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Abstract: The propagation of parameter uncertainty in structural dynamics has become
a feasible method to determine the probabilistic description of the vibration response of
industrial scale �nite element models. Though methods for uncertainty propagation have
been developed extensively, the quanti�cation of parameter uncertainty has been neglected
in the past. But a correct assumption for the parameter variability is essential for the
estimation of the uncertain vibration response. This paper shows how to identify model
parameter means and covariance matrix from uncertain experimental modal test data.
The common gradient based approach from deterministic computational model updating
was extended by an equation that accounts for the stochastic part. In detail an inverse
approach for the identi�cation of statistical parametric properties will be presented which
will be applied on a numerical model of a replica of the GARTEUR SM-AG19 benchmark
structure. The uncertain eigenfrequencies and mode shapes have been determined in
an extensive experimental modal test campaign where the aircraft structure was tested
repeatedly while it was 130 times dis- and reassembled in between each experimental
modal analysis.

1 INTRODUCTION

The physical behaviour of structures is usually simulated by �nite element (FE) models.
The accuracy of each numerical model is dependent on correct modelling assumptions.
However, a comparison between numerical output and test data from the real structure
is necessary to verify a FE model. If the deviation between test and analysis exceeds re-
quired thresholds, the numerical model has to be adjusted to give a better representation
of the physical behaviour for further calculations. Model updating methods in structural
dynamics have been developed and improved for more than 30 years and they are widely
used for �tting analytical models to real life structures. In current computational model
updating methods, numerical results are adjusted to a single set of experimental data
by optimising a preselected design parameter set. The e�ectiveness but also the limits
of these methods have been studied comprehensively in the past (see for example [1], [2]
or [3]). Di�erent types of objective functions have been de�ned using input residuals,
output residuals, (see [2]) or the error in the constitutive relation (see [4]). Even though
deterministic methods achieve fairly good results by minimising the test/analysis devi-
ation, the identi�ed parameters are nevertheless deterministic. But, measurement data
like modal data are always exposed to uncertainty. There exist several sources which
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cause variability in the experimental modal analysis chain. Just to mention a few: human
operator, modal identi�cation algorithm, measurement noise, structure variability due
to production tolerances etc. A previous study from [5] discusses the e�ect of di�erent
sources of variability in modal testing. This work showed, that a dominant source of
variability even originates from disassembly and reassembly of a single test structure.
Hence, a stochastic model updating approach is needed to capture uncertainty in ex-
perimental modal data which includes following steps. Take modal test data with given
statistical properties (means and covariances of eigenfrequencies, mode shape vectors,
etc.) and identify the statistical properties of the uncertain model parameters. First
approaches have been made in [6] covering the uncertainty in modal test data originating
from measurement errors. Recent work presented in [7], [8], [9] and [10] address uncer-
tainty related to production tolerances.
References [7] and [8] use the approach of [6] for the identi�cation of stochastic model
parameters from uncertain test data originating from variability amongst nominal iden-
tical structures. The work in [6] was based on measurement errors in modal data of a
single test piece. Therefore the covariances of the identi�ed stochastic parameters rep-
resent the con�dence on the adjusted parameters in combination with the quality of the
measurements. Consequently, this approach is not feasible to cover uncertainty related to
production tolerances.
In references [9] and [10] an improved perturbation method for stochastic �nite element
model updating is applied where two recursive systems of equations for the adjustment
of parameter means and covariances are derived. In [11] the author presents an interval
model updating method which is also capable to identify model parameter uncertainty
from statistical test data.
Here, a di�erent approach for stochastic model updating will be presented. The classi-
cal model updating technique with a gradient based iteration procedure is extended by
an equation accounting for the statistical properties. At �rst, the parameter means are
updated by minimising the di�erence between test and analysis output means (e.g. fre-
quency, mode shape deviations, etc.). Next, the parameter covariance matrix is adjusted
by minimising the di�erence between test and analysis output covariance matrices based
on their Frobenius norm.
This technique has �rst been proven on a simple three degree of freedom example as de-
scribed in [12] and afterwards been applied to numerical case study with 15.000 degrees
of freedom [13] on a generic aircraft model. Later on the developed method was applied
for the adjustment of rigid body modes from real test data [14].

2 THEORETICAL BACKGROUND

2.1 Random variables

If a random variable xj is sampled n times, the sample mean value is calculated from

x̄j =
1

n

n∑
i=1

xji, (j = 1, . . . ,m) (1)

where m denotes the number of random variables and the bar placed above any random
variable indicates the average value. The mean values are assembled in the vector
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{x̄}T = ⟨ x̄1 x̄2 . . . x̄j . . . x̄m ⟩ (2)

The sample covariance between two random variables xj and xk which describes the
second moment of correlation is calculated from

Cov(xj, xk) =
1

n− 1

n∑
i=1

(xji − x̄j) (xki − x̄k) (3)

and consequently the covariance matrix for a set of random variables xj can be written
as

[Sx] =


Var(x1) Cov(x1, x2) · · · Cov(x1, xm)

Cov(x2, x1) Var(x2) · · · Cov(x2, xm)
...

