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Abstract

A method for grasping a tumbling non-
cooperative target is presented, which is based on
nonlinear optimization and collision avoidance. Mo-
tion constraints on the robot joints as well as on the
end-effector forces are considered. Cost functions of
interest address the robustness of the planned solu-
tions during the tracking phase as well as actuation
energy. The method is applied in simulation to dif-
ferent operational scenarios.

1 Introduction

The problem of grasping a target satellite by
means of a free-floating robot requires particular at-
tention, when the target is non-cooperative and un-
controlled in its attitude. Such grasping task may be
solved within the context of optimal or nonlinear con-
trol [1][2][3], with use of the on-board sensor signals,
or in that of tele-presence control, with a human oper-
ator in the loop [4]. However, both these approaches
can be regarded as local methods, even though the
operator may undertake training. More generally,
due to the complexity of the problem at hand, a mo-
tion planning of the task which can provide a higher
level of confidence for its completion, is of interest.
The motion planner may be conceived to be part of
a semi-autonomous operational mode, which is based
on the following three steps: 1. target motion observa-
tion and prediction; 2. planning of the robot grasping
motion; 3. execution of the planned grasping motion
with support of on-board sensor-based control.

The target motion prediction problem (step 1)
was addressed in [5], with the aim of covering very
long time periods of circa 100 seconds. This was done
to allow for the computational time of the motion
planner and for the execution of the maneuver. In
this paper, the motion planning task (step 2) is ad-
dressed. The paper presents an implementation of
nonlinear optimization for solving the grasping task
in an optimal way and with the subsequent applica-
tion of the solutions in a realistic scenario. The test-
bed involves two simulation models, shown in Fig. 1.

A nonlinear optimization problem is formulated
in the standard way. As such, the robot joint po-
sitions are parameterized in time with B-splines. In-
equality constraints are defined for the joint positions
and velocities, as well as for the end-effector forces,
and for collision avoidance. The motion grasping
task is divided into three parts: an approach phase,
a tracking phase (with grasping) and a stabilization
phase. The chaser satellite, which carries the manipu-
lator, is assumed to be actuated only in the approach
and stabilization phases. A first optimal criterion is
defined such as to minimize the risk of failure during
the tracking phase of the trajectory (step 3 above).
The latter in fact, could deviate from the nominal
input trajectory, due to errors arising from modeling
uncertainties or other sources. Another costs of in-
terest is the thruster energy consumption dutring the
approach phase.

The novelty presented here is the planning of
the whole grasping maneuver for typical target tum-
bling motions and for any suitable robot kinematics.
The use of nonlinear optimization and collision avoid-
ance allows to choose a suitable initial position of the
grasping robot with respect to the target, thus elim-
inating the problem of it being out of reach. Fur-
thermore, the grasping strategy avoids impacts alto-
gether.

In the formulation of the optimization problem,
based on direct single shooting, the first priority is
given to satisfying the inequality constraints men-
tioned above. Such problems can generally be solved
within the allocated operational time of 100 seconds.
If however, a cost function is to be optimized, the run
times become longer. Due to this fact, and to the fact
that the problem presents many local minima, the use
of a look-up-table is considered for real-time imple-
mentation of optimized solutions.

2 Bibliography

In [2] the authors emphasize that although there
is a lot of literature on the subject of space robot
control, there is no solution which can readily solve
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Figure 1. Two grasping scenarios

the task of capturing a tumbling object in space. It
is also claimed that most works on the capturing of
a tumbling target are divided into approach, impact
and post-impact motion. Reference is made to work
which focuses on minimizing the force impulse gener-
ated during the contact. These include, among oth-
ers, the concept of impedance matching, to guarantee
that the target will not be pushed away after an im-
pact.

The same authors then tackle the hard problem
of grasping the tumbling target with zero attitude
change of the chaser satellite. They suggest in [2][6][7]
preloading bias angular momentum in the chaser ma-
nipulator and reaction wheels, which is of equal mag-
nitude and opposite sign to that of the target, such
that after the capture the compound will have zero
angular momentum. The task so formulated, is found
here to be generally hard to accomplish, due to the
limits of the robot kinematics and dynamics.

In [8] the chaser satellite is set into rotational
motion with a constant angular velocity, in order
to minimize the relative velocity between the robot
end-effector and the target grasping point. It is as-
sumed that the target is nearly axis-symmetric. The
robot motion control is based on a Jacobian transpose
scheme with proportional gain.

