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At the Space Launcher System Analysis (SART) department of DLR, an engineering tool for the 
simulation of propellant management systems is under development. The tool is called PMP 
(Propellant Management Program). This paper will describe the tool and some of the models the 
tool uses. Some models have been adapted or added and some will be implemented in the future.  
The paper will also describe the results of a test case compared to the EADS Astrium tool EUCES. 
 

1. Introduction 
A well designed propellant management system in rocket stages is of crucial importance for successful 
launcher design. The propellant management system can be optimized such that propellant residuals and 
loaded propellant are minimized. This is especially important in upper stages, where each kilogram saved 
can be directly added to the payload. To obtain an efficient design, it is necessary to be able to simulate 
propellant behaviour and propellant management systems using fast engineering methods (CPU time in 
order of seconds, maximum a few minutes). This way propellant management can be integrated in the 
preliminary design phase where different propellant management systems can be compared and a trade-
off can be made. Within the German national program “cooperation project upper stage”, the SART 
(Space Launcher Systems Analysis) department at DLR in Bremen is developing a tool for this purpose. 
The tool is called PMP (Propellant Management Program) 
 
The main task of the propellant management system is to make sure that propellant enters the engine 
under the right conditions. Typically about 90% of the launcher takeoff mass consists of propellant. The 
most obvious way to minimize propellant mass is probably to increase the specific impulse of the engine. 
But engine performance cannot be increased indefinitely. In fact current rocket engine technology is 
reaching its limits. It is therefore important to optimize the propellant management system to minimize 
propellant losses (for example residual propellant and propellant boil off).  
In its current form the tool PMP calculates amongst others the required pressurization gas mass, pressure 
losses throughout the propellant feed system, pressure at all locations, and it includes a simple method for 
the determination of evaporated propellant mass and self-pressurization. Visualization of the propellant 
management system is also possible (Figure 1). For the future some extensions and improvements are 
foreseen. For example a more detailed model for evaporation of the liquid and stratification of liquid and 
gas is to be implemented. Also a model for propellant slosh is foreseen. Propellant slosh can create 
undesired forces which have to be counteracted by the attitude control system, and it can also lead to 
undesired thermodynamic effects like strong pressure drops.  
An example of an upper stage propellant management simulation will be presented and compared to 
EUCES, a tool used at Astrium based on EcosimPro.  
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Figure 1. Visualization of Upper Stage Propellant Management System as Automatically Generated 
by PMP 

 

2. Logic of the program 
The goal of PMP is to quickly simulate a propellant management system (CPU time in the order of 
seconds, maximum a few minutes). The tool is not intended for detailed simulation of every phenomenon, 
but rather it should be able to give an estimation of integral values.  
The input data of PMP consists of two parts; a mission specific part and a propellant system specific part. 
For the mission specific part the user has to specify the mission duration and the desired tank pressure. In 
addition the user may specify liquid outflow (propellant mass flow), acceleration, external temperatures 
and radiative heat flux. The mission specific input can be defined as a function of time. The propellant 
system specific input consists of for example wall thickness, materials, propellant mass, initial propellant 
temperature and tank geometry. It is not a function of time. After providing the input PMP is able to 
calculate the following data: 
 

• pressure (including hydrostatic pressure) 
• pipeline pressure drops 
• required pressurization mass 
• masses of all components 
• temperatures of the ullage and liquid 
• propellant loss (evaporation, venting) 
• Net Positive Suction Pressure (NPSP) 

 
During the simulation, pressure in the tanks will start to vary because of tank drainage and propellant boil 
off.  PMP adapts the pressurization gas mass flow such that the desired pressure in the tank is reached. If 
the pressure in the tank exceeds a maximum, gas is vented until the desired pressure is reached.  



Using tank pressure, hydrostatic pressure, pipeline radius, material properties and pipeline geometry 
(length and bends) velocity and pressure at each location in the pipeline can be calculated. Using the 
pressure at the feedline exit (engine inlet), the Net Positive Suction Pressure (NPSP) is calculated. The 
NPSP is very important parameter in Propellant Management System design. If it is too low, cavitation 
may take place in the turbopump which can lead to catastrophic failures.  

