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This paper describes the influence of grid resolution and turbulence modeling
for a 3D transport aircraft in high lift configuration with massive flap separation.
The flap is equipped with spanwise slotted active flow control (AFC) devices to
allow studies on active separation control. The effects of constant slotted blowing
on the high lift performance are highlighted. Oil flow pictures from a mid-scale
experiment in the low speed wind tunnel of Airbus in Bremen (B-LSWT) serve as
a validation database for the baseline CFD results. RANS calculations are carried
out with and without constant blowing boundary conditions. The baseline flow
is also investigated with a time-accurate URANS approach. One of the major
outcomes of the AFC study is the demonstration of the feasibility to simulate
AFC concepts on a 3D configuration. Constant blowing shows the beneficial effect
that separation can largely be suppressed because of the energy added to the flow
on the suction side of the flap. This study serves as a preceding validation for the
subsequent pulsed blowing approach treated in Part 2.

Nomenclature
AFC = Active Flow Control
B-LSWT = Low Speed Wind Tunnel at Airbus in Bremen
CFD = Computational Fluid Dynamics
CFL = Courant Friedrichs Lewy [number]
DLR = Deutsches Zentrum fiir Luft- und Raumfahrt [German Aerospace Center|
RANS = Reynolds Averaged Navier Stokes [method]
SAO = Spalart-Allmaras Original [turbulence model]
SST = Shear Stress Transport [turbulence model]
URANS = Unsteady Reynolds Averaged Navier Stokes [method]
Aref = Wing Reference Area [m?]
Cp = Drag Coefficient [-]
Cr = Lift Coefficient [-]
C, = Blowing Momentum Coefficient [-]
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mj = Jet Exit Mass Flow [kg/s]

N = Point Number [-]

Joo = Farfield Stagnation Pressure [kg/m?]
Teff = Effective Refinement Ratio [-]

vj = Jet Exit velocity [m/s]

yT = Dimensionless First Grid Spacing [-]

I. Introduction

IRBUS Flight Physics, High Lift Devices, in Bremen and the DLR Institute of Aerodynamics and

Flow Technology in Braunschweig have conducted a collaborative pilot study on an industrial-
like three-element high-lift / wing-body configuration. The numerical studies are based on hybrid
unstructured methods in use at DLR (TAU code and the commercial CENTAUR grid generation
package). The code has been extended towards the capability to allow the design of wings with
increased high lift performance enforced by active flow control (AFC) actuations.
Limited to two-dimensional (2D) and towards swept two-dimensional (2.5D) profile flows, such
fluidic actuation systems were investigated experimentally within the project M-Fly' of the German
national aerospace program and numerically within the partner program M-Fly/AeroNext by the
partners with the support of Airbus.” Corresponding pilot investigations of AFC on an industrial-
like three-dimensional (3D) wing/body configuration have been carried out succesfully in the low
speed wind tunnel of Airbus-Deutschland in Bremen (B-LSWT) using a 1:12.7 high-lift wing model
with application of AFC on the high lift trailing edge device.
The present work describes first steps towards the simulation of continuous and later on pulsed
actuated jet flows on the flap of this 3D high-lift wing-body configuration using the DLR TAU
code. A prerequisite to simulate the benificial effect of AFC is the ability to consistently simulate
the flow features of the baseline high-lift configuration without AFC, which is in the present case
characterized by substantial portions of separated flow.
A main focus of the numerical investigations is to determine the influence of grid resolution in order
to identify an appropriate numerical baseline set-up to capture the main flow features, while using
a minimum grid size. In addition to the grid resolution study, three different turbulence models
are used to assess the impact of physical modeling on the final solution.

