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Abstract—Radar data have already proven to be compressible
with no significant losses for most of the applications in which it is
used. In the framework of information theory, the compressibility
of a signal implies that it can be decomposed onto a reduced set of
basic elements. Since the same quantity of information is carried
by the original signal and its decomposition, it can be deduced that
a certain degree of redundancy exists in the explicit representation.
According to the theory of compressive sensing (CS), due to this
redundancy, it is possible to infer an accurate representation of
an unknown compressible signal through a highly incomplete set
of measurements. Based on this assumption, this paper proposes
a novel method for the focusing of raw data in the framework of
radar imaging. The technique presented is introduced as an alter-
native option to the traditional matched filtering, and it suggests
that the new modes of acquisition of data are more efficient in
orbital configurations. In this paper, this method is first tested on
1-D simulated signals, and results are discussed. An experiment
with synthetic aperture radar (SAR) raw data is also described.
Its purpose is to show the potential of CS applied to SAR sys-
tems. In particular, we show that an image can be reconstructed,
without the loss of resolution, after dropping a large percentage
of the received pulses, which would allow the implementation of
wide-swath modes without reducing the azimuth resolution.

Index Terms—Compressive sensing (CS), l1 minimization,
linear programming, matched filter, sparsity, synthetic
aperture radar (SAR).

I. INTRODUCTION

IN TYPICAL imaging radars used in remote-sensing appli-
cations, the scene is observed by an antenna at different

sensor positions. In the case of synthetic aperture radar (SAR)
systems, the coherent information recorded at the different
positions is used to synthesize a very long antenna to improve
the azimuth resolution. The need to avoid azimuth ambiguities
in the resulting radar image results in the requirement of a dense
spatial sampling of the backscattered signal. This required
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dense sampling results in large data rates, which for orbital mis-
sions translate to large onboard memory and downlink through-
put requirements. More fundamentally, for SAR systems, this
dense sampling results in a minimum pulse repetition frequency
(PRF) requirement, which fulfills the Nyquist sampling theory
that in turn limits the maximum swath of the system. Due to the
high amount of data generated, in cases where the downlink
throughput is a constraint, data compression techniques are
encouraged and often used [1]. For instance, the European
Space Agency (ESA) distributes the raw data of the Envisat
in a compressed format, resulting from an onboard signal data
reduction algorithm [2].

Data compression relies on the principle that a useful signal
is not perfectly chaotic. This implies that its samples are related
by structural patterns, and as a consequence, there exists some
degree of redundancy in the complete representation of the
signal. By assuming that the signal is sparse in a certain basis,
the new concept of compressed (or compressive) sensing (CS)
states that it is possible to reconstruct a signal accurately from
a highly incomplete number of samples, even with fewer mea-
surements than what is considered to be necessary according to
the Nyquist theory. Before the advent of the CS formalism over
the past few years, different applications in very diverse areas
have used ideas in this direction. This is the case, for example,
of sparse arrays in imaging radars [3] or of the Microwave Inter-
ferometric Radiometer by Aperture Synthesis instrument used
in the Soil Moisture and Ocean Salinity mission [4]. More re-
cently, CS has already proven to have far reaching implications
in a number of fields related to signal processing [5]: medical
imaging [6], biosensing [7], geophysical data acquisition [8],
hyperspectral imaging [9], communications [10], etc.

This paper proposes a novel method based on CS for the
focusing of raw data in the framework of SAR. This technique
is introduced as an alternative option to the traditional matched
filtering, which can suggest new modes of operation or improve
the performance of existing ones.

After reviewing the basic insights of CS theory (see
Section II), the fundamentals of the alternative technique pro-
posed will be presented, justified, and tested on 1-D simulated
signals (see Section III). Then, the real SAR data from the Euro-
pean Remote Sensing (ERS) satellite will be used to validate the
proposed method (see Section IV). The purpose of this test is to
show the potential of CS applied to SAR systems. In particular,
we show that an image can be reconstructed, with no loss of
resolution, after dropping a large percentage of the received
pulses. This would allow, for instance, the implementation of
wide-swath modes with no reduction of the azimuth resolution.

0196-2892/$26.00 © 2010 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11145233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


4286 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 12, DECEMBER 2010

II. THEORY OF CS

This section exposes briefly the theoretical fundamentals of
CS, introduced in [23] and [24]. A detailed presentation can be
found in [5].

