible. At each sample position, a flow solver is run to obtain the flow solutions, 
which are used to calculate the objective function at this sample in order to fill a database to 
construct the surrogate model. Until now in view of the problem to be handled, several Kriging 
predictors have been integrated because of their ability to approximate multi-dimensional, 
highly-nonlinear functions [1-3]. Adaptive refinement based on the Kriging Error (KE) and the 
Expected Improvement (EI) function is used in order to find global optima accurately [4-5]. By 
using this hybrid refinement strategy, only a few initial samples need to be evaluated, to improve 
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the performance of the overall optimization process. Moreover, the strategy of running a local 
optimizer starting from the “optimum” found on the surrogate model is investigated in order to 
further improve the efficiency and accuracy of the framework.  

The framework is programmed in Python, correspondingly, the interfaces between different 
modules and the core executing scripts are also written in Python. Meanwhile, each module in the 
framework could be used as an independent tool to perform different tasks. Due to the fact that 
some functions in the module are written in C code, SWIG is used to wrap these C functions with 
the aim of keeping independency, flexibility and excellent update-performance of each shape.  

There are two test cases in this paper. The first one deals with optimization of a NACA 
4-digit airfoil with two design variables in transonic flow. An artificial objective function with 
two optima is constructed by using the lift, drag and moment coefficient. It works as a basic case 
to test the hybrid chain, efficiency, accuracy and global optimization performance of the 
framework. The second deals with optimizing the drag of an NLF0416 airfoil with 10 design 
variables. The transition point is predicted by using the transition module in the DLR TAU code 
[6-7]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A DoE plan for 2 dimensional
problem with 20 samples 

Figure 1. Flowchart of the surrogate-based 
hybrid optimization strategy 

Solver

flag

Construct surrogate

EI value optimization

Kriging error opt. based on SGM

criteria

Gradient 
optimization

Cost opt. based on SGM

Error criterion

Resampling

local search

DoE

Yes

No

Yes

NO

Yes

Yes

NO

Solver

flag

Construct surrogate

EI value optimization

Kriging error opt. based on SGM

criteria

Gradient 
optimization

Cost opt. based on SGM

Error criterion

Resampling

local search

DoE

Yes

No

Yes

NO

Yes

Yes

NO

Solver

flag

Construct surrogate

EI value optimization

Kriging error opt. based on SGM

criteria

Gradient 
optimization

Cost opt. based on SGM

Error criterion

Resampling

local search

DoE

Yes

No

Yes

NO

Yes

Yes

NO

Solver

flag

Construct surrogate

EI value optimization

Kriging error opt. based on SGM

criteria

Gradient 
optimization

Cost opt. based on SGM

Error criterion

Resampling

local search

DoE

Yes

No

Yes

NO

Yes

Yes

NO

Solver

flag

Construct surrogate

EI value optimization

Kriging error opt. based on SGM

criteria

Gradient 
optimization

Cost opt. based on SGM

Error criterion

Resampling

local search

DoE

Yes

No

Yes

NO

Yes

Yes

NO

Solver

flag

Construct surrogate

EI value optimization

Kriging error opt. based on SGM

criteria

Gradient 
optimization

Cost opt. based on SGM

Error criterion

Resampling

local search

DoE

Yes

No

Yes

NO

Yes

Yes

NO

II. Design of Experiments (DoE) 
Implementing surrogate modeling in optimization depends critically on DoE methods and 

the chosen surrogate modeling methodologies. DoE is the sampling plan in the design space with 
the goal of extracting as much information as possible from a limited set of laboratory or 
computer experiments [3, 8]. The advantages of applying DoE are: require less computer 
resources, estimate effects of each design variables more precisely, systematically estimate 
interaction between design variables and acquire global information of the design space [9]. DoE 
methods are traditionally classified into two categories: classical DoE and modern DoE. Because 
of dealing with the deterministic computer simulation, modern DoE methods are chosen as the 
methods in DoE module of the present framework. Up to now, the DoE module consists of Quasi 
Mont Carlo (QMC) [10], Pseudo Mont Carlo (PMC) [10], Latin Hypercube Sampling (LHS) [11], 
Optimized Latin Hypercube [12] and Transport Propagation Latin Hypercube (TPLH) [13].  

LHS was the first type of DoE method proposed for computer experiments. For the test 
cases in this paper, LHS is chosen as the DoE method because of its randomness and capacity of 
the information from the design space. The algorithm is explained in detail in reference [14]. An 
example of a DoE plan for a two dimension problem with 20 samples by using LHS is shown in 
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Figure 2.  