II. Grid Generation and Numerical Method

The hybrid grids for the preliminary CFD investigation of the reference flow and also the
actuated computations with AFC are generated with the commercial mesh generation software
CENTAUR.” For the approximation of the boundary layer, there are 25 prism layers with a target
y+-value of 1.0 ensuring an appropriate resolution of the viscous sublayer. Complicated areas with
acute surface angles or small gaps are either treated with an automatic pullback of the first grid
spacing or with minimal chopping of the prismatic advancing front. Both are methods to reduce the
overall height of the prismatic grid. While the first method maintains the number of prism layers
by locally lessening the prism height of every layer, the chopping leads to a reduction in the number
of layers. There are only a few regions, where this problem arises, like the connection of the flap
track fairings or the intersection of the aileron with the wing. The farfield distance is 100 reference
chord lengths away from the geometry. For the grid refinement study, two additional meshes are
derived starting from the coarsest grid level in order to get three subsequently refined mesh levels.
The point number for the coarse, intermediate, and fine grid amounts to 17 - 105, 25 - 10° and
37 - 10% points, respectively. A classical systematic grid refinement with a subsequent analytical
error estimation is easily possible for fully structured grids, where a doubling or bisection of the
points can be applied.” With the available methods and tools, a similar approach is not practicable
for unstructured meshes. Thus, the surface mesh refinement is limited to the flap system and the
spoiler, because the work is focused on the flap separation region. An equal refinement in areas
of lower interest would severely multiply the numerical effort limited by hardware constraints. For
the same reason, the number of prism layers is kept constant and the refinement is focused on the
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surface elements. It is a possible way to refine unstructured meshes with the usage of an effective
refinement ratio, which is for a three dimensional problem defined as:

N ine %
Teff = <—f ) (1)

NCO(ITS@

This ratio is constant at 1.14 for the refinement from the coarse to the intermediate grid and from
the intermediate to the fine grid. Figure 1 depicts the meshes used for the grid refinement study.
For the active flow control studies, the grid is then extended in order to include the slots of the
actuators. Primarily, the number of prism stacks was raised to 30 layers and the stretching ratio
for the boundary layer prism extrusion was slightly increased. This procedure emerges to be very
helpful in order to include deep slots on the flap surface with an automatic grid generation package
as CENTAUR.

The flow solver used for the presented results is the finite volume compressible RANS solver TAU

1

%

(a) Farfield view of the overall mesh

(b) Close view of the inboard flap (¢) Close view of the inboard flap (d) Close view of the inboard flap
edge (coarse mesh) edge (intermediate mesh) edge (fine mesh)

Figure 1. Overview of the surface meshes

developed at DLR.” A second order accurate central scheme with artificial dissipation is the method
of choice for the discretization of the convective fluxes. The artificial dissipation based upon the
settings of Jameson' is applied with a 2"? order dissipation term of %, and a 4" order dissipation
coefficient of 6%1. The chosen approach for the time integration is a 3-stage Runge-Kutta time
integration method using a CFL number of 1.2. In addition to a point explicit residual smoother,
convergence is accelerated with a 3W-multigrid cycle. The URANS computations are carried out
with a dual time stepping method and a physical time step size of 2.5-107° seconds and 125 inner
iterations. The choice of the time step size and the number of iterations is based on conclusions of
part 2 of the paper, where the unsteady approach is examined in detail. Besides an investigation
of the mesh influence, the comparison of different turbulence models is in the focus of this work.
On the one hand, the 1-equation turbulence model of Spalart and Allmaras’ in its original version
(SAO) is used, and on the other hand the 2-equation k-w-type models of Wilcox” and the advanced
Shear Stress Transport model (SST) from Menter.” For the two 2-equation models a different wall
limiter type for the w-equation is used, where the lower bound of w is limited based on experimental
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Figure 2. Grid influence on the overall lift and drag cofficient in percentages of the wind tunnel measurements