Consider a finite signal x ∈ R
N and a limited number of

observations of x in the form of K linear measurements yk

yk = 〈x, ψk〉, k = 1, . . . ,K (1)

where 〈. . .〉 means the scalar product and ψk is known as
the test signal. Therefore, the coefficients yk result from the
projection of the signal x on a set of fixed vectors. Equivalently,
in matrix notation

y = Φx (2)

where test vectors ψk constitute the rows of matrix Φ and the
vector y is formed by the K elements yk in (1). If there are
much more unknowns than observations, K � N , (matrix Φ
has much more columns than rows), the system of equations in
(2) is highly undetermined. It has been shown in the framework
of CS theory that it is very likely to recover x exactly provided
that it is sparse and that matrix Φ obeys a restricted isometry
condition (RIC). The recovery is achieved by means of an
estimation through a convex optimization problem, designed as
(P1) and described as

(P1) min
x̃∈RN

‖x̃‖l1 subject to y = Φx̃. (3)

The linear program in (3) states that among all the signals
x̃ ∈ R

N that satisfy y = Φx̃ (this means that they all have the
same representation in the projection on the set of K vectors
ψk), we take the one that minimizes the l1 norm given by

‖x̃‖l1 :=
N∑

k=1

|x̃k|. (4)

The l1 norm is directly the sum of the absolute values of all
the samples x̃k of vector x̃. By imposing the minimization of
this norm, we are considering that the signal that we are looking
for is the sparsest one among all the signals sharing an identical
projection of the set of elements ψk [28].

It should be mentioned that the solution to the linear program
in (3) does not require any particular a priori assumption about
the number of nonzero elements in x nor about their locations
and amplitudes. The literature provides several options of algo-
rithms to solve (3). The most relevant ones are the basis pursuit
(BP) [11], the matching pursuit (MP) [12], and the orthogonal
matching pursuit (OMP) [13] techniques.

Let us consider more closely the requirements previously
mentioned—the sparsity of x and the RIC of matrix Φ. On the
one hand, according to sparsity, a signal x is sparse if there
exists a domain ψ in which the coefficient sequence is sup-
ported on a small set. This means that significant information
is carried by just a few coefficients. On the other hand, the RIC
was first introduced by Candes and Tao [24]. It is related to the
incoherency of the sets of columns of the matrix. In the scope
of this paper, it will be used so that a sufficient condition for
matrix Φ fulfills the RIC with a high probability and that its
columns approximately behave like an orthogonal system.

Fig. 1. Simplified SAR focusing by means of sequential compression in range
and in azimuth.

Moreover, it has been shown [14] that the rationale exposed
in this section can be extended to compressible noisy complex
signals. It is worth noting that compressibility is a condition
far less restrictive than sparsity, and most of the natural and
manmade signals satisfy it. Compressibility implies that there
exists a basis, in which the projection of the compressible signal
produces just a small amount of coefficients with high energy.
Similarly, linking the concepts of compressibility and sparsity,
a signal is compressible if there exists a basis in which its
projection is sparse.

III. NOVEL RADAR IMAGING TECHNIQUE

This section presents a new method for focusing raw data
in the framework of radar imaging after reviewing the oper-
ation and main drawbacks of the traditional matched-filtering
approach.

A. Conventional Focusing Through Matched Filtering

In conventional imaging radar systems, the received signal is
usually processed with a matched filter. This operation essen-
tially consists in convoluting the received signal with a suitable
reference function.

For SAR systems, this matched-filtering operation is applied
in two steps [15, Ch. 2]: range compression and azimuth com-
pression. In Fig. 1 sR is the received signal, hr is the impulse
response of the filter in the range, ha is the impulse response of
the filter in the azimuth, and τ and η are the range (fast time)
and azimuth (slow time) coordinates, respectively.

Matched filtering maximizes the signal-to-noise ratio (SNR)
if additive white noise is assumed, and it is, therefore, the
optimum solution in terms of the SNR. However, matched
filtering typically results in relatively high sidelobes, which are
usually mitigated by windowing the reference signal. With this
tapering, the sidelobes are reduced, as well as the resolution.

From an implementation point of view, matched filtering
assumes that the sampling frequency and the PRF satisfy the
Nyquist–Shannon criterion. In the range, this can become a
technological challenge if very high resolution is required. In
the azimuth, however, it introduces fundamental tradeoffs be-
tween swath width, range ambiguities, and azimuth resolution
[16, Ch. 2].

