

Integration Framework for Preliminary Design Toolchains

M. Litz1, D. Seider1, T. Otten2, A. Bachmann1, M. Kunde1,
{ Markus.Litz, Doreen.Seider, Tom.Otten, Arne.Bachmann, Markus.Kunde }@dlr.de

German Aerospace Center
1Simulation and Software Technology

2Institute of Propulsion Technology
Linder Höhe, Cologne

1. Abstract

The goals defined by the ACARE Vision 2020 present a major challenge to aeronautic research. Besides

developments in new aerodynamics and structures, advancements in aero engine research will account for a major part
of the required reduction in fuel, emissions and noise. To enable a commercial launch of new aircraft and engine
concepts, complex and often contradictory demands have to be fulfilled.

Strong dependencies between the individual technical disciplines exist so that the optimization in a single discipline
may not lead inevitably to a global optimum. Therefore it is necessary to look at the overall system in order to evaluate
the potential of new technologies realistically.

This article presents a typical design task in aeroengine predesign and a software solution which supports and
enables multidisciplinary cooperation on the engineer side. A common data format based on XML, necessary for data
exchange, as well as supporting programming libraries for the processing of this data format are introduced. Furthermore
it is described, how a parametric representation can be realized for various geometries with the help of XML. A
programming library with C and FORTRAN Interfaces supports geometrical computations for these representations.
Finally it is demonstrated that the tools used by the different technical disciplines can be connected to a process chain
within a framework.

2. Introduction

In the predesign phase of airplane and aeroengine
development many different technical disciplines are
involved. Each of these disciplines comes with special
simulation programs that fit perfectly to the associated
questions within the technical field of the discipline. In
this article such simulation programs will be referred to
as application. Often these applications are used for
optimization of technical problems within these
disciplines. However, due to the strong dependencies
between the different disciplines a global optimum can
rarely be obtained by the combination of optimal
solutions that result from separate optimization
processes within every single discipline. For example,
an aerodynamic optimization of a component may result
in an infeasible design due to stability problems. For
this reason, it is essential to keep track of the complete
system.

Furthermore, the applications are usually operated
manually and isolated from each other. Therefore, an
automated tool chain in which the applications are
executed in consideration of their existing
dependencies is required. A similar approach has been
used in 3m-XML [1]. Such automated toolchains are
necessary to determine the mutual dependencies of all
applications and perform multi-disciplinary simulations
of a complete system with minimized user interaction,
especially when dealing with global optimization.

Since data exchange between the technical

disciplines is crucial, different approaches to couple
such applications are possible:

 The combination of all simulation algorithms

involved into a single pro-gram results in a very
strong but inflexible coupling, from the software
technical point of view, but may be desirable due to
algorithmic reasons.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11147242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Coupling applications via MPI or CORBA [2] gives
a slightly more flexible system due to a general
interface defined by the communication libraries.

 A flexible system can by designed using flexible
data exchange via a modern software integration
framework. These frameworks could handle most
technical functions like remote code execution,
data management between different computing
nodes or visualization of result data.

At the German Aerospace Center (DLR) the last

approach was chosen. The easy substitution of an
existing application by another one with the same
functionality or adding a new application to the system
are essential design issues. A common database which
is accessed by the applications and used for data
storage and exchange was realized via a global XML [3]
data set.

At this time, there is no framework available that

could handle all the tasks necessary for a distributed
execution of simulation tools with a common data set
that meets DLR’s reqirements. A larger number of free
and commercial products tries to address the specific
needs of scientific data management, flexibility to
change workflows at any time, real-time monitoring and
powerful post-processing facilities, but often they fail in
one or more point. The best known solutions for this
software field are Kepler & Taverna [4], [5], iSight
(http://www.simulia.com/academics/isight.html) or
ModelCenter.

The solutions developed for these tasks are

introduced in the following sections starting with an
introduction of the DLR project EVITA that will use the
developed software environment, followed by a review
of the format of the common data base in section 4.
Section 5 describes the software libraries developed to
access this database. Section 6 is about the developed
framework and about the integration of our tools and
our data format. In Section 7 we present some
conclusions and directions of future work.