assumptions for the wall roughness.'” This limiter previously showed good and stable results for
cases with high complexity. On the constant blowing boundary condition, the velocity on the outlet
plane is set to a fixed value of 150 m/s. These are typical working conditions of the active flow
control actuators. This value corresponds to a actuator/freestream velocity ratio of approximately
2.0, which is needed at higher flap deflection angles.'' In order to relate to the wind tunnel
tests, the setup is determined with the Mach number, the Reynolds number, the corresponding
reference length of the model and the farfield temperature. The Reynolds number of the wind
tunnel experiment in Airbus’ low speed wind tunnel in Bremen (B-LSWT) is 1.5 - 105 and the
Mach number is 0.2, whereas the farfield temperature is 300 K. Based on the results of the wind
tunnel campaign, an angle of attack of @ = 7° in the linear regime of the lift curve has been selected
for the CFD analysis. For this angle of attack, the wind tunnel database was very comprehensive.

ITI. Results

The wind tunnel experiments for the baseline flow reveal a strong separation on the inboard
and outboard flap. The discussion of the overall numerical results can be divided into three major
parts: 1. the investigation of the baseline flow with its implications for the usage of the necessary
grid resolution and the turbulence model, 2. a study on the introduction of slotted actuators and
their influence on the aerodynamics, and 3. the subsequent analysis of the impact of active flow
control.

III.A. Baseline Configuration

First of all, the influence of the mesh should be highlighted by evaluating the force coefficients
(in relation to the wind tunnel measurements) for the three grids. As illustrated in figure 2, the
trends of the grid refinement study are not consistent for some of the values. The most prominent
anomaly is visible for the SAO results where the evolution of the coefficients is not monotonic.
Both the lift and the drag coefficient first increase and then decrease with further refinement. But
there is also a discrepancy in the behaviour of the two 2-equation-model results. Despite the fact,
that here the trends are monotonic for both the lift and the drag coefficient, the models show an
inversion of the direction. For the Wilcox model, the lift coefficient increases steadily, while the
SST model results in a steady decrease. In turn, the drag coefficient results in a steady decrease for
both the Wilcox and the SST model. But in conclusion, only the unclear trend of the SAO models
is suspicious, because grid convergence is characterized by an asymptotic behaviour of a represen-
tative variable, but not by the direction of this trend. Altogether, only the two-equation models
produce the specific asymptotic progression of a grid convergence study. It could be criticized,
that the refinement was done only locally. But recent studies show that for complex CFD studies
even a very accurate refinement study with genuine grid families does not guarantee a classical grid
convergence behaviour with force coefficients in the asymptotic range.'>'* In the present study,
wind tunnel data is available so that the meshes can additionally be judged by a comparison with
the experimental data.
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Table 1. Deviation of the computed force coefficients compared to the measured data

coarse intermediate fine
SAO | Wilcox | SST | SAO | Wilcox | SST | SAO | Wilcox | SST
Crorp=Crwr () | 95 89 | 59 | 142 | 101 | -0.6 | 124 | 107 | -3.0

Crwr

Co.crp=Cpwr o1 | 181 | 22.0 | 13.6 | 20.9 | 21.5 | 7.0 | 202 | 200 | 5.1

Cp.wr

Besides the evolution of the trends, also the comparison of the force coefficient magnitudes listed
in table 1 shows an unambigous indication towards the Menter SST computations with the best
match in lift for the intermediate mesh. Keeping in mind that computational drag prediction is
an ongoing matter of numerous research activities,'* one should focus on the lift coefficient while
comparing absolute values. Nevertheless, comparing the turbulence models, the best drag agree-
ment can also be found for the SST calculations. Concerning the magnitudes of the offset from
the numerical results to the experimental data, they scatter within a large interval, and only for
the SST model and the fine and intermediate grid this deviation is acceptable. The results range
from over 20% to -3%, which is not surprising because of the large separation region that strongly
contributes to the lift and drag of the model. A final concluding remark regarding the global lift
and drag coefficient analysis stated here is mandatory. As noted in the last chapter, there are
always uncertainties concerning the validity of mesh resolution studies with unstructured grids,
especially when only local refinements are addressed. This must be kept in mind evaluating the
findings above.