3. Phase change models 
A major improvement in PMP has been made on the fluid temperature and phase change models. The old 
model assumed the liquid temperature to be homogenous and constant. The assumption was that heat 
flowing into the liquid is used to evaporate a certain amount of this liquid. The amount of liquid evaporated 
was calculated by dividing the heat flow into the liquid by the energy required to heat up the liquid to the 
boiling temperature plus the heat of evaporation plus the energy required to heat up the evaporated liquid 
to the ullage gas temperature. Temperature of the liquid was assumed to remain unchanged: 
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Where 

vapm
•

 is the evaporated liquid mass     [kg/s] 

liqQ
•

 is the heat flow into the liquid      [J/s] 

liqpc  is the specific heat at constant pressure for the liquid   [J/kg/K] 

gaspc  is the specific heat at constant pressure for the gas  [J/kg/K] 

satT  is the saturation temperature     [K] 

liqT  is the liquid temperature     [K] 

gasT  is the temperature of the gas     [K] 

vaph      is the heat of vaporization     [J/kg]   
 
Apart from the fact that liquid temperature was assumed constant, the model has some additional 
shortcomings and therefore was adapted. In reality, some liquid can evaporate even without energy inputs 
from the surroundings. According to the evaporation model based on kinetic theory [1] [2], the evaporated 
mass is a function of the saturation pressure of the liquid and the partial vapour pressure in the ullage.  
 

)(
2 v

sat
lvap PP

RT
MAm −=

•

π
σ  (2)  

 
Where: 

vapm
•

 is the evaporated liquid mass      [kg/s] 
σ  is the accommodation coefficient     [-] 
A  is the liquid-gas interface surface area     [m2] 
M  is the molecular mass       [kg/mol] 
R  is the universal gas constant      [8314.4 J/kg/mol/K] 
T  is the temperature at the liquid–vapour interface      [K] 

sat
lP  is the liquid saturation pressure        [Pa] 

vP  is the vapour pressure (or partial pressure of the liquid vapour in case of gas mixture) [Pa] 



 
As long as there is a positive pressure difference, liquid will evaporate even if there is no energy input 
from the surroundings. In this case energy will be extracted from the liquid and the liquid temperature will 
drop. If the liquid saturation pressure drops below the partial pressure in the gas (the pressure difference 
is negative), gas will start to condensate.  
The liquid temperature can be calculated by determining the net heat input into the liquid. To obtain the 
net heat input, the heat required for evaporation of the liquid mass determined with equation (2) is 
subtracted from the heat input into the liquid from the surroundings.  
 
The problem when using this model is the determination of the accommodation coefficient. This coefficient 
is a measure for that chance of a molecule to undergo a phase change. The accommodation coefficient 
can obtain values between 0 (no phase change) and 1 (maximum evaporation rate). Values for this 
accommodation coefficient are hard to obtain and values indicated in literature tend to vary over a large 
range.  
The kinetic theory may not be valid for all fluids. In such cases, the accommodation coefficient can be a 
‘tuning’ parameter to adapt the numerical results to that of measured results, rather than a real ‘physical’ 
parameter. For these cases, limiting the accommodation coefficient between 0 and 1 makes no physical 
sense anymore.   
 

4. Example 
PMP including the new phase change model was compared to the EADS Astrium tool EUCES. Like PMP, 
EUCES is a propellant management tool which calculated propellant conditions in tanks and pipelines [3] 
[4]. However, the goals of each tool are somewhat different. Whereas PMP is meant to quickly determine 
the integral values of the propellant management system, EUCES simulates the processes on a more 
detailed level.  
EUCES has been extensively tested. It is therefore interesting to compare PMP with EUCES. A simple, 
adiabatic tank model without any heat transfer between propellant and tank wall but including propellant 
outflow has been set up. The tank is pressurised using helium as a pressurant. Using this simplified 
model, some basic things such as evaporated propellant mass, pressurisation gas mass, ullage 
temperature and heat transfer between liquid and ullage could be compared. 
The test case concerns a model of the upper stage LOX tank of the WOTAN K3 launcher design. The 
WOTAN launcher has been jointly designed by EADS Astrium and DLR-SART [5]. The input data for the 
test case can be found in Table 1. In Figure 2 it can be seen that the upper stage tanks as modelled in 
PMP are not an exact representation of the actual design. For example the cylindrical sections in the 
middle of the tanks are a bit higher in the PMP representation. This is explained by the fact that PMP can 
only model cylinders and spherical segments, but the actual tank domes are not spherical segments. 
However, this is usually a very good approximation of the tank shape. 
 
