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1. Abstract 
 
The goals defined by the ACARE Vision 2020 present a major challenge to aeronautic research. Besides 

developments in new aerodynamics and structures, advancements in aero engine research will account for a major part 
of the required reduction in fuel, emissions and noise.  To enable a commercial launch of new aircraft and engine 
concepts, complex and often contradictory demands have to be fulfilled. 

Strong dependencies between the individual technical disciplines exist so that the optimization in a single discipline 
may not lead inevitably to a global optimum. Therefore it is necessary to look at the overall system in order to evaluate 
the potential of new technologies realistically. 

This article presents a typical design task in aeroengine predesign and a software solution which supports and 
enables multidisciplinary cooperation on the engineer side. A common data format based on XML, necessary for data 
exchange, as well as supporting programming libraries for the processing of this data format are introduced. Furthermore 
it is described, how a parametric representation can be realized for various geometries with the help of XML. A 
programming library with C and FORTRAN Interfaces supports geometrical computations for these representations. 
Finally it is demonstrated that the tools used by the different technical disciplines can be connected to a process chain 
within a framework. 

 
 

2. Introduction 
 

In the predesign phase of airplane and aeroengine 
development many different technical disciplines are 
involved. Each of these disciplines comes with special 
simulation programs that fit perfectly to the associated 
questions within the technical field of the discipline. In 
this article such simulation programs will be referred to 
as application. Often these applications are used for 
optimization of technical problems within these 
disciplines. However, due to the strong dependencies 
between the different disciplines a global optimum can 
rarely be obtained by the combination of optimal 
solutions that result from separate optimization 
processes within every single discipline. For example, 
an aerodynamic optimization of a component may result 
in an infeasible design due to stability problems. For 
this reason, it is essential to keep track of the complete 
system. 

Furthermore, the applications are usually operated 
manually and isolated from each other. Therefore, an 
automated tool chain in which the applications are 
executed in consideration of their existing 
dependencies is required. A similar approach has been 
used in 3m-XML [1]. Such automated toolchains are 
necessary to determine the mutual dependencies of all 
applications and perform multi-disciplinary simulations 
of a complete system with minimized user interaction, 
especially when dealing with global optimization. 

  
Since data exchange between the technical 

disciplines is crucial, different approaches to couple 
such applications are possible: 

 
 The combination of all simulation algorithms 

involved into a single pro-gram results in a very 
strong but inflexible coupling, from the software 
technical point of view, but may be desirable due to 
algorithmic reasons. 
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 Coupling applications via MPI or CORBA [2] gives 
a slightly more flexible system due to a general 
interface defined by the communication libraries. 

 A flexible system can by designed using flexible 
data exchange via a modern software integration 
framework. These frameworks could handle most 
technical functions like remote code execution, 
data management between different computing 
nodes or visualization of result data. 

  
At the German Aerospace Center (DLR) the last 

approach was chosen. The easy substitution of an 
existing application by another one with the same 
functionality or adding a new application to the system 
are essential design issues. A common database which 
is accessed by the applications and used for data 
storage and exchange was realized via a global XML [3] 
data set. 

  
At this time, there is no framework available that 

could handle all the tasks necessary for a distributed 
execution of simulation tools with a common data set 
that meets DLR’s reqirements. A larger number of free 
and commercial products tries to address the specific 
needs of scientific data management, flexibility to 
change workflows at any time, real-time monitoring and 
powerful post-processing facilities, but often they fail in 
one or more point. The best known solutions for this 
software field are Kepler & Taverna [4], [5], iSight 
(http://www.simulia.com/academics/isight.html) or 
ModelCenter. 

  
The solutions developed for these tasks are 

introduced in the following sections starting with an 
introduction of the DLR project EVITA that will use the 
developed software environment, followed by a review 
of the format of the common data base in section 4. 
Section 5 describes the software libraries developed to 
access this database. Section 6 is about the developed 
framework and about the integration of our tools and 
our data format. In Section 7 we present some 
conclusions and directions of future work. 