Now attention should be paid to the grid influence on the flow topology. Taking a look at the
friction lines of the three successively refined meshes in figure 3, there is one striking peculiarity.
Independent of the type of turbulence model, the coarse mesh approach triggers an edge vortex
at the inner edge of the inboard flap that is grid induced, because an inrease of the point number
results in a complete disappearance of this vortex. It is much more distinct for the SAO and
Wilcox k-w results but also visible for the SST. A further refinement from the intermediate to the
fine grid reveals only marginal differences in the overall flow behaviour so that this comparison
along with the findings above justifies the usage of an intermediate mesh approach. Altogether,
the grid refinement gave good evidence for a sufficient mesh resolution and serves as a calibration
for further CFD work incorporating this model.

Next, the influence of the turbulence model on the flow topology will be investigated. The impact
of the turbulence models can be observed again in figure 3, where the friction lines of the CFD
results are depicted in comparison with oil flow pictures of the wind tunnel experiment. While the
outboard separation is simulated by all turbulence models to a certain extent, the inboard sepa-
ration is only reproducable by the Menter SST-model. In figures 3(h) to 3(j) the structure of the
flow above the flap upper surface shows a reverse flow region close to the inboard flap track fairing,
sometimes referred to as “owls eyes”. This is in good accordance with the flow visualisation of the
experiments, although there is a small deviation from the measured separation line. In contrast
to that, the remaining turbulence models do not forecast a comparable inboard separation (figures
3(b) to 3(g)). As regards these two inferior models, only small advantages (i.e. in this case a
slightly better separation and lift prediction compared to the wind tunnel data, see again table 1)
elevate the Wilcox over the SAO model. These findings coincide with the recommendation towards
the Menter SST model for strongly separated flows where adverse pressure gradients are present.”
Neglecting the prevailing inconsistency of the drag coefficients with the uncertainties attached
to numerical drag prediction, a ranking of the three turbulence models becomes apparent. The
Menter SST model clearly stands out being the only model succesfully forecasting the large in-
board separation. It is followed by the Wilcox two equation model and the SAO model. These
two show differences in the flow topology and large offsets in comparison with the measured force
coefficients. Regarding the grid fineness, the results obtained with the intermediate grid yield the
best compromise between quality and efficiency.

In anticipation of the studies in part 2 of the paper, the baseline configuration was also computed
on the intermediate grid with an unsteady URANS approach in order to see whether the stationary
results remain unaffected. The overall physical time of over 0.18 seconds allows a perturbation to
propagate from its origin on the geometry for more than 100 flap reference length units through

5o0f 11

American Institute of Aeronautics and Astronautics



(a) Oil flow picture of the wind
tunnel experiment

(b) Numerical  results (¢) Numerical results of (d) Numerical results of
of the SAO computa- the SAO computations the SAO computations
tions(coarse mesh) (intermediate mesh) (fine mesh)

(e) Numerical results of (f) Numerical results of (g) Numerical results of
the Wilcox k-w computa- the Wilcox k-w computa- the Wilcox k-w computa-
tions (coarse mesh) tions (intermediate mesh) tions (fine mesh)

(h) Numerical results of (i) Numerical results of (j) Numerical results of
the Menter SST computa- the Menter SST computa- the Menter SST computa-
tions (coarse mesh) tions (intermediate mesh) tions (fine mesh)

Figure 3. Influence of the grid refinement in direct comparison with wind tunnel experiments for the baseline
flow
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Figure 4. Force coefficients of an unsteady URANS computation for the baseline flow

the flow field. Figure 4 shows the progression of the lift and drag coefficient along with its corre-
sponding average values for this unsteady computation. Because this computation was restarted
from the steady state solution, the reference point of the stationary results is situated at ¢ = 0s.
One observation is that after a short transition period of approximately 0.03s, the solution starts
oscillating around the average value that is very close to the reference value. The oscillation is not
strictly harmonic but follows a recurring pattern. Longer computation time does not change this
behaviour any more. With respect to the scale of the axes (ACL = 0.01, ACp = 0.002), both the
size of the oscillation and the offset from the initial result is neglectable. With this information
the unsteady results complete the study of the baseline model.