...
. . .

...
Cov(xm, x1) Cov(xm, x2) · · · Var(xm)

 , (4)

where Var(xj) = Cov(xj, xj) = (σ(xj))
2 denotes the square of the standard deviation σ.

Because of the non-negative main diagonal and the symmetry, the covariance matrix is
at least positive semi-de�nite. The covariance matrix can be normalised by the standard
deviation which yields the correlation coe�cient ρ

ρ(xj, xk) =
Cov(xj, xk)

σxj
σxk

. (5)

The correlation coe�cient between two random variables represents the statistical corre-
lation and must always be in the range of −1 ≤ ρ ≤ 1. A graphical interpretation of the
covariance between two random variables x and y can be given by the covariance ellipses
as shown in �gure 1. Here, the sample mean values and the standard deviation remain the
same (x̄ = ȳ = 0 and σx = σy = 1), only the correlation coe�cient ρxy (which is equal to
the covariance in this case) between the two random variables is modi�ed from -1 to 1.
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Figure 1: Covariance ellipses

It is clear from �gure 1 that the two random variables x and y are completely dependent
on each other when ρxy = −1 or 1. The cases in between represent a partial statistical
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correlation of the two random variables. The ellipses represent contour lines of equal
probability p(x, y).

A linear transformation between two sets of random variables is expressed by

{y}(m×1) = [C](m×n){x}(n×1), (6)

where [C] is the constant transformation matrix and {x}, {y} are the vectors of random
variables. The sample mean values {ȳ} of a set of random variables {y} can thus be
expressed by the sample mean values {x̄} of the set of random variables {x} using the
same linear transformation

{ȳ}(m×1) = [C](m×n){x̄}(n×1). (7)

Introducing this transformation into the covariance de�nition for the transformed vari-
ables {y}, [Sy] = [Cov(y, y)], yields

[Sy](m×m) = [C](m×n)[Sx](n×n)[C]T(n×m). (8)

2.2 Parameter estimation

The aim of parameter estimation techniques in the �eld of structural dynamics is to �t
results of an analytical model as close as possible to the results obtained from an exper-
iment. The real structural behaviour can be estimated by experimental modal analysis
(EMA). Nevertheless test data is unavoidably polluted with random and systematic errors
and therefore the adjusted parameters of the computer model are also estimated values.
In case of uncertainty in the experimental data with known output means and covariances

the parameter adjustment process can be split up into two independent recursive sets of
equations.

1. Mean parameter adjustment: In the �rst step the means of the model parameters
are updated by minimising the di�erence between the means of the measured and
analytical output using a weighted least squares optimisation algorithm.

2. Parameter covariance matrix adjustment: In the second step the model parameter
covariance matrix is updated by minimising the di�erence between the measured
and analytical output covariance matrix using the Frobenius norm.

2.2.1 Mean parameter adjustment

The most important estimation technique for practical applications is the method of the
weighted least squares. The parameter estimation starts by de�ning a residual which
contains the di�erences between the analytical and measured results e.g. the di�erence
between analytical and measured (i.e. 'estimated') eigenfrequencies.

If {v̄m} is a vector containing the measured (subscript m) mean values and {v̄a(p)} is
the corresponding analytical (subscript a) mean vector which is a function of the mean
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parameters to be updated, the error can be assembled in the weighted residual vector
{ε̄w}

{ε̄w} = [Wv]({v̄m} − {v̄a(p)}), (9)

with a suitable diagonal weighting matrix [Wv]. The values for the weighting matrix [Wv]
should be chosen with knowledge about the accuracy of the test data. Consequently the
engineering judgement of the test engineer and the information about the reliability of
the experimental modal data is absolutely essential. The method of the weighted least
squares leads to the objective function for mean parameter adjustment

J = {ε̄w}T{ε̄w} = {ε̄}T [Wε]{ε̄} → min (10)

with [Wε] = [Wv]
T [Wv].

The minimisation of the squared sum of the weighted residual vector permits to estimate
the updating parameters. The solution of the minimisation problem of equation (10)
usually leads to a non-linear set of equations because {v̄a(p)} is in general non-linearly
dependent on the updating parameters. If we consider for example the height h of a beam
as an update parameter, then the mode shapes are a non-linear function of h. Conse-
quently, the residual vector, which e.g. contains the di�erence between the measured and
analytical mode shapes, also depends in a non-linear way on h. In practical applications
the non-linear optimisation problem is solved by expanding the analytical vector in a lin-
earised Taylor series so that the objective function can be solved iteratively. The Taylor
series truncated after the linear term is given by

{v̄a(p)}i+1 = {v̄a}i + [G]i{∆p̄}i, (11)

where {v̄a}i represents the mean vector of the analytical response at the iteration step

i, [G]i =
∂{v̄a}
∂{p̄} |i represents the sensitivity (gradient) matrix of the size (m × np) (with

m = no. of measurements, np = no. of estimation parameters) and {∆p̄}i = {p̄}i+1−{p̄}i
represents the vector of the mean parameter changes (increments) between successive
iteration steps. Introducing equation (11) in equation (10) yields the linearised residual