III. Shape parameterization and CFD solvers 
Different version of the DLR CFD solvers in TAU [15] can be used in the framework to do 

CFD calculation, such as a low-fidelity Euler solver and a high-fidelity N-S solver. Furthermore, 
a transition module has been integrated into the framework to predict the transition point [16], 
and adjoint solver [17] has also been coupled into this tool which could be used to calculate 
gradients.  

If the design variables describe the geometry, a new grid of the geometry needs to be 
generated in each optimization step. In that case, the TAU deformation tool “deformation” can be 
used to generate a new grid, provided the old grid and the new geometry are given. If the change 
of the geometry is not quite large, TAU deformation based on Radial Basis Function (RBF) [18] 
can be chosen.  

At present, there are two parameterization tools inside the framework. The first one is 
specifically for the NACA 4-digit airfoil based on the analytical functions describing the 
geometries of the NACA series airfoils [19]. Three values can separately be set as the design 
variables, the position of the maximal camber, the maximal camber and the thickness of the 
airfoil. The second one is based on an in-house parameterization tool box called GenGeo. Within 
the tool box, the bumps of the control points for the geometry can be set as design variables, but 
the positions of the control points along the x-axis should first be defined and kept unchanged.  

IV. Surrogate modeling and refinement strategies 
A. Surrogate modeling 

Kriging is a mathematical method based on statistics, which is used to interpolate the value 
of a random field at an unobserved location using observation at nearby locations. This idea was 
originally proposed by Daniel Krige and firstly applied by Sacks et al the deterministic computer 
simulations in 1989 [20-21]. This technique can be used in practical analyses of the distribution 
of the value with a known set of values and the correlations between the known values.  

Several Kriging such as simple Kriging, ordinary Kriging, universal Kriging, regression 
Kriging and Gradient Enhanced Kriging (GEK) have been coupled into the framework in view of 
their ability to approximate multi-dimensional and highly-nonlinear functions. The difference 
between the first three methods is the setting of the regression parameter, which determines the 
method of calculating the weights implied by the unbiasedness condition: simple Kriging 
assumes a known constant trend; ordinary Kriging supposes an unknown, but predicted constant 
trend; universal Kriging presumes a low-order polynomial as the trend [21]. Regression Kriging 
is recommended for noisy data and applies an optimized regularization parameter to the 
correlation matrix [22]. GEK is usually preferred when the exact gradient information is given. 

B. Refinement strategies 
For surrogate-based optimization, sample-point refinement should be done in each iteration 

step. The predicted value at the unobserved sample and the uncertainty of the prediction can be 
both used to refine the design space for the sake of facilitating global optimization. Therefore the 
possible improvement of the optimum under study at an unobserved location can be defined as, 

( ) ( )
⎩
⎨
⎧ <−

=
else

yyyy
I

0
ˆˆ minmin x

x                               (1) 

And the total expected improvement can be calculated with the following formula,  

( )[ ] ( ) ⎟
⎠

⎞
⎜
⎝

⎛ −
+⎟

⎠

⎞
⎜
⎝

⎛ −
Φ−=

s
yys

s
yyyyIE

ˆˆˆ minmin
min ϕx                       (2) 

where y is the predicted value, ymin is the minimum in the database, s is the Kriging error, Φ  is 

 - 3 -



the standard normal distribution function and ϕ  is the normal probability density function. By 
maximizing the total improvement, a new sample where a global optimum may exist is filled into 
the design space. 

But in the case of sparse initial sampling, EI-based refinement may get trapped in a local 
optimum. So another refinement strategy by directly maximizing Kriging error is considered. 
This strategy helps improve the global search performance of the framework.  

V. Optimization strategies 
This framework is based on an optimization framework [23] programmed in Python [24]. In 

the present surrogate-based framework, the optimization framework works as integrated module. 
The optimization methodologies in the framework consist of Simplex, Subplex, genetic algorithm 
and three gradient-based optimizers---conjugate gradient method, steepest decent method and 
variable metric method, in which only the genetic algorithm is a global optimizer.  

For classical optimization, by directly using a high-fidelity solver, gradient-based optimizers 
are recommended because of their high efficiency. But the gradient-based optimizer is a local 
optimizer; in that case, a global optimum maybe omitted. Comparably, genetic algorithms are 
favored for global optimization, but the computational effort may be excessive. In view of that, 
surrogate-based optimization is adopted here instead of classical optimization, because it is quite 
cheap to acquire the results by evaluating the constructed surrogate model rather than the 
high-fidelity solver.  