III.B. Slot Integration

In the previous chapter, guidelines were derived for the choice of the turbulence model and the grid
resolution of the baseline geometry. In the following, this strategy is adapted for all computations
incorporating active flow control devices. For the constant and the pulsed blowing via active flow
control elements, the geometry is extended with 21 separate slots on the suction side of the inboard
and outboard flap. There are 6 and 15 slots placed on the inboard and outboard side, respectively.
They are separately resolved with cells as depicted in figure 5 meaning that the interior of every
flow control actuator slot is filled with grid elements. The gaps near the fairings are due to the
assembly limits of the flap track connectors inside the flap of the wind tunnel model. Of course,

Outboard - 15 Actuators

e ;
' Inboard - 6 Actuators

v

(a) Placement of the actuator slots on inboard and outboard flap (b) Slot surface meshing strategy

Figure 5. Positioning and meshing strategy in the vicinity of the slot actuators
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the introduction of active flow control slots has an impact on the overall mesh topology. In the
previous section it was already mentioned that the number of prism cells was increased. This leads
to a higher number of points of 30 - 105. Introducing very small cells on the flap surface through
the slot panels also leads to an irregular shape of the outer hull of the prism stacks. This behaviour
is difficult to avoid because of the strong automation of the grid generation process.

The analysis shows that the lift coefficient is 6% smaller compared to the results of the baseline
model. The main reason is the reduction of the flap suction peak. It is not self-evident that this is
solely a consequence of the slot integration. The deformation of the prism structure might as well
contribute to the lift loss. Figure 6 reveals the differences between the pressure distribution with
and without slots. Most striking is the strongly reduced suction peak in the kink area for the case
with slots. Provoked by the leading edge sweep of the outboard flap, high lift configurations with
an inboard (no sweep) and outboard flap (sweep) generally feature an outward motion of the fluid
in the kink area. By introducing the slots (especially the two slots close to the kink), this motion
is suppressed leading to a reduced ability for a high flow acceleration. In second consequence, the
reduction of the flap circulation also affects the main wing to a certain extent up to approximately
30% upstream of the main wing trailing edge. The effect is very small and difficult to visualize with
any colour mapping. However, the colouring of the spoiler hinge line acceptably reveals this lift
loss of the main wing for the case with slots (fig. 6(b)). This so-called circulation effect is typical
for multi-element high lift acrodynamics as first described by A.M.O. Smith.'® The theorem states
that an increased circulation of the downstream element causes the trailing edge of the adjacent
upstream element to be in a region of high velocity. For the case with slots, the reduction of the
flap circulation due to the installation of the slots leads to the opposite occurence that the wing
trailing edge pressure is reduced. However, this effect does not stretch out to the main wing leading
edge, where the differences tend to zero.

The key point of this study is that the general flow topology persists, which is of high importance
for the following work. Separation is a little bit shifted to the flap leading edge. But for the
investigation of active flow control, a massively separated flap is desired, anyway. It was shown
that this was already the case for the baseline geometry and that an incorporation of the slots
promotes the flap separation to a minor degree.

cp: 5-4-32-10 1 cp: 5-4-32-10 1
(a) Without slots (b) With slots

Figure 6. Impact of the slot integration on the pressure distribution for the case without AFC

III.C. Constant Blowing

Refering to the baseline flow, the physical reason for the separation on the suction side of the flap
is the strong adverse pressure gradient that the flow can not withstand due to a lack of dynamic
energy. The control flow through the slotted actuators leads to a reenergization of the boundary
layer and therefore enforces the ability to withstand separation tendencies. Its momentum is
defined by the blowing momentum coefficient C,:

mj-v;
-7 73 2
CM oo * Aref ( )
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The definition contains the jet mass flow m; through the actuator slots with the jet velocity v;, the
farfield stagnation pressure ¢, and the wing reference area A,.y that is also used for all aircraft
based force coefficients. For constant blowing, the jet velocity and mass flow is constant, in this
case with a value of C), = 0.5%.