{ε̄w}i = [Wv]({r̄}i − [G]i{∆p̄}i), (12)

with {r̄}i = {v̄m} − {v̄a}i . The vector {r̄}i contains the residual between the test data
and the model at the linearisation point of the ith iteration step. The minimum of the
objective function can be obtained from the condition ∂J

∂{∆p̄} = 0, which yields the linear set

of equations by using the pseudo-inverse of the weighted sensitivity matrix [Wv][G](m×np)

where m > np (overdetermined system)

{∆p̄}i = [Tε]i{r̄}i, (13)

5



with the transformation matrix [Tε]i =
(
[G]Ti [Wε][G]i

)−1
[G]Ti [Wε].

In case of bad convergence properties because of an ill-conditioned sensitivity matrix the
objective function J can be supplemented by a regularisation term that enforces small
parameter changes ∆p̄

J = {ε̄}T [Wε]{ε̄}+ {∆p̄}T [Wp,ε]{∆p̄} → min . (14)

The matrix [Wp] can be derived from [Wp] = wp[B]. In case of [B] = [I] the additive term
is equivalent to the classical Tikhonov regularisation [15]. A more sophisticated regular-
isation technique is described by using the inverse of the main diagonal of ([G]T [Wε][G])
see [2], where [B]i is derived at every iteration step as follows:

[B]i =
Tr([C]i)

Tr([C]−1
i )

[C]−1
i , (15)

with matrix [C] in MATLAB notation [C]i = diag
(
diag

(
[G]Ti [Wε][G]i

))
.

This regularisation technique is adaptive in each iteration step because it is related to
the inverse of the squared sensitivity matrix which changes from step to step. With this
extension the minimisation of the extended objective function leads to the transformation
matrix

[Tε]i =
(
[G]Ti [Wε][G]i + [Wp,ε]i

)−1
[G]Ti [Wε]. (16)

2.2.2 Parameter covariance matrix adjustment

If [Svm ] is the covariance matrix of the measured samples and [Sva(p)] is the corresponding
analytical covariance matrix which is a function of the covariance matrix of the parameters
to be updated, the error can be summarised in a residual matrix [S∆]

[S∆]i = [Svm ]− [Sva(p)]i, (17)

with a suitable diagonal weighting matrix [WS] (which should be chosen in the same
way as [Wv]) we can formulate the following objective function for the covariance matrix
adjustment

JS =
1

2

∥∥[WS][S∆][WS]
T
∥∥2

F
→ min, (18)

by using the de�nition of the Frobenius norm of a matrix [A](r×s)

∥[A]∥2F =
r∑

j=1

s∑
k=1

|ajk|2 = Tr([A]H [A]). (19)
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The Taylor series expansion of the analytical output covariance matrix [Sva(p)] truncated
after the �rst linear term leads to

[Sva(p)]i+1 =
[
Cov ({va}i + [G]i{∆p}i, {va}i + [G]i{∆p}i)

]
(20)

= [Sva ]i + [G]i[S∆p]i[G]Ti ,

with the assumption that {va}i and {∆p}i are uncorrelated. This assumption is true for
the �rst updating step but an approximation for any other iteration step.

The matrix [S∆p]i denotes the system parameter covariance matrix changes (increments)
with [S∆p]i = [Sp]i+1 − [Sp]i where {p}i+1 and {p}i are also assumed to be uncorrelated.
[G]i represents the sensitivity matrix at the ith iteration step which is obtained in the
same way as for equation (11). Therefore the residual covariance matrix [S∆] can be
expressed as

[S∆]i = [R]i − [G]i[S∆p]i[G]Ti , (21)

with [R]i = [Svm ]− [Sva ]i,

where [Sva ]i represents the covariance matrix of the analytical response at the iteration
step i. Minimising the objective function JS using the condition ∂JS

∂[∆Sp]
= 0 leads to the

equation

[S∆p]i = [TΣ]i [R]i [TΣ]
T
i , (22)

where [TΣ]i =
(
[G]Ti [WΣ][G]i

)−1
[G]Ti [WΣ] represents the transformation matrix at the

ith iteration step, which is the same as in equation (13) except the weighting matrix
[WΣ] = [WS]

T [WS]. The detailed derivation of this equation can be found in [12].

In case of an ill-conditioned sensitivity matrix [G] the inverse of the matrix product
([G]T [WΣ][G]) can be extended by an additive regularisation term [Wp] to improve the
convergence. In this case the extended transformation matrix [TΣ] is written as

[TΣ]i =
(
[G]Ti [WΣ][G]i + [Wp,Σ]i

)−1
[G]Ti [WΣ]. (23)

A suitable regularisation matrix [Wp,Σ] can be derived as shown in equation (15).