The autonomous grasping problem is also ad-

dressed in [9], based on an inverse kinematics al-
gorithm, which however only applies to Puma-like
robots. In [10] the target is assumed to rotate slowly,
such that the assumption can be made that the robot
end-effector trajectory should follow a circular path,
or a spiral ascending trajectory. Trigonometric spline
functions are used to plan the trajectory of the ma-
nipulator in Cartesian space. A strong assumption is
made that the orientation of the end-effector matches
that of the target.

In [3] the optimal control of the pre and post-
capturing of a tumbling satellite is addresses. The
optimal control for the capturing maneuver is solved
as a rendezvous problem between two rigid bodies.
For the detubling motion, it is also assumed that the
chaser satellite attitude is unperturbed, with aid of
the attitude control system. The problem is solved
by considering the spacecraft dynamics, to which an
external moment is applied.

More generally, with regards to motion planning
in the context of nonlinear optimization, in [11] non-
linear optimization is applied to solve point-to-point
motion planning problems for a free-floating robot.
Cost functions considered include minimum chaser
satellite attitude deviation, minimum time and min-
imum distance in Cartesian space. A main result is
the so-called ”V-maneuver”, where the end-effector
moves along radii into and out of the center of mass
of the system, to minimize the chaser satellite atti-
tude deviation.

Nonlinear optimization applied to a fixed-based
6 d.o.f. manipulator executing point-to-point ma-
neuvers in configuration space, was already treated
in [12], where collision avoidance is also included, and
in [13]. The first made use of direct single shooting,
while the second made use of collocation. Cost func-
tions addressed were time, mechanical energy and
power.

There are many papers on motion planning for
free-floating and free-flying robots (see review collec-
tions [14], [16]). However, few are found which treat
the collision avoidance issue.

Robot collision avoidance was already treated
within optimization in [17], where the method of
growth distance is used (this same method is also
used in [12]). For a general class of robotic systems,
an optimization problem is formulated over a fam-
ily of continuous paths which satisfy the specified
end conditions and possess robot-obstacle collisions.
The cost to be minimized depends on the penetration
growth distance, a measure of the depth of intersec-
tion between a pair of object models. The method
is seemingly robust to non-convex problems, due to
the shrinking of the obstacles. In [18] the authors use



strict-convexity bounding volumes, close to polyhe-
dral convex hulls, to represent the obstacles, in order
to guarantee the continuity of the proximity distance
gradient.

3 Problem formulation

The addressed problem is to develop a motion
planner for grasping and stabilizing a non-cooperative
free-floating target satellite in orbit, by means of a
robot manipulator mounted on a spacecraft. The
spacecraft is actuated, although actuation is only
used for the first part of the approach phase and
for the final stabilization phase of the compound.
The manipulator has seven rotational joints and rigid
links, while joint friction and flexibility are ignored.
The initial configuration of the robot is predeter-
mined and fixed. The target trajectory is assumed
to be determined by a vision system (e.g., [5]). Its
geometry is assumed to be outlined by an operator
(convex hull, composed of boxes and cylinders), if it
is not provided by the target satellite owner. The op-
erator also defines the position and orientation of the
grasping point.

Trajectories should be found which first bring the
end-effector into an orientation suitable for grasping,
i.e. such that the target grasping point is at some
predefined angle and small distance to it. The point
in time along the target trajectory when the robot
meets the target should be determined by the mo-
tion planner. The end-effector should then track the
grasping point for some seconds, to allow for position
mismatches to be corrected, and to allow for the ini-
tially imposed relative distance to be reduced to zero
and the gap to be closed (minimum impact grasp).
Finally, the relative motion between the chaser and
the target, as well as that of the compound (relative
to the orbital frame), should be brought to zero.

The chaser and target satellites are assumed to
be in the same orbit (orbital relative dynamics is
not considered). The rotational velocity of the tar-
get about each of its body-fixed axes may have any
value between +/- 4 deg./sec.. A particular case is
also of interest, in which the target is affected by en-
ergy dissipation (arising from flexible appendages like
solar panels, or from sloshing). For this case, it is as-
sumed that the target tumbling motion has decayed
to a state of flat spin, i.e. a pure rotation about the
major principal axis of inertia. This axis is inertially
fixed and is assumed here to lie in the orbital plane
(x-z plane in Fig. 1). This is because the resulting
necessary motion prediction times can be contained
to the allocated 100 seconds (see also Sec. 5).