3. The DLR use cases

Interdisciplinary projects have become more and
more important. The need for a common data exchange
and problem solving platform had became eminent for a
global view on multidisciplinary problems. At DLR, in
each research area advanced tools are available to
cope with specific problems. Most of these tools were
developed over many years and are highly elaborated
and accurate. In the past, multidisciplinary studies have

been conducted mostly on an ad-hoc basis. This
approach enabled single multidisciplinary analyses but
was not powerful and flexible enough for modern
demands on collaborative projects. The need to be able
to build up inter-department cooperation's was well
known at DLR and led to a number of projects since
2005, which were involved in developing the presented
software integration development:

 Technology integration for the virtual aircraft

(TIVA/TIVA-II), 2005-2008, to perform technology
assessment regarding collaborative predesign of
civil aircraft. The main goal of this project was the
definition of a common parametric data model of an
aircraft, suitable for application in the preliminary
design phase. A suite of tools was adapted to this
data format and integrated into a process
automation framework;

 Climate optimized air transport system (CATS),
2008-2012. The goal of this project is to optimize
aircraft and aircraft missions regarding their
climatic impact. In this project the technology
described in this paper is combined with another
tool developed for climate assessments;

 Evaluation of innovative aero-engines (EVITA),
2008-2011. The technology and data used in this
project is quite similar to TIVA, but is focused more
on the preliminary design of engines rather than on
the whole aircraft;

 Unmanned Combat Air Vehicle (UCAV-
2010/FaUSST), 2007-2012. This project simulates
the development of a military aircraft optimized for
stealth capabilities. Existing knowledge gained in
the TIVA project is taken into account. The central
data set was adapted to the additional
requirements, and an expert system was added.

 Virtual Aircraft Multidisciplinary Analysis and
Design Processes (VAMP), 2009-2012. This
project is the successor of the TIVA projects and
concentrates on the extension of the developed
technology and more common problem solutions
like data provenance or data management. Also
non-technical problems like usage limiting are
engaged.

3.1. The DLR Project EVITA

The DLR started the internal project EVITA

(Evaluierung innovativer Turbo-Antriebe) to bundle the
existing competencies in the area of aero engine
predesign at DLR. The ambition of EVITA is to enable
DLR to conduct preliminary multidisciplinary aero

engine predesign studies by taking into account –
amongst other disciplines – aero- and thermodynamics,
acoustics, structural design and material science. This
will expand the DLR capabilities to evaluate and
analyze different new engine concepts at a very early
stage of development. In order to reach this goal in a
limited timeframe, detailed methods like CFD-analyses
are not suitable and too complex. Instead simple, robust
and reliable tools are developed and will be combined
to a scientific process chain.

Figure 1: Work Breakdown Structure of EVITA

The Work Breakdown Structure of EVITA (Figure 1)

has been selected to cope with the variety of work-
packages and disciplines required. The first three main
work packages (HAP) are dealing with the main aero
engine components, whereas the forth main work
package contains all cross-cutting issues.

Each of the main work packages 1-3 is split in three
disciplines. The Aerodynamics/Predesign work
packages (WP) deal with the aerodynamic design of the
individual components. These work packages are led
by the DLR Institute of Propulsion Technology. The goal
of the materials work packages is to supply the
mechanical design WPs with the required material data
and to provide research results on new materials at a
very early stage of engine design. These WP are led by
the DLR Institute of Material Research. The aim of the
mechanical design WP (DLR Institute of Structures and
Design) is split into two parts. First, it is necessary to
ensure that the aerodynamic predesign results are
feasible in terms of solitidity and stability. Second, the
layout of discs, spools and casing is defined here.