 

LOX mass [kg] 28330 
LOX mass flow [kg/s] 34.2 
Burn time [s] 802 
LOX tank press [bar] 3 
LOX initial temperature [k] 90.5 
Helium pressurant initial temperature [K] 270 
Helium pressurant initial storage 
pressure [bar] 

393 

Heat transfer coefficient between ullage 
and liquid  [W/m2K] 

5 

 
Table 1. LOX Tank Data 



 
Figure 2. The WOTAN K3 Upper Stage, with the LOX Tank  Marked by a Red Square. The PMP 

model with the approximated geometry is shown on the right. 
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Figure 3 shows the heat transfer between liquid and ullage. The negative numbers mean heat is 
transferred from the ullage to the liquid. The heat transfer coefficient between liquid and ullage has been 
set to equal values for both cases (see Table 1). However, a difference in heat transfer can still be seen. 
This can be explained by the fact that when using PMP, the tank geometry is approximated. Heat transfer 
between the liquid and ullage is a function of the heat transfer coefficient, the liquid surface area and the 
temperature difference between liquid and ullage. As the tank is drained, the liquid surface area changes. 
Because tank geometries for both cases differ slightly, the liquid surface area will also differ and therefore 
there is a difference in heat transfer.  
The simulation begins at about t=220 s, after first stage seperation. At this time the tank is almost 
completely filled. The liquid surface area is small and the heat transfer low. At about t= 620 s, the tank is 
filled half way. Here the tank radius is the largest and the liquid surface area has reached a maximum. 
Therefore the heat transfer has also reached its maximum value. 
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Figure 3. Heat Transfer Between Liquid and Ullage 

 
Figure 4 shows the evaporated propellant mass. The evaporation model in PMP requires the input of the 
accommodation coefficient. Data on accommodation coefficients for oxygen are hard to obtain. The 
coefficient has been chosen such that the evaporated mass equals the evaporated mass in EUCES. This 
results in a very small accommodation coefficient of 1*10-6.  
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Figure 4. Evaporated Liquid Mass 

 
 
 
 



The development of the ullage temperature is shown in Figure 5. The PMP simulation results in a 
somewhat lower ullage temperature, which seems a bit strange because according to Figure 3 the heat 
transferred from the ullage into the liquid is less in case of PMP. Therefore one would expect the ullage 
temperature to be higher. 
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Figure 5. Ullage Temperature Evolution 

 
Pressurisation gas mass (Helium) is higher for the PMP case, as can be seen in Figure 6. A lower ullage 
temperature will lead to a lower pressure and therefore the pressurisation gas mass must be higher to 
maintain the desired tank pressure.  
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Figure 6. Pressurisation Gas Mass 
 



5. Thermal stratification in the liquid 
 
Thermal stratification in the liquid is important because a change in the liquid temperature also means a 
change in the NPSP. If the liquid temperature is too high, NPSP can drop below critical values and 
cavitation can take place in the turbopumps. 
Stratification of the liquid can also have a negative side effect when propellant sloshing occurs. Propellant 
sloshing is not yet implemented in PMP. Propellant sloshing dynamics leads to undesired mechanical 
loads and can also lead undesired thermodynamic effects, such as strong pressure drops due to the 
mixing of thermal layers in the liquid. The dynamics of sloshing and its mechanical loads are well 
understood and analytical relations exist. Implementing these into the program should be fairly straight-
forward. The thermodynamic aspect of sloshing is a more difficult subject. Currently, experiments are 
carried out by the Centre of Applied Spaceflight and Microgravity (ZARM) in Bremen to investigate the 
latter. Simplified models are extracted from these experiments and from numerical analysis with 3D flow 
solvers such as the commercially available code FLOW 3D [2]. It is foreseen to implement these in PMP. 
 