Furthermore, one single grasping point on the

satellite structure is considered. Note that the in-
ertial properties of the target must not be known, for
the purpose of the motion prediction [5]. However, in
order to satisfy force constraints on the end-effector
or attitude constraints on the chaser satellite, it is
assumed that the error margin between the real and
the assumed values can be dealt with by the on-board
control system.

4 Method

The optimization problem formulated in section 3
is solved here as a series of two single-shooting sub-
problems. The first addresses the approach and track-
ing phases, while the second addresses the stabiliza-
tion phase.

4.1 Mathematical formulation of the
optimization problem

We begin by postulating that the mathematical
problem at hand contains a world W, a known ob-
stacle region O composed by the tumbling target
satellite, and a configuration space C of dimensions
C(θ) ⊆ ℜn, with n = 6 + 7 = 13. The dimension
of n derives from the 6 generalized coordinates of the
free-flying chaser satellite and the 7 robot joint posi-
tions, denoted by θ = [θm θb]. The orbital frame
coordinate system is shown in Fig. 1. Note that this
is regarded here as an inertial frame and equal to the
chaser satellite reference frame at the initial time.
The time interval is unbounded: t = [0,∞). The
chaser satellite-robot system is subject to a bounded
action τ ⊆ ℜm, where m = 6 + 7 = 13, of which the
relation to the system state Θ = [θ, θ̇] is given by the
state transition equations Θ̇ = f(Θ, τ ), defined for
every Θ ∪ C and τ ∪ τ . This is generally written as
follows [14]:
[

Hb Hbm

HT
bm Hm

] [

θ̈b

θ̈m

]

+

[

cb
cm

]

=

[

Fb

τ

]

(1)

where the inertia matrix H and the non-linear veloc-
ity dependent term c are written to include the com-
ponents which relate to the chaser spacecraft and to
the robot manipulator respectively. Also note that
Fb and τ refer to the actions on the chaser satellite
and the torques on the robot joints respectively. Note
that in particular phases of the maneuver, for which
the robot is free-floating, Fb = 0.

The nonlinear optimization problem can then be
formulated by the following two sub-problems:

4.1.1 Approach and Tracking with
grasping

The approach starts from an Observation dis-
tance and brings the chaser satellite to an optimal



grasping pose, which precedes the tracking phase.
The Observation distance is function of the sphere
of safety around the target satellite, which is in turn
function of its rotational velocity and geometry.

The approach maneuver then consists of the
spacecraft maneuver to the optimal grasping pose,
followed by a robot maneuver to bring the end-
effector into its initial position for the tracking phase.
The end position of the spacecraft maneuver is func-
tion of the following robot approach and tracking
phases only. Also note that during the robot ma-
neuver, the chaser spacecraft is not actuated. The
tracking phase is intended to minimize any residual
relative velocity between the robot end-effector and
the target grasping point. Its duration should de-
pendent on the tracking controller performance, such
that this may have sufficient time to bring any posi-
tioning error to zero.

Following is the robot approach phase addressed.
This can be formulated mathematically as follows:
find θm

1(t), θb(0) minimizing Γ(θm
1(t), θb(0)) sub-

ject to

M(θ1) θ̈1(t) + c(θ1, θ̇1) θ̇1(t) = τ 1 (2)

h1(θ1(t)) ≤ 0 (3)

h1
coll(θ

1(t)) ≤ 0 (4)

g1(re(tf
1)) = 0 (5)

θ1(0) = θ1
in, θ̇

1(0) = 0, θ̇1(tf
1) = 0 (6)

for 0 ≤ t ≤ tf
1 and where tf

1 is a predefined fi-
nal time, Γ1 is a predefined cost function, h1 are in-
equality box constraints of type xmin ≤ x(t) ≤ xmax,
for x = {θ1, θ̇1} and h1

coll are collision avoidance
constraints. Functions g1(re(tf

1)) are equality con-
straints on the final end-effector state re(tf

1), which
is clearly function of the given target trajectory (see
Sec. 4.4). Finally Eq.s (6) express boundary condi-
tions on position, where θin is the given initial con-
figuration, and on velocity. More will be said about
boundary conditions on acceleration and jerk in sec-
tion 4.6. Furthermore, in order to simplify the op-
timization problem, the value of tf

1 is chosen to be
that which minimizes the distance between the end-
effector and the target.