In HAP4 the Thermodynamics WP (DLR Institute of
Propulsion Technology) is responsible for the
performance evaluation and synthesis and - in
collaboration with the aerodynamic disciplines - for the
layout of the cross section. The Aeroacoustics work
package (DLR Institute of Propulsion Technology)
contributes methods for noise estimation whereas the
assessment WP (Institute of Air Transportation
Systems) contributes methods to evaluate the engine

concepts from an aircraft point of view in terms of costs
and snowball-effects.

The goal of HAP 5 is the integration of the tools of
HAP 1-4 into the software framework described in this
paper.

Many predesign tools applied in the EVITA project
are new developments. Additionally, in some
disciplines, existing tools are refined and updated. The
major tools of this project (aerodynamic compressor
design, aerodynamic turbine design, gas turbine
performance analysis code and combustor design) will
be presented in detail on this years DGLR conference
[6], [7], [8].

Figure 2: Simplified typical process chain in Aero-
engine predesign

Until now, the focus of EVITA was the development

of the individual predesign tools as well as the
identification and the development of the requirements
for preliminary aeroengine design. Currently, the
selection and buildup of a predesign process chain
between the disciplines, the experts and the tools has
become the main focus of EVITA. In a first step, the
participating disciplines have to be linked together very
closely. For each engine component, predesign groups
are initiated in which the specialists of the DLR will work
closely together to establish understanding for the
requirements and limits of the adjacent disciplines. A
brief overview of one of the first test cases is given in
[7].

The design process (Figure 2) is basically a highly
iterative loop over all the disciplines involved in EVITA.
This process is very complex and must react to specific
design requirements. Thus, the process is not one fixed
process-chain, but a flexible system which is adaptable
to different tasks.

At the beginning, detailed engine specifications are
required in order to start the predesign process. In a
first step the thermodynamic predesign uses a

http://www.google.com/url?q=http%3A%2F%2Fdict.leo.org%2Fende%3Flp%3Dende%26p%3DCi4HO3kMAA%26search%3Dof%26trestr%3D0x8004&sa=D&sntz=1&usg=AFQjCNGXdwQ-W1Z_9LKcJYQPA2LKZ_c0Qw

knowledge database with simple estimations for the
component behavior. After a thermodynamic cycle and
corresponding mach numbers are set, the simplified
engine cross section can be derived. The aerodynamic
tools are now able to generate the aerodynamical
design of the individual engine components. The
aerodynamic predesign is on the one hand iteratively
connected to the mechanical design to avoid infeasible
results at a very early stage of development and on the
other hand to the thermodynamic cycle design,
updating the simple estimations for the component
behavior. Depending on the engine specifications an
acoustic evaluation is very essential in the predesign
phase to take noise effects into account. The economic
assessment of an engine is another important point to
evaluate in engine design. Each of the disciplines has
an effect on the overall design, thus many complex
iteration loops and sub-loops are required to reach a
feasible result.

The enormous complexity of such predesign tasks
requires a well planned system. Besides a good
collaboration of the individual specialists, the multitude
of very different tools must be linked together more
closely. Therefore a suitable software framework is
essential and will be described in the following.

In the last years, a software solution for such tasks
has been developed within DLR, especially in the
project TIVA. This framework presented in the next
chapters is currently focused on conceptual aircraft
design and will be adapted to the requirements of
aeroengine design.

4. A Common Database for the

Preliminary Predesign Phase
The common database for all applications involved

in a multidisciplinary simulation is realized by a central
data set. The central data set comprises a main file
formatted according to the newly designed XML data
format CPACS (Common Parametric Aircraft
Configuration Schema) [9]. Additional data files in
arbitrary formats can be linked into the central data set
via file paths. Each application reads its input data from
the central data set. Also the applications have to write
back their results to this file. A software suite, described
in Section 6, has been developed to handle the data
transfer between the central data set and the
applications.

A file stored in the CPACS format could describe

one or several configurations with necessary data for
the initial design phases. The configuration is defined

by different, hierarchically ordered construction units,
for example engines, wings or fuselage. Additionally,
the format defines how mission data and simulation
results of the applications are stored in the central data
set.