2.3 Residual type

The updating process is split into two independent equations. For this reason the residual
can be di�erent for parameter means and covariances. Since the �rst equation represents
the classical updating the typical frequency, mode shape and modal assurance criterion
(MAC) residual or a weighted combination of two or three residuals can be chosen. Here,
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parameter means will be updated by frequency and mode shape residual as described
in [2]. The parameter covariance matrix is adjusted by the frequency covariance ma-
trix residual only which results in minimising the di�erence between test and analysis
frequency scatter (covariance) ellipses as presented in �gure 1.

2.4 Sampling method

To derive the statistical �nite element solution the Monte Carlo method has been taken
using a multivariate normal distribution. Since simple random sampling is very time
consuming Latin Hypercube Sampling (LHS) has been introduced to reduce the number
of samples in an e�cient way while gaining stability in the optimisation process. LHS
can shortly be described for uncorrelated random variables as follows:

• divide the cumulative distribution into N equiprobable intervals,
• select a value from each interval randomly,
• transform the probability values by the inverse of the distribution function,
• derive a multivariate distribution by pairing the variables randomly.

In case of correlated random variables LHS is based on the Cholesky decomposition as
proposed in [16]. Figure 2 underlines the e�ciency of LHS in contrast to simple random
sampling. Here, the standard deviations are shown for means and std of varying sample
sizes. Therefore every sample size was taken 1000 times. Subsequently the means and std

values have been calculated. From these 1000 mean and std values again the standard

deviation been determined and plotted in �gure 2.

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

sample size

s
td
 o
f 
m
e
a
n
s

 

 

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
td
 o
f 
s
td

sample size

Simple Random Sampling

Latin Hypercube Sampling

Figure 2: Comparison of sampling techniques

LHS already shows very little variability of the statistical properties at a sample size of
n = 100 while the same variability using simple random sampling is reached not before
taking a sample size that is two to three orders of magnitude higher.

3 UNCERTAINTY IN EXPERIMENTAL MODAL DATA

Uncertainty in experimental modal data may have manifold reasons. In detail: human
operator, modal identi�cation algorithm, measurement noise, structure variability due to
production tolerances etc. This may all lead to a certain variability on the modal param-
eters. If serial production is considered the variation of material parameters, the accuracy
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and repeatability of joint sti�ness and damping parameters and production tolerances
will a�ect the dynamical characteristics of the product. To capture and quantify all these
e�ects on the modal parameters a representative test structure (see �gure 3) was selected
which is identical to the SM-AG19 model that was already subject to a pan-European
study on experimental modal analysis. Back then, in 1995 the Action Group SM-AG19
was established by the Group for Aeronautical Research and Technology (GARTEUR)
Executive Committee to analyse di�erent test methods and to determine the variability
in experimental modal data. For this reason, a benchmark structure was designed which
should represent the structural behaviour of an aircraft. The test set-up was clearly de-
�ned in order to ensure a perfect structural repeatability. In the following the structure
was analysed by twelve di�erent test facilities of �ve European countries. Nevertheless,
the experimental modal analysis results and even the frequency response functions (FRFs)
from all participants showed signi�cant discrepancies (see [17�19]).
Afterwards a benchmark study on validating di�erent numerical models to a common set
of measured data (European COST Action F3 on 'Structural Dynamics') was launched
(see [20]). It was set up not only to compare the di�erent computational model updat-
ing (CMU) procedures using a common test structure but also to see if the expected
non-uniqueness of the results due to di�erent computational methods, di�erent structural
idealisations and di�erent parameter sets and, of course, di�erent test data sets can be
tolerated with regard to the intended utilisation.
So both has been present, uncertainty in the test data because of various test methods,
boundary conditions, etc. of the di�erent test facilities and uncertainty in the numerical
models due to di�erent updating techniques. But test data and computational model
updating was more or less considered to be deterministic.
Here, the stochastic model updating approach will be shown on the replica of the GAR-
TEUR SM-AG19 benchmark structure. This approach covers both at the same time.

3.1 Test set-up for case study of scatter sources

The examined test object (see �gure 3) in the case study is a replica of the well known
GARTEUR SM-AG19 structure. The replica is called AIRcraftMODel (AIRMOD) and
was built at DLR Göttingen to investigate concepts for Ground Vibration Testing (GVT).
The overall structure is made of aluminium and consists of six beam like components
connected by �ve bolted joints which are illustrated in �gure 4. Its wing span amounts
to 2.0 m, the length of the fuselage is 1.5 m and the height 0.46 m. The total weight of
the structure adds up to 44 kg. Two additional masses of 300 gram each are installed at
the forward tips of the winglets to ensure a better excitation of the wing torsion modes.

(a) Testbed (b) Measurement points on FEM (c) Exciter locations

Figure 3: AIRcraft MODel

To take account for reproducibility of the structural behaviour the joints were screwed
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together with a torque control wrench and a prede�ned sequence for tightening the bolts
of each joint. During the whole test series the set-up remained in the same con�guration.
All sensors and cables were just installed once in order to avoid further variability.