Thermal stratification in the liquid can be modelled by assuming that the tank is cylindrical and the heat 
input through the tank domes is negligible. This way, a boundary layer model can be set up and by 
integrating the liquid mass flow in the natural convection boundary layer along a heated tank wall, an 
estimation for thermal stratification can be obtained. Additional assumptions are: 

• That the initial temperature of the liquid is uniform 
• That all of the heat input into the tank wall appears at sensible heat in the boundary layer 
• That all of the flow in this boundary layer goes into a heated upper stratum 
• That the lower stratum remains at initial (bulk) temperature 
• That there is no mixing between the upper and lower stratum 

and following the procedure in [6] it is possible to compute a heated volume (volume of the upper stratum) 
and an average temperature of this heated volume. A schematic representation of the model is given in 
Figure 7. Here, Tb is the initial (bulk) temperature and Ts is the liquid surface temperature. The average 
temperature of the heated volume will be somewhere between Tb and Ts, depending on the temperature 
profile in the heated volume.  
 
The increase in heated volume can be determined using: 
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 Where 
•

HV   volumetric increase of the upper stratum      [m3/s] 

HA  tank wall heated area        [m2] 

HV  volume of the upper stratum       [m3] 
•

V  volumetric outflow rate        [m3/s] 

cA  area of liquid surface        [m2] 

oft   time after start of the liquid outflow      [s] 

R  tank radius         [m] 
h  wall-boundary layer heat transfer coefficient     [W/m2/K] 

lρ  density of liquid         [kg/m3] 

ξ  factor depending on temperature and velocity distributions in the boundary layer [-] 
 
The average temperature in the heated upper stratum can be calculated using the following relation: 
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with 

avT
•

  the rate of  increase of the average temperature in the upper stratum  [°/s] 

HV   the volume of the upper stratum       [m3] 
•

q  heat flux rate         [W/m2]  
 
By assuming a linear temperature profile in the upper stratum the temperature at the liquid surface can be 
calculated from Tb (bulk temperature) and Tav(the average temperature in the upper stratum). As soon as 
the temperature at the liquid surface reaches the saturation temperature, the evaporation process is called 
‘natural convection boiling’. Once the liquid surface temperature is known, the evaporation rate can be 
calculated using (2). Results of this simplified model will be compared with results using FLOW 3D. Figure 
8 shows the results obtained by a FLOW 3D simulation of an experiment conducted at ZARM using liquid 
nitrogen (LN2) as a fluid.  The figure shows that part of the test-tank filled with LN2. In this figure the 
heated boundary layer which transports the warm liquid into the upper stratum can clearly be seen, 
justifying some of the assumptions made in the model described above. In the future, also simulations of 
real launch vehicle tanks will be made using FLOW 3D. 

 
Figure 7. Stratification Model [7] 

upper stratum 

HA

lower stratum 

 



T [K] 

 [m] 

[m] 

Figure 8. FLOW 3D Model of Stratification Process of Test at ZARM 
 

6. Future work 
The stratification model in its current form is limited to tanks heated through the cylindrical part only. This 
can be a good approximation when the tank is largely cylindrical and the dome surfaces are small 
compared to the cylindrical surface. This is the case in for example first stage tanks. Additionally, a large 
part of the volume in the upper dome will be occupied by the ullage. In such a case the assumption that no 
heat will enter the liquid via the upper dome is a valid one. 
In application where the dome surface is large compared to the cylindrical surface, heating through the 
domes cannot be neglected. This is often the case for upper stage tanks. The WOTAN LOX tank 
illustrates this very well. The cylindrical part of this tank is almost zero and thus the heating of the liquid 
takes place only through the domes. This is clearly an example of a tank where the stratification model in 
its current form does not apply. A part of the future work will therefore be the adaptation of the model such 
that it can also be used for upper stage tanks.  
Another important part of the future work will be the implementation of a sloshing model. The sloshing 
model with not only determine the forces on the stages, but it will also include a model for the estimation 
of the pressure drop encountered during cryogenic sloshing. The stratification and slosh model will be 
developed by investigating the results of 3D numerical analysis using FLOW 3D, as well as investigating 
the results from experiments executed at ZARM.  
 
 



7. Conclusions 
PMP is able to simulate propellant management system very fast. Some models have adapted or added 
to increase its accuracy. For example the phase change model has been improved and a stratification 
model has been added. PMP shows good agreement with the Astrium tool EUCES for a simple adiabatic 
test case, although a slight difference in ullage temperature is present.  The stratification model is based 
on a boundary layer transport model, which has been shown to be plausible by comparing it with the 
results from a FLOW 3D simulation.  
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