5. Supporting Software Libraries for
Implementing the Common Data
Format

This section describes the software tools developed

to make the communication of the simulation tools with
each other via the CPACS data format possible. As
shown in Figure 3, the following libraries and software
components were developed:

Figure 3: Overview of the data flow between the
central data set and the applications.

5.1. TIXI: A Library for simple XML

Access

The interface to the central data set is completely

based on the XML for-mat. To enable already existing
applications without the ability to access XML formatted
files to read and write XML based data there are two
possible approaches. The first approach is to enable
the application itself to read and write XML data. The
second is to write filter programs that translate XML
data into the format native to the application for input
and again translate the native output into XML. This
approach shields the application developer completely
from dealing with XML when the filter programs are
written by XML specialists based on the description of
the native format. However, this procedure has the
disadvantage that changes of the native format or
changes in the application must reflect themselves in
the filters which will inevitably lead to additional effort to
adapt the filter programs regularly. The first approach is

liable to suffer from the complexity of the API of libraries
used to process XML data like libxml2 [10]. On the
other hand this approach has the advantage that there
is only one place where changes have to be
implemented.

A requirement analysis showed that file formats
used by the applications are based on quite simple data
structures. Input files often comprise single floating
point or integer numbers only and their meaning
depends solely on the position in the file. More
advanced input parsers implemented in these
applications are able to handle name value pairs.
Sometimes lists of numbers and other aggregates
comprised of simple types like vectors, arrays, or
matrices have to be read and to be written.

Based on these requirements, it was decided to
design a simple API to access XML files for performing
these tasks. The provision of a simplified interface to an
existing XML library hides the complex API of a full-
fledged XML library from the application programmer.
Nevertheless, advanced users will be able to use the
complete API of the underlying XML library for
manipulating the XML files. Another reason to supply an
own API was that existing XML- libraries provided very
little support to read and write XML files from Fortran
programs.

The simplified XML processing library can be
directly integrated into a code by the application owner
or can be used to create filter software which can be
maintained by the application owner himself. Although
simplified and some-what restricted compared to a full-
fledged XML processing library the user can, for
example, create documents, create and delete nodes,
and add and remove element attributes. Routines to
read and write simple text nodes and addi-tionally
specialized nodes holding integer and floating point
numbers are part of this API. Furthermore, routines to
process aggregates of these simple types have been
implemented. For the processing of geometric data,
reading and writ-ing of multidimensional arrays or
arrays of vectors, i.e. coordinates of points are
supported. The C API and the API for Fortran provide
the same functionally to the programmer. Additionally
the library could be used from JAVA program, Python
scripts and Matlab routines. The library has been
designed to hide the implementation details so that the
underlying XML library, currently libxml2, can be
replaced by another one without changing the XML
processing API in the applications.

5.2. TIGL: A Library for Processing

Geometric Data
In order to perform the modeling of wings and

fuselages as described in Section 2 as well as the

computation of surface points effectively, a geometry

library was developed in C++. The library provides
external interfaces for C and FORTRAN and could be
used from JAVA, Python and Matlab as well. Some of
the requirements of the library were:

 Ability to read and process the geometry

information stored in a CPACS file,
 Possibility to extend to other geometrical

characteristics (i.e. engine pods,
compressor/turbine blades, landing gear),

 Ability to build up the three-dimensional (airplane)
geometry for further processing,

 Ability to compute surface points in Cartesian
coordinates by using parameters, segment
numbers or unique identifiers,

 Possibility to be expanded by additional functions
such as area or volume computations,

 Possibility to export the airplane geometry in the
more common CAD file formats like IGES or VTK
[11], [12].

The developed library uses the Open Source

software OpenCASCADE [13] to represent the airplane
geometry by B-spline surfaces in order to compute
surface points and also to export the geometry in the
IGES format. OpenCASCADE is a development
platform written in C++ for CAD, CAM, and CAE
applications which has been continuously developed for
more than ten years. The functionality covers
geometrical primitives (for example points, vectors,
matrix operations), the computation of B-spline surfaces
and boolean operations on volume models.