(a) VTP/HTP (b) VTP/fuselage (c) wing/fuselage (d) winglet

Figure 4: Bolted joints of AIRMOD

3.1.1 Boundary condition

The modal survey test series was carried out under the simulation of free-free boundary
conditions. The support was realised by using a suspension with three soft bungee cords
connected to a frame type structure. The assumption of free-free boundary conditions is
satis�ed by using a rule of thumb which says to separate the highest rigid body mode
(RBM) from the �rst elastic mode of the structure by the factor max(fRBM) ≈ 1/3 ·
min(felastic). The highest rigid body mode eigenfrequency was measured for the aircraft
heave mode (RBM in vertical direction) at around 2Hz which was well separated from the
�rst elastic mode (2n wing bending) at 5.5Hz. The bungee cords supporting the structure
were relieved of the load out of the test phases to avoid an e�ect of relaxation and to keep
the rigid body modes at an almost constant frequency level.

3.1.2 Sensor and exciter locations

The accelerometer locations were selected according to previous con�gurations of the
GARTEUR benchmark. Therefore it was not necessary to conduct a pre-test analysis
again. Nevertheless the sensor positions have been supplemented by a number of sensors
to better visualise the mode shapes. Altogether 38 measurement points were de�ned. The
sensor cables were also supported by the frame type structure to minimise the e�ect of
additional mass loading and damping. The positions of the accelerometers are shown in
�gure 3b.
The exciter locations have been chosen in the same way. Five excitation points for hammer
impact and shaker attachment have been selected as illustrated in �gure 3c.

3.2 Analysis of sources for uncertainty in experimental modal data

At �rst the focus of the study was set on the quanti�cation of the scatter of modal
parameters due to well de�ned modi�cations in the modal analysis chain. During the
whole test campaign the test set-up was not changed at all. The modi�cations which
have been introduced are explained in the following:

1. Scatter from hammer impact

For this scatter source the variability of modal parameters due to the analysis of
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repeated samples of FRF sets recorded from hammer impact excitation was anal-
ysed. The discrepancies arise from multiple hammer impact tests performed without
changing anything neither the structure nor the subsequent modal analysis with the
PolyMAX algorithm implemented in LMS Test.Lab (see [21]). The hammer tests
were executed by the same person at di�erent days. For this test series 10 ham-
mer impacts were chosen for averaging. Deviations shown here should represent the
scatter of repeatability of hammer tests on AIRMOD.

2. Reassembly scatter

A very important issue in serial production is the structural variability due to fab-
rication tolerances. In order to observe the variation of modal parameters from this
source it was not possible to produce as many test structures as necessary for scatter
analysis but reassembling the whole structure was found to be suitable to determine
the variability in respect to serial production. Here, multiple hammer tests were
performed by the same operator after complete reassembly of the structure with
prede�ned sequences of steps using a torque control wrench for the bolted joints.
Subsequently modal analysis was performed by the same person with the before
mentioned software. During assembling and disassembling the structure the sensors
were kept mounted in order to avoid further variability in the measurement data.

3. Operator scatter
If di�erent persons perform hammer testing on the same structure using an identical
set-up the measured data will di�er due to the individual execution of the hammer
impacts. Furthermore, di�erent philosophies for evaluating the experimental data
will lead to even more spreading modal parameters when evaluated by di�erent
test personal. Therefore all members of the ground vibration test team at DLR
Göttingen specialised on modal analysis acquired their own measurement data and
subsequently performed the modal analysis as mentioned above.

4. Analysis method scatter

Usually di�erent modal analysis tools yield di�erent results for the identi�ed param-
eters. Therefore, discrepancies resulting from the extraction of modal parameters
using di�erent software codes were analysed. The parameter estimation was con-
ducted with the same measurement data for the di�erent codes.

5. Sweep excitation scatter

Frequency response functions of linear structures should be independent to the force
level used for excitation. Here di�erences in FRFs due to shaker excitation at di�er-
ent force levels and scatter of modal parameters of the subsequent modal analysis
will be presented. In this case the force level amplitudes vary from 1 to 16N.

6. Phase resonance method scatter

Testing large aircraft structures a test strategy is usually applied which makes use
of a combination of phase resonance testing and phase separation techniques. In
general, �utter critical modes are tuned via the phase resonance method whereas all
the other modes are extracted with the phase separation method. This shows that
the aircraft industry still believes more in modes obtained from phase resonance
testing. Therefore the variability of modal parameters extracted from an excitation
of the structure in steady state was analysed using di�erent force levels between 1
and 16N.

The detailed results of this campaign have been shown in [22]. The variability of the test
data due to some of the above mentioned test scatter sources is illustrated in �gure 5. Here
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the summed amplitudes of the measured frequency response functions show the impact
of the chosen scatter source on the dynamical behaviour of the structure.
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Figure 5: Variability for selected modes from di�erent scatter sources

This study revealed that reassembling the structure has a signi�cant impact on the eigen-
frequency variability. Besides swept sine excitation on di�erent force levels it shows the
highest peak variation in the FRF's. While swept-sine testing on di�erent force levels
activates non-linear behaviour in the bolted joint connections it is not suited to represent
stochastic e�ects. But reassembling and testing e.g. with random (low energy input) or
even hammer impact excitation to just identify the linear behaviour was found to be the
right method to gain a dataset with stochastic behaviour.