 

 
3. The DLR use cases 

Interdisciplinary projects have become more and 
more important. The need for a common data exchange 
and problem solving platform had became eminent for a 
global view on multidisciplinary problems. At DLR, in 
each research area advanced tools are available to 
cope with specific problems. Most of these tools were 
developed over many years and are highly elaborated 
and accurate. In the past, multidisciplinary studies have 

been conducted mostly on an ad-hoc basis. This 
approach enabled single multidisciplinary analyses but 
was not powerful and flexible enough for modern 
demands on collaborative projects. The need to be able 
to build up inter-department cooperation's was well 
known at DLR and led to a number of projects since 
2005, which were involved in developing the presented 
software integration development: 

 
 Technology integration for the virtual aircraft 

(TIVA/TIVA-II), 2005-2008, to perform technology 
assessment regarding collaborative predesign of 
civil aircraft. The main goal of this project was the 
definition of a common parametric data model of an 
aircraft, suitable for application in the preliminary 
design phase. A suite of tools was adapted to this 
data format and integrated into a process 
automation framework; 

 Climate optimized air transport system (CATS), 
2008-2012. The goal of this project is to optimize 
aircraft and aircraft missions regarding their 
climatic impact. In this project the technology 
described in this paper is combined with another 
tool developed for climate assessments; 

 Evaluation of innovative aero-engines (EVITA), 
2008-2011. The technology and data used in this 
project is quite similar to TIVA, but is focused more 
on the preliminary design of engines rather than on 
the whole aircraft; 

 Unmanned Combat Air Vehicle (UCAV-
2010/FaUSST), 2007-2012. This project simulates 
the development of a military aircraft optimized for 
stealth capabilities. Existing knowledge gained in 
the TIVA project is taken into account. The central 
data set was adapted to the additional 
requirements, and an expert system was added. 

 Virtual Aircraft Multidisciplinary Analysis and 
Design Processes (VAMP), 2009-2012. This 
project is the successor of the TIVA projects and 
concentrates on the extension of the developed 
technology and more common problem solutions 
like data provenance or data management. Also 
non-technical problems like usage limiting are 
engaged. 

 
 
3.1. The DLR Project EVITA 

 
The DLR started the internal project EVITA 

(Evaluierung innovativer Turbo-Antriebe) to bundle the 
existing competencies in the area of aero engine 
predesign at DLR. The ambition of EVITA is to enable 
DLR to conduct preliminary multidisciplinary aero 



engine predesign studies by taking into account – 
amongst other disciplines – aero- and thermodynamics, 
acoustics, structural design and material science. This 
will expand the DLR capabilities to evaluate and 
analyze different new engine concepts at a very early 
stage of development. In order to reach this goal in a 
limited timeframe, detailed methods like CFD-analyses 
are not suitable and too complex. Instead simple, robust 
and reliable tools are developed and will be combined 
to a scientific process chain. 

 
 

Figure 1: Work Breakdown Structure of EVITA 
 
The Work Breakdown Structure of EVITA (Figure 1) 

has been selected to cope with the variety of work-
packages and disciplines required. The first three main 
work packages (HAP) are dealing with the main aero 
engine components, whereas the forth main work 
package contains all cross-cutting issues. 

Each of the main work packages 1-3 is split in three 
disciplines. The Aerodynamics/Predesign work 
packages (WP) deal with the aerodynamic design of the 
individual components. These work packages are led 
by the DLR Institute of Propulsion Technology. The goal 
of the materials work packages is to supply the 
mechanical design WPs with the required material data 
and to provide research results on new materials at a 
very early stage of engine design. These WP are led by 
the DLR Institute of Material Research. The aim of the 
mechanical design WP (DLR Institute of Structures and 
Design) is split into two parts.  First, it is necessary to 
ensure that the aerodynamic predesign results are 
feasible in terms of solitidity and stability. Second, the 
layout of discs, spools and casing is defined here. 

In HAP4 the Thermodynamics WP (DLR Institute of 
Propulsion Technology) is responsible for the 
performance evaluation and synthesis and - in 
collaboration with the aerodynamic disciplines - for the 
layout of the cross section. The Aeroacoustics work 
package (DLR Institute of Propulsion Technology) 
contributes methods for noise estimation whereas the 
assessment WP (Institute of Air Transportation 
Systems) contributes methods to evaluate the engine 

concepts from an aircraft point of view in terms of costs 
and snowball-effects. 

