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ABSTRACT 

The estimation of the local differential shift between 
synthetic aperture radar (SAR) images has proven to be 
an effective technique for monitoring glacier surface 
motion. As images acquired over glaciers by short 
wavelength SAR systems, such as TerraSAR-X, often 
suffer from a lack of coherence, image features have to 
be exploited for the shift estimation (feature-tracking). 
The present paper addresses feature-tracking with 
special attention to the feasibility requirements and the 
achievable accuracy of the shift estimation. In 
particular, the dependence of the performance on image 
characteristics, such as texture parameters, signal-to-
noise ratio (SNR) and resolution, as well as on 
processing techniques (despeckling, normalised cross-
correlation versus maximum likelihood estimation) is 
analysed by means of Monte-Carlo simulations. 
TerraSAR-X data acquired over the Helheim glacier, 
Greenland, and the Aletsch glacier, Switzerland, have 
been processed to validate the simulation results.  
Feature-tracking can benefit of the availability of fully-
polarimetric data. As some image characteristics, in 
fact, are polarisation-dependent, the selection of an 
optimum polarisation leads to improved performance. 
Furthermore, fully-polarimetric SAR images can be 
despeckled without degrading the resolution, so that 
additional (smaller-scale) features can be exploited. 
 
1. INTRODUCTION 

Synthetic aperture radar (SAR) represents a useful tool 
for monitoring flowing glaciers. In particular, the 
estimation of the glacier surface velocity can be 
accomplished by acquiring SAR images of the areas of 
interest at regular intervals and estimating the local 
differential shift between pairs of images [1].  
In case the two SAR images are characterized by partial 
coherence, the differential shift can be retrieved by 
means of coherent cross-correlation or incoherent cross-
correlation (speckle-tracking) [2]. An analytical 
derivation of the accuracy of the differential shift 
estimation for coherent cross-correlation is given in [3]. 
In the absence of coherence between the two SAR 
images, the differential shift can only be retrieved by 
exploiting the features of the SAR images, when present 
(feature-tracking). The speckle patterns of the two SAR 
images, in fact, are no longer correlated and cannot be 
used for the shift estimation. 

In order to address feature-tracking, a statistical 
characterisation of the SAR images is required. This is 
discussed in section 2, where it is also shown how to 
generate simulated images and estimate the parameters 
of the model from data. The processing to be performed 
is presented in section 3, where the processing 
parameters are highlighted. 
The feasibility of feature-tracking and its dependence on 
image and processing parameters is then addressed in 
section 4, while the accuracy of the shift estimation is 
analysed in section 5. Monte-Carlo simulations are 
widely used to assess both the feasibility and the 
performance. 
The benefits of polarimetry are considered in section 6, 
while some conclusions are drawn in section 7. 
 
2. STATISTICAL CHARACTERIZATION OF 

THE SAR IMAGES 

2.1. Modelling the Two SAR Images 

Each complex SAR image u[k,h] can be characterized 
according to the product model [4] by the product of the 
square root of an underlying radar cross section (RCS) 
[k,h] and a complex speckle pattern n[k,h], to which 
the thermal noise contribution t[k,h] adds: 
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The RCS, the speckle pattern, and the thermal noise 
contribution are intended as realizations of statistical 
processes. The statistical process concerning the RCS 
can be in general characterized by a gamma probability 
density function (PDF), for which the mean value < 
and the order parameter  are to be specified, and by a 
Gaussian auto-correlation function (ACF), whose range 
and azimuth correlation lengths, lrg and laz, are to be 
specified. The speckle process can be characterized by a 
zero-mean complex Gaussian PDF with unitary variance 
and is spatially uncorrelated. The ACF of the speckle 
process, in fact, is given by the autocorrelation of the 
point spread function (PSF), therefore the speckle is 
correlated only within the resolution cell, and speckle 
realisations corresponding to different, even adjacent, 
resolution cells are uncorrelated [5]. The thermal noise 
contribution t[k,h] is modelled as additive white 
Gaussian noise and is characterized by the signal-to-
noise ratio (SNR) SNR.  
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As far as the estimation of the shift field is concerned, 
two SAR images, u1[k,h] and u2[k,h], are assumed to be 
available, characterized according to the described 
model and such that their speckle patterns are 
uncorrelated, while their underlying RCS are related by 
means of a two-dimensional displacement field (rg 
[k,h], az [k,h]): 
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In effect, as the SAR image can be assumed to be 
known but for a multiplicative constant, one of the 
mentioned image parameters, namely the mean value of 
the gamma PDF, is not required for our analysis. 
The range and correlation lengths are to be specified in 
units of resolution cells and so will the estimation 
accuracy be expressed as well. That is also the reason 
why range and azimuth resolutions are not specified 
among the above listed parameters.  
 