4 REPEATEDMODAL SURVEY TEST BY REASSEMBLING THE JOINTS

To study the in�uence of reassembly on the scatter of modal parameters a test set-up
was chosen where almost no user interaction was necessary. The structure was excited at
two di�erent exciter locations (626z and 627y, see �gure 3c) using a random excitation
signal in the frequency band from 0 to 400Hz. Time domain response data was recorded
at the sensor locations shown in �gure 3b with a sampling frequency of 1024Hz and a
total length of 205sec. Frequency response functions were obtained using the Welch's
method with an overlap of 90% and a block size of 16384. A hanning window was used to
account for leakage e�ects when performing spectral analysis with the time data. These
settings resulted in a frequency resolution of 0.031Hz. After complete disassembly of the
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test structure the reassembly was conducted with prede�ned sequences of steps using a
torque control wrench for the bolted joints. During the assembly and disassembly of the
structure the accelerometers remained installed in order to avoid further variability in the
measurement data. The structure was reassembled 130 times. This leads to 260 random
tests using single point excitation.

4.1 Experimental modal parameter variability from reassembling

Subsequently modal analysis was performed on the 260 sets of frequency response func-
tions with a MATLAB based in house software using the PolyMAX algorithm (see [21]).
The experimental modal analysis procedure was fully automated based on a procedure
that uses the automatic evaluation of the stabilisation charts. Here, also the MAC cri-
terion has been used to identify double selection in combination with quality indicators
like the modal phase collinearity (MPC) and the mean phase deviation (MPD) see [23].
Consequently, the e�ect of the operator during the parameter estimation process was
eliminated and the algorithm based scatter was minimised.
After the modal identi�cation each mode was only considered from a single exciter loca-
tion. The decision was done from quality criteria (MPC and MPD) and basically resulted
in taking symmetrical modes from exciter location 626z and anti-symmetrical modes from
exciter location 627y. Unsymmetrical modes which appear in the higher frequency range
above 250Hz have been chosen either from point 626 or 627. The separation between the
exciter locations is also done to compare only modes of constant quality.
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Figure 6: Modal data variation

To compare the modes that belong to the same shape they �rst have to be paired automat-
ically by the modal assurance criterion and an additional frequency deviation threshold.
Figure 6 shows the variability in the experimental modal parameters identi�ed with the
above mentioned procedure. The eigenfrequency has been normalised to 100 % for better
comparison. It can be observed that the �rst 4 eigenfrequencies which refer to rigid body
modes show quite a large variation by more than ±3% while the elastic modes 5 to 30 do
not exceed the threshold of ±1.5%.
The complete frequency variation is listed in table 1. It also shows the frequency coef-
�cient of variation fCoV which is the frequency standard deviation divided by the mean

value. It gives a good measure which modes are most a�ected by the reassembly. The last
column shows the number of modes used for statistics. From 130 samples one sample was
corrupted and a system change took place between sample 43 and 44. Therefore so only
a maximum of 86 samples could be used. Nevertheless some modes have been identi�ed
less than 86 times which is due to the automatic identi�cation and correlation process.
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mode name fmean/Hz fstd/Hz fCoV /% fmin/Hz fmax/Hz samples

01 RBM Yaw 0.23 0.006 2.41 0.22 0.24 41
02 RBM Roll 0.65 0.019 2.89 0.60 0.68 81
03 RBM Pitch 0.83 0.017 1.99 0.80 0.88 83
04 RBM Heave 2.17 0.024 1.11 2.11 2.22 86
05 2nWingBending 5.50 0.004 0.07 5.49 5.52 86
06 3nWingBending 14.91 0.017 0.12 14.88 14.94 86
07 WingTorsionAnti 31.96 0.020 0.06 31.92 32.01 86
08 WingTorsionSym 32.33 0.017 0.05 32.29 32.38 86
09 VtpBending 34.38 0.081 0.24 34.23 34.54 86
10 4nWingBending 43.89 0.015 0.03 43.85 43.92 86
11 1nWingForeAft 46.71 0.149 0.32 46.27 46.99 86
12 2nWingForeAft 51.88 0.012 0.02 51.84 51.91 86
13 5nWingBending 58.59 0.075 0.13 58.33 58.76 86
14 VtpTorsion 65.93 0.274 0.42 65.46 66.33 86
15 2nFuseLat 100.05 0.280 0.28 99.38 100.48 86
16 2nVtpBending 124.56 0.356 0.29 123.85 125.10 86
17 6nWingBending 129.38 0.107 0.08 129.12 129.66 86
18 7nWingBending 141.47 0.347 0.25 140.79 142.76 85
19 2nHtpBending 205.59 1.023 0.50 203.24 206.87 86
20 HtpForeAft 219.07 1.663 0.76 216.29 221.30 86
21 WingBendingRight 254.73 0.557 0.22 253.41 256.48 70

Table 1: Variability of identi�ed eigenfrequencies

The variation of the mode shape vectors can also be determined. The mean mode shape
has to be extracted iteratively by the following procedure since the shapes are usually
scaled to unit modal mass or maximum component equal 1. Therefore take a reference
mode {ϕj,ref} and calculate the modal scale factor (MSF) (see [24]) between sample k of
mode j {ϕj,k} and the reference mode by

MSFj = ({ϕj,k}T{ϕj,k})−1{ϕj,k}T{ϕj,ref} (24)

for all corresponding samples k = 1 . . . n. Afterwards calculate the mean mode shape {ϕ̄j}
using following equation.