The goal of HAP 5 is the integration of the tools of 
HAP 1-4 into the software framework described in this 
paper. 

Many predesign tools applied in the EVITA project 
are new developments. Additionally, in some 
disciplines, existing tools are refined and updated. The 
major tools of this project (aerodynamic compressor 
design, aerodynamic turbine design, gas turbine 
performance analysis code and combustor design) will 
be presented in detail on this years DGLR conference 
[6], [7], [8]. 

 
Figure 2: Simplified typical process chain in Aero-
engine predesign 

 
Until now, the focus of EVITA was the development 

of the individual predesign tools as well as the 
identification and the development of the requirements 
for preliminary aeroengine design. Currently, the 
selection and buildup of a predesign process chain 
between the disciplines, the experts and the tools has 
become the main focus of EVITA. In a first step, the 
participating disciplines have to be linked together very 
closely. For each engine component, predesign groups 
are initiated in which the specialists of the DLR will work 
closely together to establish understanding for the 
requirements and limits of the adjacent disciplines. A 
brief overview of one of the first test cases is given in 
[7]. 

The design process (Figure 2) is basically a highly 
iterative loop over all the disciplines involved in EVITA. 
This process is very complex and must react to specific 
design requirements. Thus, the process is not one fixed 
process-chain, but a flexible system which is adaptable 
to different tasks.  

At the beginning, detailed engine specifications are 
required in order to start the predesign process. In a 
first step the thermodynamic predesign uses a 
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knowledge database with simple estimations for the 
component behavior. After a thermodynamic cycle and 
corresponding mach numbers are set, the simplified 
engine cross section can be derived. The aerodynamic 
tools are now able to generate the aerodynamical 
design of the individual engine components. The 
aerodynamic predesign is on the one hand iteratively 
connected to the mechanical design to avoid infeasible 
results at a very early stage of development and on the 
other hand to the thermodynamic cycle design, 
updating the simple estimations for the component 
behavior. Depending on the engine specifications an 
acoustic evaluation is very essential in the predesign 
phase to take noise effects into account. The economic 
assessment of an engine is another important point to 
evaluate in engine design. Each of the disciplines has 
an effect on the overall design, thus many complex 
iteration loops and sub-loops are required to reach a 
feasible result.  

The enormous complexity of such predesign tasks 
requires a well planned system. Besides a good 
collaboration of the individual specialists, the multitude 
of very different tools must be linked together more 
closely. Therefore a suitable software framework is 
essential and will be described in the following. 

In the last years, a software solution for such tasks 
has been developed within DLR, especially in the 
project TIVA. This framework presented in the next 
chapters is currently focused on conceptual aircraft 
design and will be adapted to the requirements of 
aeroengine design. 

 
 

 
4. A Common Database for the 

Preliminary Predesign Phase 
The common database for all applications involved 

in a multidisciplinary simulation is realized by a central 
data set. The central data set comprises a main file 
formatted according to the newly designed XML data 
format CPACS (Common Parametric Aircraft 
Configuration Schema) [9]. Additional data files in 
arbitrary formats can be linked into the central data set 
via file paths. Each application reads its input data from 
the central data set. Also the applications have to write 
back their results to this file. A software suite, described 
in Section 6, has been developed to handle the data 
transfer between the central data set and the 
applications.  

 
A file stored in the CPACS format could describe 

one or several configurations with necessary data for 
the initial design phases. The configuration is defined 

by different, hierarchically ordered construction units, 
for example engines, wings or fuselage. Additionally, 
the format defines how mission data and simulation 
results of the applications are stored in the central data 
set. 

 
 

5. Supporting Software Libraries for 
Implementing the Common Data 
Format 

 
This section describes the software tools developed 

to make the communication of the simulation tools with 
each other via the CPACS data format possible. As 
shown in Figure 3, the following libraries and software 
components were developed:  

 

 
Figure 3: Overview of the data flow between the 
central data set and the applications. 