The spacecraft maneuver preceding the robot ap-
proach maneuver is determined by the found condi-
tion for θb(0). In order to limit this to a V-bar and/or
R-bar maneuver (in the orbital plane), only two com-
ponents of θb(0) are optimized and the third is kept
constant. In this phase of the maneuver, the equa-
tions of motion are reduced to mere single rigid body
dynamic equations, where the robot states are locked
and can be ignored. This is trivially solved, and as

such is omitted here. In the robot approach maneu-
ver instead, the spacecraft states are not actuated,
but rather obey the law of conservation of linear and
angular momentum.

The tracking phase is solved by means of an in-
verse kinematic algorithm. The algorithm is based on
the pseudo-inverse kinematic solution for the redun-
dant 7 d.o.f. robot:

θ̇2
rob = J†redes +

(

E7 − J†J
)

θ̇rob null, (7)

where E7 is the (7 × 7) identity matrix, θ̇2
rob is the

joint velocity vector and θ̇rob null acts in the null
space of the robot generalized jacobian matrix J [14],
therefore not affecting the end-effector motion. This
well known solution of the inverse kinematics mini-
mizes the joint velocities, while the vector θ̇rob null

can be expressed by a potential function to improve
quantities such as the manipulability of the robot [15].

The inequality constraints in Eq.s(3)-(4) are also
applied to this phase of the motion:

h2(θ2(t)) ≤ 0 (8)

h2
coll(θ

2(t)) ≤ 0 (9)

Simultaneously to the tracking motion, the im-
posed relative distance between the end-effector and
the target grasping point is reduced to zero and the
grasp is closed. It is assumed here that no significant
impact occurs. Therefore, from this point on, the two
satellites can be considered as one system, where the
inertial parameters of the last robot link are updated
accordingly (with any knowledge or estimate of their
value). Furthermore, at the end of this phase, the
robot joints are not at rest, nor is the system at rest
with respect to the orbital frame. The stabilization
of this residual motion is the task of the next phase.

4.1.2 Stabilization

The modeling of the dynamics for the stabiliza-
tion phase ideally follows that of a single multi-
body system, for which the end-effector now includes
the target, with known non-zero initial conditions.
These, representing the positions and velocities of all
the system degrees of freedom, are given from the
preceding tracking phase.

In this phase, the relative motion between the
chaser and the target is brought to zero by slowly re-
ducing the manipulator joint velocities. This can be
done in an optimal way, in order to minimize a spec-
ified cost function and to satisfy motion constraints,
like the forces at the grasping point or the attitude
disturbance on the chaser or target satellites.

The optimization problem formulation is simply
as follows: find θm

3(t) minimizing Γ(θm
3(t)) subject



to

θ(0) = θ(tf
2), θ̇(0) = θ̇(tf

2) (10)

θ̇rob(tf
3) = 0, (11)

h3(θ3(t)) ≤ 0 (12)

h3
coll(θ

3(t)) ≤ 0 (13)

where Γ3 is for example the chaser satellite or target
attitude disturbance. The inequality in Eqn.(12) may
also express limits on the forces on the robot gripper.
The initial conditions in Eqn.(10) express the depen-
dency on the final conditions of the previous tracking
phase. Again, the value of tf

3 is predefined here, for
simplicity.

The following detumbling of the system can again
be handled as a single rigid body control problem and
is not addressed here.

4.2 Method of solution of the
optimization problem

The optimization problems above are solved as
a nonlinear programming problem (NPL), by satis-
fying the equality and inequality constraints at a fi-
nite number k of via points. The system independent
states are parameterized in time, i.e., θ = θ(t,p) with
p ⊆ ℜN , for N optimization parameters, as described
in subsection 4.6. The NPL is solved with an SQP al-
gorithm from the MOPS library [19]. The equations
of motion are modelled with the dynamics library de-
scribed in [20].

Note that to solve the above NPL problems, the
equations of motion are integrated in function of the
initial conditions and optimization parameters. This
is necessary to determine all quantities appearing in
the inequality constraints expressed above. Further-
more, in the first sub-problem, each integration of the
equations of motion is followed by a computation of
the inverse kinematics for the tracking phase.

4.3 Cost functions

The cost functions of interest are those which
minimize the risk of failure during the tracking phase
of the trajectory. The latter in fact, could deviate
from the nominal input trajectory during the track-
ing phase, due to errors arising from modeling uncer-
tainties, camera occlusions, or other sources.