Apart from the already specified requirements
above, the geometry library offers query functions for
the geometry structure. These functions can be used for
example to detect how many segments are attached to
a certain segment, which indices these segments have,
or how many wings and fuselages the current airplane
configuration contains. This functionality is necessary
because not only the modeling of simple wings or
fuselages but also the description of quite complicated
structures, i.e. in aero engines, is targeted. For an
example see Figure 4.

Figure 4: Parameterization of the aircraft fuselage.

5.3. TIGLViewer: A tool for

Visualizing Geometric Data
In order to review the geometry information of the

central data set a visualization tool, TIGLViewer, was
developed. A screenshot is shown in Figure 5. The
TIGLViewer allows the visualization of the used airfoils
and fuselage profiles as well as of the surfaces and the
entire airplane model. Furthermore, the TIGLViewer can
be used to validate and test the implemented functions
of the geometry library, for example the calculation of
points on the surface or other functions to check data
that belong to the geometry structure.

Figure 5: Screenshot showing the visualization of
various airplane geometries with the TIGLViewer.

6. Integrating the Applications into a
Framework

In order to run applications within an automated

workflow that also considers their dependencies a

software integration framework. Such a framework
offers an environment for the integration of existing
software components and take care of network
communications, data transfer and management and
centralize the overview of all parts of the running
system. Modern integration frameworks such as the
open source framework RCE [14] or Phoenix
Integration’s ModelCenter [15] provide a graphical
editor for setting up workflows visually. The different
applications are assembled to a workflow by the
framework and are linked via their input and output
variables. A change in an output variable triggers the
execution of all components which depend on this
variable as input data.

At first ModelCenter was chosen in DLR for

integration of the CPACS data format to enable
scientists to use the CPACS data schema within a
framework. This was done because ModelCenter was
ready to go and comes with a lot of build-in optimizers
and helping components so that we only needed to
develop a set of plugins for data integration and code
execution. Unfortunately we learned that the
possibilities with a closed system are limited and that
ModelCenter is not capable of handling such a flexible
system that is needed. There are lots of challenges not
genuinely tackled by the initially chosen integration
platform, e. g., management of data sets larger than a
few dozen MB or user privilege management. Because
of this inadequateness ModelCenter may be phased out
during coming projects and replaced by the Remote
Component Environment (RCE), which provides a more
powerful and versatile platform to integrate simulation
software together with optimal fitted post-processing
and visualization.

6.1. Remote Component

Environment
The purpose of Remote Component Environment

(RCE) is to provide a framework with base software
components where diverse and specific applications
can be embedded [16]. This allows an integrated
application to simply use the already realized base
software components like data management, workflow
engine, or privilege management. Thus, the integration
platform enables basically independent applications to
interact with each other and to operate on the same
data.

RCE was developed by DLR at the Simulation and
Software Technology division in cooperation with the
Fraunhofer Institute for Algorithms and Scientific
Computing (SCAI). It was designed for the engineering

area, which mainly consists of simulation applications
that utilize numeric algorithms which run on different
resources by different users. Therefore, it includes the
base software components workflow engine, data
management, privilege management, and distribution.
RCE adopts the OSGi technology (Open Services
Gateway initiative) [17], the industry standard for
modular dynamic Java applications. Thus, it is an
extensible, component-based platform written in Java.
The component-based architecture allows RCE to
adapt to the environment it is deployed in. In order to
ease development of graphical user interfaces (GUI), it
is also based upon the Eclipse Rich Client Platform
[18], a GUI framework providing base graphical
elements.

In the following RCE will be explained in more detail
with focus on distribution with regard to workflow engine
and data management.

The distribution component facilitates a distributed

RCE setup. In this case the integration platform
consists of multiple RCE instances, at least one running
on every participating host. Different applications can
be integrated into every RCE instance, which hence
may have different characteristics (e.g., application
server, client (GUI), database server). All the RCE
instances communicate with each other in a
decentralized way. This allows all kinds of network
topologies at the application level.