 

 
5.1. TIXI: A Library for simple XML 

Access 
 
The interface to the central data set is completely 

based on the XML for-mat. To enable already existing 
applications without the ability to access XML formatted 
files to read and write XML based data there are two 
possible approaches. The first approach is to enable 
the application itself to read and write XML data. The 
second is to write filter programs that translate XML 
data into the format native to the application for input 
and again translate the native output into XML. This 
approach shields the application developer completely 
from dealing with XML when the filter programs are 
written by XML specialists based on the description of 
the native format. However, this procedure has the 
disadvantage that changes of the native format or 
changes in the application must reflect themselves in 
the filters which will inevitably lead to additional effort to 
adapt the filter programs regularly. The first approach is 



liable to suffer from the complexity of the API of libraries 
used to process XML data like libxml2 [10]. On the 
other hand this approach has the advantage that there 
is only one place where changes have to be 
implemented. 

A requirement analysis showed that file formats 
used by the applications are based on quite simple data 
structures. Input files often comprise single floating 
point or integer numbers only and their meaning 
depends solely on the position in the file. More 
advanced input parsers implemented in these 
applications are able to handle name value pairs. 
Sometimes lists of numbers and other aggregates 
comprised of simple types like vectors, arrays, or 
matrices have to be read and to be written. 

Based on these requirements, it was decided to 
design a simple API to access XML files for performing 
these tasks. The provision of a simplified interface to an 
existing XML library hides the complex API of a full-
fledged XML library from the application programmer. 
Nevertheless, advanced users will be able to use the 
complete API of the underlying XML library for 
manipulating the XML files. Another reason to supply an 
own API was that existing XML- libraries provided very 
little support to read and write XML files from Fortran 
programs. 

The simplified XML processing library can be 
directly integrated into a code by the application owner 
or can be used to create filter software which can be 
maintained by the application owner himself. Although 
simplified and some-what restricted compared to a full-
fledged XML processing library the user can, for 
example, create documents, create and delete nodes, 
and add and remove element attributes. Routines to 
read and write simple text nodes and addi-tionally 
specialized nodes holding integer and floating point 
numbers are part of this API. Furthermore, routines to 
process aggregates of these simple types have been 
implemented. For the processing of geometric data, 
reading and writ-ing of multidimensional arrays or 
arrays of vectors, i.e. coordinates of points are 
supported. The C API and the API for Fortran provide 
the same functionally to the programmer. Additionally 
the library could be used from JAVA program, Python 
scripts and Matlab routines. The library has been 
designed to hide the implementation details so that the 
underlying XML library, currently libxml2, can be 
replaced by another one without changing the XML 
processing API in the applications.  

 

 
5.2. TIGL: A Library for Processing 

Geometric Data 
In order to perform the modeling of wings and 

fuselages as described in Section 2 as well as the 

computation of surface points effectively, a geometry 

library was developed in C++. The library provides 
external interfaces for C and FORTRAN and could be 
used from JAVA, Python and Matlab as well. Some of 
the requirements of the library were: 

 
 Ability to read and process the geometry 

information stored in a CPACS file, 
 Possibility to extend to other geometrical 

characteristics (i.e. engine pods, 
compressor/turbine blades,  landing gear), 

 Ability to build up the three-dimensional (airplane) 
geometry for further processing, 

 Ability to compute surface points in Cartesian 
coordinates by using parameters, segment 
numbers or unique identifiers, 

 Possibility to be expanded by additional functions 
such as area or volume computations, 

 Possibility to export the airplane geometry in the 
more common CAD file formats like IGES or VTK 
[11], [12]. 

  
The developed library uses the Open Source 

software OpenCASCADE [13] to represent the airplane 
geometry by B-spline surfaces in order to compute 
surface points and also to export the geometry in the 
IGES format. OpenCASCADE is a development 
platform written in C++ for CAD, CAM, and CAE 
applications which has been continuously developed for 
more than ten years. The functionality covers 
geometrical primitives (for example points, vectors, 
matrix operations), the computation of B-spline surfaces 
and boolean operations on volume models. 

Apart from the already specified requirements 
above, the geometry library offers query functions for 
the geometry structure. These functions can be used for 
example to detect how many segments are attached to 
a certain segment, which indices these segments have, 
or how many wings and fuselages the current airplane 
configuration contains. This functionality is necessary 
because not only the modeling of simple wings or 
fuselages but also the description of quite complicated 
structures, i.e. in aero engines, is targeted. For an 
example see Figure 4.  