The next section exposes an alternative option to matched
filtering.

B. CS Applied to Radar Imaging: State of the Art

In the last two years, several works have been proposed in
the direction of radar imaging involving CS tools. The most
relevant are mentioned hereafter.
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In [25], the authors propose a new “compressive radar re-
ceiver,” based on the notion of CS. They propose lowering
the rate of the A/D converter in the receiver, projecting the
resulting signal in a particular sparsity frame, and then inferring
the observed signal by means of OMP greedy algorithms. They
present the preliminary results of the simulated SAR imagery,
with no speckle and regular shapes well adapted to the nature
of the sparsity frame employed. In [26], sparse signal repre-
sentation and approximations from complete dictionaries are
explored. An application for the interpretation of airborne SAR
wide-angle images is proposed. It suggests moving from a pixel
representation to an object-level representation. No results with
real data are provided. In [27], an alternative technique for the
compression of raw data is proposed based on the use of dual-
tree continuous wavelet transform as a sparsifying transform
previous to the application of OMP in order to obtain a sparse
representation of the complex SAR image.

C. Theoretical Principles of the Novel Approach for Radar
Imaging Based on CS

Under the Born hypothesis [17]–[19], it can be assumed that
the signal returned to the sensor sR(t) can be modeled as the
convolution of the transmitted signal sT (t) with the reflectivity
of the observed scene σ(t)

sR(t) = sT (t) · σ(t) =

∞∫
−∞

sT (t− t′)σ(t′)dt′. (5)

In practice, the received signal sR(t) is digitized with a
sampling rate 1/k1. Variable t′ in the integral in (5) is a dummy
variable which can be discretized in the most general case with
a different sampling rate 1/k2; the continuous case corresponds
to infinitely short intervals k2. Thus, t = k1n and t′ = k2m,
where m and n are the discrete time variables corresponding to
t and t′, respectively, in the continuous domain. The convolu-
tion in the discrete domain can then be expressed as

sR(k1n) =
∑
m

sT (k1n− k2m)σ(k2m). (6)

If dealing with finite-length signals (the swath width τp is
not infinite), the convolution can be expressed as a product
of a matrix S with a vector σ. Let us consider for notation
simplification purposes that k1n = k and k2m = j and that the
signals considered have samples ranged from 1 to N , where N
is the signal length. We assume the same length for sT and σ,
for the sake of simplicity. Then, the discrete convolution can be
expressed as

sR =S · σ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sR(1)
sR(2)

...
sR(N)

sR(N + 1)
...

sR(2N − 2)
sR(2N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sT (1) 0 · · · 0
sT (2) sT (1) · · · 0

...
...

. . .
...

sT (N) sT (N − 1) · · · sT (1)
0 sT (N) · · · sT (2)
...

...
. . .

...
0 0 · · · sT (N − 1)
0 0 · · · sT (N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

σ(1)
σ(2)

...
σ(N − 1)
σ(N)

⎤
⎥⎥⎥⎥⎦ .

(7)

Matrix S is the convolution matrix, whose rows are re-
versed, conjugated, and time-shifted versions of the samples
of sT (t). Vector σ is the sampled version of the reflectivity
of the observed scene, and sR(n) is the sample acquired by
the receiver. Hence, sR(n) can be considered as the result of
the projection of the reflectivity of the observed scene σ(n)
onto the basis of the vectors constituting the rows of matrix
S. At this point, the goal is to infer, as closely as possible,
σ(n) from the samples sR(n). It can be seen in Section III-A
that, traditionally, σ is estimated by convoluting sR(n) with the
corresponding matched filter of sT (t). We propose instead a
recovery scheme based on CS.

In order to bring (7) to a CS scheme, there exist several
options, depending if we consider similar or different sampling
rates 1/k1 and 1/k2. Note, for example, that if we set the value
of the blind variable k2 to a value lower than k1 (this is feasible
since the analytical expression of the transmitted waveform is
known a priori), the linear system in (7) is directly undeter-
mined. Nevertheless, for the sake of clarity in the exposition,
only one of the possible options is explored in detail in this
paper. Essentially, this option considers k1 = k2, and it consists
in reducing the amount of samples collected in the receiver. By
doing so, in the formulation of the system of linear equations in
(7), a reduced set of samples selected randomly is used in (8),
leading to an undetermined system of equations

s′R =S ′ · σ′

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sR(1)
sR(2)−−−−−−

...
sR(N)−−−−−−−

sR(N + 1)
...

sR(2N − 2)−−−−−−−−−−−
sR(2N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sT (1) 0 · · · 0
sT (2)−−−−−− sT (1)−−−−−− · · · 0−−

...
...