2.2. Generation of Correlated K-Distributed Images 

Simulated SAR images, statistically characterised 
according to the described model, can be obtained by 
independently generating the underlying RCS and the 
speckle pattern. Several methods to generate correlated 
gamma distributed RCS two-dimensional trends are 
reviewed in [6]. Among them, the technique described 
in [7] is chosen.  
 
2.3. Estimation of Texture Parameters from Data 

The mean value and the order parameter of the gamma 
PDF and the range and azimuth correlation lengths of 
the Gaussian ACF are often referred to as texture 
parameters and can be estimated from data. 
When estimating these parameters, it has to be 
considered that they refer to the underlying RCS, while 
we only have at our disposal the intensity image. The 
mean value of the underlying RCS is equal to the mean 
value of the intensity image and can be therefore 
estimated by taking the mean intensity over a given 
area. The estimation of the order parameter of the 
underlying RCS , which is defined as the ratio of the 
RCS variance to the squared RCS mean, instead can be 
rather accurately estimated with a technique based on 
the normalised log statistics [8]. In particular, the order 
parameter can be obtained by inverting the following 
equation: 
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where (0) is the digamma function and E is the Euler-
Mascheroni constant. Low values of the order parameter 
(high values of the image contrast) denote the presence 

of well-defined features in a given image area. Fig. 1 
shows the estimated order parameter for a TerraSAR-X 
image, acquired over the Helheim glacier, Greenland. It 
may be noticed that the crevasse areas of the glaciers are 
rich in features and are therefore characterised by a low 
order parameter. 
 

    
 
Figure 1. Estimated order parameter for a TerraSAR-X 
image acquired over the Helheim glacier, Greenland 

 
The correlation lengths can be estimated directly on the 
despeckled intensity image. 
 
3. PROCESSING STAGES 

In the absence of coherence, the retrieval of the local 
differential shift between two SAR images can be 
divided into two stages: 
1) A pre-processing of the complex SAR images, 
u1[k,h] and u2[k,h], whose output is the couple of real-
valued images, A1[k,h] and A2[k,h], to be used for the 
differential shift estimation. This typically includes 
square detection and despeckling of the SAR images. 
Despeckling can be performed by smoothing the 
intensity image, using a rectangular NLrg X NLaz 
window. This technique, referred to as multilook 
despeckling, is the MLE estimation of the RCS in case 
all the pixels within the window are characterized by the 
same RCS [3]; 

 
e employed, are: 

2) The estimation of the local differential shifts, whose 
input is the couple of real-valued images obtained in the 
first stage. A template of N pixels, also referred to as 
patch, is extracted from the first image (reference patch) 
and compared with different candidate patches, 
extracted from the second image, on the basis of a 
measure of similarity. In particular, a similarity function 
S[rg,az] may be defined. Rectangular patches of Nrg 
X Naz pixels (N = Nrg Naz) are usually employed. The 
patch of the second image, for which the similarity 
function is maximum, is selected as the matching patch. 
The estimated differential shift is given by the 
difference of the coordinates of the matching and 
reference patches. Two similarity functions, which can
b
 
 



 

 
 Normalized cross-correlation (NCC), defined as: 
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xels included in the patches 

ikelihood (ML), proposed in [9] and 
defined as: 
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where m1, m2, 1, and 2 are the averages and the 
standard deviations of the pi
extracted from A1 and A2. 
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n, the underlying RCS is assumed to be 

ng for it a regular trend in the vicinity of the 
eak. 

tch and all other candidate patches 
non_matching j: 

 

                                    

. 2, where NCC has 
een used as a similarity function. 