 



 
 

Figure 4: Parameterization of the aircraft fuselage. 
 

 
5.3. TIGLViewer: A tool for 

Visualizing Geometric Data 
In order to review the geometry information of the 

central data set a visualization tool, TIGLViewer, was 
developed. A screenshot is shown in Figure 5. The 
TIGLViewer allows the visualization of the used airfoils 
and fuselage profiles as well as of the surfaces and the 
entire airplane model. Furthermore, the TIGLViewer can 
be used to validate and test the implemented functions 
of the geometry library, for example the calculation of 
points on the surface or other functions to check data 
that belong to the geometry structure.  

 

 
Figure 5: Screenshot showing the visualization of 
various airplane geometries with the TIGLViewer. 

 
 
 

6. Integrating the Applications into a 
Framework 

 
In order to run applications within an automated 

workflow that also considers their dependencies a 

software integration framework. Such a framework 
offers an environment for the integration of existing 
software components and take care of network 
communications, data transfer and management and 
centralize the overview of all parts of the running 
system. Modern integration frameworks such as the 
open source framework RCE [14] or Phoenix 
Integration’s ModelCenter [15] provide a graphical 
editor for setting up workflows visually. The different 
applications are assembled to a workflow by the 
framework and are linked via their input and output 
variables. A change in an output variable triggers the 
execution of all components which depend on this 
variable as input data.  

 
At first ModelCenter was chosen in DLR for 

integration of the CPACS data format to enable 
scientists to use the CPACS data schema within a 
framework. This was done because ModelCenter was 
ready to go and comes with a lot of build-in optimizers 
and helping components so that we only needed to 
develop a set of plugins for data integration and code 
execution. Unfortunately we learned that the 
possibilities with a closed system are limited and that 
ModelCenter is not capable of handling such a flexible 
system that is needed. There are lots of challenges not 
genuinely tackled by the initially chosen integration 
platform, e. g., management of data sets larger than a 
few dozen MB or user privilege management. Because 
of this inadequateness ModelCenter may be phased out 
during coming projects and replaced by the Remote 
Component Environment (RCE), which provides a more 
powerful and versatile platform to integrate simulation 
software together with optimal fitted post-processing 
and visualization. 

 
 
6.1. Remote Component 

Environment 
The purpose of Remote Component Environment 

(RCE) is to provide a framework with base software 
components where diverse and specific applications 
can be embedded [16]. This allows an integrated 
application to simply use the already realized base 
software components like data management, workflow 
engine, or privilege management. Thus, the integration 
platform enables basically independent applications to 
interact with each other and to operate on the same 
data. 

RCE was developed by DLR at the Simulation and 
Software Technology division in cooperation with the 
Fraunhofer Institute for Algorithms and Scientific 
Computing (SCAI). It was designed for the engineering 



area, which mainly consists of simulation applications 
that utilize numeric algorithms which run on different 
resources by different users. Therefore, it includes the 
base software components workflow engine, data 
management, privilege management, and distribution. 
RCE adopts the OSGi technology (Open Services 
Gateway initiative) [17], the industry standard for 
modular dynamic Java applications. Thus, it is an 
extensible, component-based platform written in Java. 
The component-based architecture allows RCE to 
adapt to the environment it is deployed in. In order to 
ease development of graphical user interfaces (GUI), it 
is also based upon the Eclipse Rich Client Platform 
[18], a GUI framework providing base graphical 
elements. 

In the following RCE will be explained in more detail 
with focus on distribution with regard to workflow engine 
and data management. 

 
The distribution component facilitates a distributed 

RCE setup. In this case the integration platform 
consists of multiple RCE instances, at least one running 
on every participating host. Different applications can 
be integrated into every RCE instance, which hence 
may have different characteristics (e.g., application 
server, client (GUI), database server). All the RCE 
instances communicate with each other in a 
decentralized way. This allows all kinds of network 
topologies at the application level.  