In the process of surrogate-based optimization, refinement strategies are used to resample 
the design space. In this paper, results for two refinement strategies are presented: optimize EI 
function and optimize the Kriging error. Both of these strategies are performed by using a genetic 
algorithm on the fitted surrogate model, because it is a global approximation of the cost function 
and cheap to evaluate.  

VI. Applications 
A. NACA 4-digit airfoil with 2 design parameters 

To validate the optimization chain of the framework, an artificial objective function (3) is 
optimized for a 12% thick NACA 4-digit airfoil.  

( ) ( )22 0844.0*100336.0*100 ++−+= MLD CCCobj                 (3) 
CD, CL and CM are respectively the drag, lift and moment coefficient, and obj stands for the 
objective. The NACA 0012 airfoil is chosen as the baseline, and the separate effects of camber 
and the thickness distribution according to [19] are used in the parameterization to generate new 
geometries with the given design variables. For visualization of the process, two design variables 
are used for this problem: the position of the maximal camber and the maximal camber. The TAU 
deformation tool based on radial basis functions is applied to generate new grids providing the 
old grids and new geometries. Moreover, the TAU N-S solver with the Spalart-Allmaras 
turbulence model is used to compute the flow field at the design point Re=9.0e+6, Ma=0.8 and 
AoA=1.25º. Ordinary Kriging is chosen to fit the surrogate model. 

First the entire design space is “scanned” to plot the objective function and visualize the 
optima. As shown in Figure 3, this objective function has two optima, one local minimum and 
one global minimum respectively. 

As shown in Table 1, different strategies are used to optimize the objective function. The 
results of simplex and gradient-based optimization depend on a start point in the vicinity of the 
global optimum can result in global results, and vice versa. By using genetic algorithm, the global 
optimum is always found with a large number of runs of the flow solver. Surrogate-based 
optimization with EI-based sample refinement can always obtain the global optimum except in 
the situations with rather bad initial sampling (e.g. 14 initial samples). Intuitive illustrations are 
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shown in Figure 5(a) and 5(b). For the case with 14 initial samples in (a), although the 516 runs 
of the flow solver are larger, the optimization still trapped in the local minimum directly, because 
no more information about the global minimum is offered. For the case with 21 initial samples in 
(b), the main search direction is global, but it also makes effort to search locally. Comparing the 
number of the runs of the flow solver, the surrogate-based optimization gains more favor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Optimization of the artificial cost function for NACA 4-digital airfoil 

In order to avoid the risk of refining the surrogate model around a local optimum because of 
the bad sampling (including sparse sampling and one-sided sampling), a hybrid adaptive 
refinement strategy based on EI function and KE is employed and combined with a 
gradient-based optimization which starts from the optimum from surrogate-based optimization. 
Thus, after refinement of the surrogate model, in which procedure a global search has been done 
over the entire design space, a local search can converge very fast to the global optimum. In the 
test case using the hybrid strategy with only three initial samples shown in table 1, 
surrogate-based optimization just needs 20 runs of the flow solver, in which KE-based 
refinement is switched on only within the first 10 iteration steps, and then gradient-based 
optimization is started. Finally after a total of 51 high-fidelity flow computations, a global 

Results 
Strategy 

Initial 
samples 

Start 
TAU 
runs D. V. Cost value

Gradient × [0.1,0.03] 238 [0.418516, 0.018175] 0.042178
× [0.1,0.03] 69 [0.209570, 0.032490] 0.061397

Simplex 
× [0.3,0.025] 138 [0.419624, 0.018131] 0.042173

Genetic Algorithm × [0.3,0.025] 594 [0.419621, 0.018131] 0.042173
8(LHS) × 295 [0.411680, 0.019166] 0.042997

11(LHS) × 56 [0.417681, 0.019561] 0.042997
14(LHS) × 516 [0.182645, 0.036848] 0.067040
18(LHS) × 95 [0.418833, 0.019414] 0.042973

EI 

21(LHS) × 24 [0.432195, 0.019094] 0.041977
EI(20)+Opt. KE(10)+Grad. Opt. 3(LHS) × 51 [0.413275, 0.018615] 0.042366