In mathematical terms, these are defined as fol-
lows. To allow for deviations of the end-effector posi-
tion and orientation from the nominal trajectory dur-
ing execution of the task, the manipulability should
be maximized:

min
p

Γmanip =
√

det(J JT )(tf 1) , (14)

where J is the Generalized Jacobian of the free-
floating robot. This will minimize the risk of meeting
a singularity during the tracking phase. The out-
come will be an optimal spacecraft state and robot
configuration for the grasping task. Note that this
will depend on the target motion and geometry (i.e.,
position of grasping point).

In order to minimize the risk of collisions deriv-
ing from path deviations, the minimum distance from
collisionD along the trajectory should be maximized:

max
p

Γdist = min(D) . (15)

A simple cost function may also be defined to
minimize the translation of the chaser spacecraft
(and thus the energy) during the spacecraft approach
phase:

min
p

Γapproach = ‖θb(0)‖
2 (16)

4.4 Inequality constraints

The inequality constraints, which are satisfied on
the k via points, are firstly the box constraints on the
joint positions and velocities:

θmin ≤ θ(t,p) ≤ θmax (17)

θ̇min ≤ θ̇(t,p) ≤ θ̇max (18)

The constraint bounds are given by the robot design
specifications.

Further constraints arise from the collision avoid-
ance. To compute collision detections and to formu-
late the collision avoidance problem within an NLP
context, bodies in the scene are represented here as
convex polytopes. For our purpose these include
boxes, cylinders and elongations of these.

The collision avoidance problem can be simply
formulated as an inequality constraint in the opti-
mization problem:

D(i) > 0.0, 1 < i < m, (19)

where the function D(i) constitutes a minimum dis-
tance between two bodies or a penetration depth, if
the two bodies intersect. The scalar m is the number
of body pairs in the given problem.

To compute the distance between two bodies, or
their penetration depth, the ODE library was imple-
mented [21]. The library allows to represent objects
as boxes or capsules (a capsule is like a normal cylin-
der except it has half-sphere caps at its ends. This
feature makes the internal collision detection code
particularly fast and accurate). For these, it is pos-
sible to compute, in case of collision, the penetration
depth as the minimal length of translation needed to
separate them. If the cost function (15) is to be min-
imized, the size of the robot is overscaled and the
resulting penetration depth minimized.



4.5 Equality constraints

In the robot approach phase, an extra equality
constraint is required on the final end-effector posi-
tion and orientation, in order for it to meet the target
at some point on the trajectory:

re(t1f ,p)− rtarget(t1f ) = 0 (20)

φe(t1f ,p)− φtarget(t1f )) = 0 (21)

where re is the end-effector position vector, computed
at the final time t1f , r

target is the given target tra-
jectory at the final time, φe are the quaternion pa-
rameters which describe the end-effector orientation
and φ target are the quaternion parameters which de-
scribe the target orientation, also computed at the
final time. The latter can be relaxed in one direction,
if the grasping point may be grasped at different an-
gles (e.g., a handle or a solar panel boom).

4.6 Parameterization

An order-4 B-spline was chosen for the joint
states, in order to allow for smoothness up to the
third derivative. Comparisons were made for differ-
ent numbers of nodes N , with respect to the cost
function.

4.6.1 Order 4 B-spline for robot states

We choose here periodic uniform B-splines for
their particularly compact matrix form. For N ver-
tices, nseg = N − 3 segments of length tseg =

tf
N−3

result. It follows that for the internal time of the ith

segment u(t) = t
tseg

−(i−1)tseg , such that 0 ≤ u < 1,

the computation of the uniform B-spline and deriva-
tives is given by [22]:
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, 1 ≤ i ≤ nseg (22)

where Bi represents the ith vertex, A is a constant
matrix and C(u) the matrix of basis functions. Fur-
thermore, these matrices are invertible, so that they
can be used to satisfy the boundary conditions, de-
fined below.

1. Approach phase:
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(23)

where pj0
are the parameters for the jerk at time

t = 0, pθtf are the parameters for the joint posi-
tions and pjtf

are the parameters for the jerk at time

t = tf . Note that of the 8 boundary conditions, 5
are predefined, including zero velocities and acceler-
ations. The latter ensure that there are no jumps
on the accelerations at the boundaries, thus avoiding
high levels of jerk.