RCE is transparent regarding access and location. 
This means that remote and local services can be 
accessed with the same operation and that the location 
of a service s concealed from the use [19]. E.g., the 
workflow editor provides a list of available applications 
to couple, which is transparently aggregated by calling 
the local and all remote workflow engine services. 
Thereby, all RCE instances will be considered which 
are known by the client via its configuration. Next to 
instances which run on servers, it is also possible to 
involve RCE instances which run on a colleague’s 
laptop as long as this laptop is reachable on network 
layer. Another example illustrating the distribution 
concept of RCE is the data management. Among others 
it is used to store data produced by applications as part 
of a workflow. This data can be transparently accessed 
by other clients. Hereby, a view on the data exists, 
which again is provided by calling the local and all 
known remote data management services. Next to 
listing the data, it is also possible to directly open the 
underlying files within RCE even if they are stored 
remotely. 

 
The distributed setup of the Remote Component 

Environment at DLR looks as follows: 

Users install an RCE instance on its desktop 
computer pre-configured as client knowing all RCE 
server instances at DLR. 

Each contributing institute or department at DLR 
installs an RCE instance configured as server running 
on a physical server machine and offers their domain 
specific simulation software as services available inside 
DLR’s network. It can then be accessed from and RCE 
client graphical user interface. 

 
RCE is designed as a universal problem solving 

environment. In order to make use of it in specified 
application domains it is required to extend it with 
domain specific components and user interfaces. RCE 
plus these additions form an application domain specific 
software. For EVITA, the following components are 
added to RCE: 

 
For the server software a Java components were 

developed to enable scientists to remotely run any tool 
or application they might need from within the workflow 
building environment of ModelCenter. This functionality 
is originally built into ModelCenter, but the plugin 
contains additional data handling necessary to provide 
an easy way to exchange and access CPACS data. 

This again is simplified by a set of easy to use Java 
plugins within the graphical project editor (Figure 7). 
Some of these are described below and in the user 
handbooks that come along with the component suite. 

 
 
6.2. The CPACS integration 

component suite 
 
The CPACS integration component suite 

encompasses all Java plugins designed to simplify 
working with CPACS data from within the RCE 
integration environment. The following list sums up the 
most important plugins developed so far, with more to 
come:  

 
Tool-Wrapper. The tool wrapper is the main 

interface between the framework and the requested 
application. It consists of several abstraction layers and 
a separate configuration file. The concept itself is 
hereby called ’tool wrapping’. Wrapping a tool or 
application is hereby a piece of software which 
encapsulates the base application and hides it from the 
environment outside of the tool wrapper. The primary 
advantage is to have an abstraction layer for the 
outside environment which again can use the interface 
provided by the tool wrapper. In this implementation 
type the tool wrapper needs to be customized for the 



wrapped application. The CPACS data format 
represents the whole set of all exchange data and 
builds the base for all operations.  

Splitter Components help to extract single values 
from the complete CPACS data set for connection with 
optimizers. 

Merger Components complements the splitters by 
updating single values in the CPACS data set, e.g. to 
build up a loop over a chain of tools. 

Joiner Components are to merge the CPACS of 
two process branches together. Therefore a user must 
define the logical part of the merge. 

Source Components enables the user to read in a 
data set from various places like the local file system, 
making use of the TIXI library internally and checks the 
validity of the initial data set. 

Destination Components makes it possible to 
store computation results. Additionally the intermediate 
results of each run of an optimizing loop can be logged 
with this component for later offline analysis. 
 

 
Figure 6: Screenshot of the RCE integration 

 
7. Summary 

 
Using the example of preliminary engine design, the 

demand of a flexible software solution to support 
complex predesign tasks has been shown.  

The software tools described in this paper have 
been used to setup a process chain consisting of 
applications with a low level of complexity for computing 
lift, structural parameters for wings, the resistance 
against buckling, and the behavior at forced landing on 
water. Also, on base of the more advanced framework 
RCE, it is planed to model the Preliminary Aero Engine 
Design phase of the previous described EVITA project. 

Planned extensions of the CPACS format include 
the storage of abstract aspects for example cost factors 
or the description of the mission to be simulated.  