 

 
In principle, the latter measure of similarity should lead 
to a better accuracy compared to the previous one, 
because it is derived by taking into account the first 
order statistical properties of the SAR images. However, 
in its derivatio
uncorrelated. 
The local differential shift is not necessarily an integer 
number of resolution cells, but it is in general fractional. 
In order to estimate this fractional shift, SAR images 
can be oversampled, preferably before square detection 
and despeckling. The oversampling of the images 
seriously affects the computational cost and the 
processing times. As an alternative, it is possible to 
oversample the two-dimensional similarity function, 
assumi
p
 
4. FEASIBILITY 

4.1. A Criterion for Feasibility 

With reference to the processing steps described in 
section 3, for an unambiguous estimation, it is necessary 
that the value of the similarity function between the 
reference patch and the matching patch Smatching is 
higher than the value of similarity function between the 
reference pa
S

j , _  jmatchingnonmatching SS (7) 

 
Having characterised SAR images as realisations of 
statistical processes, the quantities Smatching and 

Snon_matching j can also be interpreted as realisations of 
random variables, statistically characterised by the 
PDFs pS matching (Smatching) and          pS non_matching 

(Snon_matching) respectively. These PDFs depend on image 
parameters (order parameter, correlation lengths, SNR), 
as well as on processing parameters (despeckling 
options, size of the patch, similarity function to be used 
for the estimation) and can be estimated by using 
simulated textures, generated as explained in subsection 
2.2. Matching patches are characterised by the same 
underlying RCS and by different uncorrelated speckle 
patterns, while non-matching patches are characterised 
by different underlying RCS (but realisations of the 
same statistical process) and different uncorrelated 
speckle patterns. An example of such PDFs for a given 
set of parameters is shown in Fig
b

 
Figure 2 ient for 

matching and non-matching patches 

ater than Smatching b% (with b% 
ightly bigger than 0%): 
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uch that a positive value of f corresponds to 
asibility: 

 

. PDFs of the cross-correlation coeffic

 
A feasibility criterion can therefore be defined with 
reference to these PDFs in the sense that in order for the 
shift estimation to be unambiguous the two PDFs must 
not overlap. From a statistical point of view, the 
“bounds” of a PDF can be identified using occurrence 
levels, imposing that Smatching a% (with a% slightly 
smaller than 100%) is gre
sl

% _% bmatchingnonamatching SS
 
The occurrence levels a% and b% cannot be fixed a 
priori, because they are related to the number of 
candidate patches, which may vary. A feasibility value f 
can be defined as the difference of the two mentioned 
quantities, s
fe

% _% bmatchingnonamatching SSf                              (9) 



 

4.2. Requirements for Feasibility  

The feasibility value f depends on the image and 
processing parameters. When expressed as a function of 
all these parameters, the feasibility value f can be 
referred to as the feasibility function. 
The feasibility function divides the space of parameters 
into two regions, namely the region for which f > 0 and 
the complementary one. The aim of the feasibility 
analysis is to determine the boundary of the two regions. 
In effect, some of the parameters of the feasibility 
function, namely NL rg and NL az (despeckling window 
size) are related to the processing and can be therefore 
arbitrarily selected. In particular, they can be selected to 
maximise the feasibility function and an optimised 
feasibility function fopt no longer dependent on the 
despeckling window size can be defined. The size of the 
patch (Nrg X Naz) could appear as a parameter which 
can be arbitrarily selected, but, in practice, it has to be 
chosen such that the shift is uniform within the patch. In 
particular, the difference between the range/azimuth 
shifts for two different resolution cells within the patch 
should never exceed the range/azimuth correlation 
lengths. The maximum size of the patch is therefore 

e than a feasibility 

ages with smaller correlation 
ngth using relatively large windows leads to a 

deterioration of the underlying RCS trend, as the 
averaging is performed over areas with different values 
of the underlying RCS.  
 