2. Stabilization phase:
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s0(0)
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pθtf

0
0

pjtf









(24)

where pj0
are the parameters for the jerk at time t =

0 and pθtf and pjtf
are the parameters for the joint

positions and for the jerk at time t = tf respectively.

5 Analysis of results

For the following examples, the number of B-
spline parameters was initially set to N=42. The end
times were defined as t1f = 10, t2f = 5 and t3f = 45 sec..
The number of via points was chosen to be k = 20.

A solution for the flat spin case was first com-
puted for the first scenario, with a target rotation
about the y-axis, i.e. ωtarget=[0 4 0] deg/sec. The
resulting chaser satellite rotational motion is shown
in Fig. 2. At first, no cost function was mini-
mized. The computational time was 30 seconds. Af-
ter setting the cost function to the energy consump-
tion in the spacecraft approach maneuver defined in
Eqn (16), the resulting initial chaser satellite position
was θb(0)=(1.0e-4, 0, 1.0e-4), as expected. The num-
ber of collision pairs results to be m=29, for the 8
(chaser) + 1 (target) bodies in the scene.

In order to increase the distance from singular-
ities and collision, as an element of safety, the cost
functions defined in Eqn (14) and Eqn (15) were then
implemented. For the second cost to be computed,
the robot geometric model was scale by a factor of 3
in the x direction. The result is such that the manip-
ulability remained approximately the same, but the
penetration depth decreased from an initial value of
1.68m to a final optimized value of 0.8m. The new
initial position of the chaser satellite was (0.33, 0.0,
-0.83)m. No numerical problems were encountered in
the implementation of the collision avoidance within
the optimization.

In the following example, the second scenario was
considered. For this, the moments at the end-effector
during the stabilization phase were found to be most
critical. in fact, the principal components of inertia
of the target were set to [5000 3000 7000] kgm2. The
solutions before and after implementing an inequality
constraint of +/- 10 Nm in all directions is shown in
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Figure 2. Flat spin for scenario I, ω=[0
4 0] deg./sec.: Chaser satellite atti-
tude during the grasping task

Fig. 2. The computational time was in the order of
30 min., although the number of B-spline parameters
was set to N=70. The end-effector equality constraint
on the orientation was relaxed in one direction, since
the solar panel boom was chosen as grasping point,
thus allowing a whole range of grasping angles around
it.

In order to be able to make use of the optimized
solutions in the allocated operational time span of
100 seconds, a look-up table may be built off-line for
a given target satellite. The range of target orien-
tations and rotational velocities can be divided into
regular intervals, thus generating a set of grid points.
Optimal solutions can then be computed for each of
these points off-line and stored in the look-up table.
Further work will address the details of this approach.

With the assumption of the flat-spin axis being
in the orbital plane, a suitable time during an orbit
will exist, for which the distance between the Ob-
servation point and the optimal grasping pose, can
be covered in the allocated operational time of 100
seconds, while still allowing to perform the proposed
grasping sequence (observation, planning and execu-
tion) without collisions. The rotational rate is in fact
in the worst case 90 minutes, for a low-earth orbit,
providing two time slots for the grasp. This limits
the subsequent approach maneuvers to V-bar or R-
bar maneuvers. Cases for which the spin axis is out
of the orbital plane are not considered here, for which
out-of-plane maneuvers might have to be considered.
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7 Conclusion

A novel method for the grasping of a tumbling
target, based on nonlinear optimization and collision
avoidance, is presented. Typical motion constraints
are addressed, including robot joint position and ve-
locity limits and end-effector forces during the target
motion stabilization. Impacts are carefully avoided,
by ensuring that the end-effector velocity equals that
of the grasping point on the target during grasp-
ing. Spacecraft approach phases and post-grasping
detumbling phases are not considered. The effective-
ness of the method was shown with some simulation
examples, in two operational scenarios. Further work
will concentrate on allowing optimized grasping mo-
tions to be available within useful operational times.

With this proposed operation approach, a solu-
tion of the motion planner can be observed in a pre-
view screen. This allows to determine if a maneuver
is safe with respect to collisions, end-effector force
limits, robot singularities and workspace limits, and
eventually satellite control force limits and attitude
deviations of the chaser satellite. These are all issues
which make the grasping task non-intuitive and as
such might be difficult for an operator to handle in
the telepresence control mode.
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