Figure 3. Contour of the cost function 
from scanning the design space 
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Figure 4. New samples from two refinement 
strategies in optimization procedure 
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optimum is captured. As shown in Figure 5(c), large effort has been paid for searching globally. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Contour of cost function interpolating on the finally gained 
surrogate model with different strategies 

(a) 14 initial samples 
(EIF refinement) 

(b) 21 initial samples 
(EIF refinement)

(c) 3 initial samples 
(hybrid refinement) 

The samples from two refinement strategies generated in each iteration step are plotted in 
Figure 4. Three red squares stand for the initial samples. 10 blue down-triangles are samples from 
KE-based refinement, most of which are located on the boundary; it indicates that this strategy 
did help search globally. Diamonds and circles represent samples from EI-based refinement, in 
which green diamonds are samples within the first 10 iterations. It shows that EI-based 
refinement at first tries to refine the design space globally (diamonds), then locally (circles).  
B. NLF0416 airfoil with 10 design parameters 

Optimization of the drag for an NLF0416 airfoil with 10 design parameters is performed. 
There are 5 design variables on the upper and lower surface respectively. They are the bumps of 
the control points for the geometry, with the x-positions 0.1, 0.2, 0.4, 0.6 and 0.8. A N-S flow 
solver combined with a transition prediction module and the Spalart-Allmaras turbulence model 
is run at the design point Re=2.0e+6, Ma=0.1 and a targeted lift coefficient CL=0.72. The range of 
each design variable is defined as [-0.01, 0.01]. Regression Kriging with constant regularization 
is used to construct the surrogate model. 

Table 2. Optimization of the drag for NLF 0416 airfoil 

Profile CL
CD

(0.0001)
CDv

(0.0001)
CDp

(0.0001)
Trans. Point  

(x/C) 
TAU Comp. 

(runs) 
Baseline 0.719253 82.30 53.58 28.72 0.333021 × 
Subplex 0.720562 79.64 52.06 27.58 0.344047 190 

EI 0.719192 79.74 52.30 27.44 0.355069 69 
EI+Simplex Opt. 0.719990 79.56 52.13 27.43 0.355069 81 

EI+Simplex Opt. (new range) 0.720659 75.03 48.24 26.79 0.486853 71 

10 initial samples from LHS are used as a DoE plan. Surrogate-based optimization is run 
with EI-based refinement. Then optimization using a local optimizer Simplex is started from the 
optimum from surrogate-based optimization. In order to compare the accuracy and efficiency of 
this framework, classical optimization using Subplex is run with the start from the baseline. The 
results are shown in Table 2. The strategy, combining surrogate-based optimization and classical 
optimization, shows best accuracy with just 12 additional flow computations in classical 
optimization using Simplex.  

The geometries of the profiles are shown in Figure 6. The corresponding pressure 
distributions are presented in Figure 7. Surrogate-based optimization with EI refinement and 
combined with classical optimization both acquire better pressure distributions that have a more 

 - 6 -



flat top. But considering the small improvement in terms of drag, the optimum found isn’t 
actually the perfect result. It seems that the transition point is restricted. In the author’s opinion, 
this is due to the narrow range of the design variables. Therefore, the case is performed again 
with a larger range of the design variables (new ranges are shown in Table 3). From the results in 
Table 2, the drag coefficient decreases nearly 7.3 drag counts, and the number of the runs of the 
flow solver is only 71, which, compared with classical optimization using Subplex, is quite lower. 
The efficiency of the optimization is satisfying. 

 

 

 

 

 

 

 

 

 

 

 

Table 3. New range of the design variables for NLF 0416 airfoil 

Design Variables DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8 DV9 DV10
Min. -0.01 -0.02 -0.04 -0.02 -0.01 -0.01 -0.03 -0.06 -0.04 -0.02
Max. 0.01 0.05 0.09 0.07 0.06 0.01 0.03 0.05 0.03 0.02 

VII. Conclusions 

Due to the requirement of a practical, efficient tool for global optimization, a framework 
combining different CFD solvers, DoE methods, optimization algorithms and various surrogate 
modeling methodologies with sample refinement strategies is under development. Moreover the 
strategy of performing a local optimizer starting from the optimum from surrogate-based 
optimization is studied aiming to improve the efficiency and accuracy of the framework. This 
hybrid strategy is applied to the test cases of a NACA 4-digit airfoil with 2 design variables and 
an NFL0416 airfoil with 10 design variables. The results confirm that the present framework with 
the hybrid strategy is much more efficient than classical optimization for multi-dimension and 
multi-optima problems with acceptable accuracy.  
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