related to the velocity field itself and its implications for 
the mission design, such as the requirement in terms of 
maximum temporal baseline, are considered in detail in 
subsection 4.3.  
The similarity function can be arbitrarily selected, but it 
is not possible to compare values of feasibility functions 
obtained with different similarity function, e.g. if the 
value of the feasibility function for a given set of 
parameters using NCC is 0.3, while the value of the 
feasibility function for the same set of parameters using 
ML is 0.05, it is only possible to conclude that in both 
cases the technique is feasible. A similarity function A 
can be selected as more suitabl
function B, according to the feasibility criterion, if the 
region for which f > 0, obtained by using the similarity 
function A, contains the region for which f > 0, obtained 
by using the similarity function B. 
The optimum despeckling options are in general 
dependent on texture parameters and can be different for 
the two similarity functions. Fig. 3 and Fig. 4 show the 
trends of the feasibility function as a function of the size 
of the despeckling window size NL = NLrg NLaz for 
different values of the order parameter and correlation 
length respectively, using NCC. It can be noticed that 
the optimum despeckling window size does not depend 
on the order parameter. A slight dependence of the 
optimum despeckling window size on the correlation 
length can instead be observed: the larger the correlation 
length, the larger the optimum despeckling window 
size. The larger is the correlation length, in fact, the 
greater is the number of neighbouring pixels with the 
same or very similar RCS. In this case, despeckling 
using relatively large windows leads to a removal of the 

speckle and a preservation of the underlying RCS trend, 
as it is rather constant within the despeckling window. 
In contrast, despeckling im
le

 
Figure 3. Feasibility function vs. size of the despeckling 

window size for different order parameters 
 

 
Figure 4. Feasibility function vs. size of the despeckling 

window size for different correlation lengths 
 
 
As apparent from the plots, in the absence of coherence, 
despeckling the intensity images before correlating the 
image patches is of advantage. If the estimation of the 
differential shift is carried out without despeckling the 
images, a large number of wrong estimates will be 
present in the resulting shift maps, as shown in Fig. 5, 
where shift maps of the Helheim glacier, Greenland, 

ch a function can be 
displayed. In particular, from the previous analysis, it 
seems reasonable to optimise the feasibility function, 

have been computed with (7 X 7 window) and without 
despeckling. It is apparent that the number of wrong 
estimates is by far higher in the shift maps obtained 
without performing despeckling.  
Once the despeckling options have been fixed 
accordingly to the carried out analysis, the optimised 
feasibility function fopt as a function of the texture 
characteristics is obtained. In particular, in the special 
case of equal range and azimuth correlation lengths, the 
two-dimensional trend of su



 

using a window size of 7 X 7 pixels in case of NCC and 
of 3 X 3 pixels in case of ML. 

     
 

     
 

igure 5. Shift maps from the Helheim glacier, obtained 

e non-feasibility regions. Fig. 6 shows 
this boundary, for both NCC and ML, using 64 X 64 
pixel patches. 

F
with (bottom) and without (top) despeckling 

 
What we are interest in, more than the trend of the 
feasibility function, is indeed the boundary between the 
feasibility and th

 
Figure 6. Feasibility (green) and non-feasibility (blue) 

s denote image areas with well-

e 
 the high order parameter, the shift estimation can be 

unambiguously performed only in the crevasse area. 
 

regions for NCC (left) and ML (right) 
 
A minimum value of the order parameter is required. As 
lower order parameter
defined features, this is equivalent to require the 
presence of features.  
Fig. 7 includes some shift maps from the Aletsch 
glacier, Switzerland. In this case, it is apparent that, du
to

 

Figure 7. SAR image and shift maps from the 
 Aletsch glacier, Switzerland 

As far as the SNR is concerned, the simulation results 
show that if the minimum requirements on the texture 
characteristics are satisfied, the shift estimation is made 
unfeasible by the SNR only if it is lower than 0 dB (the 

 the signal power). 

ttention deserves the case of very fast flowing 

er 

e two patches only differ 

f the derivatives 
crease, the expected value of the cross-correlation 

between matching-patches decreases. 
 

noise power is greater than

4.3. Very Fast Glaciers  

Special a
glaciers, for which a first analysis has been carried out 
in [10]. 
In this case, the hypothesis of a uniform shift field 
within the patch does not hold anymore. A more 
realistic model for the shift field would consider a 
simple spatial variation of it, for which the first-ord
spatial derivatives are constant and the higher order 
spatial derivatives of the shift field are equal to zero.  
For a given set of texture parameters, the value of the 
measure of similarity between the reference patch and 
the matching patch decreases, as the values of the first-
order spatial derivatives of the shift field increase. 
When the values of those derivatives are significant, in 
fact, not only does the matching patch differ from the 
reference one in the residual speckle pattern, but also in 
its underlying RCS, which can be seen as a stretched 
version of the RCS of the reference patch. In contrast, 
when the values of the first-order derivatives of the shift 
field are close to zero, th
because of the residual speckle and their correlation is 
expected to be rather high. 
In order to understand how high the values of those 
derivatives can be, simulations have been run. The first-
order derivatives of the shift field have been assumed to 
be constant within the patch, while higher order 
derivatives have been assumed to be null. Fig. 8 shows 
the PDFs of the cross-correlation coefficient between 
matching patches (dashed line) and between non-
matching patches (solid lines), for different values of 
the first-order spatial derivatives of the shift field in a 
particular case study, where all the other parameters 
have been fixed. As the values o
in