{ϕ̄j} =
1

n

n∑
k=1

MSFj{ϕj,k} (25)

Then use the determined mean mode shape as a reference mode, calculate new MSF
values and determine the mean mode shape again. Repeat this sequence until the mean

shape does not change any more. When {ϕ̄j} is derived the standard deviation can be
calculated component wise for each mode j. The result of this procedure is shown for
modes 1 to 21 in �gure 7. Gray cylinders at the sensor locations represent 2σ of the
according mode shape amplitude. The largest standard deviation on amplitudes is found
for modes 1,2 and 21.

5 PARAMETERMEANANDCOVARIANCEMATRIX IDENTIFICATION

5.1 Finite element model

The MSC.NASTRAN �nite element model contains 2575 nodes, 2184 CQUAD4, 3 CROD,
77 CELAS1, 41 CONM1, 6 CMASS1, 39 RBAR, and 39 RBE2 elements. CQUAD4 ele-
ments are used to model the overall structure while CELAS1, CONM1 and RBE2 elements
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(a) 1 - RBM Yaw (b) 2 - RBM Roll (c) 3 - RBM Pitch

(d) 4 - RBM Heave (e) 5 - 2n Wing Bending (f) 6 - 3n Wing Bending

(g) 7 - Wing Torsion Anti. (h) 8 - Wing Torsion Sym. (i) 9 - VTP Bending

(j) 10 - 4n Wing Bending (k) 11 - 1n Wing in-plane Bend. (l) 12 - 2n Wing in-plane Bend.

(m) 13 - 5n Wing Bending (n) 14 - VTP Torsion (o) 15 - 2n Fuselage Lateral Bend.

(p) 16 - 2n VTP Bending (q) 17 - 6n Wing Bending (r) 18 - 7n Wing Bending

(s) 19 - 2n HTP Bending (t) 20 - HTP fore-aft Bending (u) 21 - Wing Bending Right

Figure 7: Mode shape amplitudes and its standard deviation of modes 1-21
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are utilised to represent the details in the bolted connections (CELAS1, RBE2, RBAR)
and additional mass loading by sensors and cables (CONM1, CMASS1). CELAS1 ele-
ments are used at the bolted connection of wing/fuselage in y-direction to account for
a rotational spring around the z-axis. The same elements are placed at the VTP/HTP
connection also in y-direction. At the VTP/fuselage joint two degrees of freedom are
connected by springs: the z-translation and the x-rotation. Every sensor is represented
by a CONM1 element of 15 gram and additional masses at the front part of the wing tips
are also idealised by concentrated masses. The Monte Carlo Simulation was performed to
determine the analytical mean results and covariance matrices with a su�cient number
of samples (nmax = 500) using LHS.

5.2 Parameter selection and adjustment

The parameter estimation is shown for all identi�ed rigid body modes and some of the
elastic modes shown in �gure 7. In detail modes no. 1 to 6, 14 and 19 have been chosen
for the optimisation.
The bungee cords which can be seen in �gure 3a have been modelled as CROD elements
to constrain the vertical degrees of freedom. From this support the A/C Heave and A/C
Pitch mode is already constrained. Since also A/C Roll and A/C Yaw could be identi�ed
from the test data additional spring elements have been introduced into the numerical
model. A rotational spring at the wing fuselage connection accounts for the roll motion
and two springs in y-direction (wing direction) represent the yaw/lateral sti�ness. The
springs were placed at locations where a bunch of cables was �xed to the structure.
Parameters for the adaptation of the elastic modes have been introduced at the wing/fuse
joint and the HTP/VTP joint. Here sti�ness and mass parameters have been selected.
The �nal parameter selection has arisen from a large sensitivity study where more than
25 sti�ness and mass parameters located at the joints and cable attachment points were
analysed.
The updating parameters can therefore be described as follows:

• Parameter 1: sti�ness of front suspension in z-direction,
• Parameter 2: sti�ness of rear suspension in z-direction,
• Parameter 3: sti�ness of roll motion by rotational spring kxx at wing fuselage con-
nection,

• Parameter 4: sti�ness of yaw/lateral motion by spring at wing/fuselage connection
in y-direction,

• Parameter 5: sti�ness of HTP/VTP joint by translational springs ky between con-
necting elements,

• Parameter 6: sti�ness of HTP/VTP joint by Young's modulus of connecting ele-
ments,

• Parameter 7: mass at HTP/VTP joint to account for vibrating cable masses and
• Parameter 8: mass at WING/FUSE joint to account for vibrating cable masses.