. . .
...

sT (N)−−−−−−− sT (N − 1)−−−−−−−−−− · · · sT (1)−−−−−−
0 sT (N) · · · sT (2)
...

...
. . .

...
0−− 0−− · · · sT (N − 1)−−−−−−−−−−
0 0 · · · sT (N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

σ(1)
σ(2)

...
σ(N − 1)
σ(N)

⎤
⎥⎥⎥⎥⎦ . (8)
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In (8), the neglected samples appear crossed out. They will
not be taken into account for the retrieval of vector σ. In
such a situation, x can be retrieved exactly with a number of
measurements on the order of α log(N), where α is the order
of sparsity of x. Note that a signal α sparse means that it has
only α nonzero coefficients in a suitable transformed domain.

From a computational point of view, the solution of the CS
scheme is more time consuming than the convolution with
the matched filter. The convex program, expressed in (3), has
a computational load of about 30 or 50 times that of solv-
ing a least-square problem of equivalent dimensions [20]. In
Section II, different options have been mentioned to deal with
this matter. In the framework of this paper, we choose the use of
a regularized OMP (ROMP), since it provides an efficient and
robust solution and is able to handle complex noisy data [13].

The ROMP is an iterative algorithm performing a local
optimization as opposed to the global optimization techniques,
such as the BP, for example. Essentially, at each iteration, the
MP looks for the element of the basis ψk which is the most
strongly correlated with the signal x, that is, which has the
highest absolute inner product with the signal. The estimated
signal is then actualized accordingly.

D. Fulfillment of the Requirements to Apply CS

The theory of CS states two requirements (see Section II)
in order to expect a valid solution to the highly undetermined
system in (8). This section shows that it is reasonable to
employ CS for radar imaging purposes, since both conditions
are fulfilled.

1) Sparsity of Radar Data: It is widely assumed that com-
pressibility is expected for signals whose power spectrum drops
with increasing frequency, i.e., they belong to the 1/f family.
The amplitude of a SAR image follows a characteristic gamma
distribution, and thus, its spectrum drops with frequency even
if not as fast as that for an optical image [15, Ch. 4]. Moreover,
the sparsity (in a wider sense, the compressibility) of radar
data has been already justified in the literature, and different
image-coding algorithms have been proposed for radar data
compression, based on this condition [1], [21].

2) Convolution Matrix Satisfies RIC: The RIC says that
the mapping Φ acts like an isometry on α-sparse vectors. It
requires that every set of columns with a cardinality less than
α approximately behaves like an orthonormal system. That
is to say all subsets of α columns taken from Φ are nearly
orthogonal. By construction, the convolution matrix is a band
matrix. The real part of a convolution matrix used in the 1-D
simulations of Section III-D is shown in Fig. 2 (left). The green
color corresponds to zeros, and as a consequence, it can be
observed that nonzero elements are distributed following a band
crossing the matrix from the upper left corner to the bottom
right one. In a band matrix, the scalar product between two
nonconsecutive columns involves a small number of nonzero
coefficients (decreasing when the distance between the columns
augments). Since matrix Φ is directly obtained from the convo-
lution matrix, after the removal of a number of rows (see Fig. 2,
on the right), the observations according to the orthogonality
of columns raised for the convolution matrix still hold for

Fig. 2. Representation of both the convolution matrix (a) and matrix Φ
obtained after random selection of rows (b).

Fig. 3. Representation of the autocorrelation matrix of the columns of matrix
Φ in Fig. 2.

matrix Φ. Thus, the orthogonality is just to be verified between
columns close to each other.