Flow separation or its suppression can be visualized by the flow signature on the surface. The
signatures on the surface, as they are depicted in figures 7(a) and 7(c), show the effect of the
separation suppression. One can see, that the originally completely separated flow above the flap
in figure 7(a) is substituted by a mostly attached flow. Remember, that some slots are divided
by larger gaps in regions where the flap does not bear enough space for the actuation hardware.
Close to these gaps, noticeable portions of separation still exist (e.g. in the kink area). At the
outer end of the outboard flap near the third flap track fairing, the slots are completely missing
which results in an almost unconstraint separation as without AFC. It is important to note, that
constant blowing evidently improves the performance of the high lift device. This is clearly visible
in the refered figures where also the surface pressure distribution is shown. The avoidance of flow
separation is followed by a strong increase of the suction peak. This is also reflected in the overall
lift coefficient that is enhanced by 0.24.

Naturally, not only the signature on the surface is an indicator for the differences between the case
with and without AFC. Most of all, it is a 3 dimensional phenomenon that is in first consequence
visible in the field. Figures 7(b) and 7(d) show a slice through the wake region behind the inboard
flap. Without the application of active flow control this wake is mainly characterized by a continous
dead water region from the inboard edge all over the flap span. In contrast to that, constant blowing
leads to a destruction of this continuous structure but leaves some remaining distinct vortices that
are caused by the unsuppressable leftovers of the large separation area, namely at the inward
junction of the wing and the belly fairing, above the flap track fairings, and in the kink area
between inboard and outboard flap.

without AFC

(a) Friction lines and pressure distribution of the inboard and outboard (b) Mach contours of the inboard flap
flap without constant blowing active flow control wake region without constant blowing
active flow control

|

with AFC

(c¢) Friction lines and pressure distribution of the inboard and outboard (d) Mach contours of the inboard flap
flap with constant blowing active flow control wake region with active flow control

Figure 7. Flow topology in the vicinity of the aircraft flap system with and without constant blowing active
flow control
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IV. Conclusion

The present work contains a numerical investigation of a high-lift wing-body configuration with
a separated flow above the inboard and outboard flap. The baseline flow is computed with three
different turbulence models and three succesively refined grids and compared with wind tunnel
data. Afterwards, the influence of active flow control slots on the baseline flow is described. Fi-
nally, the impact of constant blowing on the high lift performance is highlighted.
An important aspect of the considered flow around the high lift model was the full-span separation
on the trailing edge high lift system. This feature of the baseline model was predicted accurately
only with the Menter SST model in combination with an intermediate or fine grid. The interme-
diate mesh in combination with the SST model gives the best compromise between quality and
computational turn-around times. URANS computations were carried out to create a link be-
tween the baseline flow in part 1 and the pulsed blowing application in part 2 of the paper where
a time-accurate treatment of the flow is necessary. The URANS computations affirm that both
approaches result in the same flow behaviour and a good match of the force coefficients compared
to the steady approach. An incorporation of the slots for the actuation has only small effects on
the overall flow topology but is accompanied by an even stronger suppression of the flap suction
peak and a lift loss. The application of constant blowing prevents a complete detachment of the
suction side flow and leads to an increase in high lift performance. The principal feasibility of
applying active flow control elements on the complex high lift geometry under consideration could
be shown. Part 2 of the paper'” deals with the numerical investigation of the more efficient pulsed
blowing approach including a final comparison with AFC wind tunnel data.'"
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