 



 

Figure 8. SAR image and shift maps from the 
 Aletsch glacier, Switzerland 

In order to keep low the number of wrong estimates, in 
this special case, the values of the derivatives should not 
exceed 0.1, i.e. the difference of the shifts of two 
neighboring pixels has to be smaller than 0.1 pixels. As 
long as the failures are few and sparse, in fact, they can 

nalysis is helpful to select the repeat cycle for a

 
IFT ESTIMATION 

ce the image and processing 

nds to the 

onte-Carlo 
mulations, using NCC and ML. The latter similarity 

function leads to better estimation accuracy. 
 

be identified and the correct shift can be retrieved by 
means of post-processing.  
For a given glacier and a short observation period, the 
shift field can be assumed to be proportional to the 
temporal baseline and so are their derivatives. This 

 a
mission, whose aim is to monitor fast-flowing glaciers. 

5. ACCURACY OF THE SH

5.1. Monte Carlo Simulations 

The estimation accuracy is complicate to be derived 
analytically. However, on
parameters are given, it can be evaluated by means of 
Monte Carlo simulations. 
The method consists of generating the two dimensional 
underlying RCS trend (Nrg X Naz pixels) according to 
the desired statistics, duplicating this RCS trend and 
multiplying them by two uncorrelated speckle patterns, 
adding the thermal noise, then performing the described 
processing and estimating the shift. This is repeated for 
a very large number of trials (a different RCS trend is 
generated for each trial, but all are characterized by the 
same texture parameters), so that statistics of the 
estimated shift can be obtained. As the real value of the 
shift is zero, the estimated shift correspo
estimation error and its standard deviation to the 
accuracy of the differential shift estimation. 
Fig. 9 shows the distribution of the estimation error for 
a given set of parameters as obtained by M
si

      
Figure 9. PDF of the estimation error, using NCC (left) 

(right) 

stimation accuracy on the 

As apparent, the estimation of the differential shift 
without performing any despeckling is characterized by 
a degraded accuracy.  

and ML 

5.2. Impact of Despeckling 

The dependence of the e
despeckling window size is depicted in Fig. 10 for 
different order parameters. 

 
Figure 10. PDF of the estimation error, using NCC 

(left) and ML (right) 

s-correlation, in the presence 

lo 

 
rror is also independent of the shape of the patches 

used for the estimation (the same accuracy is achieved 
by using either 64 X 64 or 128 X 32 patches)
 

5.3. Number of Resolution Cells Used for the Shift 
Estimation 

When the mutual shift of image elements is estimated 
by means of coherent cros
of partial coherence, the accuracy of the shift estimation 
is in inverse proportion to the square root of the number 
of resolution cells [2][3].  
Despeckled intensity images, used for feature-tracking, 
are not characterized by statistical independence of the 
values of adjacent resolution cells. Monte Car
simulations show that the above mentioned relation 
between standard deviation of the estimation error and 
size of the patches used for the estimation still holds. 
Furthermore, the standard deviation of the estimation
e

, holding: 

azrg

az

azrg

rg
NNNN

       ;             (10) 

 
It is important to recall that the form

11

ula, valid for both 
the NCC and the ML similarity functions, holds as long 

n are characterized 
by the same range and azimuth shift. 

 shift estimation differs from the accuracy of 

as all the cells used for the estimatio

5.4. Texture Parameters and SNR 

Fig. 11 shows the accuracy of the shift estimation as a 
function of the order parameter for different values of 
the correlation lengths, assumed to be equal in the range 
and azimuth direction, using NCC and ML. They are 
useful to figure out the achievable accuracy of this 
technique. For a 64 X 64 patch size, the accuracy of the 
shift estimation ranges from 0.2 to 1.2 resolution cell, 
depending on the texture parameters. According to (10), 
for a 128 X 128 patch size, the accuracy halves. In case 
the range and azimuth correlation lengths and/or the 
range and azimuth resolution are not equal, the accuracy 
of the range



 

the azimuth shift estimation. It is important to remark 
that, according to the simulations, ML performs better 
than NCC. 