RCE is transparent regarding access and location.
This means that remote and local services can be
accessed with the same operation and that the location
of a service s concealed from the use [19]. E.g., the
workflow editor provides a list of available applications
to couple, which is transparently aggregated by calling
the local and all remote workflow engine services.
Thereby, all RCE instances will be considered which
are known by the client via its configuration. Next to
instances which run on servers, it is also possible to
involve RCE instances which run on a colleague’s
laptop as long as this laptop is reachable on network
layer. Another example illustrating the distribution
concept of RCE is the data management. Among others
it is used to store data produced by applications as part
of a workflow. This data can be transparently accessed
by other clients. Hereby, a view on the data exists,
which again is provided by calling the local and all
known remote data management services. Next to
listing the data, it is also possible to directly open the
underlying files within RCE even if they are stored
remotely.

The distributed setup of the Remote Component

Environment at DLR looks as follows:

Users install an RCE instance on its desktop
computer pre-configured as client knowing all RCE
server instances at DLR.

Each contributing institute or department at DLR
installs an RCE instance configured as server running
on a physical server machine and offers their domain
specific simulation software as services available inside
DLR’s network. It can then be accessed from and RCE
client graphical user interface.

RCE is designed as a universal problem solving

environment. In order to make use of it in specified
application domains it is required to extend it with
domain specific components and user interfaces. RCE
plus these additions form an application domain specific
software. For EVITA, the following components are
added to RCE:

For the server software a Java components were

developed to enable scientists to remotely run any tool
or application they might need from within the workflow
building environment of ModelCenter. This functionality
is originally built into ModelCenter, but the plugin
contains additional data handling necessary to provide
an easy way to exchange and access CPACS data.

This again is simplified by a set of easy to use Java
plugins within the graphical project editor (Figure 7).
Some of these are described below and in the user
handbooks that come along with the component suite.

6.2. The CPACS integration

component suite

The CPACS integration component suite

encompasses all Java plugins designed to simplify
working with CPACS data from within the RCE
integration environment. The following list sums up the
most important plugins developed so far, with more to
come:

Tool-Wrapper. The tool wrapper is the main

interface between the framework and the requested
application. It consists of several abstraction layers and
a separate configuration file. The concept itself is
hereby called ’tool wrapping’. Wrapping a tool or
application is hereby a piece of software which
encapsulates the base application and hides it from the
environment outside of the tool wrapper. The primary
advantage is to have an abstraction layer for the
outside environment which again can use the interface
provided by the tool wrapper. In this implementation
type the tool wrapper needs to be customized for the

wrapped application. The CPACS data format
represents the whole set of all exchange data and
builds the base for all operations.

Splitter Components help to extract single values
from the complete CPACS data set for connection with
optimizers.

Merger Components complements the splitters by
updating single values in the CPACS data set, e.g. to
build up a loop over a chain of tools.

Joiner Components are to merge the CPACS of
two process branches together. Therefore a user must
define the logical part of the merge.

Source Components enables the user to read in a
data set from various places like the local file system,
making use of the TIXI library internally and checks the
validity of the initial data set.

Destination Components makes it possible to
store computation results. Additionally the intermediate
results of each run of an optimizing loop can be logged
with this component for later offline analysis.

Figure 6: Screenshot of the RCE integration

7. Summary

Using the example of preliminary engine design, the

demand of a flexible software solution to support
complex predesign tasks has been shown.

The software tools described in this paper have
been used to setup a process chain consisting of
applications with a low level of complexity for computing
lift, structural parameters for wings, the resistance
against buckling, and the behavior at forced landing on
water. Also, on base of the more advanced framework
RCE, it is planed to model the Preliminary Aero Engine
Design phase of the previous described EVITA project.

Planned extensions of the CPACS format include
the storage of abstract aspects for example cost factors
or the description of the mission to be simulated.

The wide field of collaboration is, beside the core
integration technology, the next main approach we want
to address in our software suite. Beside of an adaption

of our existing software tools to the preliminary
aeroengine design, our future work will be about the
integration of provenance information and to provide a
possibility to semantic checks during creation of
workflows.