In this sense, it is easy to verify that the orthogonality
between two consecutive columns in a band matrix depends
directly on the autocorrelation of the samples constituting these
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Fig. 4. Amplitude retrieved for a simulated scene with ten point targets with different SNR levels, ranging from 0 to 20 dB. (Left column) Results obtained with
the technique based on CS, with 50% of the samples (solid curve) superimposed to ground truth (x mark). (Right column) Results obtained with matched filtering
(solid curve) superimposed to ground truth (x mark).

columns. In the particular case that we are considering, the
column vectors are the samples of the transmitted waveform
which consists in a chirp signal. Since the autocorrelation of
a chirp signal is low except at the origin, the orthogonality
of the columns of matrix Φ is verified. Fig. 3 represents the
autocorrelation matrix of the columns of matrix Φ in Fig. 2. It
can be observed that this matrix is almost the identity, and as a
consequence, it is verified that Φ satisfies the RIC.

E. One-Dimensional Simulation Results

In order to check the viability of the alternative radar imaging
technique exposed in this paper, the first test has been carried
out on a set of simulated 1-D signals.

The procedure of the simulation is enumerated in the fol-
lowing sentences. First, the round-trip delay for a collection of
point targets is randomly generated using a uniform distribution
corresponding to a range of valid distances. Then, the complex

scattering coefficient of each target is randomly chosen from a
Rayleigh distribution in amplitude and a uniform distribution
in phase. Finally, the received signal is generated as the sum of
the time-shifted replicas of the transmitted waveform (which
is adjusted to be a chirp signal with a compression ratio of
52); each is multiplied by its respective scattering coefficient.
Once the received signal has been synthesized, a random
white Gaussian noise vector is added to simulate the thermal
noise.

In reception, in order to build a CS scheme as in (2), the first
step is to construct the convolution matrix Φ from the known
transmitted waveform. Then, just a fraction of the samples
of the simulated received signal have been kept (see Fig. 2).
These samples are taken randomly. In the framework of this
paper, the experiments have been carried out with 10% to 70%
of the samples. Hence, a reduced convolution matrix results
from this selection with the rows of matrix Φ corresponding
to the samples selected. It has been empirically observed that
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Fig. 5. Phase retrieved for the same simulated scene in Fig. 4, with ten point targets with different SNR levels, ranging from 0 to 20 dB. (Left column) Results
obtained with the technique based on CS, with 50% of the samples (solid curve) superimposed to ground truth (x mark). (Right column) Results obtained with
matched filtering (solid curve) superimposed to ground truth (x mark).

a higher number of samples slightly reduce the error of the
estimated signal. Nonetheless, the results shown in this paper
have been obtained by setting the number of samples consid-
ered for the estimation to 50% of the samples received. Once the
undetermined system of equations is constructed, the convex
linear problem in (3) is solved with the ROMP algorithm. In
order to evaluate the possibilities of this new radar imaging
technique with respect to the traditional ones, results have been
compared with those of the matched filtering. Figs. 4 and 5
show, respectively, the amplitude and the phase obtained by the
method based on CS (left column), as well as with matched
filtering (right column), for an example of simulated scene with
ten point targets. In order to test and compare the robustness in
front of noise of both methods, tests were carried out with no
noise, as well as with SNRs ranging from −10 to 20 dB.

The results are summarized by representing only three cases
(0, 10, and 20 dB). The selection of this range of values obeys
to the fact that most of the changes were observed in this region.

The results are superimposed to the ground truth (represented
by x marks) in order to highlight the mismatches. Moreover,
it is worth noting that for the phase resulting from matched
filtering, only the points with a target in the ground truth have
been considered, since the phase can be seen as noise elsewhere.

On the one hand, according to the amplitude, for SNRs
greater than 10 dB, the method based on CS exhibits a close
match to the ground truth: The targets are detected with accu-
rate amplitudes at the right positions, and no artifacts appear.
The most noticeable effect compared to matched filtering is the
complete absence of sidelobes. This permits a better discrim-
ination of close targets (see targets located between positions
five and ten), as well as the avoidance of a ringing effect for
low SNRs (see target at position 25 for an SNR equal to 0 dB).
Moreover, sidelobes produced by matched filtering can also
hide low-amplitude targets. For instance, it can be observed that
the low-amplitude target located near position 35 is detected
with the technique proposed based on CS for SNRs greater
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Fig. 6. Histograms of the errors produced by the CS approach (solid curves) and by matched filtering (point curves) for both amplitude (left column) and phase
(right column) and for different SNRs.