 
Figure 11. Accuracy of the shift estimation 

using NCC (top) and ML (bottom) 
 
Fig. 12 shows the trend of the accuracy of the shift 
estimation as a function of the SNR. It is apparent that, 
for values of SNR is greater than 8 dB, the performance 
improvement is very small. It is also interesting to 
notice that, for very low values of SNR, NCC performs 
better than ML. This is not surprising, because for low 

alues of SNR, the effect of the additive thermal noise 
dominates over the effect of the multiplicative noise 
(speckle). 
 

v

 
Figure 12. Accuracy of the shift estimation vs. SNR 

 better accuracy. This is 
due to the fact that the matching patch differs from the 

reference one not only in the residual speckle pattern, 
but also in its underlying RCS. 

5.5. Very fast glaciers 

A non-uniform shift field between the two patches 
affects the accuracy of the shift estimation. Fig. 13 
shows how the accuracy degrades with increasing 
values of the first-order derivatives of the shift field, 
assuming that they are constant and that the higher order 
spatial derivatives of the shift field are equal to zero. It 
is noticeable that for a non-uniform shift field, a larger 
patch does not necessary lead to

 
Figure 13. Accuracy for very fast glaciers 

 

polarization-dependent. The 

is 
vailable. Let us assume that the information related to 

the different channels is collected in the P

6. BENEFITS OF POLARIMETRY 

6.1. Selection of the Most Suited Polarisation 

Feature-tracking can benefit of the availability of fully-
polarimetric data. Some texture characteristics, such as 
the order parameter, are 
choice of the optimum polarisation may therefore lead 
to improved performance. 
In case fully-polarimetric data are available, for each 
pixel of the image, a three-element complex vector 
a

auli vector: 
 

 hvvvhhvvhh SSSSS 2Pk                (11) 

 
An arbitrary polarisation can be selected by multiplying 
the transpose scattering mechanism vector w [11], a unit 
modulus vector made up of five independent 
parameters, by the Pauli vector. In order to select a 
polarisation, in fact, we have to choose three complex 
coefficients or six real parameters, one of which is 
dependent on the others, as the vector has unit modulus. 
In effect, as we are only interested in the intensity of the 
image so obtained, we don’t need to specify the phases 
of the all three complex coefficie

T

nt, but it is enough to 
ecify two of them, therefore only four independent 

parameters have to be specified: 
sp
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s the standard 
deviation for an order parameter of 1.25. 

 
By varying these parameters, it is possible to explore the 
entire space of polarisations. In particular, for a patch 
taken from the crevasses area of the Aletsch glacier, 
Switzerland, the order parameter has been evaluated for 
all the possible polarisations. The order parameter 
ranges from 1.25 to 2.75, being 1.75 the average order 
parameter. The performance improvement can be 
inferred from the plots of Fig. 11. The standard 
deviation of the estimation error for an order parameter 
of 2.75 is approximately twice as large a



 

6.2. Filtering the Speckle in the Polarimetric Domain Feature-tracking is effective to monitor fast-flowing 
glaciers, when coherence between consecutive 
acquisitions is not likely to be retained. An as alternative, fully-polarimetric data can be 

exploited by performing some despeckling in the 
polarimetric domain. Polarimetric Whitening Filter 
(PWF) combines the three complex elements Shh, Svv, 
and Shv of the polarimetric scattering matrix to reduce 
speckle [12]. A model for the clutter covariance matrix 
is assumed, being the elements of this matrix adaptively 
estimated from local data. In this case only some 
components of the covariance matrix are used to obtain 
the despeckled image. More sophisticated speckle 
filters, reviewed in [13], allow the filtering of the entire 
covariance matrix, so preserving the statistical 
characteristics of the data, but we are not aware of a 
method to use all the polarimetric information 
(including the phases) for feature-tracking, given our 
hypothesis of absence of coherence. 

The analysis performed, however, is applicable to 
applications other than glacier monitoring. 
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