8. References

[1] Hoheisel, A., Model coupling and integration via
xml in the m3 simulation, International
environmental modelling and software society
IEMSs, Lugano, Switzerland, 2002, pp. 611-616.

[2] OMG. CORBA Architecture and Specification.
OMG, 1998.

[3] Extensible Markup Language:
http://www.w3.org/XML.

[4] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B.
Ludscher, and S. Mock. Kepler: An extensible
system for design and execution of scientific
workflows, In SSDBM, pages 21–23, 2004.

[5] Hull D., Wolstencroft K., Stevens R., Goble C.,
Pocock M.R., Li P., Oinn T. Taverna: a tool for
building and running workflows of services,
Nucleic Acids Res. 2006;34:W729–W732.

[6] [PLANNED] Tietz, S.; Behrendt, T.: Development
and Application of a Pre-Design Tool for Aero-
Engine Combustors, DLRK2011-241190, DGLR,
2011.

[7] [PLANNED] Becker, R. ; Wolters, F.; Nauroz, M.;
Otten, T. : DEVELOPMENT OF A GAS TURBINE
PERFORMANCE CODE AND ITS APPLICATION
TO PRELIMINARY ENGINE DESIGN.
DLRK2011-241216, DGLR, 2011

[8] [PLANNED] Krumme, A.: CONCEPTION OF A
PROCESS CHAIN AND DEVELOPMENT OF A
PROGRAM FOR AXIAL TURBINE PREDESIGN,
DLRK2011-241181, DGLR, 2011

[9] Böhnke, Daniel und Litz, Markus und Rudolph,
Stefan (2010) Evaluation of Modeling Languages
for Preliminary Airplane Design in Multidisciplinary
Design Environments. DGLR 2010, 31.08.2010 -
03.09.2010, Hamburg, Germany.

[10] libxml2 Homepage: http://xmlsoft.org .

[11] Initial Graphics Exchange Specification (IGES):
Initial Graphics Exchange Specification (IGES)
Version 4.0, NBSIR 88-3813, 1988.

[12] Visualizing with VTK: a tutorial, Schroeder, W.J.
Avila, L.S. Hoffman, W. Computer Graphics and
Applications, IEEE On page(s): 20 - 27 , Volume:
20 Issue: 5, Sep/Oct 2000

[13] OpenCASCADE homepage:
http://www.opencascade.org/

http://www.w3.org/XML
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.google.com/url?q=http%3A%2F%2Felib.dlr.de%2F63994%2F&sa=D&sntz=1&usg=AFQjCNHJPlw7sjpJhOkvlCh_qSpUPE7HvA
http://www.opencascade.org/

[14] German Aerospace Center (DLR), “Remote
Component Environment,” [accessed, May 29,
2009]. [Online]. Available:
http://www.rcenvironment.de/

[15] ModelCenter product homepage:
http://www.phoenix-
int.com/products/modelcenter.php

[16] Forkert, Tomas und Kersken, Hans-Peter und
Schreiber, Andreas und Strietzel, Martin und Wolf,
Klaus (2001) The Distributed Engineering
Framework TENT. In: Vector and Parallel
Processing - VECPAR 2000: 4th International
Conference, 1981, Seiten 38-46. Springer-Verlag.
VECPAR 2000, 2000-06-21 - 2000-06-23, Porto,
Portugal.

[17] OSGi Alliance, OSGi - The Dynamic Module
System for Java. http://www.osgi.org .

[18] Eclipse Foundation. Eclipse Plug-in Development
Environment. http://wiki.eclipse.org/pde/.

[19] J. Dollimore, T. Kindberg, and G. Coulouris,
Distributed Systems: Concepts and Design (4th
Edition) (International Computer Science Series).
Addison Wesley, May 2005.

http://www.rcenvironment.de/
http://www.phoenix-int.com/products/modelcenter.php
http://www.phoenix-int.com/products/modelcenter.php
http://www.osgi.org/
http://wiki.eclipse.org/pde/