Fig. 7. Histograms of the phase difference introduced by the CS approach for different realizations.

than 0 dB, while it does not appear in the result obtained with
matched filtering for any SNR. On the other hand, according to
the phase plots, a more precise match to the ground truth is ob-
served for the values retrieved with the technique based on CS
than for those obtained through matched filtering (the compar-
ison is considered only for nonzero elements). However, even
for high SNRs, artifacts are introduced. Moreover, as observed
for the amplitude, for an SNR lower than or equal to 0 dB,
the method is unable to detect the lowest amplitude target in
the example of the simulation selected. In order to evaluate and
compare the errors introduced in the recovery by means of the
technique proposed based on CS, as well as with the traditional
matched filter, a systematic test has been carried out over
200 different simulated scenes. For each one, the relative errors
in amplitude and in phase have been evaluated separately. The
phase error has been estimated as the phase of the product
of the result with the complex conjugate ground-truth signal.
For the phase of the result obtained through matched filtering,

only the points corresponding to the presence of targets have
been considered. The histograms of the errors, both in ampli-
tude and in phase, for the processing with CS (red curves), as
well as with the conventional matched filtering (blue curves),
are represented in Fig. 6. It can be observed that the histograms
corresponding to the error introduced by the CS approach
exhibit important peaks at zero and low values elsewhere, both
in amplitude and in phase.

Since the selection of the 50% of the samples intervening
in the CS approach is done randomly, the repeatability of the
method proposed has to be checked. In order to do so, the
phase difference between the results obtained with 20 realiza-
tions for each of 200 simulated examples has been computed.
Additionally, the test has been extended to different SNRs. The
results are shown in Fig. 7 in which it can be observed the rapid
decay of the dispersion of phase differences as a function of the
amplitude in any case. As the SNR decreases, the values tend
to show a larger spread.
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Fig. 8. Flowchart of the experiment carried out with SAR raw data.

Fig. 9. Example of test of the proposed technique based on CS on an oceanic
scene. (a) Single-look complex image obtained by means of conventional SAR
imaging. (b) Single-look complex image obtained by means of CS imaging,
with 50% of the lines.

IV. RESULTS WITH SAR DATA

After confirming the viability of the proposed approach
through testing on sparse 1-D simulated data, an application has
been explored in the framework of SAR processing. It considers

Fig. 10. Example of test of the proposed technique based on CS on a
complex scene. (a) Multilooked image obtained by means of conventional
SAR imaging. (b) Multilooked image obtained by means of CS imaging, with
50% of the lines.



TELLO ALONSO et al.: NOVEL STRATEGY FOR RADAR IMAGING BASED ON COMPRESSIVE SENSING 4293

an alternative method for the compression of raw data, and it
has been carried out with data acquired with the ERS-2 sensor
of the ESA of the area in the city of Barcelona, Spain, on
October 10, 1999. The results presented in this section are the
preliminary ones. They constitute the first experiments of the
azimuth compression involving real data. However, since SAR
data are not sparse in practice, the quality of the results is not
optimum, and it would be improved by adding a projection in a
sparsifying matrix in the reception.

A. Description of the Processing

Section III-A has already provided a brief overview of the
conventional process of SAR focusing. With more detail, ac-
cording to a range Doppler algorithm (RDA) without range cell
migration correction, the compression of raw data is done in
two steps: range and azimuth compression. Assuming the sepa-
rability of processing in these two directions, the operations are
performed sequentially with 1-D arrays.

In the scope of this experiment, the procedure applied con-
sists in processing the data in the range direction by means
of conventional compression with matched filtering and then
focusing in the azimuth with the technique proposed based on
CS (see Fig. 6). Specifically, let SR(fτ , η) be the range Fourier
transform of sR(τ, η), the demodulated radar signal. Let
HR(fτ ) be the frequency domain matched filter in the range.
The output of the range compression can be expressed as [22]

sRC(τ, η) = IFFTτ {SR(fτ , η)HR(fτ )} . (9)

Once the compression in the range is completed, for each
sample vector in the range, instead of applying matched fil-
tering in the azimuth, we consider a random selection of 50%
of the lines in the azimuth. These lines constitute a vector sR

in (7), and hence, the rows of the convolution matrix Φ (built
as previously through the a priori known expression of the
transmitted waveform) are selected accordingly. Then, once the
elements of the linear program in (3) are identified, we use
the ROMP algorithm to solve it, just as in the case of the tests
with the simulated examples in Section III-D.

