

Cooperative Mobility Systems and

Services for Energy Efficiency

Outline

- Introduction to the eCoMove project
- eCoMove assessment concept
- Performance indicators for validation and assessment
- Methods for validation and assessment of the eCoMove system

The eCoMove project

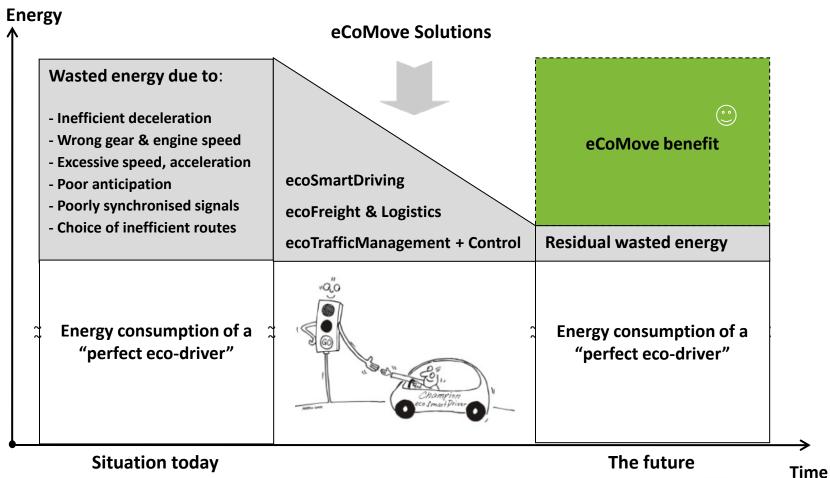
- 33 partners from 10 countries:
 - Vehicle and supplier industry
 - Map makers
 - Telecom
 - Infrastructure operators
 - R&D labs & universities

Starting date: 04/2010 Duration 36 Months

Coordinator: ERTICO ITS Europe

Project goal

To develop a combination of cooperative systems and tools using V2V and V2I communication to help:


- drivers sustainably eliminate unnecessary fuel consumption;
- fleet managers manage their vehicles more economically and promote eco-driving through feedback & incentives;
- road operators balance traffic flows in the most energy efficient way.

Target: reduce fuel consumption and therefore CO₂ emissions of road transport by 20%

Vision and motivation

Main activities

Develop eCoMove core technologies

- V2X communication platform based on CVIS & SAFESPOT results
- ecoMessage standardised cooperative messages for energy efficiency-relevant information exchange
- ecoMap digital map database enhanced with eco-relevant attributes

Develop eCoMove applications

- ecoSmartDriving applications fuel-efficient driving performance
- eco Freight & Logistics applications green freight routing and fuel consumption- optimised logistics
- ecoTrafficManagement & Control applications energy-efficient traffic control & management measures

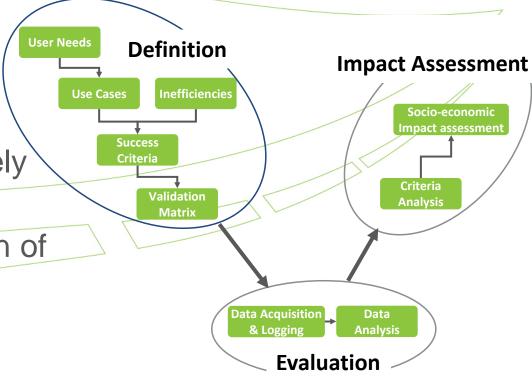
Validation and impact assessment of eCoMove applications

Validation and assessment in field trials and simulation

Research questions to answer

- 1. To what extent can eCoMove decrease the fuel consumption and therefore also CO₂ emissions with cooperative technologies?
- 2. How can eCoMove sustainably change the performance of private and professional drivers into a more eco-friendly driving style?
- 3. What **impact** have eCoMove solutions in a cooperative environment **for the traffic system?**

eCoMove Validation Plan


Based on the FESTA V-Modell

Challenges:

Many applications

 that need to be
 assessed, separately
 and combined

 No FOT – validation of many applications using different methods

eCoMove applications for cars, trucks and traffic management

Assessment concept

Field trials (Munich, Helmond, Torino)

performance

Improved driver

Microscopic traffic network simulation

(Munich, Helmond, French motorways)

Driving simulator studies

Improved driver performance

Application assessment

ystem assessment

Individual assessment of applications using different methods

Integration of findings from field trials and driving simulator studies into the traffic simulation model for following system assessment

Assessment of the eCoMove system (network simulation of Munich, Helmond & French motorways)

Assessment of the eCoMove system using traffic simulation models and emission models. Qualitative assessment of long term effects.

Validation categories & performance indicators

Environment

 fuel consumption, CO₂ emissions (in total, per trip or per vehicle per km or tkm), other emissions (CO, NO_x)

Mobility

 total/individual travel times, delays, number of stops, network speed, level of service

Safety

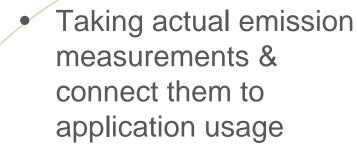
 times to collision, time headways, variations in speed, # hard braking events, speeding, distraction and workload

Compliance

following advices: on vehicle condition and on strategically, tactically and operational driving

Driver performance

gear changes, acceleration & deceleration performance, speed, idling


User acceptance

- system on/off, usefulness, ease of use, satisfaction with the system

Field trials

 Testing of applications for cars, trucks and traffic management in real world conditions

 Collecting objective & subjective feedback from drivers

Test site	Vehicles			
Munich (GER)	VOLVO COR CENTRO RICERCHE FIAT A PACCAR COMPANY			
Helmond (NED)	Ford A PACCAR COMPANY			
Turin (ITA)	CENTRO RICCRCHE			

Environment

Mobility

Safety

Compliance

Driver performance

User acceptance

Driving simulator studies

- Implementing and testing eCoMove applications in a controlled environment
- Three studies planned to cover different research questions (DLR, TUM, VOLVO)
- Testing different feedback and training strategies to improve driver performance:
 - Gear changes, acceleration & deceleration, compliance rate, HMI design, distraction

Environment

Mobility

Safety

Compliance


Driver performance

User acceptance

Traffic network simulation

- VISSIM environments of Munich, Helmond and French motorways
- eCoMove traffic management apps run in real-time mode
- Changes in driver performance are modelled based on findings from field trials and driving simulator studies
- Assessing direct and indirect effects:
 - total/individual travel times, delays, number of stops, network speed, level of service,
 - fuel consumption, CO₂ emissions (in total, per trip or per vehicle per km or tkm), other emissions (CO, NO_x)

Environment Mobility Safety Compliance Driver User acceptance

Sensitivity analysis

	Munich	Helmond	French motorways
Type of signal control			
What are the gains of eCoMove in a less optimised environment?		X	
Fleet composition			
What is the impact on fleets with lees average emissions? Which effect has a higher or lower share of truck traffic?	X		X
System penetration			
It is important to demonstrate gains with lower penetration to encourage fast deployment	X	X	X
Incidents affecting the traffic network			
Incidents in the traffic network are regular and need to be analysed.	X	X	X

Next steps & outlook

- Definition of the data collection system
- Planning of scenarios for field trials & driving simulator studies
- Field trials start July 2012
- Assessment results expected December 2012

Thank you for your attention

Stefan Trommer

DLR – Institute of Transport Research

Tel: +49 (0)30 67055209 stefan.trommer@dlr.de

www.ecomove-project.eu