All mean values of the parameters are adjusted together with the full covariance matrix.
Updating was performed using small regularisation to the inverse of the sensitivity matrix
as described in equation (15) with wp,ε = 0.025 for the mean equation and wp,Σ = 0.04
for the covariance matrix adjustment.
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fMean / Hz ∆fMean / % fSTD / Hz ∆fSTD / %
EMA FEM, ini. FEM, upd. EMA FEM, ini. FEM, upd.

01 0.23 -1.72 -0.00 0.006 -42.26 0.27
02 0.65 7.08 -0.01 0.019 -60.75 -2.34
03 0.83 -12.77 -0.00 0.017 -45.88 -0.06
04 2.17 -10.38 0.00 0.024 -8.55 -0.17
05 5.50 -0.04 -0.00 0.070 -35.45 0.24
06 14.91 -0.00 0.00 0.120 -18.76 -1.46
07 31.96 -0.42 -0.43 0.060 -71.24 -60.32
08 32.33 0.50 0.50 0.050 -99.20 -98.78
09 34.38 1.31 1.15 0.240 -83.37 -73.97
10 43.89 1.22 1.16 0.030 -76.77 -58.86
11 46.71 -2.37 -2.44 0.320 -95.05 -91.18
12 51.88 -3.06 -3.22 0.020 5.78 89.00
13 58.59 0.53 0.23 0.130 -56.62 -25.69
14 65.93 -3.59 -0.00 0.420 -50.46 1.36
15 100.05 -5.72 -5.13 0.280 -84.15 -68.95
16 124.56 -4.54 -4.17 0.290 -92.58 -83.68
17 129.38 -3.19 -3.20 0.080 -97.92 -96.29
18 141.47 -3.20 -2.89 0.250 -95.30 -86.69
19 205.59 -6.43 0.00 0.500 -53.58 -0.16
20 219.07 0.04 1.03 0.760 -81.65 -63.84
21 254.73 6.82 6.82 0.220 -99.10 -99.42

Table 2: Overall results of updating

After 300 iteration steps the iteration was stopped manually. From iteration step 206 to
207 the number of Monte Carlo samples was raised from 80 to 500 samples to stabilise
the convergence of the covariance matrix. This results in a smoother convergence of the
updating parameters since a higher sample size gives a better estimation of the sample
space (see �gure 2).
Table 2 shows the initial and updated frequency deviation for the mean frequency values
and the according standard deviation. The mean and std value frequency deviations be-
tween test and analysis could be minimised quite well for the modes that have been used
in the residual (1 to 6, 14 and 19). For the passive modes, nearly all frequency deviations
of mean and std values get smaller, except for mode 11 and 12.
A graphical representation of initial and updated results is given in �gure 8 and 9 where
the results are illustrated as frequency clouds. In detail, �gure 8 and 9 show the match of
the test (blue) and analysis (red) scatter ellipses, which is also graphical representation
of the two-dimensional frequency covariance matrix (see �gure 1). The initial frequency
clouds from test and analysis between f2 and f3 show a signi�cant o�set and a di�erence
in orientation. After the updating process the distance and shape between these test and
analysis clouds has nearly vanished which can also be observed for all other combinations
concerning the modes used in the residual vector.
Figure 10 depicts the evolution of the updating parameters, the frequency deviations and
MAC values over the iteration steps. This graph shows a nice parameter convergence.
The raise of the sample size used for Monte Carlo Simulation smooths the convergence of
the updating parameters for the covariance matrix. Overall, it can be observed that the
mean values converge much faster than the covariance matrix values.
Nevertheless the �nal updating parameter correlation matrix, shown in �gure 11b, seems
to be a reasonable result. Here a very strong positive correlation was identi�ed for pa-
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rameter 5 and 6 which are both representing joint sti�ness parameters at the HTP/VTP
joint. On the contrary parameter 7, a mass parameter at the same location, shows a
strong negative correlation to both previous mentioned parameters.

Figure 8: Frequency clouds used in residual before updating (test = blue, analysis = red)

6 CONCLUSIONS AND OUTLOOK

This paper describes how to perform stochastic model updating and how to establish
uncertain experimental modal data. First, an overview was given about the impact of
possible scatter sources (human operator, modal identi�cation algorithm, measurement
noise, structure variability due to production tolerances etc.) on modal data variability.
After a classi�cation of the in�uences, the �nal test database was derived from a structure
by dis- and reassembling the bolted joint connections multiple times. The test data vari-
ability was observed in all modal parameters such as eigenfrequencies, damping, modal
masses and mode shape amplitudes. An algorithm how to use uncertain modal test data
for the identi�cation of a stochastic �nite element model has been introduced and success-
fully applied. The numerical uncertainty was derived by Monte Carlo Simulation using
Latin Hypercube Sampling which demonstrates an e�cient way of sampling. 500 samples
were su�cient to yield a smooth convergence of the covariance residual for a number of
eight updating parameters.
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Figure 9: Frequency clouds used in residual after updating (test = blue, analysis = red)
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