A rigorous quantitative evaluation of the effects of the
technique proposed based on CS is difficult to provide since,
in real scenarios, no precise ground truth is available. As a
consequence, only a qualitative estimation is provided, taking
the traditional focusing with matched filtering as a reference
(see Fig. 8).

B. Results

This section provides an overview of some illustrative results
obtained.

The first set of tests has been carried out in oceanic scenes.
If assuming applications exclusively concerned by the presence
and position of ships, sea clutter can be treated as noise. As
a consequence, this produces an extremely sparse signal well
suited for the application of CS techniques. An example with
two vessels is shown in Fig. 9. Both targets are detected with
sufficient contrast with respect to the background, and they are

Fig. 11. Zoom on a urban area. (a) Multilooked image obtained by means of
conventional SAR imaging. (b) Multilooked image obtained by means of CS
imaging, with 50% of the lines.

located at the correct positions. Furthermore, it must be noted
that they appear with an azimuth smearing less accentuated
than with that of the processing with conventional focusing.
However, it must be noted that the presence of the target in
the left is less noticeable in the retrieval by means of CS than
in the one with the conventional matched filter. Because of
the nonavailability of the ground truth, the interpretation of
this observation is delicate. It could be due to the simplistic
assumption of the sparsity of SAR data, but it could also be due
to the nature of the target.

The second set of tests has been performed on more complex
scenes, involving sea surface areas, rural regions with distrib-
uted targets, as well as urban patterns. An example is shown
in Fig. 10. A precise evaluation of the quality of the results
obtained is difficult at this point. It can be noticed that the
most important targets, as observed in the multilooked image
produced by conventional SAR focusing, appear as well in
the multilooked image resulting from the imaging technique
proposed based on CS, by taking only 50% of the lines. Sim-
ilarly, features relevant to topography, urban areas, roads, etc.,
are observable in both images. The closest observation reveals
differences between both results in some areas. For example, a
high reflective area appears for the recovery by means of CS
in the right part of the image, and this does not happen for
the image retrieved with a matched filter. This area has been
marked with a red circle in the outputs.

A zoom of the large scene in Fig. 10, corresponding to an
urban area, is shown in Fig. 11.

V. CONCLUSION

This paper has suggested a novel approach for radar imaging
based on CS. Essentially, it has proposed an alternative to
matched filtering for the retrieval of the illuminated scene
from the received signal by assuming that the recovered image
is sparse or, in wider terms, compressible. After justifying
this alternative, the results were analyzed on 1-D simulated
sparse data, comparing them to the ones obtained through the
conventional matched filter. In this test, on a simulated set of
data, the option based on CS is considerably more accurate than
that of the matched filtering in terms of amplitude and phase,
even if it employs just 50% of the received samples.

Then, an approach has been proposed as an alternative fo-
cusing technique to the traditional matched filtering for SAR
raw data. The range compression was performed, as usual,
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according to an RDA, and then, the azimuth compression was
carried out following a CS scheme. The acceptable quality of
the images obtained was assessed through qualitative compari-
son with images obtained with conventional SAR imaging.

The most noticeable advantage of the alternative method
presented is the reduction of data to be collected. The option
explored in this paper performs the recovery of the illuminated
scene through a random selection of the received samples,
neglecting the remaining ones. Since the selection of samples
is done a posteriori and since CS algorithms do not require
the Nyquist theorem to be satisfied, we can expect to obtain
successful results even with special figures of the selection of
samples (for example, with a regular sampling). Nevertheless,
from an efficiency point of view, it is not optimum to neglect
a fraction of the data acquired. Hence, it would be more
interesting to explore different systems of acquisition which
would take high profit of the CS theory.

Another advantageous property of the technique proposed
is the absence of sidelobes. The tests on simulated data have
proven that this fact can improve the accuracy in terms of
resolution of the recovered scene (the resolution understood as
the capability of the discrimination of close targets). Those tests
were carried out on examples entirely satisfying sparsity, which
is not always a valid hypothesis in the real world. Therefore,
in order to enhance the results obtained on real data with the
proposed approach, it would be necessary to define a suitable
basis for the compression. Since according to the literature,
radar data are compressible, this basis exists.

Further studies explore the extension of the processing on
SAR data based on CS both to the range and the azimuth.
Moreover, since this solution is not highly dependent on the
transmitted waveform, different options of transmitted signal
are to be investigated. The transmitted signal can be tuned to
improve efficiency or at least to be more suited for a particular
application.
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