The wide field of collaboration is, beside the core 
integration technology, the next main approach we want 
to address in our software suite. Beside of an adaption 

of our existing software tools to the preliminary 
aeroengine design, our future work will be about the 
integration of provenance information and to provide a 
possibility to semantic checks during creation of 
workflows. 

 
 

8. References 
 

[1] Hoheisel, A., Model coupling and integration via 
xml in the m3 simulation, International 
environmental modelling and software society 
IEMSs, Lugano, Switzerland, 2002, pp. 611-616. 

[2] OMG. CORBA Architecture and Specification. 
OMG, 1998. 

[3] Extensible Markup Language: 
http://www.w3.org/XML. 

[4] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. 
Ludscher, and S. Mock. Kepler: An extensible 
system for design and execution of scientific 
workflows, In SSDBM, pages 21–23, 2004. 

[5] Hull D., Wolstencroft K., Stevens R., Goble C., 
Pocock M.R., Li P., Oinn T. Taverna: a tool for 
building and running workflows of services, 
Nucleic Acids Res. 2006;34:W729–W732. 

[6] [PLANNED] Tietz, S.; Behrendt, T.: Development 
and Application of a Pre-Design Tool for Aero-
Engine Combustors, DLRK2011-241190, DGLR, 
2011. 

[7] [PLANNED] Becker, R. ; Wolters, F.; Nauroz, M.; 
Otten, T. : DEVELOPMENT OF A GAS TURBINE 
PERFORMANCE CODE AND ITS APPLICATION 
TO PRELIMINARY ENGINE DESIGN. 
DLRK2011-241216, DGLR, 2011 

[8] [PLANNED] Krumme, A.: CONCEPTION OF A 
PROCESS CHAIN AND DEVELOPMENT OF A 
PROGRAM FOR AXIAL TURBINE PREDESIGN, 
DLRK2011-241181, DGLR, 2011 

[9] Böhnke, Daniel und Litz, Markus und Rudolph, 
Stefan (2010) Evaluation of Modeling Languages 
for Preliminary Airplane Design in Multidisciplinary 
Design Environments. DGLR 2010, 31.08.2010 - 
03.09.2010, Hamburg, Germany. 

[10] libxml2 Homepage: http://xmlsoft.org . 

[11] Initial Graphics Exchange Specification (IGES): 
Initial Graphics Exchange Specification (IGES) 
Version 4.0, NBSIR 88-3813, 1988. 

[12] Visualizing with VTK: a tutorial, Schroeder, W.J.  
Avila, L.S.  Hoffman, W. Computer Graphics and 
Applications, IEEE On page(s): 20 - 27 ,  Volume: 
20 Issue: 5, Sep/Oct 2000 

[13] OpenCASCADE homepage: 
http://www.opencascade.org/  

http://www.w3.org/XML
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.opencascade.org/


[14] German Aerospace Center (DLR), “Remote 
Component Environment,” [accessed, May 29, 
2009]. [Online]. Available: 
http://www.rcenvironment.de/ 

[15] ModelCenter product homepage: 
http://www.phoenix-
int.com/products/modelcenter.php 

[16] Forkert, Tomas und Kersken, Hans-Peter und 
Schreiber, Andreas und Strietzel, Martin und Wolf, 
Klaus (2001) The Distributed Engineering 
Framework TENT. In: Vector and Parallel 
Processing - VECPAR 2000: 4th International 
Conference, 1981, Seiten 38-46. Springer-Verlag. 
VECPAR 2000, 2000-06-21 - 2000-06-23, Porto, 
Portugal.  

[17] OSGi Alliance, OSGi - The Dynamic Module 
System for Java. http://www.osgi.org . 

[18] Eclipse Foundation. Eclipse Plug-in Development 
Environment. http://wiki.eclipse.org/pde/. 

[19] J. Dollimore, T. Kindberg, and G. Coulouris, 
Distributed Systems: Concepts and Design (4th 
Edition) (International Computer Science Series). 
Addison Wesley, May 2005. 

 
 
 

http://www.rcenvironment.de/
http://www.phoenix-int.com/products/modelcenter.php
http://www.phoenix-int.com/products/modelcenter.php
http://www.osgi.org/
http://wiki.eclipse.org/pde/

